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A Generalized Direct-Form Delta Operator-Based IIR A A

-1 -1
Filter with Minimum Noise Gain and Sensitivity _ebz—b—) or —D—%H

Ngai Wong and Tung-Sang Ng
Fig. 1. Two realizations of 4~ operator.

Abstract—This brief presents the derivation of an arbitrary order delta
operator-based direct-form IIR filter with minimum roundoff noise gain A (called coupling coefficientn this brief) in6~* operators are sep-
and sensitivity. It utilizes the concept ofd_lfferentcoupllng coef'flmentsatdlf- arated from the traditional definition into a novel diagoralipling
ferent branch nodes for better noise gain suppression. Two possible struc- tri hich feat . l fficients at diff t nod
tures for realizing the inverse delta operator are considered and proce- ma_ rx, which rea ur_e§ vgrlous coupling cge icients a. frerent noces.
dures for calculating the optimal filter coefficients are given. By means of 1his enables the utilization of the dynamic range at filter nodes where
state-space representation and matrix manipulation, it is also shown that scaling is necessary and further decreases the output noise gain.
expressions for sensitivity measures of different filter coefficients and their - Another important topic in filter design is filter coefficient sensi-
corresponding roundoff noise gain expressions are the same. This enablesj i - St dies in the past focused on optimal state-space realization
the simultaneous minimization of sensitivity and noise power for the pro- i . . .
posed generalized filter structure. vyhere all elements in every state-space maitrix contribute to t.h.e sensi-
tivity measure [8], [12]-[14]. ThéDFIIt structure, whose coefficient
sensitivity has not been formulated in the literature so far, represents a
special form of sparse realization in which only certain elements within
the state-space matrices will affect the transfer function. In this brief,
|. INTRODUCTION specific sensitivity measures are defined and expressions for sensitivity

%We to different parameters are obtained.

The advantages of delta operator-based implementation over T . - A ) S
. . ) . Techniques described in this brief may also find application in a fast
conventional shift operator approach have recently gained attention

due to the work of Goodwin and Middleton [1], [2]. In addition togrowmg branch of DSP known as sigma-deffat ) modulation [15].

the interesting unification of continuous and discrete time models, ;gfvwdely adopted topology for building high-order bandpass mod-

Index Terms—Delta operator, direct-form, IIR filter, minimization,
roundoff noise, sensitivity.

- ) : o : . Ulators [16] is known as the cascade-of-resonators architecture [17],
numerical benefits of using a delta operator in implementing digit

filters have received a lot of attention [3]-[8]. The major potenti 8].' Thlstopology can be easily modified from thBFit structure by .
oo . o : . ! . adding state variable feedback branches. If zero resonator frequency is
lies in fast sampling systems using fixed-point arithmetic where filter_ . . .
o . . considered, such as in baseband modulation, the cascade-of-res-
poles cluster toward unity in theplane. Such a situation often causes . . .
. . o onators architecture is equivalent to theFllt structure. Moreover,
the system to become numerically ill-conditioned. Delta operator

(defined ass = (= — 1)/A) based filters alleviate this problem bymotlvated by the potential benefits of eliminating the decimation and

P . . 1 1 1 H H A _ .
characterizing the difference between these poles and unity. Thr};serpolatlon filters in the processing oA A/D converted one-bit

: . ) signal, single-bit digital signal processing at oversampled rates can
usually brings about much less roundoff noise gain and more robu o . : _
2 o also make use of thisDFIIt structure for direct bit-stream filtering
coefficient and frequency sensitivities.

On the practical side, such as in ASIC design, an optimal (ge 19]-[21]. It is therefore valuable to completely characterize an arbi-

. ) 2™ rary order§ DFIIt structure in terms of its roundoff noise gain and co-
erally fully parameterized) state-space delta operator filter design rez °. L . . )

! . . efficient sensitivity and to devise procedures to build an optirbed| It
quires a relatively large number of components and computations Efﬁt%r

is less favorable than the much simpler direct-forms (DFs). Extenswe.rr']e rest of the brief is organized as follows. In Section II, a general-
comparative study of different DF delta structures has been carried : '

out in [3]. It was found that, of all the DF structures, the delta DFlllzed SDFIIt structure is presented. Two possible realizations &f &

; . operator are described and the conversion of shift domain filters into
transposed §DFIIt) structure shows the lowest roundoff noise gain I . ) . _

: . the delta domain is studied. Section Il considers the irst operator
and outperforms both the conventional shift operator DFs, as well as

r%allzatlon and derives the roundoff noise gain formulas. Section IV ex-
narrow-band state-space structures. However, to the knowledge of the . . . . . .

] ! amines dynamic range scaling and its relation with the corresponding
authors, only cascaded second-or8BFIIt sections have been con-

sidered so far. In this brief, generalization to an arbitrary o6d¥lIt noise gain. In Section V, the secofid” operator realization is consid

. : - : . gred. Section VI presents the sensitivity analysis and shows that there
structure is presented. An immediate advantage is that higher order ; ; .
trong correlation between the roundoff noise gain formulae and the

filters generally provide more savings in hardware than second-order - oS . ) A )
L . ~ Seénsitivity expressions, and both attain their minima simultaneously.
cascades. Two structures for realizing an inverse delta opefatos:

. : o Numerical examples are given in Section VIl and concluding remarks
Az71/(1-2z"1),are considered and their respective influences on the ) Pl 9 9

o . o L are drawn in Section VIII.

filter's noise and sensitivity characteristics are compared. State-spacé

representation and matrix manipulation similar to that of [8]-[14] ease

tedious transfer function derivation and make the resultant expressions Il. STRUCTURAL TRANSFORMATION

Scﬁf?g;?1raa:gczfj:)rg;rllrjesl\:?ge?:)t/'c?:tfggIrr;g Itthel'::i?fi ;ncsnzrtz\:?usThis section describes the transformation from an initial reference
w on, ultiphicativ filter into asDFIIt structure. To begin with, the hardware implementa-

tion of ané~' operator can take on two forms, as shown in Fig. 1. Both
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supported by the Hong Kong Research Grants Council and by the Univerdifist form having its coupling coefficienh after the discrete integrator.
Research Committee of The University of Hong Kong. This paper was recofrour notation, every~' operator is associated with a differeltand
m('el'nhdeeguttﬁoﬁssz(r)glvaviﬁ Ehdétggﬁéﬁgoedr{ta;Electrical and Electronic Engineeririma represented b, * at theith node, as shown in Fig. 2.
The University of Hong Kong, Hong Kong (e-mail: nwong@eee.hku.hk; ’Another’hardware consideration relates to dynaml_c_range scall_ng.
tsng@eee.hku.hk). When two’s complement and less-than-double precision fixed-point

Publisher Item Identifier S 1057-7130(01)05222-3. arithmetic are used, summation nodes are allowed to overflow

1057-7130/01$10.00 © 2001 IEEE



426 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 4, APRIL 2001

Fig. 2. The generalizedDFIIt structure.

except before multipliers. These nodes are called branch nodes [E§. 2 can be built from them. Modifying the proof in [24], it is easy to
Referring to Fig. 2, these nodes correspond to the state variablesify thatTo achieves this task
xz; (i = 1,2,...,n). To prevent overflow, state variable scaling is

_ n—1 n—2 .
required. Further, it is assumed that the output of the initial filter is To=[A;7 T AT, AT T (6)
properly prescaled, safi;- or L..-norm scaled (i.eJH (z)||l« =1 where
or||H(z)|2 = 1), to prevent output overflow under a particular input. .
The L,-norm of a transfer functiod is defined as C, 0
1 v T ol ’ (7)
1= o [ e ra) @ o :
0
Analysis begins with an arbitrary minimal observable and control- C,A;™ 1
lable state-space description of an initial filter This similarity transformation gives another similar set of state-space
#x=Azx+Bzu (2) representation
Yy = sz —|— I)Q'Lt N S S K
Equation (2) encompasses the most common canonical forms [23]. As (Ap. B, Cp.D,)p
stated beforeéB ; andb, should be properly scaled such that the output = (T51 (Az —-I)To,To'B2,C.To, bo)p . (8)

will not (or unlikely to) overflow for a particular input. By defining

( 1), it follows that Equation (8) corresponds to Fig. 2 and (11) with/at set to 1, i.e.,
p=(z=1),

as; = a; (i =1,2,..., n) andbs; = b; (i =0,1,..., 71). Finally, to

{ px=(Az -Dx+Bru ] 3) incorporate state variable scaling, a similarity transform by a diagonal
y = Czx + bou scaling matrixT's is needed where

The definition ofp here separates the coupling coefficignfrom the . 1 1 1

traditional definition of the5 operator [2]. It should be stressed that Lo ’ ‘ e

(2) and (3) represent the same system (or transfer function), the only (kika ... ka)”']. 9

difference being in the use of different operators. For compactnessT%f

. . e function of this matrix is to separately scale the amplitude of each
notation, the system is denoted as sets of the four state-space matiees, | - riable. It generates the set

as follows: R
H(:)=(Az,B,.Cs. D)z = C,(:I— As)"'By + bo (A;.B,.C,.Dp),
— (A,.B,,C,.D,), = C,(pI - Ap)_pr b ) = (Tngal(AZ —IDToTs, TS 'To' By,
whereD, = D, = bo. The subscriptZ andp stand for systems CZTOTS’Z’“)W (10)

employing theZ andy operators, respectively. Obviously Here (") and ( )’ indicate the quantities after structural change and
scaling, respectively. To reflect the actual computational process, (10)
A,=A;-1 B,=Bz, C,=Cz, D,=Dz. (5 isexpressedin(11), shown at the bottom of the page, as the “unfolded”
observable canonical form corresponding to Fig. 2. As in the figure,
Next, a similarity transform is performed to take those matrices in (8)e havebsy = bo, bs; = biki1ka... k; andas; = a;kika.. . k; (1 =
into observable canonical form [2] such that@FIIt structure as in 1,2...,n), etc. Thus, we can calculate all filter coefficients once alll

-1
—as1 1 0 kl 0 0 bs1 —das1
—asz 0 0 k' bs2 —as2

pxX = @02 2 X+ + bso u
—as, 0 --- 0 0 - 0 ki bsn —asn
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ki (i=1,2,....n)are obtained, as will be discussed in later sections the observability gramian of (2) and(o) denotes the trace of a
With reference to the first equation in (11), we dendte by matrix. Similarly, as can be seen from Fig. 2, the roundoff noise sources
A S - fter the multiplication of the pole coefficients; (: = 1,2,...,n)
=T Ty Az —DToTs = AoK * a _ _ : SaARAE
r s To(Az JToTs © see the same summation nodes as in the calsg 6f = 1,2,...,n).

herefore, their transfer functions to the output should be the same as

_ . . T
whereAo andK ™! are the two matrices preceding the state variabl . . . .
© P 9 3) and the noise gain for pole coefficients, denote®ky, is

x on the right side of the first equation in (11). It then becomes clear

that the analysis here differs from traditional ones [7], [8] in that the NGp = NGq, (i=1,2,..n) = NGo,(i=1,2,....0)- (16)
_couplin_g constantk_is sepa_rated from thé operator and translated  The remaining noise gain term to be considered is the one dyeg.to
into a diagonatoupling matrixK ~" = diag[k; ', k3 '...., k. ']. We  The transfer function seen by the noise after multiplicationdaycan
shall see in later sections that this representation will enable the overlfound by settingso to 1 andbs; = 0 (i = 1,2,...,n). It follows
roundoff noise gain as well as filter sensitivity measures/bounds to pgyt
minimized simultaneously. w(z)= (AL Aol 0 - 0. €1,
— —1lm=1 . —lm—1 _
Il. ROUNDOFF NOISE GAIN = (T5 T5 Az ToTs, Ts To (Az —DTo
T
Roundoff quantization noise occurs in coefficient multiplication if x[1 0 - 0,CzToTs, l)Z

less-than-double precision fixed-point arithmetic and rounding are =Cz(:I-Az) "(Az—1)

used. Assuming rqunding occuafter mult_ip_lication e_xpres_sions for X To[l 0 - O]T 1 17)
roundoff noise gain generated by coefficient multiplication, namely
zero-pole §s; S andas; S) and coupling coefficients:{ 's), are derived and
in this section. The common assumption of additive uncorrelated NG, = [lgo(2)|l5
white noise is made. Noise analysis here does not restrict to the unit 12 e
noise assumption (i.e., single noise source for each state equation) =5 ; go (") go(e™") dw
generally adopted [7], [10] and all possible noise sources are taken into ] v
account. In what follows, the noise gain due to the single parameter =1l+tr (dlag[lv 0.....0]To (A7 - I)
is denoted byNG,. and the total noise gain due to muliple parameters
¢ (i = 1,2,....n) is denoted bNG. (;=1 2, n)- x Wo(Az - I)TO) : (18)
Note thatNGy,, is independent of the choice @fs. The total noise
A. Noise Gain Due to Zero-Pole Coefficients gain due to all zero coefficients, denoted®¢ ., is then
The following will first deal with noise gain due to zero-coefficient NGz = NGy + NGy, (i=1,2,....n) (19)

multiplication excepbso (the direct transmission). With reference toand the aggregate noise gain due to zero-pole coefficients, denoted by
the first equation in (11) and Fig. 2, the noise transfer funciidn) NG p, is given by

from the noise source aftés; (i = 1,2,...,n) to the output can be . . . -

. T NGzp = NG NGp = NG 2NGp. 20
found by settings; = 1 and others (includingso) to zero. Thus we ) zr z+ r beo Ij ] (20)
have theith element ofB’, being 1 and others zeros and obtain th& case of strictly causal systents, = 0, thereforeN G, is absent

following column vector: and should be put to 0 in (19) and (20).
gx)=[n(z) - gu(2)]" B. Noise Gain Due to Coupling Coefficients
~ A -1 T
= [C;(PI - Alp) ] Now the roundoff noise gain due to multiplication by the coupling
— i1l (zI _ Ag)’l cl. (13) coefficientsk' (i = 1,2,...,n) is considered. Again, roundoff
guantization noise is assumed to occur after coefficient multiplication.
Total noise gain arising from these zero Coefﬁcie;ms (i = First, since noise source aftef ' sees the same summation node as
1.2,...,n) can be evaluated, by notirign] = (2x)~" [*" e/“" dw  that afterbso, it follows that
dtr(AB) = tr(BA
andtr(AB) r(BA), as Nle—l = NG, (21)
NGog(i=1,2,...m) Like NGy, NG, -1 is independent of the scaling matriX's
n . . 1 . . .
. Z lge(2)I2 and is fixed for a given system. Since noise sources after
a g git=)ll2 k7' (i = 2,3,....,n) see, respectively, the same summation
1/ nodes as those aftés; (i = 1,2,...,n — 1), it can be proved by
=tr <% f g(z)g"(z"hHz"! dz) similar procedures as in the previous section that
T NG, -1, _, .
1 2m ; . - k7 (1=2,3,...,n)
— (9_/ T{T) (71 - A) o ) o
27 Jo = tr (diag [k ... (k1 .. kot ) 720 TOWOTo )
r —jw -1 5 . e
x C;Cy(e 7“I - Ay) TOTS(ZL{,’) —ir (diag [Oakfdw---,(kl---kn—l) Z]Tf)
oo B ) T _ o
—ir <T§T5 <Z (A§> C§02A2> TOT5> X (AZ I) Wo(Ay I)T()) . (22)
i=0 Subsequently, by noting (18), (21), and (22), the aggregate noise gain
—tr (ngTgono) (14) due to all coupling coefficients, denoted Nz ¢, is

. .. - . NG. =NG, - X 1.
where the symmetric, positive definite matrix G Gt F NGz, )

=1+4tr ((TsK)zTg (AE — I) Wo(Az — I)To) .

Wo =3 (%) cica (15) 23

=0
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By noting (14) and (23), noise gain sum is dependent on, and in factit is now apparent that the proposed modified delta operator filter
directly proportional toT'%. Therefore, minimum total noise gain ishas its total noise gain minimized as its state variable amplitudes are
achieved when all the diagonal elementsIf are minimized. This maximized. This is consistent with results in state-space filters using
is equivalent to maximizing all the diagonal elementskg', and the shift operator [10]. Itis also clear from the procedure of determining
it will be shown in the next section that their maximum values arke; (i = 1,2,...,n) that it is unlikely, if not impossible, to utilize
constrained by the available dynamic range and can be computedhie dynamic range fully at all nodes by using only a single coupling
a simple manner due to the was is defined. coefficient, i.e.ki_l = A forallis, as in the traditional delta structures
(3], [4].
IV. DYNAMIC RANGE SCALING BY L2- AND Lo-NORMS

As noted in Section I, the state variables (or branch nodes) in Fig. V. COUPLING COEFFICIENTS BEFORHNTEGRATORS

2 need to be scaled to prevent overflow. Therefore, we need a set ofhe second form of ~" operator in Fig. 1 with coupling coefficient
transfer functions from the input to the state variables. The sigris¢fore the integrator will now be investigated. This is the realization
transfer functionf;(z) from the input to theth state variable can be adopted in previous work [3]-[6]. Referring to Fig. 2, the coupling co-
found by setting the output in the second equation of (11) to be thefficients (as well as state variables/branch nodes just before them) are

particular state variable. Thus, we have the counterpaxt of now moved before the integrators. This structural change requires state
f(z)=[fi(z) - fa(2)]" variables to be scaled by a different set of coupling coefficients, which
— (pI—A)'B’ in turn alter the noise gain terms due to them. Using our convention,
- p_l _f) e . but with a slight abuse of notation by putting the operatatongside
=T5 To (:1-Az)” By (24)  matrices, this new architecture can be described by
As s_tated in [10], [_1_1], theLg-nqrm is practlcglly the most convenlent_ (=) = (A;, prm ot C;, ]5;)0_ (28)
choice. To fully utilize the available dynamic range of the state vari-
ablesk; (i = 1,2,...,n) are required to satisfy Note that for the same initial system (Z, (z) in (28) is equivalent to
1 f P H(z)in (4).
I f fo)f (27 )z dz The noise gain formulae due to zero-pole coefficients are the same as
1 e » ’ before. This is because the change of operator realization does not af-
== / T Ty (/1 — Az)leng fect the noise transfer functions as seen by these noise sources. Using
<7 Jo v . primes to distinguish formulae for this neW ' operator realization
x (e’J”I - Aé) T T dw (note that usage of primes here differs from the meaning of matrix
i rer scaling in (10) and should be clear from the context), we have
=TT WeTo' T
r *2 2 .. - -
kioi x x NGy = NGz, NGp=NGp, NGyp=NGzpr. (29
X (]11 kQ)QQg
= . . It should be stressed that, though the formulae are the same, their quan-
: B X ) tities are different due to a new set of coupling coefficients, and thus
L X e X (ke k) e, Ts, under the new scaling conditions. Following procedures in Section
(1 x - X l1l, the noise transfer functions as seen by roundoff quantization noise
< 1 : sources after coupling coefficient multiplication can be shown to be
= ) 25 «
SN #) g =) - d)]
. . —1
x ox 1 =K'TiT] (zI - AE) cL. (30)
l/v.here " denotes "don't care.” The symmetric, positive definite Masimilar to (14), the total noise gain due to coupling coefficients is ob-
Fix tained as
7 T T g "~
We = ;AZBZBZ (a7) (26) NGe = NGy, = Sl
1= =1
is the controllability gramian of (2) and? stands for théth diagonal =tr ((TSK)ZTgWOTO) . (31)

element of T, WT,” . If Lo.-norm is to be used, the following
condition should be satisfied, namely:
I£(:)llee = T5' | TS (:1- A2)" "By
=1 - 1" (27)

Here||f(z)||~ denotes thd ..-norm of each element in the column
vector, usually obtained by analytical methods.

Now it is evident that, contrary to the noise gain terms, the staf® fully utilize the dynamic range of the state variablds,-norm
variable amplitudes are inversely proportional®g in (25) (orTs scaling requireg; (i = 1,2,...,n) to satisfy
in (27)). As noted before, the total noise gain is minimized by maxi- T='T=' [(A NWe (AT _ 1
mizing the diagonal elements &' . This is achieved in (25) and (27) s +o [( z=DWe ( z- )

For dynamic range scaling, let the transfer function from the input
to theith state variable b¢;/ (z), then
f'(z) = pf(x) = [fi(x) -+ fi(2)]"
= (pI-A,)"'sB,
=T;' T, [(Az -D(:I-Az) ' +1Bz.  (32)

by setting the state variable norms,¢ or L..-norms) to be 1, i.e., to 1 x -+ X
utilize the dynamic range. The values/af(i = 1,2,...,n) under 1 :
such conditions can then be determined easily starting fromiown 4 BZBZ] T, T = X : (33)
to k,, and all coefficients for this noise optimal filter can now be com- : X

puted according to (9)—(11). X «-o0x 1
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andL..-norm scaling requires; (i = 1,2,...,n) to satisfy
I (2)loe = T5' | To [(Az = D(:I- Az)"' +I|Bg|
=1 - 1"

wherel; represents th&h column of an identity matrix. The third line
of the equation is due to the fact tHftK~' = C, = C,ToTs. It
oo follows that
(34)
From these constraints, the coupling coefficientTin can be deter-
mined as before. Again, the total noise gain is minimized when the
diagonal elements aF'5' are maximized.

of _ [0H
aab - 8(1‘51

g g\ —1
= H(:)TL TS (zI - Afz) ch.

ol 1"
8“671
(40)

Defining the pole-coefficient sensitivity measure td |6 /das||?, its

VI. SENSITIVITY ANALYSIS bound can be obtained by Cauchy—Schwarz inequality, (13) and (14)

In practice, finite word-length prevents the exact implementation of aH |12 2
the desired filter. Roundoff or truncation of filter coefficients causes de- H Jas =

viation from the ideal transfer function and thus coefficient sensitivity

is another important aspect of filter design. Sensitivity measures spe-

cific for the 6DFIIt structure are defined and the attainable minimum = . . . .
bounds are derived in this section. This simple resultis the reason for taking the mafrixnorm instead of

For simplicity, L»-norm scaling of both filter norm and state vari_using the otherwise desirable but intractable matrxnorm. Equation
ables is assumed, consequentf (=)[|2 = 1. By noting (11), the (41) shows that the pole-coefficient sensitivity, for eithef operator

transfer function is first rewritten in terms of matrices containing thffa/ization, is bounded by its corresponding noise gain. Again, though
actually implemented filter coefficients. formulae forNG » andNG'» are the same, in practice they would give

. i different values due to differef®ss. It can be inferred that the worst
H(z)=C,(pI— AocK™ )" B, + bso. (35) case pole-coefficient sensitivity is minimized when its noise gain is also
Next, let]| || » be the Frobenius norm of an x n matrixF (e’*), i.e.,

minimized.
IF(e™)lr = | DD IFij(er=)]?

i=1 j=1

T oN—L .
HH(;)TéTé (ZI—AIZ) c

1 1

< |H()|3llg(#)|]5 = NGp = NGbp. (41)

B. Sensitivity Due to Zero Coefficients
First, by ignoringbso, it is easy to show that

- \/tr (Fij(c7)FT (e=5¢)) (36) OH _ {E)H oH r
and let the “matrixZ,,-norm” of F(z) be bs Obs1 Obsn :
| g 5 1 G (zI - A§>_ cl. (42)
1Pl = |5z [ W) (37

Then, by differentiatindg? with respect tds, (which appears as stand-
Itis seenthat, for a single element matrix, (37) reduces to (1). Since sgibne term and ilB,) and using the following sensitivity measures,
sitivity involves differentiating transfer function with respect to someighly correlated results are obtained as

parameter matrix, saiI, we define

OH

M (38)
where the(7, j)th element ofS is s,; = dH/dm,;. It should be noted
that the sensitivity analysis in the following differs from traditionall he zero-coefficient sensitivity measure is defined as the sum of these
ones (e.g., [12]) where fully parameterized state-space realizations e terms in (43) and, not surprisingly, it is equal to its own noise gain,
considered and every matrix element contributes to the sensitivity még-, NGz or NG, in (19) and (29). Again, when the zero-coefficient
sure. In the proposetDFlIt filter, since 1s and Os within matrices NOise gain is minimized, its sensitivity is also minimized.
Ao, K~ andC/, in (11) are implemented exactly, only a subset of o . o
coefficients within each matrix (e.g., only the first columnaod) will ~ C. Sensitivity Due to Coupling Coefficients
affect the transfer function.

2
_ y
= NGh,,.

2

OH

=S —
Obso

oH | ‘
H@T QINGbM(izl,z,...,n)a H (43)

Differentiating  with respect tok; ! and noting that:; ! appears
in bothC/, andK ™',
A. Sensitivity Due to Pole Coefficients
OH

By observing (11) and (35), “jitters” in the pole coefficients affect .
ok,

=Cz(z2I- Az) ' ToTsAoLI]

the implementation ofs; (i = 1,2,...,n) in Ao andBj,. With
first-order approximation, it can be verified that slight variatiorm gf
affectsH (z) as follows:

AH(z)

=C,(pl - AoK ™) (AA0)K ' (pI - AoK™!)™!
x Bl + C,(pl — AoK ™)' bso AasL;

=Cy(:I- Ay) 'ToTsLAas, T K 'TS' Ty
X (:1-Az)"'Bz+ Cz(:1 - Az)” ' ToTsbso
X Aags;I;

= Aasi(Cz (21— Ay) "By + bso)
x Cz(zI— Az) ' ToTsI;

= AasiH(2)Cz(zI — Az) 'ToTsl; (39)

x Ts'To (z:I-Ay) 'By

+ L LI T T, (:1- Ay) 'By
= [T5'To' (:I- A,) 'By

x (Cz(:1- A2)"'ToTsAo + 1’{)]( !

1,1

(44)

where the subscrigt, i) represents théth diagonal element of a ma-
trix. For convenience, the following row matrix is defined:

R(:)=Cy(:I-Ay) '"ToTsAo +1]
=Cz(:I-Az) " (Az —D)ToTsK + CzToTsK
=pCz(zI1 - Az) 'ToTsK. (45)
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TABLE |
NUMERICAL EXAMPLES FOR DIFFERENT 6~ ! OPERATORREALIZATIONS

z-domain Polynomial Section A1 Section A2 Section A3 6th Order Section | Example 6th Order
(1+bz7+z?)/ (1+a,2" " +a,z?) A1*A2*A3 filter from [7]
Denominatora,, a, -1.93504729 | -1.86611453 | -1.80612859

0.96471582 | 0.88788503 | 0.81824041
Numerator b 4 -1.25901348 | -1.87112896 | -1.92379959
1st realization of delta operator: coupling coefficient after integrator
L2 norm scaling
NGgzp /dB 17.7547 12.7618 12.1382 31.7170 37.0433
NG /dB 12.0228 6.5410 4.2474 28.4790 33.8996
Total gain /dB 18.7831 13.6916 12.7922 33.4033 38.7602
L-infinity norm scaling
NGgzp /dB 17.7216 13.3824 13.1159 32.2413 36.8108
NG /dB 12.0323 7.2957 5.1693 28.9632 33.6682
Total gain /dB 18.7590 14.3383 13.7622 33.9148 38.5281
2nd realization of delta operator: coupling coefficient before integrator
L2 norm scaling
NG'zp /dB 7.1322 45732 3.4660 13.2131 19.2134
NG'c /dB 14.6183 9.1002 8.5938 25.1044 30.4016
Total gain /dB 15.3313 10.4119 9.7567 25.3766 30.7200
L-infinity norm scaling
NG'zp /dB 5.0501 2.0894 0.9538 14.9953 21.4079
NG'c /dB 14.5846 9.1966 5.8030 27.7205 32.8381
Total gain /dB 15.0430 9.9691 7.0330 27.9464 33.1398

Similar to previous cases, IB0 H/dk; ' || be the sensitivity measure By similar arguments, for the case of coupling coefficients before inte-
for that particular coupling coefficierit.'. Then for the case of cou- grators and noting (32),

pling coefficients after integrators and noting (24) and (25), the appli- oH |2 1 e - Nt
cation of Cauchy—Schwarz inequality yields ——| = —/ [£'(?) (e )E
ok |, 27 Jo b
OH 2 1 [?7 ,w ol B o ol 2
o] = {3 [ e, TR R
o 1 2 Tl T )
< IR (R o) < [KrmimEwoToraK] “8)
1 e » and similarly
< { / f(e,J“‘)fT(e,*f“)dw} "ol |1 ‘
27 J, (i) 3 S| <t ((TSK)ZT(T)WOTO) = NG,.  (49)
L [T e —jwy 7, =t L
x [ﬁ/o R (e7)R(e M”“L o These results indicate again that when the coupling-coefficient noise
] . T" gain is minimized, the worst-case bound for the aggregate sensitivity
= [dlag[le 0,....0] + K" T5To (AZ - I) Wo of coupling coefficients is also minimized.

Interestingly, for this generalize&DFIIt structure, all sensitivity
measures/bounds for respective filter coefficients are equal to their
) ] o ) ) corresponding noise gain terms. So the filter achieves its minimum
The diagonal elements of the first matrix integration on the right Qfensitivity measures/bounds simultaneously as its total roundoff noise

the inequality are all ones due to the scaling constraint in (25). TRgin is minimized. This result is consistent with that of optimal shift
sensitivity measure due to all coupling coefficients is defined as tQgerator—based state-space filters [13].

sum of all individual sensitivity terms and therefore from (46)

X (Ay — I)TngK] (46)

(i)

n

>

=1

OH VII. NUMERICAL EXAMPLES

k!

’ <14t ((TgK)2T£ (A§ - I)

1

Several second-order sections from [3] and a strictly causal sixth-
order narrow-band filter from [7] are taken for noise gain and sensi-

X Wo(Az — I)To) = NGe. (47)  tivity calculation. Prescaling of the filter norms is embedded into the



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 4, APRIL 2001 431

numerator coefficients and the filter norms are scaled in the same way4] ——, “Roundoff noise minimization in a direct form delta operator
(eitherL»- or L..-norm scaling) as the state variables. The results are  structure,” presented at the Proc. 1996 Int. Conf. Acoust., Speech, and
given in Table | Signal Process., Atlanta, GA, May 1996.

. . . [5] J. Kauraniemi and T. |. Laakso, “Roundoff noise analysis of modified
It can be seen thdt, - and L. -norm scaling offer similar noise per- delta operator direct form structures,”llBEE Int. Symp. Circuits Syst.
formance. Also, in accordance with Fig. 1, #e' operator realization 1997.
with coupling coefficient before the integrator generally offers a much [6] N. Wong and T. S. Ng, “Roundoff noise minimization in a modified
lower total noise gain. It has a relatively higher noise gain due to the  direct form delta operator IIR structurdEE Trans. Circuits Syst. II.

. o S 2o . vol. 47, pp. 1533-1536, Dec. 2000.
coupling coefficient multiplication but significantly lower gain due to 7] G.Li ané),‘\)/l_ Gevers, “Roundoff noise minimization using delta operator

that of the zero-pole coefficients. On the other hand sthk operator realizations,|lEEE Trans. Signal Processiol. 41, pp. 629-637, Feb.
realization with coupling coefficient after the integrator has its major 1993.
source of noise from the zero-pole coefficient multiplication. It has less [8] —— “Comparative study of finite wordlength effects in shift and delta

; - ; - ; ; operator parameterizationdPEE Trans. Automat. Confwol. 38, pp.
noise contribution from coupling coefficients but the difference is not 803-807, May 1993,

as significant. Making use of the results from Section VI, the noise gain(g) ¢ T, Muliis and R. A. Roberts, “Synthesis of minimum round-off noise
terms under »-norm scaling are also equal to the corresponding co- fixed point digital filters,”IEEE Trans. Circuits Systvol. CAS-23, pp.
efficient sensitivity measures/bounds. In hardware implementation, the ~ 551-562, 1976.

structure with coupling coefficients before integrators is recommendett©] S-Y-Hwang, “Minimum uncorrelated unit noise in state-space digital fil-

h . . tering,” IEEE Trans. Acoust., Speech, Signal Processing ASSP-25,
because roundoff noise can be more effectively suppressed by using bp. 273-281, Aug. 1977.

higher precision in the coupling coefficient multiplication. To lower [11] —— “Dynamic range constraint in state-space digital filteringEE
hardware complexity, though at the sacrifice of some roundoff noise  Trans. Acoust., Speech, Signal Processimg ASSP-23, pp. 591-593,
gain, the coupling coefficients can be rounded to the nearest powers ?f Dec. 1975.

2 such that multiplication can be done by simple bit-shifting. 12] 'ai'STC?;fé}i?jrfgrgz_sjnéiﬁgg?; f_vlrrr\]c;(r)?;rxir;glfifcr;?.i\slgl.()litzim;rl):stseg'ifgace

1984.
[13] V. Tavsanoglu and L. Thiele, “Optimal design of state-space digital fil-
VIII. CONCLUSION ters by simultaneous minimization of sensitivity and roundoff noise,”
IEEE Trans. Circuits Systvol. CAS-31, pp. 884-888, Oct. 1984.
This brief has presented a way to obtain an optimal arbitrary{14] W. J. Lutz and S. L. Hakimi, “Design of multi-input multi-output sys-

order§DFIIt filter in terms of its roundoff noise gain and coefficient tems with minimum sensitivity,lEEE Trans. Circuits Systvol. 35, pp.

sensitivity. Procedures for deriving optimal filter coefficients have [15] %1(1:4631%3;%% 1(?8'?émes “Oversampling methods for A/D and DIA

been given. The incorporation of a coupling matrix into the delta’ "~ conversion,” inOversampling Delta-Sigma Converteds C. Candy and
domain state-space description provides more flexibility for utilizing G. C. Temes, Eds. New York: IEEE Press, 1992.

the available dynamic range at filter nodes where scaling is necessafyf] R. Schreier and M. Snelgrove, “Bandpass sigma-delta modulation,”
Expressions for noise gain and coefficient sensitivity are defined anflu] Electron. Lett, vol. 25, no. 23, pp. 15601561, Nov. 1989.

derived f lizi i h b S. Jantzi, W. Snelgrove, and P. F. Ferguson, “A fourth-order bandpass
erived. Two structures for realizing @n ' operator have been com- sigma-delta modulator,IEEE J. Solid-State Circuitsvol. 28, pp.

pared through numerical examples. Although the technique presented 282-291, Mar. 1993.
in this brief is dedicated for theéDFIIt structure characterization, it [18] Y. Botteron and B. Nowrouzian, “An investigation of bandpass sigma-
can be applied similarly to analyze other canonical forms or topologies ~ delta A/D converters,” ifProc. 40th Midwest Symp. Circuits Sy2997,

. . pp. 293-296.
expressible in state-space format. [19] D.A.Johnsand D. M. Lewis, “Design and analysis of delta-sigma based

lIR filters,” IEEE Trans. Circuits Systvol. 40, pp. 233-240, Apr. 1993.
[20] S. M. Kershaw and M. B. Sandler, “Digital signal processing on a sigma-
REFERENCES delta bitstream,IEE Collog. Oversampling Tech. Sigma-Delta Modu-
lation, pp. 9/1-9/8, 1994.
[1] G. C. Goodwin, R. H. Middleton, and H. V. Poor, “High speed digital [21] J. A. S. Angus, “One bit digital filtering,TEE Collog. Digital Filters:

signal processing and controPtoc. IEEE vol. 80, pp. 240-259, Feb. An Enabling Technologyp. 8/1-8/6, 1998.

1992. [22] L. B. JacksonpDigital Filters and Signal Processin@nd ed. Boston,
[2] R.H. Middleton and G. C. Goodwimigital Control and Estimation: A MA: Kluwer, 1989.

Unified Approach Englewood Cliffs, NJ: Prentice-Hall, 1990. [23] S. Y. Hwang, “Realization of canonical digital network#£EE Trans.
[3] J.Kauraniemi, T.I. Laakso, |. Hartimo, and S. J. Ovaska, “Delta operator Acoust., Speech, Signal Processia. ASSP-22, pp. 27-39, Feb. 1974.

realizations of direct-form IIR filters,JEEE Trans. Circuits Syst. llvol. [24] B. C. Kuo, Digital Control Systems New York: Holt, Rinehart and

45, pp. 41-52, Jan. 1998. Winston, 1990.



