
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 4, APRIL 2001 425

A Generalized Direct-Form Delta Operator-Based IIR
Filter with Minimum Noise Gain and Sensitivity

Ngai Wong and Tung-Sang Ng

Abstract—This brief presents the derivation of an arbitrary order delta
operator-based direct-form IIR filter with minimum roundoff noise gain
and sensitivity. It utilizes the concept of differentcoupling coefficientsat dif-
ferent branch nodes for better noise gain suppression. Two possible struc-
tures for realizing the inverse delta operator are considered and proce-
dures for calculating the optimal filter coefficients are given. By means of
state-space representation and matrix manipulation, it is also shown that
expressions for sensitivity measures of different filter coefficients and their
corresponding roundoff noise gain expressions are the same. This enables
the simultaneous minimization of sensitivity and noise power for the pro-
posed generalized filter structure.

Index Terms—Delta operator, direct-form, IIR filter, minimization,
roundoff noise, sensitivity.

I. INTRODUCTION

The advantages of delta operator-based implementation over the
conventional shift operator approach have recently gained attention
due to the work of Goodwin and Middleton [1], [2]. In addition to
the interesting unification of continuous and discrete time models, the
numerical benefits of using a delta operator in implementing digital
filters have received a lot of attention [3]–[8]. The major potential
lies in fast sampling systems using fixed-point arithmetic where filter
poles cluster toward unity in thez plane. Such a situation often causes
the system to become numerically ill-conditioned. Delta operator
(defined as� = (z � 1)=�) based filters alleviate this problem by
characterizing the difference between these poles and unity. This
usually brings about much less roundoff noise gain and more robust
coefficient and frequency sensitivities.

On the practical side, such as in ASIC design, an optimal (gen-
erally fully parameterized) state-space delta operator filter design re-
quires a relatively large number of components and computations and
is less favorable than the much simpler direct-forms (DFs). Extensive
comparative study of different DF delta structures has been carried
out in [3]. It was found that, of all the DF structures, the delta DFII
transposed (�DFIIt) structure shows the lowest roundoff noise gain
and outperforms both the conventional shift operator DFs, as well as
narrow-band state-space structures. However, to the knowledge of the
authors, only cascaded second-order�DFIIt sections have been con-
sidered so far. In this brief, generalization to an arbitrary order�DFIIt
structure is presented. An immediate advantage is that higher order
filters generally provide more savings in hardware than second-order
cascades. Two structures for realizing an inverse delta operator,��1 =
�z�1=(1�z�1), are considered and their respective influences on the
filter’s noise and sensitivity characteristics are compared. State-space
representation and matrix manipulation similar to that of [8]–[14] ease
tedious transfer function derivation and make the resultant expressions
scalable for any order. Moreover, by extending the idea in a previous
work [6] on a second-order�DFIIt section, the multiplicative constant
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Fig. 1. Two realizations of a� operator.

� (calledcoupling coefficientin this brief) in ��1 operators are sep-
arated from the traditional definition into a novel diagonalcoupling
matrix, which features various coupling coefficients at different nodes.
This enables the utilization of the dynamic range at filter nodes where
scaling is necessary and further decreases the output noise gain.

Another important topic in filter design is filter coefficient sensi-
tivity. Studies in the past focused on optimal state-space realization
where all elements in every state-space matrix contribute to the sensi-
tivity measure [8], [12]–[14]. The�DFIIt structure, whose coefficient
sensitivity has not been formulated in the literature so far, represents a
special form of sparse realization in which only certain elements within
the state-space matrices will affect the transfer function. In this brief,
specific sensitivity measures are defined and expressions for sensitivity
due to different parameters are obtained.

Techniques described in this brief may also find application in a fast
growing branch of DSP known as sigma-delta(��) modulation [15].
A widely adopted topology for building high-order bandpass��mod-
ulators [16] is known as the cascade-of-resonators architecture [17],
[18]. This topology can be easily modified from the�DFIIt structure by
adding state variable feedback branches. If zero resonator frequency is
considered, such as in baseband�� modulation, the cascade-of-res-
onators architecture is equivalent to the�DFIIt structure. Moreover,
motivated by the potential benefits of eliminating the decimation and
interpolation filters in the processing of�� A/D converted one-bit
signal, single-bit digital signal processing at oversampled rates can
also make use of this�DFIIt structure for direct bit-stream filtering
[19]–[21]. It is therefore valuable to completely characterize an arbi-
trary order�DFIIt structure in terms of its roundoff noise gain and co-
efficient sensitivity and to devise procedures to build an optimal�DFIIt
filter.

The rest of the brief is organized as follows. In Section II, a general-
ized�DFIIt structure is presented. Two possible realizations of a��1

operator are described and the conversion of shift domain filters into
the delta domain is studied. Section III considers the first��1 operator
realization and derives the roundoff noise gain formulas. Section IV ex-
amines dynamic range scaling and its relation with the corresponding
noise gain. In Section V, the second��1 operator realization is consid-
ered. Section VI presents the sensitivity analysis and shows that there
is strong correlation between the roundoff noise gain formulae and the
sensitivity expressions, and both attain their minima simultaneously.
Numerical examples are given in Section VII and concluding remarks
are drawn in Section VIII.

II. STRUCTURAL TRANSFORMATION

This section describes the transformation from an initial reference
filter into a�DFIIt structure. To begin with, the hardware implementa-
tion of an��1 operator can take on two forms, as shown in Fig. 1. Both
forms represent the same operator and our analysis will begin with the
first form having its coupling coefficient� after the discrete integrator.
In our notation, every��1 operator is associated with a different� and
is represented byk�1

i
at theith node, as shown in Fig. 2.

Another hardware consideration relates to dynamic range scaling.
When two’s complement and less-than-double precision fixed-point
arithmetic are used, summation nodes are allowed to overflow
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Fig. 2. The generalized�DFIIt structure.

except before multipliers. These nodes are called branch nodes [22].
Referring to Fig. 2, these nodes correspond to the state variables
xi (i = 1; 2; . . . ; n). To prevent overflow, state variable scaling is
required. Further, it is assumed that the output of the initial filter is
properly prescaled, say,L2- or L1-norm scaled (i.e.,kH(z)k1 = 1
or kH(z)k2 = 1), to prevent output overflow under a particular input.
TheLp-norm of a transfer functionH is defined as

kH(z)kp =
1

2�

2�

0

jH(ej!)jpd! : (1)

Analysis begins with an arbitrary minimal observable and control-
lable state-space description of an initial filter

zx = AZx+BZu

y = CZx+ b0u
: (2)

Equation (2) encompasses the most common canonical forms [23]. As
stated before,BZ andb0 should be properly scaled such that the output
will not (or unlikely to) overflow for a particular inputu. By defining
� = (z � 1), it follows that

�x = (AZ � I)x+BZu

y = CZx + b0u
: (3)

The definition of� here separates the coupling coefficient� from the
traditional definition of the� operator [2]. It should be stressed that
(2) and (3) represent the same system (or transfer function), the only
difference being in the use of different operators. For compactness of
notation, the system is denoted as sets of the four state-space matrices
as follows:

H(z) = (AZ ;BZ ;CZ ;DZ)Z = CZ(zI�AZ)
�1
BZ + b0

= (A�;B�;C�;D�)� = C�(�I�A�)
�1
B� + b0 (4)

whereDZ = D� = b0. The subscriptsZ and� stand for systems
employing theZ and� operators, respectively. Obviously

A� = AZ � I; B� = BZ ; C� = CZ ; D� = DZ : (5)

Next, a similarity transform is performed to take those matrices in (3)
into observable canonical form [2] such that a�DFIIt structure as in

Fig. 2 can be built from them. Modifying the proof in [24], it is easy to
verify thatTO achieves this task

TO = A
n�1
� T1 A

n�2
� T1 � � � A�T1 T1 (6)

where

T1 =

C�

C�A�

...
C�A

n�1
�

�1

0

0
...
1

: (7)

This similarity transformation gives another similar set of state-space
representation

(Â�; B̂�; Ĉ�; D̂�)�

= T
�1

O (AZ � I)TO;T
�1

O BZ ;CZTO; b0 �
: (8)

Equation (8) corresponds to Fig. 2 and (11) with allkis set to 1, i.e.,
a�i = ai (i = 1; 2; . . . ; n) andb�i = bi (i = 0; 1; . . . ; n). Finally, to
incorporate state variable scaling, a similarity transform by a diagonal
scaling matrixTS is needed where

TS = diag k
�1

1 ; (k1k2)
�1

; (k1k2k3)
�1

; . . . ;

(k1k2 . . . kn)
�1

: (9)

The function of this matrix is to separately scale the amplitude of each
state variable. It generates the set

(Â0�; B̂
0

�; Ĉ
0

�; D̂
0

�)�

= T
�1

S T
�1

O (AZ � I)TOTS ;T
�1

S T
�1

O BZ ;

CZTOTS ; b0 �
: (10)

Here (̂ ) and ( )0 indicate the quantities after structural change and
scaling, respectively. To reflect the actual computational process, (10)
is expressed in (11), shown at the bottom of the page, as the “unfolded”
observable canonical form corresponding to Fig. 2. As in the figure,
we haveb�0 = b0; b�i = bik1k2 . . . ki anda�i = aik1k2 . . . ki (i =
1; 2 . . . ; n), etc. Thus, we can calculate all filter coefficients once all

�x =

�a�1 1 0

�a�2 0
. . .

...
... 1

�a�n 0 � � � 0

k�1
1

0 � � � 0

0 k�1
2

...
...

. . . 0

0 � � � 0 k�1n

x+

b�1

b�2
...

b�n

+ b�0

�a�1

�a�2
...

�a�n

u

y = k�1
1

0 � � � 0 x + b�0u

(11)
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ki (i = 1; 2; . . . ; n) are obtained, as will be discussed in later sections.
With reference to the first equation in (11), we denoteÂ0

� by

Â
0

� = T�1S T
�1

O (AZ � I)TOTS = AOK
�1

whereAO andK�1 are the two matrices preceding the state variable
x on the right side of the first equation in (11). It then becomes clear
that the analysis here differs from traditional ones [7], [8] in that the
coupling constant� is separated from the� operator and translated
into a diagonalcoupling matrixK�1 = diag[k�1

1
; k�12 ; . . . ; k�1

n ]. We
shall see in later sections that this representation will enable the overall
roundoff noise gain as well as filter sensitivity measures/bounds to be
minimized simultaneously.

III. ROUNDOFFNOISE GAIN

Roundoff quantization noise occurs in coefficient multiplication if
less-than-double precision fixed-point arithmetic and rounding are
used. Assuming rounding occursafter multiplication, expressions for
roundoff noise gain generated by coefficient multiplication, namely
zero-pole (b�is anda�is) and coupling coefficients (k�1

i s), are derived
in this section. The common assumption of additive uncorrelated
white noise is made. Noise analysis here does not restrict to the unit
noise assumption (i.e., single noise source for each state equation)
generally adopted [7], [10] and all possible noise sources are taken into
account. In what follows, the noise gain due to the single parameterqi
is denoted byNGq and the total noise gain due to muliple parameters
qi (i = 1; 2; . . . ; n) is denoted byNGq (i=1;2;...;n).

A. Noise Gain Due to Zero-Pole Coefficients

The following will first deal with noise gain due to zero-coefficient
multiplication exceptb�0 (the direct transmission). With reference to
the first equation in (11) and Fig. 2, the noise transfer functiongi(z)
from the noise source afterb�i (i = 1; 2; . . . ; n) to the output can be
found by settingb�i = 1 and others (includingb�0) to zero. Thus we
have theith element ofB̂0� being 1 and others zeros and obtain the
following column vector:

g(z) = [g1(z) � � � gn(z)]
T

= [Ĉ0�(�I� Â
0

�)
�1]T

= TT
ST

T
O zI�AT

Z

�1

C
T
Z : (13)

Total noise gain arising from these zero coefficientsb�i (i =
1; 2; . . . ; n) can be evaluated, by noting�[n] = (2�)�1 2�

0
ej!n d!

andtr(AB) = tr(BA), as

NGb (i=1;2;...;n)

=

n

i=1

kgi(z)k
2
2

= tr
1

2�j
g(z)gT (z�1)z�1

dz

= tr
1

2�

2�

0

T
T
ST

T
O e

j!
I�AT

Z

�1

� C
T
ZCZ(e

�j!
I�AZ)

�1
TOTS d!

= tr T
T
ST

T
O

1

i=0

A
T
Z

i

C
T
ZCZA

i
Z TOTS

= tr T
2
ST

T
OWOTO (14)

where the symmetric, positive definite matrix

WO =

1

i=0

A
T
Z

i

C
T
ZCZA

i
Z (15)

is the observability gramian of (2) andtr(�) denotes the trace of a
matrix. Similarly, as can be seen from Fig. 2, the roundoff noise sources
after the multiplication of the pole coefficientsa�i (i = 1; 2; . . . ; n)
see the same summation nodes as in the case ofb�i (i = 1; 2; . . . ; n).
Therefore, their transfer functions to the output should be the same as
(13) and the noise gain for pole coefficients, denoted byNGP , is

NGP = NGa (i=1;2;...;n) = NGb (i=1;2;...;n): (16)

The remaining noise gain term to be considered is the one due tob�0.
The transfer function seen by the noise after multiplication byb�0 can
be found by settingb�0 to 1 andb�i = 0 (i = 1; 2; . . . ; n). It follows
that

g0(z) = (Â0�;AO[1 0 � � � 0]T ; Ĉ0�; 1)�

= T
�1
S T

�1
O AZTOTS ;T

�1
S T

�1
O (AZ � I)TO

� [1 0 � � � 0]T ;CZTOTS ; 1
Z

= CZ(zI�AZ)
�1(AZ � I)

�TO[1 0 � � � 0]T + 1 (17)

and

NGb = kg0(z)k
2
2

=
1

2�

2�

0

g
T
0 (e

j!)g0(e
�j!)d!

= 1 + tr diag[1; 0; . . . ; 0]TT
O A

T
Z � I

� WO(AZ � I)TO : (18)

Note thatNGb is independent of the choice ofTS . The total noise
gain due to all zero coefficients, denoted byNGZ , is then

NGZ = NGb +NGb (i=1;2;...;n) (19)

and the aggregate noise gain due to zero-pole coefficients, denoted by
NGZP , is given by

NGZP = NGZ +NGP = NGb + 2NGP : (20)

In case of strictly causal systems,b�0 = 0, thereforeNGb is absent
and should be put to 0 in (19) and (20).

B. Noise Gain Due to Coupling Coefficients

Now the roundoff noise gain due to multiplication by the coupling
coefficientsk�1

i (i = 1; 2; . . . ; n) is considered. Again, roundoff
quantization noise is assumed to occur after coefficient multiplication.
First, since noise source afterk�1

1 sees the same summation node as
that afterb�0, it follows that

NG
k

= NGb : (21)

Like NGb ; NG
k

is independent of the scaling matrixTS

and is fixed for a given system. Since noise sources after
k�1
i (i = 2; 3; . . . ; n) see, respectively, the same summation

nodes as those afterb�i (i = 1; 2; . . . ; n � 1), it can be proved by
similar procedures as in the previous section that

NG
k (i=2;3;...;n)

= tr diag k
�2
1 ; . . . ; (k1 . . . kn�1)

�2
;0 TT

OWOTO

= tr diag 0; k�2
1 ; . . . ; (k1 . . . kn�1)

�2
T
T
O

� A
T
Z � I WO(AZ � I)TO : (22)

Subsequently, by noting (18), (21), and (22), the aggregate noise gain
due to all coupling coefficients, denoted byNGC , is

NGc = NG
k

+NG
k (i=2;3;...;n)

= 1 + tr (TSK)2TT
O A

T
Z � I WO(AZ � I)TO :

(23)
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By noting (14) and (23), noise gain sum is dependent on, and in fact
directly proportional to,T2

S . Therefore, minimum total noise gain is
achieved when all the diagonal elements ofTS are minimized. This
is equivalent to maximizing all the diagonal elements ofT�1S , and
it will be shown in the next section that their maximum values are
constrained by the available dynamic range and can be computed in
a simple manner due to the wayTS is defined.

IV. DYNAMIC RANGE SCALING BY L2- AND L1-NORMS

As noted in Section II, the state variables (or branch nodes) in Fig.
2 need to be scaled to prevent overflow. Therefore, we need a set of
transfer functions from the input to the state variables. The signal
transfer functionfi(z) from the input to theith state variable can be
found by setting the output in the second equation of (11) to be that
particular state variable. Thus, we have the counterpart ofg(z)

f(z) = [f1(z) � � � fn(z)]
T

= (�I� Â0�)
�1
B̂
0

�

= T�1
S T

�1
O (zI�AZ)

�1
BZ : (24)

As stated in [10], [11], theL2-norm is practically the most convenient
choice. To fully utilize the available dynamic range of the state vari-
ables,ki (i = 1; 2; . . . ; n) are required to satisfy

1

2�j
f(z)fT (z�1)z�1

dz

=
1

2�

2�

0

T
�1
S T

�1
O (ej!I�AZ)

�1
BZB

T
Z

� e
�j!

I�AT
Z

�1

T
�T
O T

�T
S d!

= T�1
S T

�1
O WCT

�T
O T

�T
S

=

k21�
2
1 � � � � �

� (k1k2)
2�2

2

...
...

. . . �

� � � � � (k1 . . . kn)
2�2

n

=

1 � � � � �

� 1
...

...
. . . �

� � � � � 1

(25)

where “�” denotes “don’t care.” The symmetric, positive definite ma-
trix

WC =

1

i=0

A
i
ZBZB

T
Z A

T
Z

i

(26)

is the controllability gramian of (2) and�2
i stands for theith diagonal

element ofT�1
O WCT

�T
O . If L1-norm is to be used, the following

condition should be satisfied, namely:

kf(z)k1 = T�1
S T

�1
O (zI�AZ)

�1
BZ

1

= [1 � � � 1]T : (27)

Herekf(z)k1 denotes theL1-norm of each element in the column
vector, usually obtained by analytical methods.

Now it is evident that, contrary to the noise gain terms, the state
variable amplitudes are inversely proportional toT2

S in (25) (orTS

in (27)). As noted before, the total noise gain is minimized by maxi-
mizing the diagonal elements ofT�1

S . This is achieved in (25) and (27)
by setting the state variable norms (L2- or L1-norms) to be 1, i.e., to
utilize the dynamic range. The values ofki (i = 1; 2; . . . ; n) under
such conditions can then be determined easily starting fromk1 down
to kn, and all coefficients for this noise optimal filter can now be com-
puted according to (9)–(11).

It is now apparent that the proposed modified delta operator filter
has its total noise gain minimized as its state variable amplitudes are
maximized. This is consistent with results in state-space filters using
the shift operator [10]. It is also clear from the procedure of determining
ki (i = 1; 2; . . . ; n) that it is unlikely, if not impossible, to utilize
the dynamic range fully at all nodes by using only a single coupling
coefficient, i.e.,k�1

i = � for all is, as in the traditional delta structures
[3], [4].

V. COUPLING COEFFICIENTS BEFOREINTEGRATORS

The second form of��1 operator in Fig. 1 with coupling coefficient
before the integrator will now be investigated. This is the realization
adopted in previous work [3]–[6]. Referring to Fig. 2, the coupling co-
efficients (as well as state variables/branch nodes just before them) are
now moved before the integrators. This structural change requires state
variables to be scaled by a different set of coupling coefficients, which
in turn alter the noise gain terms due to them. Using our convention,
but with a slight abuse of notation by putting the operator� alongside
matrices, this new architecture can be described by

H
0(z) = (Â0�; �B̂

0

�; �
�1
Ĉ
0

�; D̂
0

�)�: (28)

Note that for the same initial system (2),H 0(z) in (28) is equivalent to
H(z) in (4).

The noise gain formulae due to zero-pole coefficients are the same as
before. This is because the change of operator realization does not af-
fect the noise transfer functions as seen by these noise sources. Using
primes to distinguish formulae for this new��1 operator realization
(note that usage of primes here differs from the meaning of matrix
scaling in (10) and should be clear from the context), we have

NG0Z = NGZ ; NG0P = NGP ; NG0ZP = NGZP : (29)

It should be stressed that, though the formulae are the same, their quan-
tities are different due to a new set of coupling coefficients, and thus
TS , under the new scaling conditions. Following procedures in Section
III, the noise transfer functions as seen by roundoff quantization noise
sources after coupling coefficient multiplication can be shown to be

g
0(z) = [g01(z) � � � g

0

n(z)]
T

= KT
T
T
ST

T
O zI�AT

Z

�1

C
T
Z : (30)

Similar to (14), the total noise gain due to coupling coefficients is ob-
tained as

NG0C = NG0
k (i=1;2;...;n)

=

n

i=1

kg0i(z)k
2
2

= tr (TSK)2TT
OWOTO : (31)

For dynamic range scaling, let the transfer function from the input
to theith state variable bef 0i(z), then

f
0(z) = �f (z) = [f 01(z) � � � f

0

n(z)]
T

= (�I� Â0�)
�1

�B̂
0

�

= T�1
S T

�1
O [(AZ � I)(zI�AZ)

�1 + I]BZ : (32)

To fully utilize the dynamic range of the state variables,L2-norm
scaling requireski (i = 1; 2; . . . ; n) to satisfy

T
�1
S T

�1
O (AZ � I)WC A

T
Z � I

+ BZB
T
Z T

�T
O T

�T
S =

1 � � � � �

� 1
...

...
. . . �

� � � � � 1

(33)
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andL1-norm scaling requireski (i = 1; 2; . . . ; n) to satisfy

kf 0(z)k1 = T
�1

S T
�1

O [(AZ � I)(zI�AZ)
�1 + I]BZ

1

= [1 � � � 1]T : (34)

From these constraints, the coupling coefficients inTS can be deter-
mined as before. Again, the total noise gain is minimized when the
diagonal elements ofT�1S are maximized.

VI. SENSITIVITY ANALYSIS

In practice, finite word-length prevents the exact implementation of
the desired filter. Roundoff or truncation of filter coefficients causes de-
viation from the ideal transfer function and thus coefficient sensitivity
is another important aspect of filter design. Sensitivity measures spe-
cific for the �DFIIt structure are defined and the attainable minimum
bounds are derived in this section.

For simplicity,L2-norm scaling of both filter norm and state vari-
ables is assumed, consequentlykH(z)k22 = 1. By noting (11), the
transfer function is first rewritten in terms of matrices containing the
actually implemented filter coefficients.

H(z) = Ĉ
0

�(�I�AOK
�1)�1

B̂
0

� + b�0: (35)

Next, letk�kF be the Frobenius norm of anm�n matrixF(ej!), i.e.,

kF(ej!)kF =

m

i=1

n

j=1

jFij(ej!)j2

= tr Fij(ej!)FTij(e
�j!) (36)

and let the “matrixLp-norm” ofF(z) be

kFkp =
1

2�

2�

0

kF(ej!)kpFd! : (37)

It is seen that, for a single element matrix, (37) reduces to (1). Since sen-
sitivity involves differentiating transfer function with respect to some
parameter matrix, say,M, we define

@H

@M
= S (38)

where the(i; j)th element ofS is sij = @H=@mij . It should be noted
that the sensitivity analysis in the following differs from traditional
ones (e.g., [12]) where fully parameterized state-space realizations are
considered and every matrix element contributes to the sensitivity mea-
sure. In the proposed�DFIIt filter, since 1s and 0s within matrices
AO;K

�1 andĈ0� in (11) are implemented exactly, only a subset of
coefficients within each matrix (e.g., only the first column ofAO ) will
affect the transfer function.

A. Sensitivity Due to Pole Coefficients

By observing (11) and (35), “jitters” in the pole coefficients affect
the implementation ofa�i (i = 1; 2; . . . ; n) in AO and B̂0�. With
first-order approximation, it can be verified that slight variation ofa�i
affectsH(z) as follows:

�H(z)

= Ĉ�(�I�AOK
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TOTSb�0

��a�iIi
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�1
BZ + b�0)

�CZ(zI�AZ)
�1
TOTSIi

= �a�iH(z)CZ(zI�AZ)
�1
TOTSIi (39)

whereIi represents theith column of an identity matrix. The third line
of the equation is due to the fact thatIT1K

�1 = Ĉ0� = CZTOTS . It
follows that
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Z : (40)

Defining the pole-coefficient sensitivity measure to bek@H=@a�k
2
1, its

bound can be obtained by Cauchy–Schwarz inequality, (13) and (14)
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�1

C
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1

� kH(z)k22kg(z)k
2
2 = NGP = NG0P : (41)

This simple result is the reason for taking the matrixL1-norm instead of
using the otherwise desirable but intractable matrixL2-norm. Equation
(41) shows that the pole-coefficient sensitivity, for either��1 operator
realization, is bounded by its corresponding noise gain. Again, though
formulae forNGP andNG0P are the same, in practice they would give
different values due to differentTSs. It can be inferred that the worst
case pole-coefficient sensitivity is minimized when its noise gain is also
minimized.

B. Sensitivity Due to Zero Coefficients

First, by ignoringb�0, it is easy to show that
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@b�
=
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@b�1
� � �

@H

@b�n
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T
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T
O zI�AT

Z

�1

C
T
Z : (42)

Then, by differentiatingH with respect tob�0 (which appears as stand-
alone term and in̂B0�) and using the following sensitivity measures,
highly correlated results are obtained as

@H

@b�

2

2

= NGb (i=1;2;...;n);
@H

@b�0

2

2

= NGb : (43)

The zero-coefficient sensitivity measure is defined as the sum of these
two terms in (43) and, not surprisingly, it is equal to its own noise gain,
i.e.,NGZ or NG0Z in (19) and (29). Again, when the zero-coefficient
noise gain is minimized, its sensitivity is also minimized.

C. Sensitivity Due to Coupling Coefficients

DifferentiatingH with respect tok�1
i and noting thatk�1

1 appears
in bothĈ0� andK�1;
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(44)

where the subscript(i; i) represents theith diagonal element of a ma-
trix. For convenience, the following row matrix is defined:

R(z) = CZ(zI�AZ)
�1
TOTSAO + IT1

= CZ(zI�AZ)
�1(AZ � I)TOTSK+CZTOTSK

= �CZ(zI�AZ)
�1
TOTSK: (45)



430 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 4, APRIL 2001

TABLE I
NUMERICAL EXAMPLES FORDIFFERENT� OPERATORREALIZATIONS

Similar to previous cases, letk@H=@k�1
i
k21 be the sensitivity measure

for that particular coupling coefficientk�1
i

. Then for the case of cou-
pling coefficients after integrators and noting (24) and (25), the appli-
cation of Cauchy–Schwarz inequality yields
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: (46)

The diagonal elements of the first matrix integration on the right of
the inequality are all ones due to the scaling constraint in (25). The
sensitivity measure due to all coupling coefficients is defined as the
sum of all individual sensitivity terms and therefore from (46)
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By similar arguments, for the case of coupling coefficients before inte-
grators and noting (32),
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and similarly
n

i=1
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2

1

� tr (TSK)2TT
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C : (49)

These results indicate again that when the coupling-coefficient noise
gain is minimized, the worst-case bound for the aggregate sensitivity
of coupling coefficients is also minimized.

Interestingly, for this generalized�DFIIt structure, all sensitivity
measures/bounds for respective filter coefficients are equal to their
corresponding noise gain terms. So the filter achieves its minimum
sensitivity measures/bounds simultaneously as its total roundoff noise
gain is minimized. This result is consistent with that of optimal shift
operator–based state-space filters [13].

VII. N UMERICAL EXAMPLES

Several second-order sections from [3] and a strictly causal sixth-
order narrow-band filter from [7] are taken for noise gain and sensi-
tivity calculation. Prescaling of the filter norms is embedded into the
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numerator coefficients and the filter norms are scaled in the same way
(eitherL2- orL1-norm scaling) as the state variables. The results are
given in Table I.

It can be seen thatL2- andL1-norm scaling offer similar noise per-
formance. Also, in accordance with Fig. 1, the��1 operator realization
with coupling coefficient before the integrator generally offers a much
lower total noise gain. It has a relatively higher noise gain due to the
coupling coefficient multiplication but significantly lower gain due to
that of the zero-pole coefficients. On the other hand, the�

�1 operator
realization with coupling coefficient after the integrator has its major
source of noise from the zero-pole coefficient multiplication. It has less
noise contribution from coupling coefficients but the difference is not
as significant. Making use of the results from Section VI, the noise gain
terms underL2-norm scaling are also equal to the corresponding co-
efficient sensitivity measures/bounds. In hardware implementation, the
structure with coupling coefficients before integrators is recommended
because roundoff noise can be more effectively suppressed by using
higher precision in the coupling coefficient multiplication. To lower
hardware complexity, though at the sacrifice of some roundoff noise
gain, the coupling coefficients can be rounded to the nearest powers of
2 such that multiplication can be done by simple bit-shifting.

VIII. C ONCLUSION

This brief has presented a way to obtain an optimal arbitrary
order�DFIIt filter in terms of its roundoff noise gain and coefficient
sensitivity. Procedures for deriving optimal filter coefficients have
been given. The incorporation of a coupling matrix into the delta
domain state-space description provides more flexibility for utilizing
the available dynamic range at filter nodes where scaling is necessary.
Expressions for noise gain and coefficient sensitivity are defined and
derived. Two structures for realizing an��1 operator have been com-
pared through numerical examples. Although the technique presented
in this brief is dedicated for the�DFIIt structure characterization, it
can be applied similarly to analyze other canonical forms or topologies
expressible in state-space format.
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