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The power divergence (PD) and the density power divergence (DPD) families have proven to be useful
tools in the area of robust inference. In this paper, we consider a superfamily of divergences which contains
both of these families as special cases. The role of this superfamily is studied in several statistical appli-
cations, and desirable properties are identified and discussed. In many cases, it is observed that the most
preferred minimum divergence estimator within the above collection lies outside the class of minimum PD
or minimum DPD estimators, indicating that this superfamily has real utility, rather than just being a rou-
tine generalization. The limitation of the usual first order influence function as an effective descriptor of the
robustness of the estimator is also demonstrated in this connection.
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1. Introduction

A density-based minimum divergence approach is a technique in parametric inference where the
closeness of the data and the model is quantified by a suitable divergence measure between the
data density and the model density. Inference methods based on this approach are useful because
of the strong robustness properties that they inherently possess.

The use of minimum divergence procedures in robust statistical inference possibly originated
with Beran’s 1977 paper [8]. Since then, the literature has grown substantially, with monographs
by Vajda [47], Pardo [36] and Basu et al. [7] serving as useful resources for the description of
the research and developments in this field.

Several density-based minimum divergence estimators have very high asymptotic efficiency.
The class of minimum disparity estimators [33] or minimum φ-divergence estimators [14], for
example, have full asymptotic efficiency under the assumed parametric model. The power di-
vergence (PD) family [13], a prominent subclass of disparities, produces robust and efficient
parameter estimators. However, its application in continuous models is not so easy as it requires
the use of a non-parametric density estimator such as the kernel density estimator that entails
associated complications such as bandwidth selection. Basu et al. [2] developed an alternative
family of density based divergences, namely the density power divergences (DPD), which avoids
any non-parametric smoothing even under continuous models and generates robust estimators
with only a slight loss in efficiency. Patra et al. [37] proved some interesting connections be-
tween these two divergence families.
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In this paper, we describe the power divergence and density power divergence families as spe-
cial cases of a superfamily of divergences which we term as the “S-divergence” family. The main
aim of the current paper is, along with the description of the S-divergence family, to illustrate the
wide scope of potential applications of this superfamily in case of parametric statistical inference
with special focus on the robustness issues.

While we describe the development of the S-divergence in this paper and elaborate on the
main statistical features of the divergence with special reference to the robustness of the corre-
sponding procedures, many other research extensions involving this divergence are also being
currently considered (or has been considered) by the authors which consist of applications or
theoretical properties of this divergence. Ghosh [21] and Ghosh and Basu [22] have considered
the asymptotic properties of the minimum S-divergence estimators under discrete and continuous
models respectively. Possible applications of the S-divergence family in developing robust tests
of hypothesis have been considered by [24,25]. A 2013 technical report [26] provides an exten-
sive review of the PD and DPD families and their interconnection in the general framework of
S-divergence. A similar discussion is also provided in a review article by [28], which also illus-
trates the use of the DPD measure in the context of robust reliability analysis. We will also point
out several other interesting and potential areas of future research based on the S-divergences in
the present paper.

Here we summarize the main achievements of the paper. These issues will be further elabo-
rated upon when we discuss them in the main body of the paper.

1. We describe the development of a new family of divergences which is a superfamily con-
taining the well known and well studied PD and DPD families. We explore the use of the
corresponding minimum divergence estimators in statistical inference.

2. Many of these minimum divergence estimators generated by this class of divergences pro-
vide a high degree of stability under data contamination while attaining reasonable effi-
ciency at the model.

3. Our analysis shows that in many cases involving data contamination, the most preferred
minimum divergence estimator often lies outside the class of the union of minimum PD and
minimum DPD estimators, demonstrating that the class of S-divergences has real utility,
and the development of the class of S-divergences is not just for the sake of generalization.

4. We consider a data-driven method for the selection of “optimal” tuning parameters based
on modifications of existing rules. This is also useful in establishing the issue discussed in
the previous item.

5. Although we do not pursue it in any great length in this paper, we demonstrate that the
development of the S-divergence also generates a generalized class of cross-entropies in-
cluding the Boltzmann–Gibbs–Shannon entropy as a special case.

6. We provide a second order influence analysis which is more accurate than the first order
influence analysis in predicting the bias of our estimators under contamination. We also
demonstrate that the first order influence function may be deficient in predicting the bias
irrespective of the truth; it may fail to indicate the robustness of highly stable estimators,
and can also label highly unstable estimators as being strongly robust.

7. At least in the examples we have studied, the instability of the estimators under contamina-
tion is very accurately predicted by the violation of the conditions needed for the breakdown
point results to hold.
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The rest of the paper is organized as follows. In Section 2, we describe the PD and DPD
families and study their interconnection; extensive discussions and examples about these diver-
gences can be found in [7,26,38]. Section 3 ties in these families through the super-family of
S-divergences. In Section 4, we discuss various properties of the minimum S-divergence esti-
mators including the classical influence function and the asymptotic properties under both dis-
crete and continuous models. A numerical analysis is presented in Section 5 to describe the
performance of the proposed minimum S-Divergence estimators (MSDEs). Here we also discuss
the limitation of the classical first order influence function analysis in describing the robust-
ness of these estimators. As a remedy, we consider higher order influence function analysis and
breakdown point analysis of the proposed minimum divergence estimators in Section 6 and Sec-
tion 8.1, respectively. Combining the robustness perspectives and efficiency of the proposed esti-
mators, some suggestions are made in Section 7 for data driven optimal choice of estimators to be
used in specific situation. In Section 8.2, we discuss robust equivariant estimation of multivariate
location and covariances using a particular subfamily of S-divergences. Brief comments about
the testing of hypothesis based on the S-divergence family are provided in Section 9. Finally,
Section 10 has some concluding remarks. For brevity of presentation, the assumptions required
to prove the asymptotic distributions of the proposed minimum divergence estimators and some
of the proofs are moved to the on-line supplement [27]. Some additional issues/examples are also
included in the supplementary part.

Throughout the paper, we will use the term “density function” for both discrete and continuous
models. We also use the term “distance” loosely, to refer to any divergence which is non-negative
and is equal to zero if and only if its arguments are identically equal.

2. The PD and the DPD families

2.1. Minimum disparity estimation and the PD family

Let us consider a parametric model of discrete probability distributions F = {Fθ : θ ∈ � ⊆ R
p}.

Let X1, . . . ,Xn denote n independent and identically distributed (i.i.d.) observations from a dis-
crete distribution G. Further, assume that both the true distribution G and the model family F
have the support X = {0,1,2, . . .}, without loss of generality, and both belong to G, the class of
all distributions having densities with respect to some appropriate dominating measure. Let g and
fθ be the corresponding true and model density functions respectively. Suppose dn(x) represents
the relative frequency of the value x in the above sample. We wish to estimate the parameter θ by
minimizing the discrepancy between the data and the model quantified by the class of disparities
between the probability vectors dn = (dn(0), dn(1), . . .)T and fθ = (fθ (0), fθ (1), . . .)T .

Definition 2.1 (Definition 2.1, [7]). Let C be a thrice differentiable, strictly convex function on
[−1,∞), with C(0) = 0. Let the Pearson residual at the value x be defined by δ(x) = δn(x) =
dn(x)
fθ (x)

− 1. Then the disparity between dn and fθ generated by C is defined by

ρC(dn, fθ ) =
∞∑

x=0

C
(
δ(x)

)
fθ (x). (1)
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The PD family [13] is a special case of this class and is defined in terms of a real parameter λ

as

PDλ(dn, fθ ) = 1

λ(λ + 1)

∑
dn

[(
dn

fθ

)λ

− 1

]
(2)

=
∑{

1

λ(λ + 1)
dn

[(
dn

fθ

)λ

− 1

]
+ fθ − dn

λ + 1

}
. (3)

The second formulation makes all the terms in the summand non-negative. The C(·) function for
the PD under this formulation is given by

Cλ(δ) = (δ + 1)λ+1 − (δ + 1)

λ(λ + 1)
− δ

λ + 1
.

For particular choices of λ = 1,0,−1/2,−1, the PD family generates the Pearson’s chi-square
(PCS), the likelihood disparity (LD), the (twice, squared) Hellinger distance (HD) and the
Kullback–Leibler divergence (KLD) respectively. Note that, the expressions for the PD corre-
sponding to λ = 0,−1 can only be defined in terms of the continuous limit of the expression on
the right-hand side of (2) as λ → 0,−1. These cases result in the likelihood disparity (LD) and
the Kullback–Leibler divergence (KLD), respectively.

Provided such a minimum exists, the minimum disparity estimator (MDE) θ̂ of θ based on the
disparity ρC is defined by the relation

ρC(dn, fθ̂
) = min

θ∈�
ρC(dn, fθ ). (4)

The maximum likelihood estimator (MLE) belongs to the class of MDEs as it is the minimizer
of the likelihood disparity.

Under differentiability of the model, the MDE solves the estimating equation

−∇ρC(dn, fθ ) =
∞∑

x=0

(
C′(δ)(δ + 1) − C(δ)

)∇fθ =
∞∑

x=0

A(δ)∇fθ = 0, (5)

where ∇ represents the gradient with respect to θ and A(δ) = C′(δ)(δ+1)−C(δ). One can easily
check that the above estimating equation (5) is an unbiased estimating equation at the assumed
model. We can standardize the function A(δ), without changing the estimating properties of the
disparity, so that A(0) = 0 and A′(0) = 1. This standardized function A(δ) is called the residual
adjustment function (RAF) of the disparity and largely controls the robustness properties of the
MDEs. For the PD family, the RAF is given by

Aλ(δ) = (δ + 1)λ+1 − 1

λ + 1
. (6)

In particular, the RAF for likelihood disparity is linear, given by A0(δ) = ALD(δ) = δ.
An observation x in the sample space with a large (�0) Pearson residual δ may be considered

a “probabilistic outlier” in the sense that the observed proportion dn(x) is significantly higher
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than what is predicted by the model. An MDE will effectively control such a probabilistic outlier
if the corresponding RAF A(δ) exhibits a strongly dampened response to increasing (positive) δ.
In particular, the MDEs with negative values of the quantity A2 = A′′(0), known as the estimation
curvature of the disparity [33], are seen to be locally robust. For the PD family, this quantity
equals the tuning parameter λ and all members of the PD family with λ < 0 are expected to
be robust. However, the robustness of the MDEs is not adequately reflected by the first order
influence function analysis which indicates that all MDEs have the same influence function as
the MLE at the model.

However, the equivalence of the influence functions also indicates the asymptotic efficiency of
the MDEs. See Lindsay [33] and Morales et al. [35] for the formal results in this context as well
as for a more in depth discussion of the statements of the robustness properties of the MDE. All
MDEs have the same asymptotic distribution as that of the MLE at the model.

The set-up and procedure as described above can also be generalized to the case of continuous
models. However, here it is necessary to construct a continuous density estimate of the true den-
sity using appropriate non-parametric smoothing techniques which involves bandwidth selection
and other problems. This is avoided by the density power divergence family described in the next
subsection.

2.2. The density power divergence (DPD) family

We assume that the parametric set-up of Section 2.1 holds. Let uθ (x) = ∇ logfθ (x) be the like-
lihood score function where ∇ represents the gradient with respect to θ . Consider the estimating
equations

n∑
i=1

uθ (Xi) = 0 and
n∑

i=1

uθ (Xi)f
α
θ (Xi) = 0 (7)

in the location model case, where α ∈ [0,1]. The first one is the likelihood score equation which
corresponds to α = 0. Clearly the second equation involves a density power downweighting com-
pared to the likelihood equation, which indicates the robustness of the estimators resulting from
this process. The degree of downweighting increases with α; α = 0 indicates no downweighting.
For more general models, the corresponding unbiased estimating equation at the model is

1

n

n∑
i=1

uθ (Xi)f
α
θ (Xi) −

∫
uθ (x)f 1+α

θ (x) dx = 0, α ∈ [0,1]. (8)

Basu et al. [2] used this form to construct the DPD family. Given densities g,f for distributions
G and F in G, the DPD with tuning parameter α is defined as

DPDα(g,f ) =
∫ [

f 1+α −
(

1 + 1

α

)
f αg + 1

α
g1+α

]
for α ≥ 0. (9)

When α = 0, the divergence is defined as the continuous limit as α ↓ 0; this divergence equals∫
g log(g/f ) which is the likelihood disparity and is also the PD measure at λ = 0. For α = 1,

the corresponding divergence is the squared L2-distance.
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Now, consider again the parametric set up of Section 2.1 and define the minimum DPD func-
tional Tα(G) at G by the relation

DPDα(g,fTα(G)) = min
θ∈�

DPDα(g,fθ ).

The functional is Fisher consistent by definition of the DPD. As
∫

g1+α is independent of θ and∫
f α

θ g can be empirically estimated as 1
n

∑n
i=1 f α

θ (Xi), the objective function to be minimized

for the estimation of the minimum DPD estimator (MDPDE) θ̂α with tuning parameter α turns
out to be

Hn(θ) = 1

n

n∑
i=1

Vθ(Xi), (10)

where Vθ(x) = ∫
f 1+α

θ − (1 + 1
α
)f α

θ (x). Thus, the minimization of (10) does not require the use
of a non-parametric density estimate for any α. In addition, expression (10) also shows that the
MDPDE is in fact an M-estimator. Under differentiability of the model family, the minimization
of Hn(θ) in (10) leads to the estimating equation (8).

Unlike the MDEs, however, all MDPDEs have bounded influence functions for α > 0. Also
the DPD family allows a clear trade-off between robustness and efficiency, with larger values of
α leading to greater robustness and smaller values of α providing greater asymptotic efficiency.
Generally, the estimators corresponding to α > 1 are considered too inefficient to be practically
useful. See Basu et al. [2] for more details. Also see Dawid and Musio [15] and Dawid et al. [16].

2.3. Interconnection between the PD and the DPD families

The PD measures between the densities g and fθ may be expressed as

PDλ(g,fθ ) =
∫ {

1

λ(1 + λ)

[(
g

fθ

)1+λ

−
(

g

fθ

)]
+ 1 − g/fθ

1 + λ

}
fθ . (11)

As the expression within the parentheses is non-negative and equals zero only if g = fθ , the outer
fθ term in (11) can be replaced by f 1+λ

θ and one still gets a valid divergence that simplifies to

∫ { [g1+λ − gf λ
θ ]

λ(1 + λ)
+ f 1+λ

θ − gf λ
θ

1 + λ

}

= 1

1 + λ

∫ {
1

λ

[
g1+λ − gf λ

θ

] + f 1+λ
θ − gf λ

θ

}
(12)

= 1

1 + λ

∫ {
f 1+λ

θ −
(

1 + 1

λ

)
gf λ

θ + 1

λ
g1+λ

}
.

The right-hand side of the above equation is just a scaled version of the DPD measure given in
equation (9) for λ = α. This modification, originally employed by Patra et al. [37] to reduce the
divergence to an empirically estimable quantity, ends up generating the DPD.

The process can also be reversed to obtain the PD family starting from the DPD family.
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3. A generalized divergence

We have seen in the previous section that the DPD measure at α = 1 equals the squared L2
distance while the limit α → 0 generates the likelihood disparity. Thus, the DPD family smoothly
connects the likelihood disparity, a prominent member of the PD family, with the L2 distance.
A natural question is whether it is possible to construct a family of divergences which connect,
in a similar way, other members of the PD family with the L2 distance. In the following, we
propose such a density-based divergence, indexed by two parameters α and λ, that connect each
member of the PD family (having parameter λ) at α = 0 to the L2 distance at α = 1. We denote
this family as the S-divergence family; it is defined by

S(α,λ)(g, f ) = 1

A

∫
f 1+α − 1 + α

AB

∫
f BgA + 1

B

∫
g1+α, α ∈ [0,1], λ ∈ R, (13)

with A = 1 + λ(1 − α) and B = α − λ(1 − α). Clearly, A + B = 1 + α. Also the above form is
defined only when A �= 0 and B �= 0. If A = 0, then the corresponding S-divergence measure is
defined by the continuous limit of (13) as A → 0 which turns out to be

S(α,λ:A=0)(g, f ) = lim
A→0

S(α,λ)(g, f ) =
∫

f 1+α log

(
f

g

)
−

∫
(f 1+α − g1+α)

1 + α
. (14)

Similarly, for B = 0 the S-divergence measure is defined by

S(α,λ:B=0)(g, f ) = lim
B→0

S(α,λ)(g, f ) =
∫

g1+α log

(
g

f

)
−

∫
(g1+α − f 1+α)

1 + α
. (15)

For α = 0, the S-divergence family reduces to the PD family with parameter λ; for α = 1, it gives
the squared L2 distance irrespective of the value of λ. For λ = 0, the S-divergence generates the
DPD measure with parameter α.

Theorem 3.1. Given two densities g and f , the function S(α,λ)(g, f ) represents a genuine sta-
tistical divergence for all α ≥ 0 and λ ∈R.

The proof, which proceeds by showing that the integrand in the definition of the S-divergence
itself is non-negative and equals zero if and only if the arguments are identical, is elementary and
hence omitted. The S-divergence is not a proper distance metric for all values of the parameters
α and λ as they are not symmetric in general. It is easy to see that S(α,λ)(g, f ) = S(α,λ)(f, g) if
and only if A = B; this happens either if α = 1 (which generates the L2 squared divergence), or
λ = − 1

2 . The latter case represents an interesting subclass of divergence measures which indeed
corresponds to a proper distance and is defined by

S(α,λ=−1/2)(g, f ) = 2

1 + α

∫ (
g(1+α)/2 − f (1+α)/2)2

.

This is a generalized family of Hellinger type distances, which generates the (twice, squared)
Hellinger distance at α = 0. We will refer to this particular subfamily as the S-Hellinger Distance
(SHD) family and study it further in Section 8.2.
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Many other special cases are possible for particular values of λ. For example, the subfamily
corresponding to λ = 1 gives the Pearson chi-square at α = 0 and the subfamily corresponding to
λ = −2 gives the Neyman chi-square divergence at α = 0. However, they both give the (squared)
L2 divergence at α = 1. Thus, these two subfamilies of S-divergence can be considered to be
generalizations of the Pearson and Neyman chi-square divergences respectively; the robustness
of corresponding minimum distance estimator increases with increasing α. These families are
defined by the following expressions:

S(α,1)(g, f ) = 1

(2 − α)

∫ [
f 1+α − (1 + α)

(2α − 1)
g2−αf 2α−1 + (2 − α)

(2α − 1)
g1+α

]
(α �= 1/2),

S(α,−2)(g, f ) = 1

(2α − 1)

∫ [
f 1+α − (1 + α)

(2 − α)
g2α−1f 2−α + (2α − 1)

(2 − α)
g1+α

]
(α �= 1/2),

and the corresponding divergences at α = 1/2 are obtained as their continuous limits.
The S-divergence family has another interpretation from the information theory point of view.

We can define a suitable cross-entropy function so that the divergence generated from that en-
tropy is the S-divergence. The result is presented in the following remark.

Remark 3.1. Define the cross-entropy by

e(g,f ) = −1 + α

AB

∫
gAf B + 1

A

∫
f 1+α.

Then the divergence induced by this cross entropy is obtained as

S(g,f ) = −e(g, g) + e(g,f ),

which is exactly the S-Divergence.

We will refer the cross-entropy e(g,f ) as the S-cross entropy. Interestingly, at λ = α = 0, the
S-cross entropy reduces to the Boltzmann–Gibbs–Shannon entropy; thus, we also get a general-
ized family of cross entropy measures as a by-product of the current work on S-divergence. It
would be an interesting future work to explore the application of this general S-cross entropy in
information theory.

4. Minimum S-divergence estimators (MSDEs)

Under the parametric set-up of Section 2, we are interested in the estimation of the parameter θ .
The minimum S-divergence functional Tα,λ(G) at G is defined by the relation

S(α,λ)

(
g,fTα,λ(G)

) = min
θ∈�

S(α,λ)(g, fθ ), (16)

provided the minimum exists. From its definition, the functional Tα,λ(G) is Fisher Consistent
under the assumption that the model is identifiable. When G is outside the model, θg

α,λ = Tα,λ(G)
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represents the best fitting parameter, and fθg is the model element closest to g in the S-divergence
sense. For simplicity, we suppress the subscript α,λ for θ

g
α,λ.

Given the observed data, we estimate the parameter θ by minimizing the divergence
S(α,λ)(ĝ, fθ ) over θ ∈ �, where ĝ is some non-parametric estimate of g based on the sam-
ple. When the model is discrete, a simple choice for ĝ is given by the relative frequencies; for
continuous models there is no such simple choice and we need something like a non-parametric
estimator ĝ for g. The estimating equation for the minimum S-divergence estimator (MSDE) is
given by

∫
f 1+α

θ uθ −
∫

f B
θ ĝAuθ = 0, or

(17)∫
K

(
δ(x)

)
f 1+α

θ (x)uθ (x) = 0,

where δ(x) = δn(x) = ĝ(x)
fθ (x)

− 1 and K(δ) = [(δ+1)A−1]
A

. For α = 0 one gets A = 1 + λ, and the
function K(·) coincides with the RAF of the PD family in equation (6). For any fixed α, the
estimating equation of the MSDEs differ only in the form of the function K(·), so that the ro-
bustness properties of the estimators may at least be partially explained in terms of this function;
this parallels the role of the RAF in minimum disparity estimation.

To perform minimum distance estimation using the family of S-divergences without any non-
parametric smoothing, we need to choose α and λ so that the parameter A in equation (13) equals
1. This requires either λ = 0 or α = 1. Thus the DPD family (corresponding to λ = 0) is the only
subclass of S-divergences that allows parameter estimation without non-parametric smoothing.
In fact, as shown by Patra et al. [37], the DPD family is the only family of divergences having
this property over a larger class divergences. This property of the S-divergence measures can also
be verified using the concept of decomposability introduced by Broniatowski, Toma and Vajda
[10] for pseudo-distances, that is, for statistical divergences that do not satisfy the information
processing property (e.g., PD, DPD families). The decomposability of a divergence allows defin-
ing the corresponding minimum divergence estimators without using any non-parametric density
estimator. This is one of the fundamental difference between the PD and DPD families – the
DPDs are decomposable but PDs are not; as a consequence the minimum divergence estima-
tors based on DPDs do not use non-parametric smoothing, while those based on PDs inevitably
require this. The family of S-divergence measures also satisfies the divergence properties but
do not satisfy the information processing property and so they are indeed a family of pseudo-
distances. Therefore, we can apply the results of Broniatowski, Toma and Vajda [10] to show
that the S-divergences are decomposable only if A = 1, that is, only if λ = 0 or α = 1. Therefore,
the minimum S-divergence estimators avoiding the use of non-parametric density estimators are
those based on the DPDs and the L2-distance only, as noted earlier. Further, these decomposable
members of the S-divergence family are the only divergences for which equation (17) defines an
M-estimators as we can then rewrite the estimating equation in terms of sum of i.i.d. terms.

However, all members of the S-divergence family generate affine invariant estimators as pre-
sented in the following proposition. The proof is elementary and hence omitted.
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Proposition 4.1. Consider the transformation Y = UX+v for some non-singular matrix U and
vector v of the same dimension as that of the variable X. Then it easy to see that

S(α,λ)(gY , fY ) = kS(α,λ)(gX,fX),

where k = |Det(U)|1+α > 0. Thus although the divergence S(α,λ)(g, f ) is not affine invariant the
estimator that is obtained by minimizing this divergence is affine equivariant.

Considering the entropy interpretation as discussed in Remark 3.1, we can provide an alterna-
tive view for the proposed MSDEs. The minimization of the S-divergence measure S(α,λ)(g, fθ )

between the data g and model fθ is equivalent to the minimization of the S-cross entropy be-
tween the corresponding uncertainty variables. The MSDEs are also the minimum S-cross en-
tropy estimators and provide a generalized approach of the works of Shore and Johnson [40],
Boer et al. [17], Wittenberg [49] and others. This may have potential application in information
theory from the robustness perspective.

4.1. Influence functions

The influence function of an estimator is a common and useful indicator of its first-order ro-
bustness and efficiency. The influence function of a robust estimator should be bounded; non-
boundedness of the influence function implies that the first order asymptotic bias of the estima-
tors may diverge to infinity under contamination. In this section, we will examine the (first-order)
robustness of the MSDEs in terms of its influence function.

Consider the minimum S-divergence functional Tα,λ(·) as defined in (16). A straightforward
differentiation of the estimating equation yields the following theorem.

Theorem 4.2. Under above mentioned set-up, the influence function of the minimum S-diver-
gence functional Tα,λ is given by

IF(y;Tα,λ,G) = J−1[Auθg (y)f B
θg (y)gA−1(y) − ξ

]
, (18)

where ξ = ξ(θg), J = J (θg) with ξ(θ) = A
∫

uθf
B
θ gA and

J (θ) = A

∫
u2

θf
1+α
θ +

∫ (
iθ − Bu2

θ

)(
gA − f A

θ

)
f B

θ ,

and iθ (x) = −∇[uθ (x)].

Further, if the true distribution G belongs to the model family F with g = fθ , then the influ-
ence function of the minimum S-divergence functional simplifies to

IF(y;Fθ ,Tα,λ) = uθ (y)f α
θ (y) − ∫

uθf
1+α
θ∫

u2
θf

1+α
θ

. (19)
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Figure 1. Influence function for the minimum S-divergence estimator of θ under the Poisson(θ) model at
the Poisson(5) distribution (first panel) and the normal N(μ,1) model at the N(0,1) distribution (second
panel).

The remarkable observation here is that the above influence function of the MSDE at the model
depends only on the parameter α and not on λ. Thus, the influence function analysis will predict
similar behavior (in terms of first order robustness and efficiency) for all minimum S-divergence
estimators with the same value of α irrespective of λ. In addition, this influence function is the
same as that of the minimum DPD estimators for a fixed value of α; thus it has a bounded re-
descending nature except in the case where α = 0. Figure 1 shows the nature of the influence
functions for the Poisson-mean (discrete case) and Normal-mean (continuous case). This equiv-
alence of the influence functions also indicates that the asymptotic variance of the minimum
S-divergence estimators corresponding to any given (α,λ) pair should be the same as that of the
corresponding minimum DPD estimator with the same value of α (irrespective of the value of λ).

4.2. Asymptotic properties: Discrete models

As noted earlier, our main aim in this paper is to propose a new family of divergences and
indicate its potential uses in robust parametric inference. However, for the sake of completeness,
we briefly mention the asymptotic properties of the proposed MSDEs – for the discrete models
in this subsection and for the continuous models in the next subsection. Detailed proofs and
discussions can be found in [21] and [22], respectively.

Consider the set-up and notations of discrete models as in Section 2.1. Consider the MSDE
obtained by minimizing S(α,λ)(dn, fθ ) over θ ∈ �, where dn is the relative frequency. Define

Jg = Eg

[
uθg (X)uT

θg (X)K ′(δg
g (X)

)
f α

θg (X)
] −

∞∑
x=0

K
(
δ
g
g (X)

)∇2fθg (x)

and Vg = Vg[K ′(δg
g (X))f α

θg (X)uθg (X)], where Eg and Vg represents the expectation and vari-
ance under g respectively, K ′(·) denotes the first derivative of K(·) and θg is the best fitting
parameter corresponding to the density g. Under the conditions (SA1)–(SA7) of [21] given in
the on-line supplement, the MSDEs have the following asymptotic properties.
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Theorem 4.3. Under the above mentioned set-up and conditions (SA1)–(SA7) of [21], the fol-
lowing results hold:

(a) There exists a consistent sequence θn of roots to the minimum S-divergence estimating
equation (17).

(b) The asymptotic distribution of n1/2(θn − θg) is p-dimensional normal with vector mean 0
and covariance matrix J−1

g VgJ
−1
g .

Corollary 4.4. If the true distribution G = Fθ belongs to the model, n1/2(θn − θ) has an
asymptotic Np(0, J−1V J−1) distribution, where J = Jα(θ) = ∫

uθu
T
θ f 1+α

θ , V = Vα(θ) =∫
uθu

T
θ f 1+2α

θ − ξξT , and ξ = ξα(θ) = ∫
uθf

1+α
θ . This asymptotic distribution is the same as

that of the DPD, and is independent of the parameter λ.

4.3. Asymptotic properties: Continuous models

Now, let us consider the case of continuous models. In this case, we cannot simply use the relative
frequency to estimate the data density g; instead we use the kernel estimator of the density given
by

g∗
n(x) = 1

n

n∑
i=1

W(x,Xi,hn) =
∫

W(x,y,hn) dGn(y), (20)

where W(x,y,hn) is a smooth kernel function with bandwidth hn and Gn is the empirical dis-
tribution function as obtained from the data. We estimate θ by minimizing the S-divergence
measure between the kernel estimator g∗

n and the model density fθ . Under suitable differentia-
bility assumptions, the corresponding estimating equation is then given by (17) with ĝ replaced
by g∗

n . The rest of the procedure is similar to the discrete case; however the theoretical derivation
of the asymptotic normality of the MSDEs and the description of their other asymptotic proper-
ties become far more complex due to the inclusion of the kernel density estimator. In particular,
the choice of the sequence of kernel bandwidths hn becomes critical.

In order to avoid such complications, Ghosh and Basu [22] derived the asymptotic properties
of the MSDEs under the continuous model following an alternative smoothed model approach
of [3]. They have considered the kernel integrated “smoothed” version of the model density
defined as

f ∗
θ (x) =

∫
W(x,y,hn) dFθ (y), (21)

and have estimated θ by minimizing the S-divergence measure between g∗
n and f ∗

θ over � taking
hn = h, independent of sample size. The resulting estimator, which they have referred to as
the minimum S∗-divergence estimator (MSDE∗) is, in general, not the same as the estimator
obtained by minimizing S(α,λ)(g

∗
n, fθ ). Ghosh and Basu have shown the n1/2-consistency and

asymptotic normality of the MSDE∗ under the conditions (SB1)–(SB7) of [22], which appear to
be substantially simpler than what would be necessary to prove the corresponding properties for
the MSDE itself.
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Theorem 4.5. Under the above mentioned set-up and conditions (SB1)–(SB7) of [22], the fol-
lowing results hold:

(a) There exists a consistent sequence θ∗
n of roots to the minimum S∗-divergence estimating

equation obtained by replacing g and fθ by g∗
n and f ∗

θ , respectively in (17).
(b) The asymptotic distribution of n1/2(θ∗

n −θg) is p-dimensional normal with mean 0 and co-
variance matrix [J ∗

g ]−1V ∗
g [J ∗

g ]−1, where θg is now the best fitting parameter with respect
to the S-divergence between g∗ = ∫

W(·, y,h) dG(y) and f ∗
θ ,

J ∗
g = J ∗

(α,λ)(g)
(22)

= A

∫ (
f ∗

θg

)1+α
ũθg ũθg

T +
∫ (

ĩθg − Bũθg ũθg
T
)[(

g∗)A − (
f ∗

θg

)A](
f ∗

θg

)B
,

and

V ∗
g = V ∗

(α,λ)(g) = Var

[∫
W(x,X,h)K ′(δg∗

g (x)
)(

f ∗
θg (x)

)α
ũθg (x) dx

]
(23)

with ũθ (x) = ∇ logf ∗
θ (x) and ĩθ (x) = −∇[ũθ (x)].

In particular, at the model distribution, the above asymptotic distribution is independent of
the parameter λ as in the discrete cases. Further, one can find suitable conditions on the kernel
function so that the asymptotic variance (and all other first order asymptotic and robustness
properties) of MSDE∗ have the same form as that of the MSDE under discrete models. See [22]
for detailed proofs and discussions.

In this context, an interesting alternative solution to the above problem of kernel smoothing
could be to transform the S-divergence measures and the defining equation of the corresponding
minimum S-divergence estimator (MSDE) in such a way that the transformed problem avoids
the use of non-parametric kernel density estimators yet yields robust estimators with similar
properties as that of the MSDEs. Broniatowski and Keziou [9] and Toma and Broniatowski [45]
proposed one such approach in the context of φ-divergence families (including the power di-
vergence family) based on the dual form of the divergences. Their proposed dual φ-divergence
estimators and minimum dual φ-divergence estimators are seen to be highly robust like the min-
imum φ-divergence estimators with no significant loss in asymptotic efficiency. It would be an
interesting future work to study the properties of the dual form of the S-divergence measures and
corresponding estimators in order to avoid the complications of kernel smoothing under contin-
uous models.

5. Numerical studies: Limitations of the influence function

The classical first order influence function is generally a useful descriptor of the robustness of
the estimator. However, the fact that the influence function of the MSDEs are independent of
λ raises several questions. In actual practice the behavior of the MSDEs vary greatly over λ,
and in this section we will give several numerical illustrations of this differential behavior. This
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Table 1. The Empirical bias of the MSDEs under pure data from Poisson Model

λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1.0 – −0.321 −0.122 −0.053 −0.029 −0.014 0.001 0.006
−0.7 −0.172 −0.111 −0.057 −0.027 −0.015 −0.007 0.003 0.006
−0.5 −0.093 −0.062 −0.033 −0.015 −0.008 −0.002 0.004 0.006
−0.3 −0.045 −0.030 −0.014 −0.005 −0.001 0.002 0.005 0.006

0.0 0.006 0.007 0.008 0.007 0.007 0.007 0.006 0.006
0.5 0.073 0.059 0.040 0.026 0.020 0.015 0.009 0.006
1.0 0.124 0.103 0.072 0.045 −0.024 0.022 0.011 0.006
1.5 0.161 0.139 0.102 0.065 0.045 0.032 0.014 0.006
2.0 0.189 0.167 0.129 0.087 0.060 0.039 0.016 0.006

also indicates that the influence function provides an inadequate description of the robustness
of the minimum distance estimators within the S-divergence family. In the next section, we will
demonstrate that a second order bias approximation (rather than the first order) gives a more
accurate picture of reality, further highlighting the limitations of the first order influence function
in this context.

5.1. A simple discrete model: Poisson model

For simplicity of presentation, we will first restrict our attention to the discrete case; in particular
we will concentrate on the Poisson model. The numbers reported by [21,22] demonstrate that
similar results are often obtained for other discrete or continuous models.

We consider a sample size of n = 50 and simulate data from a Poisson(θ = 3) distribution. We
compute the MSDEs of θ for several combinations of α and λ and calculate the empirical bias
and the MSE of each such estimator over 1000 replications. Our findings are reported in Tables
1 and 2.

Table 2. The Empirical MSE of the MSDEs under pure data from Poisson Model

λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1.0 – 0.203 0.086 0.071 0.071 0.073 0.079 0.086
−0.7 0.098 0.078 0.068 0.068 0.070 0.072 0.079 0.086
−0.5 0.070 0.065 0.064 0.067 0.069 0.072 0.079 0.086
−0.3 0.062 0.061 0.063 0.066 0.069 0.072 0.079 0.086

0.0 0.060 0.060 0.062 0.066 0.069 0.072 0.079 0.086
0.5 0.074 0.068 0.064 0.066 0.069 0.072 0.078 0.086
1.0 0.100 0.086 0.072 0.068 0.069 0.071 0.078 0.086
1.5 0.125 0.108 0.085 0.072 0.070 0.072 0.078 0.086
2.0 0.146 0.128 0.101 0.080 0.073 0.072 0.078 0.086
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It is clear from the table that both the bias and MSE are quite small for all values of α and λ,
although the MSE values do exhibit some increase with α, particularly for α > 0.5. Simulation
results done here and elsewhere indicate that under the model most minimum S-divergence esti-
mators perform reasonably well. The parameter λ has, on the whole, marginal overall impact on
the MSE values, although the values are less stable for very large or very small values of λ. More
detailed simulation results, not presented here, demonstrate that the asymptotic convergence to
the limiting distribution is slower for such values of λ. In particular, the MSE of the estimator
is not available for the (λ = −1, α = 0) combination, as the observed frequencies of the cells
show up in the denominator in this case, and the estimator is undefined for a single empty cell.
Although the estimators do exist for positive α when λ = −1, the (λ = −1, α small) estimators
remain somewhat unstable. The estimators corresponding to a very large positive λ and very
small α also appear to be less stable than the other estimators. This is a manifestation of what is
known as the inlier problem; see Basu et al.[7].

To explore the robustness properties of the minimum S-divergence estimators, we repeat the
above study, but introduce a contamination in the data by (i) replacing the last observation of the
sample with the value 50, or by (ii) randomly replacing 10% of the observations of the sample by
Poisson(θ = 12) observations. We again compute the empirical bias and MSE for several values
of α and λ against the target value of θ = 3. We report findings for the contamination scheme
(i) in Tables 3 and 4 and the findings of scheme (ii) are reported in Tables 5 and 6. The results
in Tables 3 and 4 demonstrate that the MSDEs are robust to the outlying value for all α ∈ [0,1]
if λ < 0. For λ = 0, the estimators are largely unaffected for positive values of α, but at α = 0
are adversely affected (note that α = 0 and λ = 0 gives the MLE). For λ > 0, the corresponding
estimators are highly sensitive to the outliers; this sensitivity decreases with α, and eventually
the outlier has negligible effect on the estimator when α is very close to 1. The robustness of the
estimators decrease sharply with increasing λ except when α = 1 (in which case we get the L2

divergence irrespective of the value of λ).
Tables 5 and 6 give the corresponding results for the second kind of contamination. While the

general conclusions are similar, there are very important differences as well. We discuss some of
these below.

Table 3. The Empirical Bias of the MSDEs with contaminated data (one outlier at x = 50)

λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1.0 – −0.304 −0.107 −0.037 −0.012 0.004 0.022 0.031
−0.7 −0.159 −0.097 −0.042 −0.011 0.003 0.012 0.024 0.031
−0.5 −0.080 −0.049 −0.018 0.002 0.010 0.017 0.026 0.031
−0.3 −0.033 −0.016 0.001 0.012 0.017 0.021 0.027 0.031

0.0 0.957 0.021 0.023 0.024 0.025 0.026 0.028 0.031
0.5 15.039 14.094 9.584 0.043 0.038 0.034 0.031 0.031
1.0 15.832 15.579 14.706 11.364 0.316 0.042 0.033 0.031
1.5 16.025 15.911 15.559 14.501 12.073 9.135 0.036 0.031
2.0 16.100 16.033 15.844 15.339 14.363 10.807 0.038 0.031
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Table 4. The Empirical MSE of the MSDEs with contaminated data (one outlier at x = 50)

λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1.0 – 0.221 0.095 0.077 0.075 0.077 0.083 0.090
−0.7 0.107 0.084 0.073 0.072 0.073 0.076 0.082 0.090
−0.5 0.076 0.070 0.068 0.070 0.072 0.075 0.082 0.090
−0.3 0.066 0.065 0.066 0.069 0.072 0.075 0.082 0.090

0.0 0.976 0.063 0.065 0.068 0.071 0.074 0.082 0.090
0.5 226.217 198.686 91.878 0.068 0.071 0.074 0.081 0.090
1.0 250.719 242.759 216.292 129.174 0.171 0.073 0.081 0.090
1.5 256.899 253.246 242.149 210.318 145.791 90.100 0.080 0.090
2.0 259.291 257.160 251.120 235.340 206.341 116.826 0.080 0.090

Table 5. The Empirical MSE of the MSDE with contaminated data (10% outlier from Poisson(12))

λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 – −0.224 −0.047 0.015 0.037 0.051 0.069 0.0796
−0.7 −0.054 −0.010 0.027 0.047 0.056 0.063 0.072 0.0796
−0.5 0.064 0.064 0.065 0.066 0.068 0.070 0.074 0.0796
−0.3 0.216 0.154 0.107 0.087 0.080 0.077 0.076 0.0796

0 0.861 0.492 0.220 0.128 0.103 0.089 0.080 0.0796
0.5 2.119 1.760 1.008 0.335 0.176 0.119 0.085 0.0796
1 2.584 2.383 1.903 1.081 0.404 0.186 0.092 0.0796
1.5 2.779 2.656 2.352 1.774 1.125 0.776 0.100 0.0796
2 2.875 2.793 2.588 2.185 1.690 0.900 0.111 0.0796

Table 6. The Empirical MSE of the MSDE with contaminated data (10% outlier from Poisson(12))

λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 – 0.215 0.102 0.086 0.086 0.088 0.095 0.1034
−0.7 0.111 0.095 0.086 0.085 0.086 0.089 0.095 0.1034
−0.5 0.098 0.091 0.087 0.086 0.088 0.090 0.096 0.1034
−0.3 0.136 0.109 0.094 0.089 0.089 0.091 0.096 0.1034

0 0.812 0.318 0.131 0.099 0.094 0.093 0.096 0.1034
0.5 4.703 3.283 1.125 0.194 0.116 0.100 0.097 0.1034
1 6.932 5.934 3.850 1.311 0.249 0.122 0.099 0.1034
1.5 7.983 7.318 5.798 3.386 1.431 0.807 0.100 0.1034
2 8.527 8.066 6.971 5.048 3.100 0.957 0.103 0.1034
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The contamination in case (i) represents an absolutely extreme outlier, which normally would
be identified and discounted by most robust estimation methods. This is essentially what is ob-
served in Tables 3 and 4. That is why, even the weakly robust estimators generated by the S-
divergences, such as the one corresponding to α = 0.1, λ = 0 perform admirably in this case.
There is, in fact, little reason to venture outside the fold of DPD generated estimators in this
case.

The contamination in case (ii), on the other hand, will generate observations of which some
may be legitimately confused with the observations coming from the major Poisson(3) compo-
nent. Some others represent mild outliers, while some would be moderate to extreme outliers. In
such a situation, it is clear from Tables 5 and 6 that the minimum divergence estimators within
the PD and DPD classes no longer contain the divergence which minimizes the mean square
error. In fact, the best performance in Table 6 (α = 0.4, λ = −0.7) is well separated from both
the PD and DPD family boundaries. Roughly, the zone of best performance is an elliptical (or
circular) subset of the tuning parameter space, with one axis extending roughly from α = 0.1 to
α = 0.6 and the other roughly from λ = −0.3 to λ = −1.

The above study shows that there are many useful divergences in the S-divergence class which
lie outside the PD–DPD families. The above study also clearly illustrates that the robustness
properties of the MSDEs are critically dependent on the value of λ for each given value of α.
Yet, as we have seen, the canonical (first order) influence functions of the MSDE are independent
of λ, and this index would fail to make any distinction between the different estimators for a fixed
value of α; this property severely limits the usefulness of the influence function in assessing the
robustness credentials of these estimators. In practice, estimators with α = 0 and negative λ

appear to have excellent outlier resistant properties, while those corresponding to small positive
values of α and large positive λ perform poorly at the model in terms of robustness; in either case
the these behaviors are contrary to what would be expected from the usual influence function
approach.

5.2. Mixture normal models

We now consider the more complex example of normal mixture models, where we assume that
the number of mixing components is known. In particular, we will focus on a two-component
mixture of normal distributions with density

fθ = πφ
(·,μ1, σ

2
1

) + (1 − π)φ
(·,μ2, σ

2
2

)
, θ = (μ1,μ2, σ1, σ2,π)T , (24)

where φ(·,μ,σ 2) denotes a normal density with mean μ and variance σ 2 and π is the mixing
proportion. We are interested in the estimation of the parameter vector θ . The approach can be
easily extended to the mixture of more than two distributions.

A robust solution to this problem can be easily obtained using the minimum S-divergence
estimators. However, since we have a continuous model in this case we will follow the Basu–
Lindsay approach of smoothed model as discussed in Section 4.3. Following [22], the Gaussian
kernel with W(x,y,h) being the N(y,h2) density at x gives a reasonable choice under the
normal model while using the Basu–Lindsay approach. Note that, the smoothed model with



A generalized divergence 2763

respect to the Gaussian kernel is then given by

f ∗
θ = πφ

(·,μ1, σ
2
1 + h2) + (1 − π)φ

(·,μ2, σ
2
2 + h2).

Then we can easily derive the proposed MSDE∗ of θ under this mixture normal model by mini-
mizing the S-divergence between the smoothed model f ∗

θ and the kernel density estimate of the
true density with respect to the same Gaussian kernel.

Here we will present some simulation results to illustrate the performance of our proposed
MSDE∗ under this relatively complex model situation. As in the previous example, we will
take the sample size n = 50 and generate 1000 samples from the assumed model (24) with the
true parameter value θ = (0,10,3,3,0.5). Here, for simplicity, we have taken σ1 = σ2 = 3 as
known and numerically compute the MSDE∗ of the parameters (μ1,μ2,π). For the computation
purpose, we have taken the bandwidth h = hn as per the normal reference rule [39] yielding

hn = 1.06σn−1/5,

with σ being the common standard deviation (which is assumed to be known and equals 3).
Next, for examining the robustness, we contaminate 100ε% of the sample by observations from
a N(20,3) distribution which are potential outliers with respect to the assumed two-component
mixture model. Based on the 1000 such Monte-Carlo samples (each of size n = 50), we have
computed the bias and MSE of the MSDE∗ of the three parameters for different choices of the
contamination proportion ε. For simplicity of presentation, we have presented only the average
absolute bias and the average MSE of the three parameter estimates under the 10% contamination
scenario in Tables 7 and 8, respectively.

We notice that the general pattern of the performance of the estimators remains the same. In
this case, the system requires larger values of α for the estimators to achieve reasonable degrees
of robustness. Notice that the model is substantially more complicated than the Poisson model,
involving three parameters, an additional tuning parameter (the bandwidth) and a measure which
is the combination of the three absolute biases or the MSEs. However in this case also the best
solution lies well outside the PD–DPD families.

Table 7. The Empirical average absolute bias of the MSDE∗s for different values of α and λ (10% con-
tamination in Normal Mixture Model)

λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1.0 0.756 0.611 0.492 0.420 0.391 0.353 0.309 0.308
−0.7 0.872 0.739 0.534 0.451 0.409 0.381 0.299 0.308
−0.5 0.975 0.800 0.567 0.470 0.430 0.365 0.322 0.308
−0.3 1.037 0.868 0.624 0.503 0.443 0.395 0.325 0.308

0 1.207 0.889 0.690 0.527 0.466 0.416 0.338 0.308
0.5 1.612 1.395 0.937 0.563 0.516 0.443 0.348 0.308
1 1.844 1.669 1.329 0.862 0.584 0.480 0.349 0.308
1.5 1.953 1.829 1.571 1.134 0.786 0.526 0.361 0.308
2 2.038 1.940 1.691 1.342 1.031 0.616 0.374 0.308
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Table 8. The Empirical average MSE of the MSDE∗s for different values of α and λ (10% contamination
in Normal Mixture Model)

λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 2.890 2.512 1.976 1.658 1.477 1.470 1.366 1.409
−0.7 3.306 2.882 2.182 1.642 1.606 1.525 1.436 1.409
−0.5 3.729 3.136 2.331 1.797 1.583 1.486 1.385 1.409
−0.3 4.000 3.259 2.482 1.940 1.774 1.499 1.382 1.409

0 4.786 3.299 2.690 2.003 1.791 1.613 1.373 1.409
0.5 7.056 5.662 3.546 2.319 2.021 1.614 1.356 1.409
1 8.635 7.282 5.216 3.121 2.326 1.714 1.383 1.409
1.5 9.546 8.451 6.460 4.246 2.840 2.022 1.455 1.409
2 10.191 9.249 7.345 5.214 3.761 2.293 1.485 1.409

5.3. An errors-in-variables model

In our last numerical example, we will consider the more complex errors-in-variables model. One
popular and classical version of the errors-in-variables model, as given in [20], may be expressed
by the relations

Yi = β0 + β1xi + ei, Xi = xi + ui, i = 1, . . . , n, (25)

where we only observe (Xi, Yi) and xi is the unobserved true values of the covariates. We also
assume that the error variables ei and ui are i.i.d. normal with means 0 and variances σe and
σu, respectively. It is also assumed that the covariate xi ’s are stochastic and independent of
the errors; such a model is generally referred as the structural model. In particular, we will as-
sume that the covariates are i.i.d. normal with mean μx and variance σx . Then the observed
variables (Yi,Xi) form an i.i.d. random sample from a bivariate normal distribution with mean

μ = (β0 +β1μx,μx)
T and variance-covariance matrix � = (β2

1 σx+σe β1σx

β1σx σx+σu

)
. Since a bivariate nor-

mal distribution is characterized by only 5 parameters and the model (25) contains 6 unknown
parameters, it is not identifiable and we need to impose some restrictions on these parameters
to make it identifiable. A common such restriction is to assume that the ratio σe/σu is known.
As in any other regression model, here also the main quantity of interest is the regression coeffi-
cient β1.

There have been some attempts to develop robust parameter estimation under the above error-
in-variables model; for example, by Brown [11], Carroll and Gallo [12] and Zamar [50]. See
Basu and Sarkar [6] for a brief discussion, who had demonstrated the superiority of the minimum
disparity estimators over the others under contamination using the Hellinger distance. As we have
seen in the case of previous two examples, some member of the proposed S-divergence family
may lead to better robustness compared to the Hellinger distance (which is a member of PD
family at λ = −1/2 and α = 0), we can examine the same in case of the contaminated Gaussian
errors-in-variables model also.
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In this spirit, we have conducted a simulation study similar to that presented in [6]. In particular
we generate 100 samples each of size n = 20 from the model (25) with true parameter values
μx = 0, σx = 1, σu = σe = 0.25, β0 = 0 and β1 ∼ Uniform[−5,5]. The values of β1 has been
chosen randomly for each sample following [50], which takes into account that the robustness
of the resulting estimator might depend on the true value of β1. The 5% contamination has been
introduced into both the error variables ui and ei by observations from N(0, σ 2) and N(0, τ 2)

respectively. Also, for model identifiability, we assume that σe/σu = 1 is known.
For each sample, we compute the MSDE∗ of the 5 unknown parameters following the

smoothed model approach. As in [6], we also use the bivariate Gaussian kernel N2(0, h2I ) with
the value of bandwidth h = 0.5. Since our model is bivariate normal with mean μ and vari-
ance matrix �, the resulting smoothed model is also a bivariate normal distribution with mean
μ and variance matrix (� + h2I ). In particular, we consider the estimator β̂1j of β1 obtained
from j th sample (j = 1, . . . ,100) and derive the following performance measure of the estima-
tor [50]

m =
100∑
j=1

(
1 − |1 + β̂1j β1j |

(1 + β̂2
1j )

1/2(1 + β2
1j )

1/2

)
,

where β1j is the true value of β1 in the j th sample. Clearly, smaller values of m indicate greater
robustness of the estimator. We have considered several choices of the (σ, τ ) combinations as
in Zamar [50] and compute the above performance measure m for the MSDE∗ with different
values of α and λ. However, for brevity in presentation, we only present the results for the choice
(σ, τ ) = (2,2) in Table 9; the results for all other choices of (σ, τ ) are generally similar except
for changes in magnitude.

It is once again clear that the estimators with moderately large positive values of α and moder-
ately large negative values of λ perform better or competitively in terms of robustness compared
to the other estimators.

Table 9. The Empirical performance measure m for estimating β1 under the error-in-variable model with
(σ, τ ) = (2,2)

λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 0.136 0.133 0.106 0.089 0.086 0.088 0.080 0.080
−0.7 0.129 0.137 0.096 0.082 0.081 0.082 0.077 0.080
−0.5 0.147 0.128 0.091 0.088 0.084 0.090 0.081 0.080
−0.3 0.197 0.127 0.120 0.102 0.080 0.086 0.083 0.080

0 0.647 0.368 0.165 0.106 0.088 0.081 0.089 0.080
0.5 0.526 0.577 0.599 0.177 0.110 0.089 0.082 0.080
1 0.471 0.513 0.544 0.578 0.306 0.116 0.075 0.080
1.5 0.496 0.439 0.490 0.574 0.586 0.268 0.080 0.080
2 0.433 0.514 0.504 0.556 0.629 0.625 0.082 0.080
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6. Higher order influence analysis

Lindsay [33] had observed that the usual first order influence function failed to capture the ro-
bustness of the minimum disparity estimators with large negative values of λ. The description
of the previous section has demonstrated that this phenomenon can be a more general one, and
is not restricted to estimators which have unbounded influence functions. It may fail to predict
the strength of robustness of highly robust estimators, and it may also declare extremely unstable
estimators as having good stability. As in [33], we consider a second order influence function
analysis of the MSDEs and show that this provides a significantly improved prediction of the ro-
bustness of these estimators. See [33] and [7] for a general description of second order influence
analysis in minimum disparity estimation.

Let G and Gε = (1 − ε)G + ε∧y represent the true distribution and the contaminated dis-
tribution respectively, where ε is the contaminating proportion, y is the contaminating point,
and ∧y is a degenerate distribution with all its mass on the point y; let T (Gε) be the value
of the functional T evaluated at Gε . The influence function of the functional T (·) is given by
T ′(y) = ∂T (Gε)

∂ε
|ε=0. Viewed as a function of ε, �T (ε) = T (Gε) − T (G) quantifies the amount

of bias under contamination; under the first-order Taylor expansion the bias may be approximated
as �T (ε) = T (Gε)−T (G) ≈ εT ′(y). From this approximation, it follows that the predicted bias
up to the first order will be the same for all functionals having the same influence function. Thus
for the minimum S-divergence estimators, the first order bias approximation is not sufficient for
predicting the true bias under contamination and hence not sufficient for describing the robust-
ness of such estimators.

We consider the second order Taylor series expansion to get a second-order prediction of the

bias curve as �T (ε) = εT ′(y) + ε2

2 T ′′(y). The ratio of the second-order (quadratic) approxima-
tion to the first (linear) approximation, given by

quadratic approximation

linear approximation
= 1 + [T ′′(y)/T ′(y)]ε

2

can serve as a simple measure of adequacy of the first-order approximation. Often when the
first order approximation is inadequate, the second order approximation can give a more accu-
rate prediction. If ε is larger than εcrit = | T ′(y)

T ′′(y)
|, the second-order approximation may differ by

more than 50% compared to the first-order approximation. When the first order approximation
is inadequate, such discrepancies will occur for fairly small values of ε.

In the following theorem, we will present the expression of our second order approximation
T ′′(y); for simplicity we will deal with the case of a scalar parameter. The next straightforward
corollary gives the special case of the one parameter exponential family having unknown mean
parameter.

Theorem 6.1. Let Fθ ∈ F with θ being a scalar parameter. Assume that the true distri-
bution belongs to the model F . For the minimum divergence estimator defined by the esti-
mating equation (17) where the function K(δ) satisfies K(0) = 0 and K ′(0) = 1, we have
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T ′′(y) = T ′(y)(
∫

u2
θf

1+α
θ )−1[m1(y) + K ′′(0)m2(y)], where

m1(y) = 2∇uθ (y)f α
θ (y) + 2αu2

θ (y)f α
θ − 2

∫
∇uθf

1+α
θ − 2α

∫
u2

θf
1+α
θ

− T ′(y)

[
(1 + 2α)

∫
u3

θf
1+α
θ + 3

∫
uθ∇uθf

1+α
θ

]
,

m2(y) = T ′(y)

∫
u3

θf
1+α
θ − 2u2

θ (y)f α
θ (y) + uθ (y)f α−1

θ (y) − ∫
uθf

1+α
θ

uθ (y)f α
θ (y) − ∫

uθf
1+α
θ

.

In particular for the minimum S-divergence estimator, we have K ′′(0) = A − 1.

Corollary 6.2. For the one parameter exponential family with mean θ , the above theorem sim-
plifies to T ′′(y) = T ′(y)[K ′′(0)Q(y) + P(y)] with

Q(y) =
(

uθ (y)f α−1
θ (y) − ∫

uθf
1+α
θ

uθ (y)f α
θ (y) − ∫

uθf
1+α
θ

)
+ f α

θ

[
(y − θ)c3

c2
2

− 2(y − θ)2

c2

]
,

P (y) =
(

2c0

c2
− 2α

)
− f α

θ

[
2

c2
+ 2α(y − θ)c3

c2
2

− 2α(y − θ)2

c2

]
,

where ci = ∫
ui

θf
1+α
θ for i = 0,1,2,3. If y represents an extreme observation with a small

probability, the leading term of Q(y) is dominant.

Example 6.1 (Poisson mean). For a numerical illustration of the second order influence anal-
ysis, we consider the Poisson model with mean θ . This is a one-parameter exponential family
so that we can compute the exact values of the second order bias approximation by using the
above corollary. Also we can compute the first order approximation of bias by the expression of
influence function from equation (18). For all our simulation results explained below, we have
considered the true value of θ to be 4 and put a contamination at the point y = 10 which lies at
the boundary of the 3σ limit for the mean parameter θ = 4.

We have examined the relation between these two bias approximations for several different
values of α and λ. In the following, we present some of our crucial findings through some graph-
ical representations of the predicted biases. Figures 2, 3 and 4 contain the approximate bias plots
for different α and λ = 0, λ > 0, λ < 0 respectively. In all the plots, the ε-axis runs from 0 to
min(0.1, εcrit), where εcrit is the smallest value of ε where the second order approximation is
double or half of the quantity predicted by the first order influence function for the first time. As
this depends on the particular situation, all the plots in this section have different axis ranges.

Comments on Figure 2 (λ = 0): Clearly the two approximations coincide when α = 0 and λ =
0 which generates the maximum likelihood estimator. This is expected from the theory of the
MLE. However the difference between the predicted biases increase as α increases up to 0.5
and then the difference falls again and almost vanishes at α = 1. In addition, the actual bias
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Figure 2. Bias approximations (dashed line: first order; solid line: second order) for different α and λ = 0
for the Poisson mean θ = 4 and contamination at y = 10.

approximation generally drops with increasing α for both the approximations which should also
be expected.

Comments on Figure 3 (λ > 0): For positive λ, the bias approximations are very different
even for small values of α. As α increases the difference between the two bias approximations
decreases. Here, ε = εcrit is the value of ε where the quadratic approximation is exactly double
of the linear approximation for the first time. These estimators have weak stability properties in
the presence of outliers, but the first order influence function approximation gives a false, con-
servative picture. We also note that this critical value of ε (εcrit) also increases as α increases or
λ decreases.

Comments on Figure 4 (λ < 0): Here also the plots are shown up to ε = εcrit; in this case εcrit
is the value where the quadratic approximation drops to half of that of the linear approximation
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Figure 3. Bias approximations (dashed line: first order; solid line: second order) for different α and λ > 0
for the Poisson model with mean θ = 4 and contamination at y = 10.

for the first time. Here the estimators have strong robustness properties, but the influence func-
tion gives a distorted negative view. Contrary to the positive λ case, here this critical value εcrit

increases as both α or λ increases.

While the three figures are drawn for zero, positive and negative values of λ, comparing of
specific panels over the three different figures may show the predicted behavior of the procedure
over different λ for the same value of α. For example, consider Figures 2(c), 3(b) and 4(b). As the
first order influence function is independent of λ, the corresponding predicted behavior in these
three panels are identical with α fixed at 0.5. As we have seen in Tables 3–6, the actual behaviors
of these estimators are widely different. This is recognized to a large extent in the second order
influence curves, which shrinks the first order prediction for λ < 0 and inflates it for λ ≥ 0 (more
so for λ > 0). The first order prediction, however, makes no such distinction.
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Figure 4. Bias approximations (dashed line: first order; solid line: second order) for different α and λ < 0
for the Poisson model with mean θ = 4 and contamination at y = 10.

We trust that the above gives a fairly comprehensive picture of the limitation of the first order
influence function in the present context. We can say that for any λ �= 0, this critical value εcrit
of ε where the quadratic approximation is double or half of the linear approximation for the first
time increases as α increases or |λ| decreases. Table 10 presents the value of εcrit for several
combinations of λ and α. These values are increasing with α in either case.

7. On the choice of tuning parameters α and λ

In the previous sections, we have observed that the robustness of the proposed minimum S-
divergence estimators (MSDE) differ widely for different values of the tuning parameters α and
λ, although their first order influence function is independent of λ. This is clearly observed in
all the simulation exercises presented in this paper and other relevant numerical illustrations
provided in [21,22]. In fact, the MSDEs at α = 0 or low values close to zero are seen to be highly
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Table 10. The minimum values of the contamination proportion ε for which the ratio of the second order
bias approximation over the first order is 2 (for λ > 0) or 1

2 (for λ < 0)

α λ = −1 λ = −0.5 λ = −0.1 λ = 0.1 λ = 0.5 λ = 1

0 0.0020 0.004 0.020 0.040 0.008 0.004
0.1 0.0020 0.004 0.023 0.043 0.009 0.005
0.2 0.0025 0.005 0.027 0.048 0.010 0.005
0.3 0.0030 0.006 0.032 0.056 0.012 0.006
0.4 0.0035 0.007 0.040 0.067 0.015 0.008
0.5 0.0050 0.009 0.052 0.087 0.019 0.010
0.6 0.0070 0.014 0.073 0.121 0.026 0.130
0.7 0.0110 0.022 0.114 0.191 0.041 0.021
0.8 0.0200 0.040 0.211 0.363 0.077 0.039

affected by the choice of the value of λ under the presence of outliers. However, the asymptotic
relative efficiency of the MSDEs as obtained from their asymptotic variances is independent of
λ and decreases as α increases. Therefore, a proper choice of the tuning parameters α and λ is
necessary when applying the proposed MSDEs in any practical problem.

We note that the tuning parameters that appear to produce the most accurate estimators are not
exactly the same in the different set ups and models considered in Section 5. In general, we ob-
serve that for a simple unidimensional model like the Poisson and for the type of contaminations
considered, values of α in the neighborhood of 0.25 and values of λ in the range [−0.3,−0.7]
appear to provide the best compromise. For the normal mixture model and the errors in variables
model, slightly larger values of α are necessary to generate estimators with a reasonable level of
robustness. As a fixed overall recommendation, we feel values of α around 0.5 and values of λ

in [−0.3,−0.7] might provide the best overall compromise.
However, an adaptive method, on the basis of observed data, that provides an optimal choice

of the couple (α,λ) would be interesting and useful for the practitioners for implementing our
proposal in real life. One such popular adaptive method in the related context of the optimum
selection of α in the minimum DPD estimation suggests the minimization of the estimated mean
square error (MSE) of the estimator [23,31,48]. We call it the Warwick and Jones approach. We
can easily extend that approach to choose the optimum (α,λ) couple in our proposed minimum
S∗ divergence estimators. Suppose θ0 denotes the true target parameter value. Suppose we have
the contaminated density g(x) = (1 − ε)fθ0(x)+ εδy(x), where δy(x) is the Dirac delta function
at the point y. Let us define θα,λ = arg minθ S(α,λ)(g, fθ ) for any given (α,λ) combination. Given
the observed sample, let the MSDE of the parameter θ with tuning parameter (α,λ) be denoted as
θ̂α,λ. Then, in the Warwick and Jones [48] approach, we should chose the optimum (α,λ) combi-
nation by minimizing an estimate of the asymptotic approximation of E[(θ̂α,λ −θ0)T (θ̂α,λ −θ0)],
the summed MSE of the MSDE θ̂α,λ of θ . Using the asymptotic distribution of the MSDE un-
der discrete model as discussed in Section 4.2, we can easily obtain the required asymptotic
approximation as

E
[(

θ̂α,λ − θ0)T (
θ̂α,λ − θ0)] = (

θα,λ − θ0)T (
θα,λ − θ0) + 1

n
trace

{
J−1

g VgJ
−1
g

}
, (26)
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where Jg and Vg are the matrices as defined in Section 4.2. In case of continuous models, we
should use J ∗

g and V ∗
g defined in Section 4.3 in place of Jg and Vg respectively, which was also

indicated briefly in [22]. Note that, if we ignore the first bias term in the above approximation
(26), the procedure of selecting the optimum tuning parameter coincide with the proposal of
Hong and Kim [31].

Clearly, one can easily estimate the second component in the approximation (26) by putting
θ̂α,λ for θα,λ and the empirical estimates of the true density g from the observed data (through
the relative frequency or the kernel density estimator for discrete and continuous models respec-
tively). For the first component in (26), one can again estimate θα,λ by the observed MSDE θ̂α,λ;
but there is clearly no direct estimate for θ0. Warwick and Jones [48] took various possible es-
timators θ0 which they referred to as the “pilot estimators” and compared these choices through
an extensive simulation study for the MDPDE. They recommended the choice of the “pilot es-
timator” which is the MSDE (or the MDPDE) corresponding to α = 1, that is, the minimum
L2-divergence estimator. We have followed the Warwick and Jones proposal in this paper. In
repeated simulations involving the Poisson model, we have observed the following:

(a) When the data come from the pure distributions (as used in Section 5) we have found
that a large proportion of cases choose α = 0, λ = 0 as the optimal parameter set. Ghosh
and Basu [22] reported similar simulation findings in case of the choice of optimal tuning
parameters for the use of the S-divergence in continuous models.

(b) When the data are chosen from contaminated Poisson mixtures, very often the optimal
tuning parameter set has a moderately large values of α and a moderately large negative
value of λ. This again indicates the usefulness of minimum S-divergence estimators out-
side the PD–DPD class.

It is also worthwhile to note that for Short’s data and Newcomb’s data, two famous data sets
presented in [43] which contain moderate to large outliers, the optimal (α, λ) combinations turn
out to be (0.8, −0.3) and (0.6, −0.4), as reported by in [22] for the normal model. In either case,
the optimal set is far off from the PD–DPD class.

For the set ups in Sections 5.2 and 5.3, we believe we will need more research to make more
clear cut and pinpointed recommendations about the choice of the tuning parameter. Apart from
the complicated nature of the models, this is also due to the presence of a third tuning parameter,
the bandwidth. The actual choice of the bandwidth in an optimal manner will probably require a
substantial amount of additional research. However, we are able to confirm that larger values of
the bandwidth appear to generate more efficient estimators, while smaller values produce more
robust ones.

8. Two interesting special cases

8.1. Asymptotic breakdown point of the MSDEs under the location model

Now we will establish the breakdown point of the minimum S-divergence functional Tα,λ(G)

under the location family of densities FL = {fθ (x) = f (x − θ) : θ ∈ �}. Note that
∫

f 1+α(x −
θ) dx = ∫

f 1+α(x) dx = Mα
f , say, which is independent of the parameter θ . Recall that we can
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write the S-divergence as S(α,λ)(g, f ) = ∫
f 1+αC(α,λ)(δ) where δ = g

f
− 1 and C(α,λ)(δ) =

1
AB

[B − (1 + α)(δ + 1)A + A(δ + 1)1+α]. Now C(α,λ)(−1) = 1
A

which is clearly bounded for all
A �= 0. Define D(α,λ)(g, f ) = f 1+αC(α,λ)(

g
f

− 1). Then note that whenever A > 0 and B > 0,

we have D(α,λ)(g,0) = limf →0 D(α,λ)(g, f ) = 1
B

g1+α . Our subsequent results will be based on
the next lemma which follows from Holder’s inequality.

Lemma 8.1. Assume that the two parameters α and λ are such that both A and B are posi-
tive. Then for any two densities g, h in the location family FL and any 0 < ε < 1, the integral∫

D(α,λ)(εg,h) is minimized when g = h.

Consider the contamination model Hε,n = (1 − ε)G + εKn, where {Kn} is a sequence of
contaminating distributions. Let hε,n, g and kn be the corresponding densities. We say that
there is breakdown in Tα,λ for ε level contamination if there exists a sequence Kn such that
|Tα,λ(Hε,n)− T (G)| → ∞ as n → ∞. We write below θn = Tα,λ(Hε,n) and assume that the true
distribution belongs to the model family, i.e., g = fθg . We make the following assumptions:

(BP1)
∫

min{fθ (x), kn(x)} → 0 as n → ∞ uniformly for |θ | ≤ c for any fixed c. That is,
the contamination distribution is asymptotically singular to the true distribution and to
specified models within the parametric family.

(BP2)
∫

min{fθg (x), fθn(x)} → 0 as n → ∞ if |θn| → ∞ as n → ∞, that is, large values of
θ give distributions which become asymptotically singular to the true distribution.

(BP3) The contaminating sequence {kn} is such that

S(α,λ)(εkn, fθ ) ≥ S(α,λ)(εfθ , fθ ) = C(α,λ)(ε − 1)Mα
f

for any θ ∈ � and 0 < ε < 1 and lim supn→∞
∫

k1+α
n ≤ Mα

f .

Theorem 8.2. Assume that the two parameters α and λ are such that both A and B are posi-
tive. Then under the assumptions (BP1)–(BP3) above, the asymptotic breakdown point ε∗ of the
minimum S-divergence functional Tα,λ is at least 1

2 at the (location) model.

Corollary 8.3 (Density power divergence). The well-known Density Power divergence (DPD)
belongs to the S-divergence family (for λ = 0) for which A = 1 > 0 and B = α > 0 for all α > 0.
Thus under the assumptions (BP1)–(BP3), the MDPDE for α > 0 has breakdown point of 1

2 at
the location model of densities.

Remark 8.1. Whenever the contaminating densities {kn} belong to the location model under
consideration then one can easily check that Assumption (BP3) holds; its second part holds
trivially whereas the first part holds by Lemma 8.1.

Further, if kn = fθn with |θm| → ∞ as n → ∞, then Assumption (BP2) implies assumption
(BP1). In particular, for the normal location model, Assumption (BP2) holds trivially and so
under model contamination Assumption (BP1) also holds.

Our breakdown results of this section provide a remarkable match with the empirical findings
about the performance of the minimum S-divergence estimators as observed in Section 5. Notice
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Figure 5. The region of positive A and B in the (α,λ)-plane.

that the breakdown result of Theorem 8.8 requires that both A and B should be strictly greater
than zero. In Figure 5, we have represented the rectangular span of the combination of tuning
parameters α and λ given by [0,1] × [−1,2]. This has been the region of our interest in the
simulations of Section 5. The subregion of this rectangle where A > 0, B > 0 condition is vio-
lated is given in the lower left hand corner of this region. What is striking is that this subregion
matches exactly with the region of instability observed under data contamination in Tables 3–6
in Section 5.

8.2. The S-hellinger distance: Estimating multivariate location and
covariance

Beran [8] considered minimum Hellinger distance estimation for univariate parametric models
and established the efficiency and demonstrated the robustness of the corresponding minimum
distance estimator. Tamura and Boos [44] extended his work on minimum Hellinger distance
estimation to the case of multivariate location and covariance estimation under the class of ellip-
tically symmetric models. In the subsequent literature, there has been many attempts to general-
ize the Hellinger distance suitably to extract some more desirable properties along with greater
robustness; see, for example, [1,41]. However, most, if not all, such generalizations are in the
case of univariate models.

The S-divergence family developed here provides us one such generalization of the Hellinger
distance, namely the S-Hellinger family, briefly described in Section 3; it is the subfamily of S-
divergences corresponding to the parameter λ = − 1

2 that connects the ordinary Hellinger distance
to the L2-divergence smoothly through the parameter α.

Here we explore the properties of the S-Hellinger distance family described briefly in Sec-
tion 3, to generate a class of robust estimators of multivariate location and covariances. Thus, our
work will generalize the work of Tamura and Boos [44] from the Hellinger distance to the case
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of the general family of S-Hellinger distances. Note that just as the ordinary Hellinger distance
represents the self adjoint member of the PD family in the sense of [32], any other cross section
of the class of S-divergences for a fixed value α also has a self adjoint member in the S-Hellinger
family S(α,−1/2).

8.2.1. The S-hellinger distance (SHD) family

The S-Hellinger Distance (SHD) family between two generic probability density functions f

and g is defined in terms of the tuning parameter α as

SHDα(g,f ) = S(α,−1/2) = 2

1 + α

[∫
f 1+α − 2

∫
f

1+α
2 g

1+α
2 +

∫
g1+α

]
(27)

= 2

1 + α

∫ (
g

1+α
2 − f

1+α
2

θ

)2 = 2

1 + α

∥∥g
1+α

2 − f
1+α

2
θ

∥∥2
2,

where ‖ · ‖2 represents the using the L2-norm. Although SHDα(g,f ) in (27) is not itself a

distance, it corresponds to the distance [ 1+α
2 SHDα(g,f )] 1

2 . Note that, for α = 0 the measure
reduces to the ordinary (twice squared) Hellinger distance.

We will use the S-Hellinger distance for doing multivariate location and covariance estimation
because it is easily amenable to this unlike other members of S-divergence. These properties
mainly come from the fact that it corresponds to a distance metric.

Lemma 8.4. Let f1, f2, f3 be three densities with respect to some common dominating measure.
Then for any 0 ≤ s ≤ 1, we have

SHDα

(
(1 − s)f1 + sf2, f3

) ≤ (1 − s)SHDα(f1, f3) + sSHDα(f2, f3).

Lemma 8.5. Let f1, f2, f3 be three densities with respect to some common dominating measure.
Then we have

SHDα(f1, f2) ≤ 2
[
SHDα(f1, f3) + SHDα(f2, f3)

]
.

8.2.2. The minimum SHD estimator (MSHDE) of multivariate location and covariance

Now let us consider the usual (multivariate) set-up of parametric estimation; we have n indepen-
dent and identically distributed observations X1,X2, . . . ,Xn from a (multivariate) distribution
G, having density g with respect to a dominating measure ν. We will model the true density by
a parametric (multivariate) model Fd = {fθ : θ ∈ �0 ⊆ R

p}; our interest here is to estimate the
parameter θ based on the observed data. We will define the measure of discrepancy between the
sample data and the model family by the S-Hellinger distance measure between the model den-
sity fθ and a non-parametric density estimator ĝn. Thus the Minimum SHD Estimator (MSHDE)
is given by

θ̂n = T (Ĝn) = arg min
θ∈�

2

1 + α

∥∥ĝ
1+α

2
n − f

1+α
2

θ

∥∥2
2

(28)

= arg min
θ∈�

∥∥ĝ
1+α

2
n − f

1+α
2

θ

∥∥
2,
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where ĝn is the kernel density estimator given by

ĝn(x) = 1

nh
p
n

n∑
i=1

w

(
x − Xi

hn

)
, (29)

with w(·) being a p-variate density function and {hn} being a suitable sequence of bandwidths;
Ĝn is the distribution function corresponding to the density ĝn.

In this section, we will consider only the minimum SHD estimator of multivariate location
and covariance under suitable assumptions and describe some important properties of it. We
will restrict ourselves only to parametric families having elliptically symmetric distribution with
density function given by

fθ (x) ∝ |�|−1/2ψ
{
(x − μ)T �−1(x − μ)

}
, (30)

where ψ is an univariate density symmetric around zero, θ = (μ,�), � =R
p ×S , with S being

the set of all p × p positive definite matrices.
The influence function of the minimum SHD functional can be derived directly from the results

of Section 4.1. As a particular example, we will consider the case of The elliptically symmetric
density of p-variate normal with mean vector μ and covariance matrix �. The influence function
of the MSHDE of θ = (μ,�) can be written in terms of that of the individual parameters, namely
T

μ
α (Fθ ) and T �

α (Fθ ) of μ and �, as IF(y;Tα,Fθ ) = (IF(y;T μ
α ,Fθ ), IF(y;T �

α ,Fθ )). Also, it is
easily seen that the influence function of the MSHDE of location μ is given by

IF
(
y;T μ

α ,Fθ

) = (1 + α)
p
2 +1(y − μ)e− α

2 (y−μ)T �−1(y−μ),

and that of the covariance � is given by

IF
(
y;T �

α ,Fθ

)
= ζα,p

[
(1 + α)

p
2 +1{(y − μ)(y − μ)T �−1 − p

}
e− α

2 (y−μ)T �−1(y−μ) − (
1 − p(1 + α)

)]
�,

with ζα,p = 2(1 + α)[3 − 2p(1 + α) + p2(1 + α)2]−1.

8.2.3. Equivariance

An estimator of (multivariate) location and covariance can potentially be used to infer about the
orientation and shape of data-points in a multi-dimensional space. Since there is no single uni-
versal way of measuring data, a minimal requirement for these estimators is that they should be
independent of the coordinate system. So for the estimation of multivariate location and covari-
ance, we prefer estimators that are affine equivariant and affine covariant respectively; see [44]
for relevant definitions. We can derive some sufficient conditions, under which the Minimum
SHD estimator of multivariate location and covariance satisfies the requirement of equivariance.

Lemma 8.6. Suppose that:

1. the model family is chosen to be elliptical having density of the form (30) and
2. the kernel density estimator satisfies the condition ĝAX+b,n(x) = ĝX,n(A

−1(x − b))/|A|.
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Then the minimum SHD estimator of multivariate location and covariance are affine equivariant
and affine covariant, respectively.

The proof is straightforward and is omitted. In a practical situation, it is necessary to choose a
kernel density estimator satisfying condition (8.6). We can construct a density estimate of the ra-
dial type satisfying (8.6), whenever we have an initial affine covariant estimate �̂0 of covariance
based on the observed data; this will be of the form

ĝn(x) = 1

nh
p
n |�̂0|1/2

n∑
i=1

w
(
h−1

n ‖x − Xi‖�̂0

)
, (31)

where ‖x‖2
� = xT �−1x. Then the MSHDE of the location and covariance using this kernel den-

sity estimate will be both affine equivariant and affine covariant within the multivariate elliptical
family (30).

8.2.4. Consistency

Suppose the observed sample data X1,X2, . . . ,Xn come from the true common density g. Then
the minimum SHD estimator can be shown to be consistent under suitable conditions on the
Kernel density estimator ĝn and the model family fθ , θ ∈ �.

Theorem 8.7. Suppose that, with probability one, the minimum SHD estimator T (Ĝn) exists for
all sufficiently large n and as n → ∞,

∥∥ĝ
1+α

2
n − f

1+α
2

θ

∥∥
2 → 0 and (32)

∥∥fθn

1+α
2 − f

1+α
2

θ

∥∥
2 → 0 ⇒ θn → θ, (33)

for any sequence {θn : θn ∈ �}. Then we have, with probability one,

T (Ĝn) → θ as n → ∞. (34)

Note that condition (32) needed for the consistency of the minimum SHD estimator, simply
says that the kernel density estimator ĝn converges to the true density g in the metric correspond-
ing to the SHD. This is a very intuitive assumption for the consistency and other asymptotic prop-
erties of the any minimum distance estimator. However, in this case, it can be proved using the
uniform convergence or by L1 convergence of the kernel estimator under some mild assumptions
on the corresponding bandwidth sequence. Condition (33) needed for the consistency of the min-
imum SHD estimator, is a model specific condition. It is expected to hold for many elliptically
symmetric densities. We have checked that this holds for the multivariate normal model.

Deriving the complete asymptotic results for the minimum S-Hellinger distance estimator in
case of multivariate location and covariance could pose some challenges as it would involve the
convergence properties of a kernel in a multivariate setting. We will take up the actual asymp-
totic distribution of these estimators in our future work. In case of the DPD, the corresponding
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minimum divergence estimators are multivariate M-estimators of location and covariance which
should be relatively easier to handle. Some relevant results in this connection are presented in
[29]. Toma and Leoni-Aubin [46] present some divergence based estimators of multivariate lo-
cation and covariance. Note, however, that the DPD and the S-Hellinger distance families have
no overlap except at the L2 distance.

Using robust data reduction techniques prior to the analysis of multivariate location and co-
variance could be another approach to tackle this problem. See the recent monograph on robust
dimension reduction by [19] for a general discussion of this area.

A small simulation example illustrating the robustness of the minimum S-Hellinger distance
estimators has been provided in the Supplementary Material [27].

8.2.5. Breakdown point

We now consider the breakdown point of the minimum S-Hellinger distance functional in the
case of the estimation of multivariate location and covariance as a measure of its robustness. Let
X represent the original data set of a given size n and Y be a contaminating data set of size m

(m ≤ n). The estimator θ̂n will be said to break down if, through proper choice of the elements
of the data set Y , the difference θ̂m+n(X ∪ Y) − θ̂n(X) can be made arbitrarily large. If m∗ is
the smallest number of the contaminating values for which the estimator breaks down, then the
breakdown point of the corresponding estimator at X is m∗

(m+n)
. In the case of multivariate location

and covariance, the breakdown point of the joint estimation of location and covariance has been
defined by [18] through the following measure of discrepancy

B(θ1, θ2) = tr
(
�1�

−1
2 + �−1

1 �2
) + ‖μ1 − μ2‖2 (35)

between parameter values θ1 = (μ1,�1) and θ2 = (μ2,�2), where tr represents the trace of
a matrix and ‖ · ‖ represents the Euclidean norm. The joint estimate of multivariate location
and covariance will break down when the supremum of the discrepancy, as given in the above
equation, between the pure data estimate at X and the contaminated data estimate at X ∪ Y , is
infinite.

We will derive the breakdown point of the minimum SHD estimators under specific assump-
tions on the true and model densities. Let G∗ denote a subclass of all probability densities satis-
fying

SHDα(g,f ) ≤ κ(α), for all g,f ∈ G∗, (36)

where κ(α) is a finite positive bound depending only on α. Then, we will assume that the model
family Fd and true density g both belong to the family G∗. Also let ĝn(cn) = ĝn(cn, x) be the
kernel density having bandwidth cn and fθn(cn) denotes the model density nearest to the above
kernel estimator in terms of the S-Hellinger distance. We assume that such a model density exists.
Define

an,m = SHDα

(
ĝn(cn+m),fθn(cn)

)
, and

(37)
v∗ = lim inf

θ1,θ2
SHDα(fθ1, fθ2), where the limit is taken as B(θ1, θ2) → ∞.
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Theorem 8.8. Assume that the model family Fd and true density g both belong to G∗. Then, the
minimum SHD estimator θn(cn) has the breakdown point ε∗(θn(cn)) satisfying

ε∗(θn(cn)
) ≥

[ v∗
4 − an,m

κ(α) − an,m

]
. (38)

Corollary 8.9. Let g be the true density. If SHDα(g,fθn(cn)) → a and ĝn+m(cn+m) → g(x),
for each x, we have aa,m → a almost surely. Then, by the theorem,

lim inf
n→∞ ε∗(θn(cn)

) ≥
[ v∗

4 − a

κ(α) − a

]
. (39)

Further, if the true distribution belongs to the model family, that is, g = fθ for some θ ∈ �, we
get a = 0 and then

lim inf
n→∞ ε∗(θn(cn)

) ≥ v∗

4κ(α)
. (40)

Remark. Whenever v∗ = κ(α) and the true distribution belongs to the model family, the corol-
lary yields

lim inf
n→∞ ε∗(θn(cn)

) ≥ 1

4
.

That is, breakdown cannot occur for the minimum SHD estimator in this case for ε < 1
4 . The

result is remarkable since the breakdown bound is independent of the dimension of the data
unlike the shrinking bounds offered by the M-estimator.

9. Role of the S-divergence in robust hypothesis testing

The S-divergence measure and the minimum S-divergence estimators can also be applied to
construct robust tests for statistical hypothesis. Such divergence based tests have been attempted
in case of the power divergences [42] and the density power divergences [4,5], which can be
further extended to generate a larger class of test statistics using the family of S-divergences.

As a brief introduction, let us consider the set-up of Section 4 with an i.i.d. sample of size n.
Fix θ0 ∈ �. Consider the problem of testing the simple null hypothesis given by

H0 : θ = θ0 against H1 : θ �= θ0. (41)

Under H0, if the model is correctly specified, fθ0 is the true data generating density. Therefore, a
class of test statistics for testing (41) can be constructed by using the S-divergence measure be-
tween fθ0 and f

θ̂
for any estimator θ̂ of θ based on the observed sample. And, an ideal choice for

θ̂ in this case should be a minimum S-divergence estimator so that the test statistics has the form

T
(1)
γ,λ(θ̂β,τ , θ0) = 2nS(γ,λ)(fθ̂β,τ

, fθ0),

where θ̂β,τ is the minimum S-divergence estimator (MDPDE) of θ with tuning parameter β and
τ and S(γ,λ)(·, ·) is the S-divergence measure with parameter γ and λ.
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Ghosh, Basu and Pardo [25] proved several asymptotic and robustness properties of the above
S-divergence based test statistics with τ = 0. The main advantage of taking τ = 0 is that the MD-
PDE θ̂β,0 does not require the consideration of kernel density estimator and hence avoids all the
associated complications in asymptotic derivations. However, they have argued that, even if the
general MSDE θ̂β,τ were used, under the set-up of discrete models the asymptotic null distribu-
tion would remain the same. See [25] for more detailed derivations and examples. Interestingly,
the robustness properties of the proposed test procedure have been observed to depend directly
on the robustness of the minimum S-divergence estimator used.

Similar classes of S-divergence based test statistics can also be constructed for testing com-
posite hypothesis problems or for testing the two sample problems extending the ideas of [4,5].
This problem has also been considered by the first author in his doctoral dissertation and are
available in [24].

The robustness properties of similar test statistics derived from robust M-estimators have been
pointed out in [30]. The works of [15], [16] and [34] related to scoring rules also suggest some
other robust tests of parametric statistical hypothesis which are similar in spirit to our work.

10. Concluding remarks

In this paper, we have described the development of a large family of density based divergences
which includes both the classes of power divergences and density power divergences as special
cases. The family gives the data analyst a large number of choices of possible divergences to
apply in the minimum distance estimation context. Several members of the family are distin-
guished by their strong robustness properties, and many of them generate estimators with high
asymptotic efficiency. The best performer within the minimum divergence class induced by the
S-divergences is often outside the PD–DPD class, underscoring the utility of the family. The per-
formance of the method is demonstrated on very simple everyday use models like the Poisson, as
well as more complicated and sophisticated models like the normal mixture model and normal
errors-in-variables model. The family is indexed by two parameters, only one of which shows up
in the influence function and the asymptotic efficiency expressions. Yet both the tuning parame-
ters have important roles in actual finite sample efficiencies and the robustness of the estimators.
The behavior of the estimators within this family clearly show the limitation of the influence
function as a measure of robustness; we demonstrate that a second order influence analysis could
be a much more accurate predictor of the robustness of these estimators (or lack of it). The in-
stability of the estimators under contamination also appears to be linked closely to the violation
of the breakdown conditions. A particular subfamily of this class can be used to construct robust
high breakdown equivariant estimators of multivariate location and covariances.
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Supplementary Material

Supplement to “A generalized divergence for statistical inference” (DOI: 10.3150/16-
BEJ826SUPP; .pdf). Supplement contains all the assumptions required for the asymptotic deriva-
tions and proofs of all the technical results presented in the paper. It also contains some remarks
on the computation of MSDE and a simulation study illustrating the performance of the MSHDE
under the bivariate normal model.
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