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A  GENERALIZED  DOMAIN  FOR  SEMIGROUP  GENERATORS

MICHAEL G.  CRANDALL1

Abstract. A generalized domain 0(A) is assigned to a certain

class of generators A of semigroups of nonlinear transformations

S on Banach spaces. D(A) is then characterized in two ways.

D(A) is the set of x such that S(t)x is locally Lipschitz continuous

in / or, equivalently, the set of x which can lie in the domain of

suitable extensions of A.

Let A' be a Banach space, C be a subset of X, cu be a real number and

S e QJC), i.e. S(t):C^C for /=0, S(t)S(r)=S(t+r) for t, t=0, e'ot is a

Lipschitz constant for S(t) and S(t)x is continuous in t for x e C. Assume

S is generated by a set —A, that is

(1) S(t)x = lim (/ + (tln)A)-nx   for t > 0 and x e C

and A+odI is accretive (see [2] or [4] for undefined terms as used here).

In general, S(t) will not leave D(A) invariant and S(t)x can be nowhere

differentiable in t even if x e D(A). These phenomena do not indicate a

weakness of the theory of nonlinear semigroups. Rather, they reflect its

generality. Indeed, there are Cauchy problems for nonlinear partial

differential equations which exhibit similar behaviour and which fall

within the scope of the abstract semigroup theory.

In this note we assign a generalized domain D(A) to each set A such

that A+œl is accretive and R(I+AA)=>Cl(D(A)) (where Cl denotes

closure) for sufficiently small positive X. It is shown that if (1) holds, then

D(A)(~\C is precisely the set of those x e C for which S(t)x is Lipschitz

continuous in / on compact subsets of [0, oo). It follows that D(A)CiC

is invariant under S(t). Simple examples show D(A) need not equal D(A)

even if A is linear and densely defined.

If Zis reflexive, then A has an extension B such that B+wlis accretive

and D(B)= D(A)=D(B), and most of our results are known. See [11].

Interest centers in the nonreflexive case here. Examples of Cauchy prob-

lems in nonreflexive settings may be found in [2], [3], [9] and [10].
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1. Definition and characterization of D(A). If AçXxX and A is a

nonzero real number, we let DX = R(I+XA), JX=(I+XA)~X, Ax=

A_1(7—Jx). s/(o)) denotes the set of subsets of XxX such that A+wI

is accretive. When necessary, we write sé(co, X) to display the space X.

Denote the norm in X by ||  ||. We need the following simple facts.

Lemma 1. Let A esé (to), X>0, X<o<\. Then the following statements

hold:

(i) Jx is a function and \\Ixx—Jxy\\^(\ — Xw)'1 \\x—y\\ for x,y e Dx.

(ii) If X^fx>0 and x e D^D,,, then (l-X(o)\\Axx\\<(\-pm)\\A^x\\.

(iii) If x e Dxr\D(A) and y e Ax, then (\-Xa>)\\Axx\\^\\y\\.

For a proof of (i) and (iii) above see [4, Lemma 1.2]. The monotonicity

(ii) is observed in [6] in a special case. A proof is given in [7, Lemma 1.2].

Definition 1. Let .4 esé(co) and^=U<<>o flo^-c* 7)¿. IfxeQí, then

|/fx|=limAJ0MAx||. \f®^.D(A), then D(A)={x:x e® and \Ax\<ca).

Lemma 1 (ii) guarantees that \Ax\ is defined for xe ®.

Lemma 2.    Let A e s/(w) and 9^ D(A). Then

(1.1) \Ax\ < inf{||j|| :y e Ax}   for x e D(A)

and C\(D(A))^> D(A)^> D(A). Moreover, the map x-+\Ax\ is lower semi-

continuous on rio<;.<K Dxfor each *c>0.

Proof. The inequality (1.1) follows at once from Lemma 1.1 (iii), and

D(A)^D(A) follows from (1.1). The inclusion Cl(D(A))=> D(A) follows

from the definitions and the fact that D(A) is the range of Jx. The lower

semicontinuity of \Ax\ on C\o<x<k 7)A follows from the Lipschitz continuity

of Ax (a consequence of Lemma 1 (i) and the definition of Ax) and the

relation

\Ax\ = sup (1 - Aw) \\Axx\\        (for kw < 1).
0<^<k-

Remark 1. The number on the right in (1.1) was denoted by \Ax\ in

[4]. All inequalities of [4] remain correct if \Ax\ is understood as in

Definition 1. See below.

Theorem 1. Let A e sé(ta), A0>0 and Dp> Cl(D(A))for 0<X<X0. Let

S be the semigroup on C\(D(A)) generated by -A (i.e., S e Qm(C\(D(A))

is defined by (1)). Let

,< ,      ,-    •  r IISW* - *llL(x) = lim inf-
a Jo h

for x e C\(D(A)). Then L(x) = \Ax\for x e C\(D(A)).

Proof. The existence of S satisfying (1) is established in Theorem I

of [4]. We first show L(x)<\Ax\. Indeed, if xeC\(D(A)) and ?>0,
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Lemma 1 and the definitions yield

||S(f)x - x|| = lim ||Jf/Bx - x|| = lim sup ¿ IUf/„x - J^x\\

X—fc-r-X

^ lim sup ¿ ( 1 -  - (o)      \\Jt/nx - x\\

|   »    / f     \-*H
= ilimsup-2   l--w       M(/»x||

n-»»    nk=1 \       n   i

.j(,-i.r

1 i /       Í   \-*      e""' — 1
|Xx|lim -¿   1 --co    =t-\Ax\

n-oo nfc=1 \        n    I oil
<t[

''k=

where we set (e">i-l)/co = / if co=0. It follows that L(x)<\Ax\. The

inequality |/ix:|^L(x) follows from the fact that if [x0, y0] e A, xe

Cl(D(A)), and z* e F(x - x0), then

(1.2)       lim supj^í--, z*) = <j»0, x0 - x> +
íio    \        t I

<»\\x- x0\\2.

Here we assume, without loss of generality, that A' is a real Banach space.

The value of z* e X* at zeX is denoted by (z,z*). If zeX, F(z)=

{z* e X*:(z,z*)=\\z\\2=\\z*\\2}. The function ( , ) appearing in (1.2) is

defined by

(1.3) (y, x) = max{(y, x*):x* e F(x)}   for x,yeX.

The inequality (1.2) is obtained in [4, Lemma 2.9] under the technical

assumption that Dx contained the convex hull of D(A). Miyadera removed

this restriction in [11] and gave a proof for a»=0. A more general result is

obtained in the proof of Theorem 3.2 of [7]. Clearly (1.2) implies that if

[*o> Jo] e A\ then

(1.4) -L(x) \\x - *,|| = (y0, x0-x) + o) \\x0 - x\\2.

Choose x0=Jxx, y0=Axx0. Then x—x0=Xy0=XAxx and (1.4) becomes,

upon dividing by A,

-L(x) \\Axx\\ =- -\\Axx\\2 + u)X \\Axx\\2.

Letting a|0, we find \Ax\^L(x). The proof is complete.

Corollary 1. Let the assumptions of Theorem 1 hold. Then D(A)=

{x:x e Cl(D(A)) and S(t)x is Lipschitz continuous in t on bounded subsets

of[0, oo)}. Moreover, 5(f): 0(A)-*D(A) for each i=0.

Corollary 1 is an immediate consequence of Theorem 1 and the follow-

ing simple lemma.
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Lemma 3.   Let Cg X and S e Qa(C). Then, for each xeC and t, t=0,

(1.5) lis(f + t)x - S(t)x|| = e\{<r - DioAUx)

where L(x) is defined as in Theorem 1.

Proof. We sketch the proof. Also see, e.g., [5, Lemma 1.1]. Since

SeQm(C) is suffices to show (1.5) for /=0 and L(x)<cx>. Let K>L(x).

Then there is a sequence {tk} of positive numbers convergent to zero

such that

(1.6) \\S(tk)x - x\\ < Ktk,       jfc-1,2,---.

Let {nk} be a sequence of positive integers such that nktk~*r. Then S e

QW(C) and (1.6) give

||S(t)x - x|| = lim \\S(nktk)x - x\\
k-*cc

nk

(1.7) ^ lim sup 2 \\S(Jh)x - S((j - \)tk)x\\
*-»        3=1

^ lim k2 elf-1Utotk = Ki---).
*-><»    J=1 \     co    I

Since K>L(x) was arbitrary, the proof is complete.

Remark 2.    It follows from Lemma 3 that

/(0 = .iml|5(f + ^-S^11
r 10 T

exists for ?_0 and e~atf(t) is nonincreasing in í (/(/)= oo is allowed here).

The next result gives a characterization of D(A) independent of the

semigroup theory.

Theorem 2. Let A e s¿(u>, X) and the set Q) of Definition 1 include

G\(D(A)). Then x e D(A) if and only if there is an element y** of the

second dual X** of X such that

A \J {[x,y**]}esS(to, X**).

If x e D(A), the y** above can be chosen so that \Ax\ = \\y**\\.

Proof. In the statement and proof of the theorem, X is regarded as a

subspace of X** via the canonical imbedding. One direction is trivial.

If xeCl(D(A)), y**eX** and B=Av{[x,y**]} es/(w, X**), then

clearly \Ax\ = \Bx\^\\y**\\<co, and x e D(A).

To establish the opposite assertion, let xeCl(D(A)) and \Ax\<co. It

is known that A e ¿é(w) is equivalent to the condition that

(1.8) (y, - y2, Xx - x2) = -w \\xx - x2\\2   for [x^yAe A, i = 1,2,
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where ( , > is defined in (1.3). (See [8].) Let [x0,y0] be an arbitrary

element of A. Since [Jxx, Axx] e A, (1.8) implies

(¿xX, Jxx - x0) + (-y0, Jxx - x0) _■ (Axx - y0, Jxx - x0>

( ' } = -co !|x„ - hxf-

Notice   that   (u—v,u*—v*)^.0   whenever   u* e F(u),   v* e F(v)   (i.e.

F:X-*-2x' is monotone). This implies

(Axx, z*) ^ (Axx, (x - x0) - XAxx)

= (Axx, Jxx — x0)   for z* e F(x — x0).

Together, (1.9) and (1.10) imply

(Axx, z*) + (-y0, Jxx - x0) ^ -co ||x0 - Jxxf

(1'U) for z* e F(x - x0).

Let y** be a cluster point of Axx in the weak-star topology on X** as

A|0. Since \\Jxx—x||->-0 as A10 and ( , ) is upper semicontinuous (see,

e.g., [4, Lemma 2.16]), passing to the limit inferior as aJ.0 in (1.11)yields

(1.12) 0**, z*) + (-j0, x - x0> > -co ¡|x0 - x\\2

for all z* e F(x — x0). (Here (y**, z*) is the value of y** at z*.) Choose

an element z* of F(x—x0) such that (— y0, x—x0) = — (y„, z*). With this

choice (1.12) yields

(1.13) (y** -y0,x- x0) = (y** - y0, z*) = -co \\x - x0\\2.

Since [xQ,y0] e A was arbitrary, it follows that A u{[x,y**]} e s?(u), X**).

Clearly, ||j**||_:|y4x-|^]|y**||, and the proof is complete.

Remark 3. The inequality (1.13) involves F(x—x0) as a subset of X*.

The corresponding inequality with F(x—x0) as a subset of A"*** is weaker.

We have found no useful consequences of this observation.

Remark 4. It also follows from (1.2) that if y** is a weak-star cluster

point ofr1(x-S(t)x) as i|0, then A u{[x,y**]} e se(<o, X**).

2. Examples. If we set X=C0 ([0,oo)) (real-valued continuous func-

tions on [0, oo) tending to zero at oo, under the maximum norm) and

(2.1) Af= -/',       D(A) = {fe X;f e X},

where/' denotes the derivative of/ The corresponding semigroup S is

translations, i.e.

(2.2) S(t)f(x) =/(x + /)   for x, t e [0, oo),/e X.
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Here

(2.3) Axf(x) = ^ Texpííx - s)ß)(f(x) - /(s)) ds.

Using Theorem 1 and (2.2) we see that D(A)={fe X:f is Lipschitz con-

tinuous} and \Af\ is just the least Lipschitz constant for/. This informa-

tion is harder to extract from (2.3). The main point, however, is that

D(A) is strictly larger than D(A) in this case. Theorem 2 can be illustrated

in this simple case as well. Regarding bounded Borel measurable functions

as a subset of A'** in the natural way, set

f**(x) = lim inf n(f(x + 1 ¡n) - f(x))   for / e D(A).
n-*oo

Then A\J[f -/**] e.s/(0, X**).
Next we show D is invariant under certain perturbations and apply

this to an example of Webb [12].

Theorem 3. Let A e s/(w) and B be a continuous map of Cl(D(A))

into X. Assume further that T=A+B e s/(o) and

R(I + XT) n R(I + XA) 2 Cl(D(A)) = C\(D(T))

for 0<A<A0, where X0 is a positive number. Then D(T) — D(A).

Proof.   Let x 6 C\(D(A)) and [xx, yx] e A satisfy

xx + X(yx + Bxx) = x

for 0<2<A0. Then \imxioxx=x and so lim^, „115x^—5x11=0. Hence

lim ||T,x|| = lim || vA + 6x,||
;. i o ;. i o

is finite if and only if

lim \\yA = lim \\Ax(x - XBxx)\\
i l o ;. i o

if finite. Now

||y, - Axx\\ = \\Ax(x - XBxx) - Axx\\ ^ (1 + (1 -  Xco)'1) \\Bxx\\

by Lemma l(iii) and the definition of Ax. It follows at once that \Ax\<co

if and only if 17x| < oo. The proof is complete.

Webb [12] proved that if —A is the infinitesimal generator of a strongly

continuous semigroup of linear contractions on X and 5:Ar—»À' is

continuous and accretive, then R(I+X(A+B))=X for A>0. He observed

that if we take X=Co([0, oo)), Af= —f as before, and 5/=max{/, 0}, then

the semigroup generated by — (A+B) does not leave D(A) invariant. It
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follows from Theorem 3 and Corollary 1 that D(A +B)=D(A) is invariant.

This remains true if we let Bf(x)=g(f(x)) where g:R—>-R is any con-

tinuous monotonically increasing function such that g(0)=0. Theorem 3

generalizes easily to cases in which B is only required to satisfy local

estimates of the form ||äx||^A:|.4jcH-ä' where fc<l. In particular, the

analogue of Theorem 3 for the situation of Lemma 1 of [1] holds. There

seem to be no general results concerning R(I+X(A+B)) in nonreflexive

spaces X. We mention that the hypothesis of linearity of A in Webb's

result may be dropped if B is assumed to be locally uniformly continuous.

Added in proof. U. Westphal has kindly informed the author that

the set called D(A) here is well known in linear theory. See the references

of Westphal's note, Sur la saturation pour des semi-groupes non linéaires,

C.R. Acad. Sei. Paris 274 (1972), 1351-1353, which is closely related to
this paper.
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