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A Generalized Entropy Criterion for Nevanlinna—Pick
Interpolation with Degree Constraint
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Abstract—in this paper, we present a generalized entropy crite-
rion for solving the rational Nevanlinna—Pick problem for n + 1
interpolating conditions and the degree of interpolants bounded
by n. The primal problem of maximizing this entropy gain has a
very well-behaved dual problem. This dual is a convex optimiza-
tion problem in a finite-dimensional space and gives rise to an al-
gorithm for finding all interpolants which are positive real and ra-
tional of degree at mostn. The criterion requires a selection of
a monic Schur polynomial of degreen. It follows that this class
of monic polynomials completely parameterizes all such rational
interpolants, and it therefore provides a set of design parameters
for specifying such interpolants. The algorithm is implemented in
state-space form and applied to several illustrative problems in sys-
tems and control, namely sensitivity minimization, maximal power
transfer and spectral estimation.

Index Terms—Duality, entropy, interpolation, power transmis-
sion, robust control, spectral estimation.

. INTRODUCTION

Requiring only condition 1) amounts to standard Lagrange
interpolation, the solution of which is elementary. Requiring
also condition 2) yields a classical problem in complex anal-
ysis, namely the Nevanlinna—Pick interpolation problem [38].
This problem has a solution if and only if tiéck matrix

:|TL
k, =0

is positive semidefinite [38], [35]. Moreover, the solution is
unique if and only ifP is singular. Clearly, the caseé > 0 is
what interests us here. If points & are not distinct, the inter-
polation conditions 1) involve derivatives ¢f »), and the Pick
matrix is suitably modified [38].

The functions satisfying 2) are known @arathéodory func-
tions in the mathematical literature. In circuits and systems,
the same functions are referred topasitive real.They play a
fundamental role in describing the impedance of RLC circuits,

wy, + Wy

P=|—r—— 1.2
[1 — z;lE[l (1.2

THIS PAPER, we consider the following interpolatioqn formalizing questions of stability via energy dissipation in

N
I problem, which we refer to as tidevanlinnaPick problem
with degree constraintGiven a set ofi + 1 distinct points

Z = {307 Rly ooy Zn}

in the complement of the unit dige® := {z||z| > 1}, and a set
of n 4 1 values

W = {wo, wy, ...

? wn}
in the open right half of the complex plane, denofed we seek
a parameterization of all function&z) which

1) satisfy the interpolation conditions

f(z) = wn fork=0,1,..., n; (1.2)
2) are analytic and have nonnegative real paiin

3) are rational of (McMillan) degree at mast
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linear and nonlinear systems, and in characterizing the positivity
of probability measures in stochastic systems theory. For these
reasons, problems involving interpolation by positive-real func-
tions play an important role in circuit theory [39], [11], [25],
robust stabilization and control [36], [37], [40], [30], [29], [21],
[13], signal processing [18], [6]—[8], [2], speech synthesis [12],
and stochastic systems theory [27], [5], [4].

However, in all these applications, it is important that the
interpolating function be rational with a degree which does
not exceed some prescribed bound. Degree constraints present
some new challenges which need to be incorporated systemati-
cally into any useful enhancement of the classical theory. While
the Nevanlinna—Schur recursion algorithm and the well-known
linear fractional parametrization of all solutions [38] can be
used to generate rational solutions, this does not provide any
insight into how to parameterize all rational solutions of a
given bounded degree. In general, even if the Nevanlinna—Pick
problem is solvable, the set of interpolants of degteel n
may be empty, and to determine whether this is the case is
often a very hard problem. Hence, at the present time, there
%sno computationally efficient way to determimainimum
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where, for the moment, we také>) andb(>) to be polynomials  The purpose of the present paper is to develop an analogous

of degreen, then computational theory for the rational Nevanlinna—Pick problem.
This is done via a generalized entropy functional, akin to that

O(2) = f(2)+ [ (2) = —2— (1.4) in [7], which incorporates the Nevanlinna—Pick interpolation

a(z)a*(z) data and the chosen positive quasipolynontigt). The primal

N — problem to maximize this generalized entropy functional re-

where/"(z) := f(z ™) and quires optimization in infinitely many variables, but the dual
U(2) == al2)b*(2) + a*(2)b(2). (1.5) problem, which is convex, has finitely many variables, and the

minimum corresponds to the required interpolant.

[Later, to simplify mattersa(z), b(») will be taken to be ra-  In Section Il, we motivate the Nevanlinna—Pick interpola-

tional functions with fixed poles at the reciprocals®f. Since tion problem with degree constraint by examples from systems

condition 2) requires that and control, namely from sensitivity minimization #>> con-
o trol, maximal power transfer and spectral estimation. In Sec-
f(z)+f"(2) 20  onthe unitcircle tion 11, we review basic facts and set notation. The main results

of the paper are then stated in Section IV, in which we define

¥(z) is a pseudopolynomial which is nonnegative on the unif, oiropy criterion, which incorporates the data in the rational
circle. Thereforel(z) has a stable spectral facto(z) of de- Nevanlinna—Pick problem. We demonstrate that the infinite-di-

green, i.e., a polynomial solution of mensional optimization problem to maximize the entropy cri-
w1\ terion has a simple finite-dimensional dual, which in turn is a
o(z)o*(z) = ¥(z) A AR ] o
generalization of the optimization problem in [7]. It is of inde-
having all its zeros in the closed unit difg which is unique Pendent interest that the dual functional contains a barrier-like
modulo a factort1. It turns out that the converse is also truet€rm, which, in contrast to interior-point methods, does not be-
In fact, to each choice of(z) with » roots in the unit disc, come infinite on the boundary of the relevant closed convex set
there is one and only one paitz), b(z) so thatf, defined by but has infinite gradient there. Section V contains a proof of the
(1.3), satisfies 1)-3). Scaling ef does not affectf, sinceq Main theorem together with an analysis of the dual problem. In
andb are scaled by the same factor. Even modulo such scalifggction VI, we outline a computational procedure for solving
the correspondence — f may still fail to be injective, since the dual problem. In the special case of real interpolants, we de-
a(z) andb(z) may have common factors. In fact, such commoyelop a state-space procedure, which has the potential to allow
factors do occur when there are solutions of degree lessithargXtensions to the multivariable case.
The Nevanlinna—Pick problem with degree constraint was
first considered in [19], where it was shown that, provided the [I. MOTIVATING EXAMPLES

:\éesvi?:;nsn;_zt'?é;srfg Ineem 2‘.”:8 agomizr;ﬁ?gt] CEO;)OE ?2; To motivate our theory, we now describe a number of appli-
Ipt' o the Nevanii P P(7?<7 (Zgl i df = b/a qiSations which lead to Nevanlinna~Pick interpolation problems
solution tothe INevaniinna—Fick problem with degree constraing,,, degree constraint. We touch upon problems in robust con-
Itwas also cqnjectured that there is a unique such par, 'mply'ﬂ%l in circuit theory and in modeling of stochastic processes.
that the. solutionga, b) would be completely parameterized b he examples chosen are basic since our aim is only to indicate
the choice of zeros af. The proof of existence was by means o he range of potential applications of our theory
degree theory and hence nonconstructive. It followed closely t xample 1) Sensitivity MinimizationConsidér the fol-
arguments used in [17], [18] to obtain the corresponding exil%-

X . . i _Towing feedback system wheredenotes the control input to
tence proof in an important special case, the rational covariange plant to be controlled] represents a disturbance, ans
extension problem with degree constraint. '

The conjecture was recently established in a stronger fomle resulting output, which is also available as an input to a
. Jectu ently ; gert compensator to be designed. Internal stability and robustness of
in [6] for the rational covariance extension problem, where it

: ; . " the output with respect to input disturbances, relies on certain
shown that, under the mild assumption thais positive on the P P P

o . . . roperties of the transfer function from the disturbance to the
unit circle, solutions are unique and depend analytically on the

problem data. In other words, the rational covariance extensi utput, which is given by the sensitivity functigi{(z) defined
problem is well posed as an analytic problem. Subsequently, a
simpler proof of uniqueness was given in [8] in a form which has

been adapted to the rational Nevanlinna—Pick problem in [20],

also proving uniqueness for the boundary case whaas zeros Itis well known (see, for example, [41, p. 100]) that the internal

on the unit circle. stability of the feedback system is equivalent to the condition

However, the proofs developed n [18]-{20], [6.]’ and [8] ar‘ta‘natS(z) has all its poles inside the unit disc and satisfies the
all nonconstructive and the question of computing such soly-

tions remained open. This issue was first addressed in [7] fortI éerpolatlon conditions
rational covariance extension problem. In fact, for any positive
¥, a convex minimization problem was introduced, the solution
of which solves the rational covariance extension problem, th@ad

allowing efficient computation of the corresponding interpolant. S(p;) =0, i=1,2,...,¢

S(z) = (1 — P(2)C(2)) ™. (2.1)

S(z) =1, 1=1,2,...,71
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where 21, 22, ..., 2, and p1, p2, ..., pe are the zeros and d
poles, respectively, of the pladt(z) outside the unit disk.
Conversely, if S(z) is any stable, proper rational function
which satisfies these interpolation conditions, ti$¢n) can be —» P2) -
represented in the form (2.1) for some rational functigz).

On the other hand, for disturbance attenuati®ngeds to be
bounded. The lowest such bound

Qopt =

[151loc (2.2) Cz) <

inf
S(Zi)zl, S(]”l])zo

is attained for anS such that|S(c*®)] = _oz_opt_for all 8 € Fig. 1. Feedback system.
[, 7]. In order to achieve lower sensitivity in selected fre-
guency bands, we must allow higher upper bound argps.

Then admissible sensitivity functiossare such thatl /«).S(z)

maps the exterior of the disc into the unit disc. Using the linear , |
fractional transformation = (1 + z)/(1 — z), which maps the
unit disc into the right half plane, the problem then amounts tc ,,[
finding a Carathéodory function

28

22

a+ S(2)

19=3=56) ,

which satisfies the interpolation conditions

f(pj):17 /:1,2,,£

and
a+1 .
f(Zi):m, 'L:].7 2, e, T 14
The Macmillan degree of is the same as the degree®f  '% 05 1 s 2 25 s a5

The conclusion of our theory is that we can efficiently search . _
over all interpolants of degree at mest= r+/— 1 to obtaina 7192 [#(¢**)| as afunction of.
suitable one. The design parameters which dictate the shape of
the sensitivity function are precisely the zeros of zeros is natural since, as discussed above, it is valid in the gen-
eral case. Choosing this spectral zero in the vicinity ef —1,
o — S(2)S*(2) (2.3) i ith hi is i
? ? : e.g., at—0.9, results in a$ with high-pass character. This is

which coincide with the zeros a@f, defined as in (1.4). Hence, 2 —92

they are also zeros @f given by (1.5). The standard approach S(#) = 7 — 0.2006

to shaping the sensitivity function is to formulate a “weighted

optimization problem” through a selection of a suitable shapingth a frequency response shown in Fig. 2 with a solid curve.

filter (cf. [15, Ch. 9], [41, Ch. 8]). Typically, a drawback of thisIn the same figure, we plot (with dotted curves) the frequency

approach is an increase in the dimension of the relevant feg@isponse ob' corresponding to a choice of the spectral zero at

back operators by an amount equal to the degree of the shapirf6,—0.3, 0, 0.3, 0.6, and 0.9.

filter. Thus, the alternative design approach presented here alThis simple first-order numerical example was easily worked

lows for a handle on the degree. out by elementary calculations, but higher-order examples re-
To illustrate our point we consider a simple numerical exguire the full power of the theory of this paper.

ample which we can work by hand. Let the plant in Fig. 1 have Example 2) Maximal Power TransfeiThe classical problem

the transfer functiorP(z) = 1/(z — 2). This system has one 0f maximal power transfer, first studied by H. W. Bode and re-

pole and one zero outside the unit disc, namely a pole at two dagmulated as an interpolation problem by D. C. Youla [39], [10]

a zero abo. Thus, the interpolation conditions afécc) = 1 isillustrated in Fig. 3. Here, a lossless two-port coupling is to be

andS(2) = 0, and, in this simple case, the sensitivity functiolesigned to achieve a maximal level of power transfer between

must be of the form a generator and a lossy load.
Y Let Z(s) denote the impedance of the passive load and
S(z) = ——, 18] < 1. the internal impedance of the generator. The Youla theory rests
z—p on the following elements (for details, see [10, Ch. 4]).
Itis easy to see thai,,. = 2. We takex = 2.5. The one-param- 1) sy, s, ..., s, are the right half plane (RHR)ansmis-
eter family of interpolants$' such that|S||.. < 2.5 is depicted sion zeroof Z,(s), i.e., they are the RHP zeros of

in Fig. 2 and parametrized by the zero of (2.3)inl, 1), in-
stead of. Parameterizing the family in terms of such spectral Oo(s) := Ze(s5) + Ze(—s);
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u

> N S— > G(2) —>
generator coupling load
< ——

u

y > G,(2) —»
Fig. 3. Two port connection. —> ;

u

2) Z(s) denotes thdriving-pointimpedancef the two-port > G(2) L "y

at the output port when the input port terminates at its

reference impedance,; Fio 4. Filter bank
3) B(s) is a Blaschke (all-pass) factor with zeros at all open'g' - Filter bank.

right-half-plane poles of(—s);

4) p(s) denotes aeflection coefficientt the output port and transforms the bounded real functignto the Carathéodory

function f. Then, the roots ob,,, are precisely the zeros of

is given by
o(s) = Bs) ) = 2429) R
Z(s)+ Z(s) and, hence, zeros df(z) in (1.5). The interpolation conditions
(2.4) translate directly to interpolation conditions fbwia the
The problem is to maximize theansducer power gain above transformations. In Section VI, we shall return with a nu-
merical example, which demonstrates the computation theory.
Ppg(s) = 1= p(s)p(—s) Example 3) Spectral EstimationConsider a scalar

zero-mean, stationary Gaussian stochastic pro¢ess }z,

for s = 4w at certain preferred range of frequenciesThis 514 denote by(c®), 8 € [, 7, its power spectral density.
gain is the ratio between average power delivered to the load gk,

the maximum available average power at the source. In order to

synthesize a lossless two-port (e.g., using Darlington synthesis), O(2) = f(2) + [*(2)

Z(s) needs to be positive real, which turns out to be the case if i i ) _ _ _

and only ifp(s) is bounded real, i.e., takes values in the unit dis@/Nere/ is a Carathéodory function with the series expansion

and satisfies certain interpolation conditions. Fo_rs_implicity, we F(z) = %60 T ST

assume that the load does not have any transmission zero on the

imaginary axis. In this case, the required interpolation condibout infinity, where;, = E{y(t+k&)y(¢t)} fork =0, 1, 2, ....

tions are Traditionally, in order to estimated from a realization
%0, Y1, - - ., Y Of the process, one estimates first a number of

p(si) = B(s;) fori=1,2,...,n. (2.4) covariance samples, ci, ..., ¢,, Wheren < N, via some

ergodic estimatesuch as

Thus, the problem of maximizing the transducer power gain

amounts to minimizing thé ., norm of p(s) subject to the con- 1 Pl

straints (2.4). *“=N+1l-n Z YttkYk- (2.5)
Since the transducer power gain is rarely required to be uni- =0

form across frequencies, the usual approach to the problem is tinowledge ofc, c1, ..., ¢, imposes certain interpolation

specify a desired transducer power gain shape and then to degepnditions onf at infinity. Finding all f satisfying these is the
mine whether a solution is feasible. (See [10, Ch. 4]. Also s&pic which originally motivated the research programs from
[26] for an alternative formulation generalizing Youla’s theory.yvhich the results of this paper emanated [17], [18], [6], [5], [4],
However, in the context of the theory developed in the presdl, [8], A complete parameterization of all solutions of degree
paper, we may instead select the zero@gf(s). at mostn was provided in [6].

As mentioned in the previous example, the theory of the paperHere we shall take a radically different approach to spectral
app”es to any class of functions which is Conforma”y equiv@StimatiOﬂ that is based on nontraditional covariance measure-
lent to positive real functions. Thus we begin by translating tigents. The basic idea is to determine covariance estimates after
problem to the “discrete-time setting” via the conformal mag?assing the observed time series through a bank of filter with
pings = (z — 1)/(z + 1), which maps the right-half-plane different frequency response and then integrating these statis-
bijectively onto the complement of the unit disc. We use the nfcal measurements in one Markovian model.

tationg(s) — §(z) := g([1—2]/[1+2]). Inthis representation, ~Givenanumber of poles, p1, ..., p, of modulus less than
the transducer power gain becomes one and withp, = 0, let
z
$pu(z) =1 - pl2)p(zh). Grl(z) = — oo F=0L . (2.6)
Next, the conformal mapping form a bank of stable filters, driven by as in Fig. 4, and de-
note the corresponding output processesfyiy, - . ., u, . For
f(z) = 1+ p(z2) simplicity of exposition, we assume that, p1, ..., p, are dis-

T 1-p(z) tinct and real, hence, for this paper, avoiding the situation with



826 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 5, MAY 2001

complex pairs of poles. The general case will be presented\Mtoreover, for anf € L, let
[3]. The idea is that the transfer functiog, are (conjugate)

Cauchy kernels in the sense that f(e?) = Z fre™
™ dé e
-1y __ 8 % 7 168
h(py, )—/4 M) G (e )g (2.7)  pe its Fourier representation. In this notation
for any h which is analytic in D¢ and square-inte- (f, g) = Z fiTs-

grable on the unit circle. To see this, note that, if
h(z) = ho + hiz7* + hez™? + ---, then, by orthogo-
nality, the integral in (2.7) equal3 52 h;p, = h(pg'),

k=—oc

Next, letH, be the standard Hardy space of all functions which
are analytic in thexteriorof the unit discD¢, and have square-

becauseGi(z) = 1+ prz~! + piz=2 + ---. Therefore, ble limits on the bound
assuming that the filter has come to statistical steady state, Yplggrable limits on the boundary
zeroth order covariance lag of the output proagsss given by 1 (7

i T L A0y|2
2 TILIEI o _W|f(7e )7 do < .
co(ur) =E{w(t)"} o .
/w , df As usual,Hs is identified with the subspace df; with van-

|
2

(F(e) + ()| Gr(e”) ishing negative-Fourier coefficients. More precisely, fat Ho

-7

™ 4 4 o de — -1 —24 ...
=2 [ J(@)GLE)G) 5 f@)=fo+ izt + for ™ + -0,
o The class of all Carathéodory functiongtfa will be denoted by

and therefore, in view of (2.7)0(uz) = 2Gx(p; ) f (). C. Moreover, we denote bgL_r the subcle}s;s crftrictly positive _
Consequently, the Oth order covariance data for the outputs™®#! functions,whose domain of analyticity includes the unit

the filter bank supply the interpolation constraints circle and has positive real parts. .
Now, consider the dat& and»V with the standing assump-
Forh) =11 —peolur), k=0,1,....n (2.8) tionthatz = cc.ltis awell-known consequence of Beurling’s
2 Theorem [24] that the kernel of the evaluation mipH, —
wherecy(uz), k = 0, 1, ..., n can be determined via ergodic‘CnJr1 defined via
estimates. An advantage of this approach is that interpolation of f(z0)
the spectrum can be chosen closer to the unit circle in precisely fz)
the frequency band where high resolution is desired. We shall E(f) = &
return with a numerical example at the end of Section VI. :
f(zn)
[ll. PRELIMINARIES AND NOTATION .
T ) is given by
For simplicity, in this paper we only consider the case where
the interpolation points i€ are distinct. The general case works ker(E) = BH»

similarly. Moreover, from now onye assume that the Pick ma- )
trix (1.2)is positive—definiteto avoid the degenerate case wherdhereB(z) is theBlaschke product
the solution is unique. Also, for convenience, we normalize the nog_ -t
_1 — 2, %
problem so that B(z) ="' [ —2+-
o1l X Rk

zo =00 and f(co)is real. Now, let(3) be the orthogonal complementBf; in Hs,

o . L , i.e., the subspace satisfying
This is done without loss of generality since, first, the transfor-

mation Hy = BHy ® H(B)
O 1 — %oz which will be referred to as theoinvariant subspaceorre-
Z = 20 sponding taB, sinceBH. is invariant under the shift—*. Con-
necting BH- to the filter bank in Example 3 in Section II, we

sends an arbitrary, to infinity and is a bianalytic map from see that, provided, := p’:1 fork =0, 1, ..., n, as suggested

D* into itself, and, second, we can subtract the same magmwthe interpolation problem, the filter-bank transfer functions

constant from all values;, without al_tering th_e problem. . (2.6) form a basis of{(B). However, we prefer to work in a
Denote byL, the space of functions which are square-|n{-k,;lsisg0 g1, ..., gn for which gy = Go = 1 is orthogonal to

tegrable on the unit circle. This is a Hilbert space with i””%e rest of the base elements. Thus. we choose

product
1

Z?k—17
R (3.2)

1 (™ . 4 go(z) =1, gu(z) =Gr(z)—1=
(f, 9) = %/_ f(e®)g* (") db. o
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For future reference, we list the four identities Entropy integrals such as (4.1) have, of course, a long his-
tory. For example, see [23] and [28] for use of entropy gains in

(f, 90) = f(0) signal processing, and see [33] for uséHfe control. The ex-

{f, g6y = f(z) — f(00), k=1,2,....n pression in formula (4.1) reduces to the standard entropy gain
(F*, go) = f(0) in the signal processing literature

75 gy =0, k=1,2, ..., n, (3.2) 1 ® i ./ i
V) W)= o [ lodlf) 4N (43

which hold for all f € Hs. In fact, they follow readily from
(2.7) and(f*, G) = f(co) with the corresponding conjugatedwhen we setl = 1. The unique maximizing function df;
identities. We also remark that there is a natural basis#er subject to the interpolation constraints (1.1) can be obtained by
obtained by extendinggo, g1, ..., gn} Via the Nevanlinna—Pick algorithm [38] and is often referred to as
the centralor maximum entropgolution.

_ n+l-k _
gr(7) = 7 B(z) fork=n+1n+2 ... (33) Since¥(z) € S, there is a unique factorization
_ The subspacé{(B) consists precisely of all rational func- U(z) = o(2)0"(2) (4.4)
tions of the form
() such thato € H(B) has no zeros in the closure Bf, i.e.,
p(z) = () o(z) is aminimum-phasepectral factor of(>). In particular,
where o(o0) # 0. It turns out that there is a unique solutigrto the
n Nevanlinna—Pick problem with degree constraint which maxi-
(z) = H (z - 7’;1) (3.4) mizes the above entropy functional. Moreover, this solution sat-
kel isfies
andn(z) = moz" + m 2"~ ' + - 4 m, is some polynomial of F2) + f(z) = o(z)o"(z) (4.5)
degree at most. Therefore, any rational function of degree at a(z)a* ()
mostn can be writien as wherea € H(B) is also minimum-phase. Hence, the entropy
b(z) maximization forces a preselected spectral zero structure for the
2) = B). . . - .
1) a(z) wherea, b € H(B) interpolating function, as seen from the following theorem, the

. . roof of which will be concluded in the next section, when all
Throughout this paper, we shall use such representations for

. . . . . necessary lemmas have been established.
rational functions, and in particular the functioné:), b(z) Theorem 4.1:Given all € S._ there exists a unique solution
ando(z), introduced in Section | will belong t&/(B). Hence, . + g

U(z), defined by (1.5), will be a symmetric pseudopolynomiaff) the constrained optimization problem

in the basis elements &f(B) andX(B)*, where, in particular, max by (f) (4.6)
H(B) N H(B)* is the space of constant functions. In general, fecs

the space of pseudopolynomials in this basis will be denoted Qiject to the constraints

S, and is defined by

S=H(B)VH(B) =spadg;, .-, 91, 90, 91+ ---» Gn }-
(3.5) Moreover, this solution is of the form

f(zk) = wi, fork=01,..., n. 4.7)

In particulard € S and so dab* anda*b. Moreover, we define fz) = b(z) , a, be H(B) (4.8)
the subset a(z)
S, = {S €S5|S* = SandS(¢?) > 0forall @} (3.6 ndhence, of degree at mostand
of symmetric and positive functions i. Any S € &1 is a A2)"(2) + Wz)a” (2) = W (2). (4.9)
coercive spectral density. Conversely, iff € C, satisfies conditions (4.7)—(4.9), it is the
unique solution of (4.6).
IV. A GENERALIZED ENTROPY CRITERION FOR Theorem 4.1 provides a complete parameterization of all
NEVANLINNA —PCK INTERPOLATION pairs (a, b), defining a strictly positive real solution (4.8) to
Given any function¥'(z) € S,., consider, for eaclf € C,., the Nevanlinna—Pick .problem with degree constraint, in terms
the generalized entropy gain of the zeros of the minimum-phase spectral factot) of the

Lo spectral densit{f € S... These zeros may be chosen arbitrarily
[I\I!(f) —_ / 10g[‘1)(6w)]\11(6w) do (41) in the open unit disc. . 3
2r | & Corollary 4.2 (Spectral Zero Assignability Theorenfjor
each minimum-phase € H(B), normalized so that(x) = 1,
O(2) == f(2) + [*(2) (4.2) there exists a unique mlnlmum—phas(e:) € 7_{(B) such that
the unique positive-real functiofi(z) satisfying (4.5) solves
is the corresponding spectral density. the interpolation problem (4.7). In other words, there is a

where
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bijective correspondence between paiis b) solving the Proposition 4.3: For each\ € Ay, the mapf — L(f, \)
Nevanlinna—Pick problem with degree constraint and the setlads a unique maximum ify., and it is given by
n points in the open unit disc, these being the zeras(ef.

Theprimal problem(4.6) is an infinite-dimensional optimiza- F2)+ f(z) = U(z)
tion problem. However, since there are only finitely many inter- Q(z)
polation constraints, there is a dual problem with finitely many

. . 41
variables. From conditions (4.8) and (4.9), we see that where( is defined from (4.10) and = A™(A).
This proposition defines, for eache A4, a functionf, €

(4.15)

. Wz C4, which, as is easy to check, can be written as
IO+ 16) = 5 ' o
* Mok [
z) = — —
whereQ(z) = a(z)a*(z) € S;. In terms of the basis intro- A dr [z — e Qx(e?)

duced in Section Il ] )
in terms of the corresponding, € S... We want to show that

Q(2) = G0 (2) + -+ 7,97 (2) there is a unique minimizing, denoted\, such thatf; € C,

satisfies the interpolation condition (4.7). In this case, settin
+090(%) + q191(2) + - - - + @ugn(2). P fo P @.7) g
= A

(4.10)
. .o p(N) = p(N) = L(f, ),  forallxeAy.
Since go(z) = 1, a0 = (@, 90) = 5 [ . Qc™)db.
Therefore, since@ is positive on the circle,go is real Now, for any f € C; which satisfies the interpolation con-
and positive. Hence, we may identif¢p with the vector straints 4.7)
q := (g0, 01, -- -, qn) Of coefficients belonging to the set

In particular, this holds fof = f so thatly(f) = L(f, \).
Clearly,q € Q4 ifand only if @ € S... As we shall see shortly Hence
theg-parameters will essentially be the Lagrange multipliers for ) .
the dual problem. lo (f) < le(f) = p(A) < p(A) (4.16)
Now, consider the Lagrange function

Q. = {g € Rx C"|Q(c*) > 0forall §}.

if f satisfies the interpolation constraints. Consequently, if we
L(f, A) = Lo (f) + Mo(wo — f(20)) can showthab has a minimun € Ay, thenly has amaximum
n in C4, and the optimal values of the two problems coincide.
+2Re{ZXk [wy — f(zk)]} . It turns out to be more convenient to use Yseas dual vari-
k=1 ables.
(4.11) Proposition 4.4: The dual functional (4.12) is

Since the primal problem (4.6) amounts to maximizing a strictly p(A(@) =Ju(g) +¢
concave function over a convex region, the Lagrange function

has a saddle point [32, p. 458] provided there is a stationaMpere

pointinC4, and, in this case, the optimal Lagrange vectes "

(Ao, AL, ..., Ay) € C™F1 can be determined by solving thedy (q) = 2woqo + 2Re{ )qk}
dual problemto minimize

k=1
1 N 7 7
p() = max L(f. N). (4.12) —5 | logl()]¥ (<) db
cCyr —7

(4.17)

Now, consider the linear mak Q, — R x C” defined by
and
Ao =2 (qo ~Re}, %) ei= o [ (oglu(e®)] — )W) db.
j=1 ™ —7

Ak =qk, fOI’k‘Il7 2, ..., n. (413)

We are now in a position to formulate the dual version of
Theorem 4.1, the proof of which will be deferred to the next
section. For simplicity, we remove the constant termvhich
does not affect the optimization.

Theorem 4.5:Given a¥ € S, there exists a unique solution
Ap=2A . 4.14 +
+ (Q+) ( ) to the dual problem

The functionp takes finite values only for a subset af =
(Ao, Aty ---5 Ap) € R x C™ and, in particular, on the set

We have the following proposition, the proof of which is de- . 418
ferred to the Appendix. i w(g). (4.18)
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Moreover, to the minimizingy there corresponds af € C, Proposition 5.2: For all » € R, J\},l(—oo, r] is compact.
such that Thus, Jy is proper [i.e.,J\;l(K) is compact whenevek' is
v compact] and bounded from below.
() = f(2)+ f*(») (4.19) The proof of this proposition, given in the appendix, relies on
Q(z) the analysis of the growth afy,, which entails a comparison of

linear and logarithmic growth. To this end, the following lemma
is especially important. We note that its proof is the only point
in our construction and argument in which we use the Pick con-

where( is given by (4.10). Moreover, this functighsatisfies
conditions (4.7)—(4.9) in Theorem 4.1, namely

F) =wn fork=0.1 .. . . n (4.20) dition in an essential way. Denote the linear partefq) by
b(z) .
7) = b B 4.21 _
f(7) CL(Z) ) a, bc H( ) ( ) ](q) = 2w0q0 +2 RQ{Z(wk _ wO)Qk}
U(2) = a(2)b" (=) + b(2)a™(2). (4.22) =
Conversely, any’ € C, which satisfies these conditions can be =2woqo + ;(wk — wo)qy + ;(m — wo)qk- (5.1)

constructed from the unique solution of (4.18) via (4.19).
We conclude by noting that if the problem data is real or self Lemma 5.3: For each nonzerg € Q, J(q) > 0.
conjugate, and is real, then both the functioft ») constructed Proof: SinceP > 0, there exists a strictly positive real
above, and the functiof(z), satisfy the conditions of Theoremsinterpolant. Choose an arbitrary such interpolant, and denote it
4.1 and 4.5 so that, by uniqueness, they must coincide. by f. Then, recalling thaty = oo, (3.2) yields
Corollary 4.6: Assume that the set& and)V are self-con- x
jugate and thaty, = w; wheneverz, = z;, and that¥isreal. 2 = (f + f*, go) = i/ () + f*()]gi () db
Then, the optimizing functiong, @ in Theorems 4.1 and 4.5 27 ) —x
have real coefficients. In particular, there is a unique pair of reg“d
functionsa(z) andb(z) in H(B), devoid of zeros in closure of

c * 1 T i *7 4 L)
D°, such that wmwo = (P47 o) = 5 [ [+ Elai(e ) a8
U(2) =a(2)b(z 1 LE N
(%) CZ((/;)) (#77) + alz")b(2) fork =1, 2, ..., n. Foranyg in Q, we compute
f(Z):a(;) €C+ 1 Q " 0 0
< ] —— 2! * 3 z de > 0
o) e k0t @ =5 [ )+ Fre o) o>
We shall return to the special case covered in Corollary 4.6&7d-/(¢) = 0 ifand only if @ = 0. - =
Section VI, and we shall refer to it as telf-conjugate case. ~ Finally, we need to exclude the possibility that the minimum

occurs on the boundary. This is the content of the following
proposition, also proved in the Appendix.

Proposition 5.4: For ¥ € &4, the functionaldy never at-

In this section, we shall analyze the functio&l(g), con-  tains a minimum on the bounda8gQ.
structed in the previous section. We shall show that it has aHence, we have established thiat(q) is strictly convex, has
unique minimum inQ.;, which is instrumental in proving The- compact sublevel sets and the minimum does not occur on the
orem 4.1 and Theorem 4.5. To this end, we first extdadg) boundary ofQ. Consequently, it has a unique minimum, which

V. THE CONVEX OPTIMIZATION PROBLEM

to the closureQ of Q, and consider occurs in the open s . Clearly, this minimum point will be a
stationary point with vanishing gradient. As the following lemma
Jy: @ — RU {oo}. shows, the gradient becomes zero precisely when the interpola-

N ) ) ) tion conditions are satisfied, and in fact the value of the gradient
Proposition 5.1: The functionally (¢) is aC function on - gepends only on the mismatch at the interpolation points.
Q. and has a continuous extension to the boundary that is finitegefore stating the lemma, however, let us, for the convenience
forall ¢ # 0. Moreover,Jy is strictly convex, an® is aclosed 4t the reader, review a few basic facts from complex function
and convex set. . o theory. In what follows, it will be convenient to use complex
This proposition, along with Propositions 5.2 and 5.4 belowaia| differential operators acting on smooth, but not neces-
are analogous to related results in [7], developed for the covatlyily complex analytic, functions. In particular, if we write the

ance extension problem. Their proofs are simifagtatis mu- complex vectow, = x5, + iy, as a sum of real and imaginary

tandis,to those developed in [7], except for Lemma 5.3 belo"ibarts, this defines the differential operators

The complete proofs are adapted to the present framework and

included in the appendix for the convenience of the reader. o 1749 9
In order to ensure thafy achieves a minimum o®, it is dq 2 \ Oy, ' Oy

important to know whethedy, is proper, i.e., whethed ' (K) and

is compact whenevek is compact. In this case, of course, a g 1 < 7] 7] )

2

unique minimum will exist. 93, 2 \ Oz T o
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which operate on smooth functions. Indeed, the second operConversely, given aif € C, satisfying (4.21) and (4.22),
ator is the Cauchy—Riemann operator which characterizes thaniqueg € Q. can be obtained from (5.4). Finally, in view

analytic functionst” of ¢, via of Lemma 5.5, the interpolation conditions (5.4) imply that the
OF gradient ofJy for the corresponding is zero. Thus, it is the
90 = 0 unique minimizingg. O
Ak

Proof of Theorem 4.1:Let us denote by the minimizingg
and, for example, while conjugation, viewed as the function d&+ Theorem 4.5. Then, singee Q, we havel := A(q) € A4
fined byg, = x» — ‘s, is of course not analytic, it is smoothin the notation of Proposition 4.4. Lgt be the unique corre-

and satisfies spondingf € C defined via Proposition 4.3. By Theorem 4.5,
G, 9, [ satisfies conditions (4.7)—(4.9). Then, since tfisatisfies the
g 0 and 93, L interpolation condition, (4.16) holds, implying thais the max-

_ _ o imizing f of Theorem 4.1. Conversely, ffsatisfies (4.7)—(4.9),
Lemma 5.5: Atany pointg € Q, the gradient ofly isgiven by Theorem 4.5, the corresponditigdefined via (4.19), is the

by unigue maximizing solution to the dual problem. Therefore, it
Ay follows in the same way as above, tbfats the unique maxi-
i 2[wo — f(20)], (5:2) mizing solution to the primal problem. O
9y An interesting, and useful, aspect of the functionals studied
a1, =[wy — f(zr)] — [wo — f(20)], using interior point methods is that they contain a barrier term,

which is infinite on the boundary of the closed convex set in

fork=1,2,....n (5.3) question. At first glance, the logarithmic integrandJdg(q)
wheref is theC, function satisfying might seem to be a barrier-like term, but, as we have seen in
Section V, by a theorem of Szegd, the logarithmic integrand is
F2) + f(2) = W(z) (5.4) in fact integrable for nonzer@ having zeros on the boundary
Q(2) of the unit circle. HenceJg(q) does not become infinite on

the entire boundarg@ of Q. Nonetheless)y(g) has a very

with Q(z) € S corresponding tq as in (4.10).
Q) b 4'a ( ) interesting barrier-type property as described in the following

Proof: The existence of a functioif as claimed in the " q i th di
statement is obvious by virtue of the fact thitz)/Q(z) is proposition and proven in the Appendix.

bounded and greater than zero on the unit circle. Recalling thaﬁrpposition 5.6: The dual functionally(¢) has an infinite
gradient on the bounda®yQ.

% -0 As far as computation is concerned, this is a useful property
aq;, of the convex optimization problem.

for & > 0, we have
VI. COMPUTATIONAL PROCEDURE

T k(16
a{‘“ = (wp — wp) — 1 g’“(el ) U(et?)do Given¥/(z), define the clas® of (strictly) positive-real func-
aq}c 2m —7 Q(Cw) tions
I(wk—wo)—<f+f*,gk>- b(7)
flz) = ——= a, b € H(B)

Sincef € Ho, this is the same as (5.3). To see this, use (3.2)
and note that, = oc. For the casé& = 0, we need to take the
real derivative

a(z)’
having the property that

94 1 /7 i0 ‘ a(2)b"(z) + b(z)a” (z) = U(z). (6.1)
\ig = 2wp — — gO(Gie) \I/(ew) do
90 2m il (¢*) We want to determine the unique functiorfirwhich also satis-
=2wo — (f + f*, 90) fies the interpolation conditions. To this end, we shall construct
which, again using (3.20), yields (5.2). o @sequence of functions
We are now prepared for the proof of our main results. O O @ ep

Proof of Theorem 4.5:Propositions 5.1, 5.2, and 5.4 es- o
tablish the existence of a unique minimumgine Q.. Then, Wwhich converges to the required interpolant.
Lemma 5.5 shows that the interpolation conditions are met forAs before, we may write (6.1) as

the corresponding..-function f satisfying (5.4). The construc- U(2)
tion of such a function proceeds as follows. Sidze S and fE)+ (2= o0 (6.2)
is rational, it admits a rational spectral factorizati@iz) = &

a(z)a*(z), wherea(z) = a(z)/7(z) with a(z) a stable poly- where@ ¢ S, satisfies

nomial of degree at most. Hences € H(B). Then, we solve .

the linear equation(z)b*(2) + b(z)a*(z) = W(z) for b. This a(z)a’(z) = Q(2). (6.3)
linear equation has always a unique solution becausas no
zeros inD¢; cf. the discussion in [9]. Ther),(z) = b(2)/a(z),
and all conditions of the theorem are satisfied. J: Q=P Q— f (6.4)

It is easy to see that this defines a bijection
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To see this, note that

_alz)
_ Bz
"=
and
Cd(z, 27
Y= o)

wherea(z) and3(z) are polynomials of at most degreeand
d(z, »~1) is a pseudopolynomial, also of at most degree
Since f = f/« is strictly positive real, bothy(z) and 3(z)
must be Schur polynomials. Then, determit(e) via a stable
polynomial factorization

a(2)a’(z) = ()7 (2)Q(2) (6.5)
and solve the linear system
o(2)B"(2) + Bl2)a"(2) = d(z, =71 (6.6)

for 8. In fact, (6.6) is a linear (Hanket Toeplitz) system

831

and a correspondin@(® defined via (6.2), as an initial condi-
tion. We may choos@®‘? = 1. Each iteration in our procedure
consists of four steps and updates the gaif) to f, @, in the
following way.

Step 1) givery, letVJg(q) be the gradient defined by (5.2)
and (5.3).

Step 2) determine the unique positive real functtogatis-
fying (6.8), which is a linear problem of the same
type as the one used to determifiefrom Q. In
fact, exchangingy(z) for a(z)? andd(z, ~*) for
v(z, 271 = 7(2)7*(2)d(z, 1) in (6.6) we obtain

_A)

a(z)?

h(z) wheres = S(a?)"tv.
The HessiarH (q) is then determined from as in
Lemma 6.1.

Step 3) update)(~) by applying Newton’s method to the
functionJy. A Newton step yields

=7 \H(9)" VJu(g)

QUpdate

whereX € (0, 1] needs to chosen so that

S(a)p = d in the coefficients of the polynomials, which is

nonsingular sincex(z) is a Schur polynomial; see, e.g., [9].

Then

Given anf € P we can determine the corresponding gradient
of Jg(¢) by means of Lemma 5.5. The following lemma gives

the equations for thén + 1) x (n + 1) Hessian matrix

aQJ\D

(”:{5i%jhha (6.7)

Qupdate(¢’®) >0,  forall 6. (6.10)
This positivity condition is tested in Step 4.

Step 4) factoyupdate as in (6.3). This is also a test for con-
dition (6.10). If the test fails, return to Step 3 and de-
crease the step si2elf not, check whether the norm
of VJy(gupaate) iS sufficiently small. Recall that
this norm quantifies the interpolation error, as can
be seen from Lemma 5.5. If this error is small, stop;
otherwise, use the linear procedure above to deter-
mine the next iteraté,pdate. Then, self := fipdate
and return to Step 1.

The computations can be carried out quite efficiently using

Lemma 6.1:Let h(z) be the unique positive-real functiongiate space descriptions. We restrict our attention to the self-

such that

U(z)
Q(z)?

andh(zg) is real. Then the Hessian (6.7) is given by

h(z) + h*(2) = (6.8)

Hi(q)

4 ks

h(zk) +

Zy — Xk

+h(20),

her) — (o),
h(ze) = (o),
L 2h(20),

Rle — =¢

h(Z[)

_ 3 =zl (z) — h(zk) + h(z0),

whereh’(2) is the derivative oh(z).
Next, we turn to the computational procedure, which will be

based on Newton’s method [31], [32]. We needfdf ¢ P,

fork £,k £>0

fork=¢>0
fork>0,£=0
fork=0,£>0
fork=£=0
(6.9)

conjugate case, where both and W are self-conjugate and
wy, = w; Wheneverz, = z;, and¥(z) is real (see Corollary
4.6.) In particular, we develop the steps of the algorithm so as
to avoid complex arithmetic.

It is easy to see that, in this case

7(z) = H (z—z, ) ="+ -+, (6.11)
k=1

is a real polynomial and

7(%)

7(2)

is a real function, where,(z) := 1 4+ iz + --- + 1,2" is
the reverse polynomial. For the rest of this section, we shall be
concerned with real interpolation functions.

Any real function € ‘H(B) admits a state space representa-
tion of the form

B(z) =271 (6.12)

h(z) = ho + c(zI — A)~ ', (6.13)
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where(A, by, ¢) are taken in the observer canonical form  The second correspondence also follows from (6.15). Moreover

0 1 0 G:[ 71;175;1 }
. . . . ——1_—1
A : : . : T=Z 20 Jy emn
0 0 1 can be written a&7 = (1/2)Z*PZ, whereZ is the diagonal
L=Tn —Tp—1 '+ —T1 matrix diag 2!, ..., =, %) and P is the Pick matrix forZ =
My {21, ..., 2z} andW = {1, ..., 1}. Since there is a unique
ho function, namelyf = 1, satisfying this interpolation dat#, is
by, = positive—definite, establishing the invertibility 6f. Finally, the
: Vandermonde matri¥” is invertible since the points i€ are
h distinct. O
_ [i 8 0] (6.14) We now reformulate the steps of the algorithm given in Sec-
C=LH Y ' tion VI in terms of the real Markov coordinates of the relevant
hi, ha, ..., h, being the Markov parameters in the Taylor exfunctions. We shall consistently work with functions#(B).
pa’nsi(;n ’ Therefore, ag ¢ H(B), we form
R(z) =ho+hiz ™t -+ hpz "+ f=Thymf
about infinity. We shall use the compact notation wherell; gy denotes orthogonal projection oritt{ 3). Since

f = f + Bg for a suitableg € H?, it follows that
h=

~

f(Zk) = f(Zk), fork = 0,1,...,n.

for this representation, and keep and ¢ fixed when repre- Next, definew(z) to be the unique function if¢(B) such that
senting real functions it{(B). Since the function (6.13) is com-

pletely determined by the Markov parametégs b;,, we shall w(zy) = wg, fork=0,1,...,n. (6.16)
refer to them as thmMarkov coordinate®f the function (6.13).

Alternatively, h(z) can also be represented with respect to thhis function has the fornw(z) = #(z)/7(z), wherer(z) is

C ho

A bh ]

standard basis it(B) as given by (6.11), and where the coefficients of the polynomial
. 7, of degree at most, can be determined by solving the linear
_ VVandermonde) system of equations defined by (6.16). The gra-
h(z) = h e 6.15) (
(2) ot z::l 7393 (%) ( ) dient of Jy in Lemma 5.5 can then be expressed in terms of the
! “error function”
where, of coursey, . .., i, are complex numbers. Finally, any
h € H(B) can be uniquely identified by its values &t p(z) :=w(z) — Ty (p) f(2) (6.17)
{h(z0), h(z1), ..., h(zn)}- which also belongs té{(B). In fact
The correspondence between these three alternative representa- p(z) = wr — f(z1). (6.18)

tions is the content of the following lemma.

Lemma 6.2:Let V' be the Vandermonde matrixMoreover, we introduce ai(B)-representation for ang € S
V= [z’]j,x, andG the matrixG := [gr(z;)];,x- Then, for and any givent € S by writing

anyh € H(B)
Q) =a(x) +a'(2),  U(z)=(z) +97(2)
bh = V77
B S . . whereq, ¢p € H(B) are positive real. Finally, we represent
wherer = (n1, 72, ..., nn)" is defined via (6.15), and ¢ and+) by their respective Markov coordinatés, z,) and
h(z1) — ho (y, yo), respectively, in the standard state-space representation
described above, i.e.,
h(ZQ) — ho
= Gn. A x A Y
. q= and Z/) = .
h(z) = ho ¢ 1o c W
Moreover,GG andV are invertible. We begin with the state-space implementation of Step 1) in
Proof: The first correspondence follows immediatelyfhe computational scheme described above. In this context, we
from (6.15) and the expansion have the following version of Lemma 5.5.

Proposition 6.3: Given anf € P, let ¢ be the positive real
g(z) =27 7T+ E T part of @ := 71 f, where7 is defined as in (6.4). Moreover,
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let p(») be given by (6.17), and denote ly,, =) and(rqg, )  Since the function& € H(B) are precisely those of the form
the Markov coordinates af( z) andp(z), respectively. Then  (6.13), (6.21) is equivalent to

Wy (bn) (Sb; — RE)=0,  forallb, € R (6.22)
83:0
Oy 11 where
5 =(V)T"GV ™y .
whereG andV be defined as in Lemma 6.2. Thex n matrix k= (eI — A~ (T — A)~ df

—_—T

(V*)7'GV~!is a real matrix.
Proof: Sincegy = 29 andwg — f(z) = p(29) =70, the and
derivative with respect ta follows immediately from (5.2).

Next, applying Lemma 6.2, we see that S = 2i " (e—ie_, _ A/)—lc/cf(eiel _ Af)—l dé.
a —7
@ _ =V Itis well known and straightforward to show th&tsatisfies the
]7 v =

Lyapunov equation (6.19) arfl the Sylvester equation (6.20).
and thatp(z) — 7o is thek:th entry inGV ~1». Moreover, by In fact, they are the unique solutions of these equations, as the

(6.18), we have eigenvalues of botkl and A are located in the open unit disc
[16]. Since(c, A) is an observable pair? is positive—defi-
p(z1) —ro = [wr, — f(z)] — [wo — f(#0)] nite, and hence invertible. Then, the proposition follows from
(6.22). O
for k. = 1,2, ..., n. Finally, using (5.3) and defining := Consequently, the state-space version of Step 1) amounts to
(@, Gy ---» G,,), We obtain solving first the Lyapunov equation (6.19) and the Sylvester
, equation (6.20) to obtaill,, (g f via Proposition 6.4. Then the
AJy or1™! AJy ol il gradient is determined from (6.17) as described in Proposition
9r 8_6 ’ g =(V)TGVT 6.3. Step 2) is developed along the same lines as in Step 1) by in-
stead representing relevant functiong#B2). Then, a Newton
establishing the rest of the proposition. O step is taken as described in Step 3. Alternatively, a gradient
It remains to determine the error functipnFor this, we need method is used, in which case Step 2) can be deleted. Finally,
the projectionf := Wy(m) S Step 4), i.e., determining from ¢, amounts to solving a matrix
Proposition 6.4: Supposef € P has the state-space repreRiccati equation and a Lyapunov equation, as seen from the fol-
sentation lowing proposition.
Proposition 6.5: Suppose thaf, v € H(B) are strictly pos-
A | b itive real with Markov parameterg:, z,) and(y, o), respec-
o cy fo tively. Let P be the unique solution to the algebraic Riccati
equation
and thatA andc are defined as in (6.14). Thef,:= Iy (s f
is given by P =APA 4 (x — APE)(2x9 — ¢P¢) Yz — APCY,
- dy :=(2z0 — cP)Y?,
Wy f = fotelal — Ay R75by by = (z — AP )d; ! (6.23)
\t/iv::reR andS are the unique solutions of the Lyapunov equeﬁaving the property that
R=ARA+ ¢ (6.19) = A=bdd 6.24)
and the Sylvester equation is stable, and leX be the unique solution of the Lyapunov equa-
tion
S=ASAs+ ey (6.20)
X =TXI" +yyo 'y — (v — bad M yo)wg (v — budy o)’
respectively. X dy =L (yo — eX)d[
P_roof: Sincef = gy f € H(B) and f(oo) = f(o0), bo = [(y — Azc') — bido] dL. (6.25)
there is a representation

fn 1 Then,f = J(q + ¢*), defined as in (6.4), has the state-space
f2) = fot ezl = A7k representation

for somek € R™. Now, f — f L H(B), and hence r ‘ bdtdy — by

PN f —
(h, f—f)=0, forall h € H(B). (6.21) —dite ‘ i,




834 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 5, MAY 2001

0.995-

0.99

0.985

0.99 —

0.98
0.98

4 0.97 - L
0.975 - 4 b mEEIl

0.97 . \ \ . \
107" 107 10? 107" 10° 10' -28 -3 35

-4

Fig. 5. Power gain versus frequency. Fig. 6. Power gain versus frequency versus zero location.

Proof: Observe that determining =) from ¢ + ¢* = aa* 1
is a standard spectral factorization problem [1], [14] with the
unique minimum-phase solution given by

0.995

A b1
C d 1 ' 080

Then,b(>) is determined from the linear equation

0.985

U =1+ =ab" + ba”

which, in the state-space formulation, becomes (6.25). Since 0%
is stable, it has a unique solutio¥. Finally, the state space
description off = a6 is obtained by direct computation]  osrst

Example 2: Maximal Power Transfer (Continued}onsider
a passive load with impedance

B 1+ RCs R+ Lis
14+ (1 + R)Cs 1+ R +Lis Fig. 7. Power gain versus frequency.

whereR = 0.5 Q, R, = 0.1 Q, L; = 0.5H, andC = 0.01

F. This is a cascade connection of two (first order) filters, whic .

are the parallel connections of a resistoe= 1 2 with a lossy '9444’ and 0.9987, respectlyely. .
Fig. 6 shows the surfack,,.(iw) vs.log w versus the choice

capacitor and a lossy inductor respectively. The transmissio : )
zeros of Z(s) are computed as the zeros Zf(s) + Z(—s) oPspectraI zeros in the interval [0.6224, 0.9987]. Next, suppose

0.7
10" 10 10

Zg(S)

ics, i.e.,$ . (iw) versusw, for spectral zeros chosen at 0.6224,

that an additional lossy inductor is connected to the passive load
to be+81.6429, +1.6249. The Blaschke factor ) .
with Ly = 0.2 Hand Ry = 0.5 Q. Applying the same anal-
(s) = (1+R; — L1s)(1—(1+ R)Cs) ysis as beforeZ,(s) is now of third order. A selection of two
(14 Ry + Lis)(1+ (14 R)Cs) spectral zeros parametrizes the coupling network of dimension

two. Selecting a double transmission zero at 0.9236, 0.9611, and
5).5932, respectively, leads to the lowpass characteristics shown
in Fig. 7 (dashed curves correspond to the first two choices while
p(81.6429) = 0.0957, p(1.6249) = 0.1432. a continuous curve indicates the last one with a slightly wider
bandwidth).
Translating the interpolation data to thedomain we obtain  Atthe presenttime, in high-order cases, there is no systematic
p(—1.0248) = 0.0957 and p(—4.2003) = 0.1432. Thus, the way to select transmission zeros that could produce the exact
interpolation conditions becomg(—1.0248) = 1.2116 and desired shape of the power transmission gain.
f(—4.2003) = 1.3342. Suppose we want an effective power Example 3: Spectral Estimation (Continuedfonsider
transmission characteristic, i.e., a power transmission §aina bank of three filters as in Fig. 4, witfzg, 21, 22) =
close to one at low frequencies. Choice of spectral zeros in the, 2, 1.5). Assume that the resulting values fep(uy),
neighborhood of 1 leads to low-pass gain transmission charadiich specify f(z) at these points, give interpolating values
teristic. Fig. 5 shows the power transmission gain character{gs, wi, w2) = (1, 1.2, 1.1). We would like to construct

evaluated at the transmission zeros provides the interpolat
data
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APPENDIX A
PROOFS OFDEFERREDPROPOSITIONS ANDLEMMAS

Proof of Proposition 4.3:We note that’, ¢ 2, and we

1 consider the representation
2) = figi(). (A1)
=0
Based on our standing assumptionsjf@n), and our choice of
the basis (3.1), (3.3), we hayg = f(oco) is real, whilefy, k =
1,2, ..., are allowed to be complex. Thus, we identifyz)
with the vector of coefficienty’ := (fo, f1, ...), and define
the set
) 05 1 5 2 25 3 35 F=LfeblfoeR, fi, f2, ... €C, ijgj yel,
Fig. 8. |®(e'?)| as a function of.
(A.2)
a model with an all-pole spectral density. Traditional tectSinceB(z,) =0fork =0, 1,2, ..., n, we haveg,(z;) =0

niques based on the Levinson algorithm are not applicalite ; > n, and consequently
since the interpolation data are not in the form of a partial

n
covariance sequence. Furthermore, the “central solution”
. . . = ig;(Z A.3
corresponding to¥(s) = 1 leads to filters with spectral Zf’g’ b A3
zeros atzt, z;*, ..., z7', whereas we are interested in

an AR model, i.e., one with all zeros at the origin. Selecting Suppose that € A, . The functionf — L(f, A) is strictly
U(z) = 1/7(2)7(271), wherer(z) = (» — 1/2)(» —2/3), and concave, so, if it has a stationary point where the gradient is

using our algorithm, we obtain zero, it has a unique maximum there. Thus, wedetd f, = 0
for all k. Sincef, is real andgy = 1, we then have
(2 — 0.6829)(z + 0.8677) oL 1 7 4 )
7) = . 9 & —1/ ¢ @6 _
1) = 036127 + 067972 0f0 " 2ap | & ()T dE Ao
Note that the zeros of(>) are at 0.6829 and at0.8677, while _9Re zn: NS =0 (A.4)
there are no spectral zeros in the unit disc. The corresponding P ) '

all-pole spectral density(z) + f(» 1) is depicted in Fig. 8.
A natural ques“on regardmg this examp|e is Why one Woulﬁurthermore referrlng back to the discussion on function

want to use Nevanlinna—Pick data for determining an autof@eory before Lemma 5.5, we recall thaf, /9f, = 0 and

gressive model, when such a model can be obtained from #5/8f; = 1. Therefore, in view of (A.3), we obtain

ditional covariance data simply using the Levinson algorithm.

The advantage in using Nevanlinna—Pick data is discussed in [3] oL _ 1 / ar ()7 T () db
where itis shown that a suitable selection of filterbank poles en- Ofi 2m
hances resolution beyond what can be obtained with traditional _ z":X (A.5)
covariance estimates. Intuitively, interpolation in the vicinity of IR\ '
an arc of the unit circle specifies more accurately the shape of
f,and, hence, the spectral density, in that part of the spectruior. £ = 1, 2, ..., n, and
oL 1 [ ‘ ‘ ‘
VII. CONCLUSION 0 %/ ge(e?)2H () T(?)do =0  (A6)

In this paper, we have given a method for finding all solutiong, . ,. _ 41, n+2, ..., where we have used the orthog-

to the scalar, rational Nevanlinna—Pick interpolation probler‘Bnallty propert|es dlscussed in Section III. Now, @tz) =
having degree less than or equaktpin terms of the minima $1(2)U(=), and note thal* (=) — Q) Frbm (A, 6 z) -

of a parameterized family of convex optimization problems.

While the problem has been posed for positive real interpolants, () .} = 0 = (Q, g), fork=n+1n+2 ....

as would arise for the control of discrete-time systems, stan-

dard linear fractional transformations can adapt this generbdlence,) € S, having a representation (4.15) with € R and
ized entropy criterion approach to positive real, or bounded-real, ..., ¢, € C. By construction, (4.15) holds, and, therefore,
transfer functions for both continuous and discrete-time linedremains to show tha@ € S, or, equivalently, thag € Q.
systems. to establish thaf € C., proving the proposition.
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From (A.4), we immediately see that

)\022(]0—2Re{2)\j}.

i=1

Next, taking the conjugate of (A.5) we obtain

Z)‘Jgk %)

n. On the other hand

qugj 7k

), by (A.8) and (A.9)

Qvgk
fork=1,2,...,
Qvgk

Sinceg, (Z;) = g,(=

g1(z1)  g2021) gn(21) Al— @1
g1(z2)  g2(z2) gn(22) A2 — @2
91(7n)  g2(2n) Gn(zn)d LA —gn

(A7)

(A.8)

(A.9)

=0. (A.10)

Now, since the coefficient matrix of (A.10) is the matxix of

Lemma 6.2 and, hence, nonsingular
)\quk, fork21,2,...,ﬂ

Equations (A.7) and (A.11) establish that=

fore, sincel € A, we havey € Q., as required.
Proof of Proposition 4.4: Applying the linear map (4.13),

(A.11)

A(q). There-

O

the dual functional (4.12) can be expressed in termg of

(g0, q1, -- -, qn)- In fact,
p@) =5 [ Toslate ) do
b [ logu(e () as

+2Re{2@[wj _f(zj)]}.

(A.12)
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Using this last expression, the dual function becomes

N@) == [ loglQ)]w(e) do
+ % ! log[L(") () do
— i ) \I/(cw) db + 2qowo
2 J_ .

+2Re{§n:qj(wj 0)}. (A.13)
j=1

In this expression, defineto be the sum of the second and third
terms. Then, the proposition follows. O

Proof of Proposition 5.1:We want to prove thafly (g) is
finite wheng # 0. Then the rest follows by inspection. Clearly,
Jy (g) cannot take the valuecco; hence it remains to prove that
Je(q) < 0. Sinceq # 0

p 1= max Q) > 0.

Then, setting”(z) := n~1Q(z)

log P(c") <0 (A.14)

and

™

Ju(q) =J(q) - % log u/ W(c) df

—TT
™

log[P(e™)]U(c?) db

27

-7

and, hence, the question of whethlkr(g) < oo is reduced to
determining whether

- /_ " Lo P W(e) df < 0.

However, sincel(¢?) < M for some bound/, this follows
from:

/ log P(e®)df > —oo, (A.15)
which is the well-known Szego condition: (A.15) is a neces-
sary and sufficient condition faP(c?) to have a stable spectral

In this expression, the sum of the two last terms turns out to fetor [22]. However, since the rational functiét{~) belongs

linear in¢. To see this and eliminate the dependencgobn

the gs, consider the following:

1 N 6

% _ﬁ\I/(C )d9
1 0
=5 | Qe i

=q{f+ 1", 90) +2Re{2@<f+f*

=1

= 2q0fo + ZRG{Z@(f(Zj) - fo)} .
j=1

79j>}

to 84, there is a functionr (z) € H(B) such thatr(z)7*(2) =
P(z). But thenw(z) is a stable spectral factor d?(z), and,
hence, (A.15) holds. O
Proof of Proposition 5.2:Suppose;*) is a sequence in
M, := J3"(—oc, 7]. It suffices to show thag®) has a conver-
gent subsequence. The sequegiée defines a sequence of un-
orderedn-tuples of zeros lying in the unit disc, and a sequence
of scalar multipliers. We wish to prove that both of these se-
quences cluster. To this end, eagf’) may be factored as

QM (2) = Mwan(2)af(2) = MQ™M(2)

where); is positive andy(z) is a function inH(B) which is
normalized so that (o) = 1.
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We shall first show that the sequence of zeros clusters. Tt@rresponding to the vectpre C***. In fact
corresponding sequence of the (unordered) setzefos of each ) )
ax(z) has a convergent subsequence, since all (unordered) ng%gQ +el) —log Q
of zeros lie in the closed unit disc. Denote dy) the function € (/@ P)
in 7(B) which vanishes at this limit set of zeros and which is _r log <1 np f) I
normalized so that(~) = 1. By reordering the sequence if Q Q Q
necessary, we may assume the sequence) tends toa(z). .
Therefore, the sequeneé®) has a convergent subsequence ¢ — +0, and hence (A.17) follows by dominated conver-
and only if the sequenck, does. gence. . ,

We now show that the sequence of multiplidgsclusters. It~ NOW letg € Q. andg € JQ be arbitrary. Then the corre-
suffices to prove that the sequenkg is bounded from above SPOnding pseudopolynomials and( have the properties
and from below away from zero. This will follow by analyzing Q) > 0
the linear and the logarithmic growth in ’

P

forall @ € [, 7]

and
1 77 .
()} — P10 A, P &4 - -
Ju (q ) =AJ(@) = 5 log A /_77 (e df Q(¢®y >0,  forall § andQ(c'%) = 0 for somed,.
- %/ log [Q“)(e“’)} (e do Sincegy := G+ Ag — §) € Q4 for A € (0, 1], we also have
™ -7

for A € (0, 1] that

with respect to the sequendg. Here J(g) is the linear term N YR T W0y _ (0

(5.1) of Jy(q). We first note that the sequendéi™*)), where Qa(e") = Q) FAQ(ET) = Q@] > 0.
¢ is the vector corresponding to the pseudopolynogié?,

is bounded from above because the normalized functipt®)  ang we may form the directional derivative

lieina boun?gd set. Similarly, by the proof of Lemma 5.3, the L

sequence/(G'*)) is bounded from below, away from zero. In . s L

particular, t(he c)oefﬁcient ok, in the first term for this expres- Da—gdwlan) = 1@ =) + 2r J_, ha0)db - (A18)
sion forJy(¢™) is bounded away from zero and away from
We also note that the coefficient lofg A in this expression for
Jy(¢®) is independent of. Next, the term

forall 6 € [—m, ]

where

Q) = Q) |

ha(0) = — ‘ .
1 [~ - ‘ 4 A9) Qa(c?) (")
o | o8 [Q<k>(e%0)} W(c™) df (A16) Now
d Q 0y — Q c0)]2 ;
in this expression fotly(¢*)) is independent of, and we I ha(0) = (€ Q)A(em)g ) Uy >0

claim that it remains bounded as a functionkofndeed
and henceh () is a monotonely nondecreasing function)of

QM () = |a(e®)? = Q(2) for all § € [—n, 7]. Consequently:, tends pointwise td, as
A — 0. Therefore

wherea(z) has all its zeros in the closed unit disc. In particular, -
if ¢ in Q corresponds tq, then the third term in the expression — ha(8) df — +o0 asi — 0. (A.19)
for Jy(¢™)) converges taly(q), which is finite sincez is not TS
identically zero. In fact, if

Finally, observe that if a subsequenceXafwere to tend to =
zero, thenJ\p(q(’“)) would exceed-. Likewise, if a subsequence — ha(6)df — o < 00 asA — 0 (A.20)
of A\, were to tend to infinity,Jy would exceed, since linear TSz
growth dominates logarithmic growth. O

then{h,} is a Cauchy sequence it (—=, «) and hence has a
limit in L!(—, =) which must equahg a.e. Buthg, having a
pole atfy € [—w, ], is not summable and hence, as claimed,

Proof of Proposition 5.4:Denoting byD,Jy(g) the di-
rectional derivative ofly, atq in the directioryp, it is easy to see

that (A.20) cannot hold.
. — Jq Consequently, by virtue of (A.18)
DyJda(q) = lim Ju(g+ep) = Ju(g)
e—0 ) WCP( oy Di_gJdp(gr) — +o0 asiA — 0 (A.21)
_ L c 6
=) 27 /_77 Q(c?) L) do, (A7) forall g € Q4 andg € 9Q, and hence, in view of [34, Lemma
_ _ 26.2], Jy is essentially smooth. Then it follows from [34, Th.
whereP(z) is the pseudopolynomial 26.3] that the subdifferential af; is empty on the boundary of
. ., Q, and thereforely cannot have a minimum there. O
P(2) =P,9,(2) + -+ + D191 (2) + pogo(z) + p1g1(2) + - - Proof of Proposition 5.6: The proof follows directly from

+pngn(z) (A.21). O
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Proof of Lemma 6.1:Fork, £ =0, 1, ..., n we have

9% Jy L™ o ion wr o U(E®)
m—g/ﬂgk(c )9 () gy B (A22)
={((h+ ")}, gr)- (A.23)

For ¢ = 0 this becomes’, gi) + (1™, gi), which, in view of
(3.2), becomes(z) — h(zo) if k > 0and2h(z) if k = 0. For
k, £ > 0, we have(h* g}, gr) = 0 and therefore

aQJ\p 1 ™ . i . " v
M‘%/ﬂgk@ g7 ()h(e™) de.

There are two cases. First, suppésg ¢. Then a simple calcu-

lation yields
* * _ Zk * Zé *
gu(2)ge (2) = Pr—— gi(z) + p— (2)
and hence
aQJ\p 2k 20
——— = h, gr) + —(h, g¢
97,04, zé_Zk< 9r) Zk_zé< )
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