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Abstract—In this paper, we present a generalized entropy crite-
rion for solving the rational Nevanlinna–Pick problem for + 1

interpolating conditions and the degree of interpolants bounded
by . The primal problem of maximizing this entropy gain has a
very well-behaved dual problem. This dual is a convex optimiza-
tion problem in a finite-dimensional space and gives rise to an al-
gorithm for finding all interpolants which are positive real and ra-
tional of degree at most . The criterion requires a selection of
a monic Schur polynomial of degree . It follows that this class
of monic polynomials completely parameterizes all such rational
interpolants, and it therefore provides a set of design parameters
for specifying such interpolants. The algorithm is implemented in
state-space form and applied to several illustrative problems in sys-
tems and control, namely sensitivity minimization, maximal power
transfer and spectral estimation.

Index Terms—Duality, entropy, interpolation, power transmis-
sion, robust control, spectral estimation.

I. INTRODUCTION

I N THIS PAPER, we consider the following interpolation
problem, which we refer to as theNevanlinna–Pick problem

with degree constraint. Given a set of distinct points

in the complement of the unit disc , and a set
of values

in the open right half of the complex plane, denoted, we seek
a parameterization of all functions which

1) satisfy the interpolation conditions

for (1.1)

2) are analytic and have nonnegative real part in;
3) are rational of (McMillan) degree at most.
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Requiring only condition 1) amounts to standard Lagrange
interpolation, the solution of which is elementary. Requiring
also condition 2) yields a classical problem in complex anal-
ysis, namely the Nevanlinna–Pick interpolation problem [38].
This problem has a solution if and only if thePick matrix

(1.2)

is positive semidefinite [38], [35]. Moreover, the solution is
unique if and only if is singular. Clearly, the case is
what interests us here. If points in are not distinct, the inter-
polation conditions 1) involve derivatives of , and the Pick
matrix is suitably modified [38].

The functions satisfying 2) are known asCarathéodory func-
tions in the mathematical literature. In circuits and systems,
the same functions are referred to aspositive real.They play a
fundamental role in describing the impedance of RLC circuits,
in formalizing questions of stability via energy dissipation in
linear and nonlinear systems, and in characterizing the positivity
of probability measures in stochastic systems theory. For these
reasons, problems involving interpolation by positive-real func-
tions play an important role in circuit theory [39], [11], [25],
robust stabilization and control [36], [37], [40], [30], [29], [21],
[13], signal processing [18], [6]–[8], [2], speech synthesis [12],
and stochastic systems theory [27], [5], [4].

However, in all these applications, it is important that the
interpolating function be rational with a degree which does
not exceed some prescribed bound. Degree constraints present
some new challenges which need to be incorporated systemati-
cally into any useful enhancement of the classical theory. While
the Nevanlinna–Schur recursion algorithm and the well-known
linear fractional parametrization of all solutions [38] can be
used to generate rational solutions, this does not provide any
insight into how to parameterize all rational solutions of a
given bounded degree. In general, even if the Nevanlinna–Pick
problem is solvable, the set of interpolants of degree
may be empty, and to determine whether this is the case is
often a very hard problem. Hence, at the present time, there
is no computationally efficient way to determineminimum
degree interpolants. However, the set of interpolants of degree
at most is always nonempty, which motivates condition 3).
The surprising fact, to be demonstrated below, is that this set
can be parametrized by spectral zeros.

Now, if the rational, positive-real functionis represented as

(1.3)

0018–9286/01$10.00 © 2001 IEEE



BYRNESet al.: A GENERALIZED ENTROPY CRITERION FOR NEVANLINNA–PICK INTERPOLATION WITH DEGREE CONSTRAINT 823

where, for the moment, we take and to be polynomials
of degree , then

(1.4)

where and

(1.5)

[Later, to simplify matters, will be taken to be ra-
tional functions with fixed poles at the reciprocals of]. Since
condition 2) requires that

on the unit circle

is a pseudopolynomial which is nonnegative on the unit
circle. Therefore, has a stable spectral factor of de-
gree , i.e., a polynomial solution of

having all its zeros in the closed unit disc, which is unique
modulo a factor . It turns out that the converse is also true.
In fact, to each choice of with roots in the unit disc,
there is one and only one pair so that , defined by
(1.3), satisfies 1)–3). Scaling of does not affect , since
and are scaled by the same factor. Even modulo such scaling,
the correspondence may still fail to be injective, since

and may have common factors. In fact, such common
factors do occur when there are solutions of degree less than.

The Nevanlinna–Pick problem with degree constraint was
first considered in [19], where it was shown that, provided the
Nevanlinna–Pick problem has a solution, each choice ofcor-
responds to at least one pair such that is a
solution to the Nevanlinna–Pick problem with degree constraint.
It was also conjectured that there is a unique such pair, implying
that the solutions would be completely parameterized by
the choice of zeros of. The proof of existence was by means of
degree theory and hence nonconstructive. It followed closely the
arguments used in [17], [18] to obtain the corresponding exis-
tence proof in an important special case, the rational covariance
extension problem with degree constraint.

The conjecture was recently established in a stronger form
in [6] for the rational covariance extension problem, where it is
shown that, under the mild assumption thatis positive on the
unit circle, solutions are unique and depend analytically on the
problem data. In other words, the rational covariance extension
problem is well posed as an analytic problem. Subsequently, a
simpler proof of uniqueness was given in [8] in a form which has
been adapted to the rational Nevanlinna–Pick problem in [20],
also proving uniqueness for the boundary case whenhas zeros
on the unit circle.

However, the proofs developed in [18]–[20], [6], and [8] are
all nonconstructive and the question of computing such solu-
tions remained open. This issue was first addressed in [7] for the
rational covariance extension problem. In fact, for any positive

, a convex minimization problem was introduced, the solution
of which solves the rational covariance extension problem, thus
allowing efficient computation of the corresponding interpolant.

The purpose of the present paper is to develop an analogous
computational theory for the rational Nevanlinna–Pick problem.
This is done via a generalized entropy functional, akin to that
in [7], which incorporates the Nevanlinna–Pick interpolation
data and the chosen positive quasipolynomial . The primal
problem to maximize this generalized entropy functional re-
quires optimization in infinitely many variables, but the dual
problem, which is convex, has finitely many variables, and the
minimum corresponds to the required interpolant.

In Section II, we motivate the Nevanlinna–Pick interpola-
tion problem with degree constraint by examples from systems
and control, namely from sensitivity minimization in con-
trol, maximal power transfer and spectral estimation. In Sec-
tion III, we review basic facts and set notation. The main results
of the paper are then stated in Section IV, in which we define
an entropy criterion, which incorporates the data in the rational
Nevanlinna–Pick problem. We demonstrate that the infinite-di-
mensional optimization problem to maximize the entropy cri-
terion has a simple finite-dimensional dual, which in turn is a
generalization of the optimization problem in [7]. It is of inde-
pendent interest that the dual functional contains a barrier-like
term, which, in contrast to interior-point methods, does not be-
come infinite on the boundary of the relevant closed convex set
but has infinite gradient there. Section V contains a proof of the
main theorem together with an analysis of the dual problem. In
Section VI, we outline a computational procedure for solving
the dual problem. In the special case of real interpolants, we de-
velop a state-space procedure, which has the potential to allow
extensions to the multivariable case.

II. M OTIVATING EXAMPLES

To motivate our theory, we now describe a number of appli-
cations which lead to Nevanlinna–Pick interpolation problems
with degree constraint. We touch upon problems in robust con-
trol, in circuit theory and in modeling of stochastic processes.
The examples chosen are basic since our aim is only to indicate
the range of potential applications of our theory.

Example 1) Sensitivity Minimization:Consider the fol-
lowing feedback system wheredenotes the control input to
the plant to be controlled, represents a disturbance, andis
the resulting output, which is also available as an input to a
compensator to be designed. Internal stability and robustness of
the output with respect to input disturbances, relies on certain
properties of the transfer function from the disturbance to the
output, which is given by the sensitivity function defined
via

(2.1)

It is well known (see, for example, [41, p. 100]) that the internal
stability of the feedback system is equivalent to the condition
that has all its poles inside the unit disc and satisfies the
interpolation conditions

and
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where and are the zeros and
poles, respectively, of the plant outside the unit disk.
Conversely, if is any stable, proper rational function
which satisfies these interpolation conditions, then can be
represented in the form (2.1) for some rational function .

On the other hand, for disturbance attenuation,needs to be
bounded. The lowest such bound

(2.2)

is attained for an such that for all
. In order to achieve lower sensitivity in selected fre-

quency bands, we must allow higher upper bound .
Then admissible sensitivity functionsare such that
maps the exterior of the disc into the unit disc. Using the linear
fractional transformation , which maps the
unit disc into the right half plane, the problem then amounts to
finding a Carathéodory function

which satisfies the interpolation conditions

and

The Macmillan degree of is the same as the degree of.
The conclusion of our theory is that we can efficiently search
over all interpolants of degree at most to obtain a
suitable one. The design parameters which dictate the shape of
the sensitivity function are precisely the zeros of

(2.3)

which coincide with the zeros of, defined as in (1.4). Hence,
they are also zeros of given by (1.5). The standard approach
to shaping the sensitivity function is to formulate a “weighted
optimization problem” through a selection of a suitable shaping
filter (cf. [15, Ch. 9], [41, Ch. 8]). Typically, a drawback of this
approach is an increase in the dimension of the relevant feed-
back operators by an amount equal to the degree of the shaping
filter. Thus, the alternative design approach presented here al-
lows for a handle on the degree.

To illustrate our point we consider a simple numerical ex-
ample which we can work by hand. Let the plant in Fig. 1 have
the transfer function . This system has one
pole and one zero outside the unit disc, namely a pole at two and
a zero at . Thus, the interpolation conditions are
and , and, in this simple case, the sensitivity function
must be of the form

It is easy to see that . We take . The one-param-
eter family of interpolants such that is depicted
in Fig. 2 and parametrized by the zero of (2.3) in , in-
stead of . Parameterizing the family in terms of such spectral

Fig. 1. Feedback system.

Fig. 2. jS(e )j as a function of�.

zeros is natural since, as discussed above, it is valid in the gen-
eral case. Choosing this spectral zero in the vicinity of ,
e.g., at 0.9, results in an with high-pass character. This is

with a frequency response shown in Fig. 2 with a solid curve.
In the same figure, we plot (with dotted curves) the frequency
response of corresponding to a choice of the spectral zero at

0.6, 0.3, 0, 0.3, 0.6, and 0.9.
This simple first-order numerical example was easily worked

out by elementary calculations, but higher-order examples re-
quire the full power of the theory of this paper.

Example 2) Maximal Power Transfer:The classical problem
of maximal power transfer, first studied by H. W. Bode and re-
formulated as an interpolation problem by D. C. Youla [39], [10]
is illustrated in Fig. 3. Here, a lossless two-port coupling is to be
designed to achieve a maximal level of power transfer between
a generator and a lossy load.

Let denote the impedance of the passive load and
the internal impedance of the generator. The Youla theory rests
on the following elements (for details, see [10, Ch. 4]).

1) are the right half plane (RHP)transmis-
sion zerosof , i.e., they are the RHP zeros of
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Fig. 3. Two port connection.

2) denotes thedriving-point impedanceof the two-port
at the output port when the input port terminates at its
reference impedance ;

3) is a Blaschke (all-pass) factor with zeros at all open
right-half-plane poles of ;

4) denotes areflection coefficientat the output port and
is given by

The problem is to maximize thetransducer power gain

for at certain preferred range of frequencies. This
gain is the ratio between average power delivered to the load and
the maximum available average power at the source. In order to
synthesize a lossless two-port (e.g., using Darlington synthesis),

needs to be positive real, which turns out to be the case if
and only if is bounded real, i.e., takes values in the unit disc,
and satisfies certain interpolation conditions. For simplicity, we
assume that the load does not have any transmission zero on the
imaginary axis. In this case, the required interpolation condi-
tions are

for (2.4)

Thus, the problem of maximizing the transducer power gain
amounts to minimizing the norm of subject to the con-
straints (2.4).

Since the transducer power gain is rarely required to be uni-
form across frequencies, the usual approach to the problem is to
specify a desired transducer power gain shape and then to deter-
mine whether a solution is feasible. (See [10, Ch. 4]. Also see
[26] for an alternative formulation generalizing Youla’s theory.)
However, in the context of the theory developed in the present
paper, we may instead select the zeros of .

As mentioned in the previous example, the theory of the paper
applies to any class of functions which is conformally equiva-
lent to positive real functions. Thus we begin by translating the
problem to the “discrete-time setting” via the conformal map-
ping , which maps the right-half-plane
bijectively onto the complement of the unit disc. We use the no-
tation . In this representation,
the transducer power gain becomes

Next, the conformal mapping

Fig. 4. Filter bank.

transforms the bounded real functionto the Carathéodory
function . Then, the roots of are precisely the zeros of

and, hence, zeros of in (1.5). The interpolation conditions
(2.4) translate directly to interpolation conditions forvia the
above transformations. In Section VI, we shall return with a nu-
merical example, which demonstrates the computation theory.

Example 3) Spectral Estimation:Consider a scalar
zero-mean, stationary Gaussian stochastic process ,
and denote by , , its power spectral density.
Then

where is a Carathéodory function with the series expansion

about infinity, where E for .
Traditionally, in order to estimate from a realization

of the process, one estimates first a number of
covariance samples , where , via some
ergodic estimatesuch as

(2.5)

Knowledge of imposes certain interpolation
conditions on at infinity. Finding all satisfying these is the
topic which originally motivated the research programs from
which the results of this paper emanated [17], [18], [6], [5], [4],
[7], [8], A complete parameterization of all solutions of degree
at most was provided in [6].

Here we shall take a radically different approach to spectral
estimation that is based on nontraditional covariance measure-
ments. The basic idea is to determine covariance estimates after
passing the observed time series through a bank of filter with
different frequency response and then integrating these statis-
tical measurements in one Markovian model.

Given a number of poles of modulus less than
one and with , let

(2.6)

form a bank of stable filters, driven byas in Fig. 4, and de-
note the corresponding output processes by . For
simplicity of exposition, we assume that are dis-
tinct and real, hence, for this paper, avoiding the situation with
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complex pairs of poles. The general case will be presented in
[3]. The idea is that the transfer functions are (conjugate)
Cauchy kernels in the sense that

(2.7)

for any which is analytic in and square-inte-
grable on the unit circle. To see this, note that, if

, then, by orthogo-
nality, the integral in (2.7) equals ,
because . Therefore,
assuming that the filter has come to statistical steady state, the
zeroth order covariance lag of the output processis given by

E

and therefore, in view of (2.7), .
Consequently, the 0th order covariance data for the outputs of
the filter bank supply the interpolation constraints

(2.8)

where can be determined via ergodic
estimates. An advantage of this approach is that interpolation of
the spectrum can be chosen closer to the unit circle in precisely
the frequency band where high resolution is desired. We shall
return with a numerical example at the end of Section VI.

III. PRELIMINARIES AND NOTATION

For simplicity, in this paper we only consider the case where
the interpolation points in are distinct. The general case works
similarly. Moreover, from now on,we assume that the Pick ma-
trix (1.2)is positive–definite,to avoid the degenerate case where
the solution is unique. Also, for convenience, we normalize the
problem so that

and is real.

This is done without loss of generality since, first, the transfor-
mation

sends an arbitrary to infinity and is a bianalytic map from
into itself, and, second, we can subtract the same imaginary

constant from all values without altering the problem.
Denote by the space of functions which are square-in-

tegrable on the unit circle. This is a Hilbert space with inner
product

Moreover, for an , let

be its Fourier representation. In this notation

Next, let be the standard Hardy space of all functions which
are analytic in theexteriorof the unit disc, , and have square-
integrable limits on the boundary

As usual, is identified with the subspace of with van-
ishing negative-Fourier coefficients. More precisely, for

The class of all Carathéodory functions in will be denoted by
. Moreover, we denote by the subclass ofstrictly positive

real functions,whose domain of analyticity includes the unit
circle and has positive real parts.

Now, consider the data and with the standing assump-
tion that . It is a well-known consequence of Beurling’s
Theorem [24] that the kernel of the evaluation map

defined via

...

is given by

ker

where is theBlaschke product

Now, let be the orthogonal complement of in ,
i.e., the subspace satisfying

which will be referred to as thecoinvariant subspacecorre-
sponding to , since is invariant under the shift . Con-
necting to the filter bank in Example 3 in Section II, we
see that, provided for , as suggested
by the interpolation problem, the filter-bank transfer functions
(2.6) form a basis of . However, we prefer to work in a
basis for which is orthogonal to
the rest of the base elements. Thus, we choose

(3.1)
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For future reference, we list the four identities

(3.2)

which hold for all . In fact, they follow readily from
(2.7) and with the corresponding conjugated
identities. We also remark that there is a natural basis for
obtained by extending via

for (3.3)

The subspace consists precisely of all rational func-
tions of the form

where

(3.4)

and is some polynomial of
degree at most . Therefore, any rational function of degree at
most can be written as

where

Throughout this paper, we shall use such representations for
rational functions, and in particular the functions ,
and , introduced in Section I will belong to . Hence,

, defined by (1.5), will be a symmetric pseudopolynomial
in the basis elements of and , where, in particular,

is the space of constant functions. In general,
the space of pseudopolynomials in this basis will be denoted by

, and is defined by

span

(3.5)

In particular and so do and . Moreover, we define
the subset

and for all (3.6)

of symmetric and positive functions in. Any is a
coercive spectral density.

IV. A GENERALIZED ENTROPY CRITERION FOR

NEVANLINNA –PICK INTERPOLATION

Given any function , consider, for each ,
the generalized entropy gain

(4.1)

where

(4.2)

is the corresponding spectral density.

Entropy integrals such as (4.1) have, of course, a long his-
tory. For example, see [23] and [28] for use of entropy gains in
signal processing, and see [33] for use in control. The ex-
pression in formula (4.1) reduces to the standard entropy gain
in the signal processing literature

(4.3)

when we set . The unique maximizing function of
subject to the interpolation constraints (1.1) can be obtained by
the Nevanlinna–Pick algorithm [38] and is often referred to as
thecentralor maximum entropysolution.

Since , there is a unique factorization

(4.4)

such that has no zeros in the closure of , i.e.,
is aminimum-phasespectral factor of . In particular,

. It turns out that there is a unique solutionto the
Nevanlinna–Pick problem with degree constraint which maxi-
mizes the above entropy functional. Moreover, this solution sat-
isfies

(4.5)

where is also minimum-phase. Hence, the entropy
maximization forces a preselected spectral zero structure for the
interpolating function, as seen from the following theorem, the
proof of which will be concluded in the next section, when all
necessary lemmas have been established.

Theorem 4.1:Given a , there exists a unique solution
to the constrained optimization problem

(4.6)

subject to the constraints

for (4.7)

Moreover, this solution is of the form

(4.8)

and, hence, of degree at most, and

(4.9)

Conversely, if satisfies conditions (4.7)–(4.9), it is the
unique solution of (4.6).

Theorem 4.1 provides a complete parameterization of all
pairs , defining a strictly positive real solution (4.8) to
the Nevanlinna–Pick problem with degree constraint, in terms
of the zeros of the minimum-phase spectral factor of the
spectral density . These zeros may be chosen arbitrarily
in the open unit disc.

Corollary 4.2 (Spectral Zero Assignability Theorem):For
each minimum-phase , normalized so that ,
there exists a unique minimum-phase such that
the unique positive-real function satisfying (4.5) solves
the interpolation problem (4.7). In other words, there is a
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bijective correspondence between pairs solving the
Nevanlinna–Pick problem with degree constraint and the set of

points in the open unit disc, these being the zeros of .
Theprimal problem(4.6) is an infinite-dimensional optimiza-

tion problem. However, since there are only finitely many inter-
polation constraints, there is a dual problem with finitely many
variables. From conditions (4.8) and (4.9), we see that

where . In terms of the basis intro-
duced in Section III

(4.10)

Since , .
Therefore, since is positive on the circle, is real
and positive. Hence, we may identify with the vector

of coefficients belonging to the set

for all

Clearly, if and only if . As we shall see shortly
the -parameters will essentially be the Lagrange multipliers for
the dual problem.

Now, consider the Lagrange function

Re

(4.11)

Since the primal problem (4.6) amounts to maximizing a strictly
concave function over a convex region, the Lagrange function
has a saddle point [32, p. 458] provided there is a stationary
point in , and, in this case, the optimal Lagrange vector

can be determined by solving the
dual problemto minimize

(4.12)

Now, consider the linear map defined by

Re

for (4.13)

The function takes finite values only for a subset of
and, in particular, on the set

(4.14)

We have the following proposition, the proof of which is de-
ferred to the Appendix.

Proposition 4.3: For each , the map
has a unique maximum in , and it is given by

(4.15)

where is defined from (4.10) and .
This proposition defines, for each , a function
, which, as is easy to check, can be written as

in terms of the corresponding . We want to show that
there is a unique minimizing, denoted , such that
satisfies the interpolation condition (4.7). In this case, setting

for all

Now, for any which satisfies the interpolation con-
straints (4.7)

In particular, this holds for so that .
Hence

(4.16)

if satisfies the interpolation constraints. Consequently, if we
can show that has a minimum , then has a maximum
in , and the optimal values of the two problems coincide.

It turns out to be more convenient to use thes as dual vari-
ables.

Proposition 4.4: The dual functional (4.12) is

where

Re

(4.17)

and

We are now in a position to formulate the dual version of
Theorem 4.1, the proof of which will be deferred to the next
section. For simplicity, we remove the constant term, which
does not affect the optimization.

Theorem 4.5:Given a , there exists a unique solution
to the dual problem

(4.18)
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Moreover, to the minimizing there corresponds an
such that

(4.19)

where is given by (4.10). Moreover, this functionsatisfies
conditions (4.7)–(4.9) in Theorem 4.1, namely

for (4.20)

(4.21)

(4.22)

Conversely, any which satisfies these conditions can be
constructed from the unique solution of (4.18) via (4.19).

We conclude by noting that if the problem data is real or self
conjugate, and is real, then both the function constructed
above, and the function , satisfy the conditions of Theorems
4.1 and 4.5 so that, by uniqueness, they must coincide.

Corollary 4.6: Assume that the sets and are self-con-
jugate and that whenever , and that is real.
Then, the optimizing functions in Theorems 4.1 and 4.5
have real coefficients. In particular, there is a unique pair of real
functions and in , devoid of zeros in closure of

, such that

for

We shall return to the special case covered in Corollary 4.6 in
Section VI, and we shall refer to it as theself-conjugate case.

V. THE CONVEX OPTIMIZATION PROBLEM

In this section, we shall analyze the functional , con-
structed in the previous section. We shall show that it has a
unique minimum in , which is instrumental in proving The-
orem 4.1 and Theorem 4.5. To this end, we first extend
to the closure of , and consider

Proposition 5.1: The functional is a function on
and has a continuous extension to the boundary that is finite

for all . Moreover, is strictly convex, and is a closed
and convex set.

This proposition, along with Propositions 5.2 and 5.4 below,
are analogous to related results in [7], developed for the covari-
ance extension problem. Their proofs are similar,mutatis mu-
tandis,to those developed in [7], except for Lemma 5.3 below.
The complete proofs are adapted to the present framework and
included in the appendix for the convenience of the reader.

In order to ensure that achieves a minimum on , it is
important to know whether is proper, i.e., whether
is compact whenever is compact. In this case, of course, a
unique minimum will exist.

Proposition 5.2: For all , is compact.
Thus, is proper [i.e., is compact whenever is
compact] and bounded from below.

The proof of this proposition, given in the appendix, relies on
the analysis of the growth of , which entails a comparison of
linear and logarithmic growth. To this end, the following lemma
is especially important. We note that its proof is the only point
in our construction and argument in which we use the Pick con-
dition in an essential way. Denote the linear part of by

Re

(5.1)

Lemma 5.3:For each nonzero , .
Proof: Since , there exists a strictly positive real

interpolant. Choose an arbitrary such interpolant, and denote it
by . Then, recalling that , (3.2) yields

and

for . For any in , we compute

and if and only if .
Finally, we need to exclude the possibility that the minimum

occurs on the boundary. This is the content of the following
proposition, also proved in the Appendix.

Proposition 5.4: For , the functional never at-
tains a minimum on the boundary .

Hence, we have established that is strictly convex, has
compact sublevel sets and the minimum does not occur on the
boundary of . Consequently, it has a unique minimum, which
occurs in the open set . Clearly, this minimum point will be a
stationary pointwithvanishing gradient. As the following lemma
shows, the gradient becomes zero precisely when the interpola-
tion conditions are satisfied, and in fact the value of the gradient
depends only on the mismatch at the interpolation points.

Before stating the lemma, however, let us, for the convenience
of the reader, review a few basic facts from complex function
theory. In what follows, it will be convenient to use complex
partial differential operators acting on smooth, but not neces-
sarily complex analytic, functions. In particular, if we write the
complex vector as a sum of real and imaginary
parts, this defines the differential operators

and
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which operate on smooth functions. Indeed, the second oper-
ator is the Cauchy–Riemann operator which characterizes the
analytic functions of via

and, for example, while conjugation, viewed as the function de-
fined by , is of course not analytic, it is smooth
and satisfies

and

Lemma 5.5:At any point the gradient of is given
by

(5.2)

for (5.3)

where is the function satisfying

(5.4)

with corresponding to as in (4.10).
Proof: The existence of a function as claimed in the

statement is obvious by virtue of the fact that is
bounded and greater than zero on the unit circle. Recalling that

for , we have

Since , this is the same as (5.3). To see this, use (3.2)
and note that . For the case , we need to take the
real derivative

which, again using (3.20), yields (5.2).
We are now prepared for the proof of our main results.

Proof of Theorem 4.5:Propositions 5.1, 5.2, and 5.4 es-
tablish the existence of a unique minimum in . Then,
Lemma 5.5 shows that the interpolation conditions are met for
the corresponding -function satisfying (5.4). The construc-
tion of such a function proceeds as follows. Since and
is rational, it admits a rational spectral factorization

, where with a stable poly-
nomial of degree at most. Hence, . Then, we solve
the linear equation for . This
linear equation has always a unique solution becausehas no
zeros in ; cf. the discussion in [9]. Then, ,
and all conditions of the theorem are satisfied.

Conversely, given an satisfying (4.21) and (4.22),
a unique can be obtained from (5.4). Finally, in view
of Lemma 5.5, the interpolation conditions (5.4) imply that the
gradient of for the corresponding is zero. Thus, it is the
unique minimizing .

Proof of Theorem 4.1:Let us denote by the minimizing
in Theorem 4.5. Then, since , we have
in the notation of Proposition 4.4. Let be the unique corre-
sponding defined via Proposition 4.3. By Theorem 4.5,

satisfies conditions (4.7)–(4.9). Then, since thussatisfies the
interpolation condition, (4.16) holds, implying thatis the max-
imizing of Theorem 4.1. Conversely, ifsatisfies (4.7)–(4.9),
by Theorem 4.5, the corresponding, defined via (4.19), is the
unique maximizing solution to the dual problem. Therefore, it
follows in the same way as above, thatis the unique maxi-
mizing solution to the primal problem.

An interesting, and useful, aspect of the functionals studied
using interior point methods is that they contain a barrier term,
which is infinite on the boundary of the closed convex set in
question. At first glance, the logarithmic integrand in
might seem to be a barrier-like term, but, as we have seen in
Section V, by a theorem of Szegö, the logarithmic integrand is
in fact integrable for nonzero having zeros on the boundary
of the unit circle. Hence, does not become infinite on
the entire boundary of . Nonetheless, has a very
interesting barrier-type property as described in the following
proposition and proven in the Appendix.

Proposition 5.6: The dual functional has an infinite
gradient on the boundary .

As far as computation is concerned, this is a useful property
of the convex optimization problem.

VI. COMPUTATIONAL PROCEDURE

Given , define the class of (strictly) positive-real func-
tions

having the property that

(6.1)

We want to determine the unique function inwhich also satis-
fies the interpolation conditions. To this end, we shall construct
a sequence of functions

which converges to the required interpolant.
As before, we may write (6.1) as

(6.2)

where satisfies

(6.3)

It is easy to see that this defines a bijection

(6.4)
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To see this, note that

and

where and are polynomials of at most degreeand
is a pseudopolynomial, also of at most degree.

Since is strictly positive real, both and
must be Schur polynomials. Then, determine via a stable
polynomial factorization

(6.5)

and solve the linear system

(6.6)

for . In fact, (6.6) is a linear (Hankel Toeplitz) system
in the coefficients of the polynomials, which is

nonsingular since is a Schur polynomial; see, e.g., [9].
Then

Given an we can determine the corresponding gradient
of by means of Lemma 5.5. The following lemma gives
the equations for the Hessian matrix

(6.7)

Lemma 6.1:Let be the unique positive-real function
such that

(6.8)

and is real. Then the Hessian (6.7) is given by

for

for

for

for

for
(6.9)

where is the derivative of .
Next, we turn to the computational procedure, which will be

based on Newton’s method [31], [32]. We need an ,

and a corresponding defined via (6.2), as an initial condi-
tion. We may choose . Each iteration in our procedure
consists of four steps and updates the pair to , in the
following way.

Step 1) given , let be the gradient defined by (5.2)
and (5.3).

Step 2) determine the unique positive real functionsatis-
fying (6.8), which is a linear problem of the same
type as the one used to determinefrom . In
fact, exchanging for and for

in (6.6) we obtain

where

The Hessian is then determined from as in
Lemma 6.1.

Step 3) update by applying Newton’s method to the
function . A Newton step yields

where needs to chosen so that

for all (6.10)

This positivity condition is tested in Step 4.
Step 4) factor as in (6.3). This is also a test for con-

dition (6.10). If the test fails, return to Step 3 and de-
crease the step size. If not, check whether the norm
of is sufficiently small. Recall that
this norm quantifies the interpolation error, as can
be seen from Lemma 5.5. If this error is small, stop;
otherwise, use the linear procedure above to deter-
mine the next iterate . Then, set
and return to Step 1.

The computations can be carried out quite efficiently using
state space descriptions. We restrict our attention to the self-
conjugate case, where both and are self-conjugate and

whenever , and is real (see Corollary
4.6.) In particular, we develop the steps of the algorithm so as
to avoid complex arithmetic.

It is easy to see that, in this case

(6.11)

is a real polynomial and

(6.12)

is a real function, where is
the reverse polynomial. For the rest of this section, we shall be
concerned with real interpolation functions.

Any real function admits a state space representa-
tion of the form

(6.13)
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where are taken in the observer canonical form

...
...

.. .
...

...

(6.14)

being the Markov parameters in the Taylor ex-
pansion

about infinity. We shall use the compact notation

for this representation, and keep and fixed when repre-
senting real functions in . Since the function (6.13) is com-
pletely determined by the Markov parameters , we shall
refer to them as theMarkov coordinatesof the function (6.13).
Alternatively, can also be represented with respect to the
standard basis in as

(6.15)

where, of course, are complex numbers. Finally, any
can be uniquely identified by its values at

The correspondence between these three alternative representa-
tions is the content of the following lemma.

Lemma 6.2:Let be the Vandermonde matrix
, and the matrix . Then, for

any

where is defined via (6.15), and

...

Moreover, and are invertible.
Proof: The first correspondence follows immediately

from (6.15) and the expansion

The second correspondence also follows from (6.15). Moreover

can be written as , where is the diagonal
matrix diag and is the Pick matrix for

and . Since there is a unique
function, namely , satisfying this interpolation data, is
positive–definite, establishing the invertibility of. Finally, the
Vandermonde matrix is invertible since the points in are
distinct.

We now reformulate the steps of the algorithm given in Sec-
tion VI in terms of the real Markov coordinates of the relevant
functions. We shall consistently work with functions in .
Therefore, as , we form

where denotes orthogonal projection onto . Since
for a suitable , it follows that

for

Next, define to be the unique function in such that

for (6.16)

This function has the form , where is
given by (6.11), and where the coefficients of the polynomial

, of degree at most, can be determined by solving the linear
(Vandermonde) system of equations defined by (6.16). The gra-
dient of in Lemma 5.5 can then be expressed in terms of the
“error function”

(6.17)

which also belongs to . In fact

(6.18)

Moreover, we introduce an -representation for any
and any given by writing

where are positive real. Finally, we represent
and by their respective Markov coordinates and

, respectively, in the standard state-space representation
described above, i.e.,

and

We begin with the state-space implementation of Step 1) in
the computational scheme described above. In this context, we
have the following version of Lemma 5.5.

Proposition 6.3: Given an , let be the positive real
part of , where is defined as in (6.4). Moreover,



BYRNESet al.: A GENERALIZED ENTROPY CRITERION FOR NEVANLINNA–PICK INTERPOLATION WITH DEGREE CONSTRAINT 833

let be given by (6.17), and denote by and
the Markov coordinates of and , respectively. Then

where and be defined as in Lemma 6.2. The matrix
is a real matrix.

Proof: Since and , the
derivative with respect to follows immediately from (5.2).
Next, applying Lemma 6.2, we see that

and that is the :th entry in . Moreover, by
(6.18), we have

for . Finally, using (5.3) and defining
, we obtain

establishing the rest of the proposition.
It remains to determine the error function. For this, we need

the projection .
Proposition 6.4: Suppose has the state-space repre-

sentation

and that and are defined as in (6.14). Then,
is given by

where and are the unique solutions of the Lyapunov equa-
tion

(6.19)

and the Sylvester equation

(6.20)

respectively.
Proof: Since and ,

there is a representation

for some . Now, , and hence

for all (6.21)

Since the functions are precisely those of the form
(6.13), (6.21) is equivalent to

for all (6.22)

where

and

It is well known and straightforward to show thatsatisfies the
Lyapunov equation (6.19) and the Sylvester equation (6.20).
In fact, they are the unique solutions of these equations, as the
eigenvalues of both and are located in the open unit disc
[16]. Since is an observable pair, is positive–defi-
nite, and hence invertible. Then, the proposition follows from
(6.22).

Consequently, the state-space version of Step 1) amounts to
solving first the Lyapunov equation (6.19) and the Sylvester
equation (6.20) to obtain via Proposition 6.4. Then the
gradient is determined from (6.17) as described in Proposition
6.3. Step 2) is developed along the same lines as in Step 1) by in-
stead representing relevant functions in . Then, a Newton
step is taken as described in Step 3. Alternatively, a gradient
method is used, in which case Step 2) can be deleted. Finally,
Step 4), i.e., determining from , amounts to solving a matrix
Riccati equation and a Lyapunov equation, as seen from the fol-
lowing proposition.

Proposition 6.5: Suppose that are strictly pos-
itive real with Markov parameters and , respec-
tively. Let be the unique solution to the algebraic Riccati
equation

(6.23)

having the property that

(6.24)

is stable, and let be the unique solution of the Lyapunov equa-
tion

(6.25)

Then, , defined as in (6.4), has the state-space
representation
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Fig. 5. Power gain versus frequency.

Proof: Observe that determining from
is a standard spectral factorization problem [1], [14] with the
unique minimum-phase solution given by

Then, is determined from the linear equation

which, in the state-space formulation, becomes (6.25). Since
is stable, it has a unique solution. Finally, the state space
description of is obtained by direct computation.

Example 2: Maximal Power Transfer (Continued):Consider
a passive load with impedance

where , , H, and
F. This is a cascade connection of two (first order) filters, which
are the parallel connections of a resistor with a lossy
capacitor and a lossy inductor respectively. The transmission
zeros of are computed as the zeros of
to be , . The Blaschke factor

evaluated at the transmission zeros provides the interpolation
data

Translating the interpolation data to the-domain we obtain
and . Thus, the

interpolation conditions become and
. Suppose we want an effective power

transmission characteristic, i.e., a power transmission gain
close to one at low frequencies. Choice of spectral zeros in the
neighborhood of 1 leads to low-pass gain transmission charac-
teristic. Fig. 5 shows the power transmission gain characteris-

Fig. 6. Power gain versus frequency versus zero location.

Fig. 7. Power gain versus frequency.

tics, i.e., versus , for spectral zeros chosen at 0.6224,
0.9444, and 0.9987, respectively.

Fig. 6 shows the surface vs. versus the choice
of spectral zeros in the interval [0.6224, 0.9987]. Next, suppose
that an additional lossy inductor is connected to the passive load
with H and . Applying the same anal-
ysis as before, is now of third order. A selection of two
spectral zeros parametrizes the coupling network of dimension
two. Selecting a double transmission zero at 0.9236, 0.9611, and
0.9932, respectively, leads to the lowpass characteristics shown
in Fig. 7 (dashed curves correspond to the first two choices while
a continuous curve indicates the last one with a slightly wider
bandwidth).

At the present time, in high-order cases, there is no systematic
way to select transmission zeros that could produce the exact
desired shape of the power transmission gain.

Example 3: Spectral Estimation (Continued):Consider
a bank of three filters as in Fig. 4, with

. Assume that the resulting values for ,
which specify at these points, give interpolating values

. We would like to construct
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Fig. 8. j�(e )j as a function of�.

a model with an all-pole spectral density. Traditional tech-
niques based on the Levinson algorithm are not applicable
since the interpolation data are not in the form of a partial
covariance sequence. Furthermore, the “central solution”
corresponding to leads to filters with spectral
zeros at , whereas we are interested in
an AR model, i.e., one with all zeros at the origin. Selecting

, where , and
using our algorithm, we obtain

Note that the zeros of are at 0.6829 and at0.8677, while
there are no spectral zeros in the unit disc. The corresponding
all-pole spectral density is depicted in Fig. 8.

A natural question regarding this example is why one would
want to use Nevanlinna–Pick data for determining an autore-
gressive model, when such a model can be obtained from tra-
ditional covariance data simply using the Levinson algorithm.
The advantage in using Nevanlinna–Pick data is discussed in [3]
where it is shown that a suitable selection of filterbank poles en-
hances resolution beyond what can be obtained with traditional
covariance estimates. Intuitively, interpolation in the vicinity of
an arc of the unit circle specifies more accurately the shape of

, and, hence, the spectral density, in that part of the spectrum.

VII. CONCLUSION

In this paper, we have given a method for finding all solutions
to the scalar, rational Nevanlinna–Pick interpolation problem,
having degree less than or equal to, in terms of the minima
of a parameterized family of convex optimization problems.
While the problem has been posed for positive real interpolants,
as would arise for the control of discrete-time systems, stan-
dard linear fractional transformations can adapt this general-
ized entropy criterion approach to positive real, or bounded-real,
transfer functions for both continuous and discrete-time linear
systems.

APPENDIX A
PROOFS OFDEFERREDPROPOSITIONS ANDLEMMAS

Proof of Proposition 4.3:We note that , and we
consider the representation

(A.1)

Based on our standing assumptions on , and our choice of
the basis (3.1), (3.3), we have is real, while ,

, are allowed to be complex. Thus, we identify
with the vector of coefficients , and define
the set

(A.2)

Since for , we have
for , and consequently

(A.3)

Suppose that . The function is strictly
concave, so, if it has a stationary point where the gradient is
zero, it has a unique maximum there. Thus, we set
for all . Since is real and , we then have

Re (A.4)

Furthermore, referring back to the discussion on function
theory before Lemma 5.5, we recall that and

. Therefore, in view of (A.3), we obtain

(A.5)

for , and

(A.6)

for , where we have used the orthog-
onality properties discussed in Section III. Now, let

, and note that . From (A.6)

for

Hence, , having a representation (4.15) with and
. By construction, (4.15) holds, and, therefore,

it remains to show that or, equivalently, that ,
to establish that , proving the proposition.
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From (A.4), we immediately see that

Re (A.7)

Next, taking the conjugate of (A.5) we obtain

(A.8)

for . On the other hand

(A.9)

Since , by (A.8) and (A.9)

...
...

. . .
...

...
(A.10)

Now, since the coefficient matrix of (A.10) is the matrixof
Lemma 6.2 and, hence, nonsingular

for (A.11)

Equations (A.7) and (A.11) establish that . There-
fore, since , we have , as required.

Proof of Proposition 4.4:Applying the linear map (4.13),
the dual functional (4.12) can be expressed in terms of

. In fact,

Re

Re (A.12)

In this expression, the sum of the two last terms turns out to be
linear in . To see this and eliminate the dependence ofs on
the s, consider the following:

Re

Re

Using this last expression, the dual function becomes

Re (A.13)

In this expression, defineto be the sum of the second and third
terms. Then, the proposition follows.

Proof of Proposition 5.1:We want to prove that is
finite when . Then the rest follows by inspection. Clearly,

cannot take the value ; hence it remains to prove that
. Since

Then, setting

(A.14)

and

and, hence, the question of whether is reduced to
determining whether

However, since for some bound , this follows
from:

(A.15)

which is the well-known Szegö condition: (A.15) is a neces-
sary and sufficient condition for to have a stable spectral
factor [22]. However, since the rational function belongs
to , there is a function such that

. But then is a stable spectral factor of , and,
hence, (A.15) holds.

Proof of Proposition 5.2:Suppose is a sequence in
. It suffices to show that has a conver-

gent subsequence. The sequencedefines a sequence of un-
ordered -tuples of zeros lying in the unit disc, and a sequence
of scalar multipliers. We wish to prove that both of these se-
quences cluster. To this end, each may be factored as

where is positive and is a function in which is
normalized so that .
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We shall first show that the sequence of zeros clusters. The
corresponding sequence of the (unordered) set ofzeros of each

has a convergent subsequence, since all (unordered) sets
of zeros lie in the closed unit disc. Denote by the function
in which vanishes at this limit set of zeros and which is
normalized so that . By reordering the sequence if
necessary, we may assume the sequence tends to .
Therefore, the sequence has a convergent subsequence if
and only if the sequence does.

We now show that the sequence of multipliersclusters. It
suffices to prove that the sequence is bounded from above
and from below away from zero. This will follow by analyzing
the linear and the logarithmic growth in

with respect to the sequence. Here is the linear term
(5.1) of . We first note that the sequence , where

is the vector corresponding to the pseudopolynomial ,
is bounded from above because the normalized functions
lie in a bounded set. Similarly, by the proof of Lemma 5.3, the
sequence is bounded from below, away from zero. In
particular, the coefficient of in the first term for this expres-
sion for is bounded away from zero and away from.
We also note that the coefficient of in this expression for

is independent of . Next, the term

(A.16)

in this expression for is independent of , and we
claim that it remains bounded as a function of. Indeed

where has all its zeros in the closed unit disc. In particular,
if in corresponds to, then the third term in the expression
for converges to , which is finite since is not
identically zero.

Finally, observe that if a subsequence ofwere to tend to
zero, then would exceed . Likewise, if a subsequence
of were to tend to infinity, would exceed , since linear
growth dominates logarithmic growth.

Proof of Proposition 5.4:Denoting by the di-
rectional derivative of at in the direction , it is easy to see
that

(A.17)

where is the pseudopolynomial

corresponding to the vector . In fact

as , and hence (A.17) follows by dominated conver-
gence.

Now, let and be arbitrary. Then the corre-
sponding pseudopolynomialsand have the properties

for all

and

for all and for some

Since for , we also have
for that

for all

and we may form the directional derivative

(A.18)

where

Now

and hence is a monotonely nondecreasing function of
for all . Consequently tends pointwise to as

. Therefore

as (A.19)

In fact, if

as (A.20)

then is a Cauchy sequence in and hence has a
limit in which must equal a.e. But , having a
pole at , is not summable and hence, as claimed,
(A.20) cannot hold.

Consequently, by virtue of (A.18)

as (A.21)

for all and , and hence, in view of [34, Lemma
26.2], is essentially smooth. Then it follows from [34, Th.
26.3] that the subdifferential of is empty on the boundary of

, and therefore cannot have a minimum there.
Proof of Proposition 5.6:The proof follows directly from

(A.21).
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Proof of Lemma 6.1:For we have

(A.22)

(A.23)

For this becomes , which, in view of
(3.2), becomes if and if . For

, we have and therefore

There are two cases. First, suppose . Then a simple calcu-
lation yields

and hence

which, by (3.2), yields those elements of the Hessian for which
and . Secondly, suppose that . Since

we obtain

(A.24)

To compute the second term in (A.24), differentiate , which
is given, as above, by the Cauchy formula

Then

which, together with (A.24) and (3.2), proves the remaining part
of the lemma.
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