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Abstract

The paper deals with approximations of periodic functions that play a significant role in

harmonic analysis. The approach revisits the trigonometric polynomials, seen as

combinations of functions, and proposes to extend the class of models of the

combined functions to a wider class of functions. The key here is to use structured

functions, that have low complexity, with suitable functional representation and

adapted parametrizations for the approximation. Such representation enables to

approximate multivariate functions with few eventually random samples. The new

parametrization is determined automatically with a greedy procedure, and a low rank

format is used for the approximation associated with each new parametrization. A

supervised learning algorithm is used for the approximation of a function of multiple

random variables in tree-based tensor format, here the particular Tensor Train format.

Adaptive strategies using statistical error estimates are proposed for the selection of the

underlying tensor bases and the ranks for the Tensor-Train format. The method is

applied for the estimation of the wall pressure for a flow over a cylinder for a range of

low to medium Reynolds numbers for which we observe two flow regimes: a laminar

flow with periodic vortex shedding and a laminar boundary layer with a turbulent wake

(sub-critic regime). The automatic re-parametrization enables here to take into account

the specific periodic feature of the pressure.

Keywords: Adapted parametrization, Statistical learning, High-dimensional

approximation, Tree tensor networks, Hierarchical tensor format Tensor train format,

Adaptive algorithms

Introduction

The approximation of periodic functions plays a significant role in harmonic analysis. In

the case of the dynamical response of structures, these responses can notably be highly

perturbedby lowvariability on themodel and it thenbecomesnecessary to develop reliable

and efficient tools for the prediction of the dynamical random response. We are here

interested in constructing an approximation of a multivariate function with periodicity in

one or more dimensions based on observations. This is of special interest for instance in

uncertainty quantification for vibroacoustic problems where the structure is excited with

a harmonic wall pressure field. The wall pressure field is a multivariate function which
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depends on the time and on a set of variables, such as the Reynolds number. In practice,

the wall pressure is computed for different instances of the variables and consequently on

different discrete time grids depending on the instances. When fine discrete models are

involved, the evaluations of the model are costly and we may have access only to sparse

information in terms of instances of the variables and of observation time interval.

The set of trigonometric polynomials iswell adapted for representing periodic functions.

Indeed real trigonometric functions of degreem are written in the following form:

v(t) = a0 +

m
∑

n=1

(an cos(nt) + bn sin(nt))

where the terms are periodic functions with period 2π . This class of functions has nice

properties for approximation use, especially if a function f is continuous and given a

tolerance ε, there exists a trigonometric polynomial v such that |f (t) − v(t)| < ε for all

t. As mentioned above, in many applications we have access to samples of the polyno-

mial from which we want to determine its coefficients. The trigonometric polynomials

are therefore linked to discrete-time signal processing, e.g. the Discrete-Time Fourier

Transform (DTFT) converts a sequence of lengthN on an equally spaced time grid into a

trigonometric polynomial of degree N − 1. The DTFT is extended to the d-dimensional

case in the same manner. Given a sample of a multivariate function, the construction of

an approximation of the function in the class of trigonometric functions has been widely

addressed and the methods for constructing such representation generally depend on the

discretization (see [1–3] and the references herein).

In the present paper an alternative approach is proposed in order to tackle such prob-

lems using a sample that is not necessarily structured. It is based on statistical learning

methods [4] for multi-dimensional problems with s variables where the multivariate out-

put function u(x1, · · · , xs) of the model, identified with an order-s tensor, is approximated

in a parametrized subset of functions

M =
{

v = �(a); a ∈ A
}

(1)

where the parameter a belongs to some set of parametersA and� is amultilinear function

with respect to the parameters a. The key idea is to propose an adapted parametrization

withm new variables zi = gi(x1, . . . , xs), i = 1, . . . , m, for the computation of the response

so to obtain structured approximations with low complexity by exploiting the periodicity

of the function in some dimensions. In the last decade, active subspace [6] and basis adap-

tation methods [5] have been proposed to find low dimensional structures using adapted

parametrizations with reduced dimension. The first class of methods consist in detecting

the directions of strongest variability of a function using gradient evaluations, and then

construct an approximation of the function exploiting the defined low-dimension sub-

space. In [7], active subspaces have been advantageously used for quantifying uncertainty

of hypersonic flows around a cylinder. The second class of methods, namely basis adap-

tation methods, identifies the dominant effects in the form of linear combinations of the

input variables and the adapted reduction of the representation is performed through a

projection technique. In the current work the change of variables is extended to a wider

class of functions g and is donewith amethod inspired from the projection pursuitmethod

[8] which defines automatically and sequentially the new variables to add. The approxi-

mation with this possibly high-dimensional new set of variables is created by exploiting
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specific low-dimensional structures of the function such as sparsity [9] and low rank [10]

structures of the function to be approximated that enable the construction of an approx-

imation using few samples as introduced in [11,12]. In the latter reference, the output is

approximated in suitable low-rank tensor subsets of the form

M =
{

v = �(a1, · · · , aL); al ∈ R
nl

}

(2)

where � is a multilinear map with parameters al , l = 1, . . . , L. This is a special case of (1)

with a = (a1, . . . , aL) and A = R
n1 × . . . × R

nL . The dimension of the parametrization
∑L

l=1 nl grows linearly with m and thus makes possible the approximation with high

dimensionm.

The first part of the paper presents an interpretation of the trigonometric functions as a

composition of functions h◦g with specific structured representations for h, and proposes

a generalization of the representation for h. The second part is dedicated to the algorithm

for constructing the rank structured approximation combined with the change of variable

g(x) used to handle periodic functions. Finally the last part illustrates the method on the

pressure of a flow around a cylinder.

Periodic functions

Let u ∈ H be a multivariate function, with H a Hilbert space, which depends on a set

of independent variables X = (X1, . . . , Xs). In the present paper, we consider the specific

case where the function u is periodic with respect to one variable denoted τ so that we

have X = (�, τ ), with � = (X1, . . . , Xd) and τ = Xd+1, and s = d + 1.

A variable Xν has values in Xν and an associated measure dpν , 1 ≤ ν ≤ s. The variable

X has values in X = X1 × · · · × Xs and an associated measure dp = dp1 × · · · ×

dps. The variables Xν , ν = 1, . . . , d can be random variables, dpν being in that case

a probability measure on Xν . Let H be the Hilbert space defined on X , it is a tensor

space H = H1 ⊗ · · · ⊗ Hs with Hν a Hilbert space defined on Xν . We consider that

Hν ⊂ L2pν
(Xν) is a finite dimensional subspace of square-integrable functions equipped

with thenorm‖u‖2ν =
∫

Xν
u2dpν andH is a subspaceofL2p(X ) equippedwith the canonical

norm ‖u‖2 =
∫

X
u2dp. Let {ψν

i }
Pν

i=1 be an orthonormal basis of Hν and {ψ1
i1

⊗ · · · ⊗

ψ s
is
}(i1,...,is)∈[1,...,P1]×···×[1,...,Pd ] be an orthonormal basis of H.

A natural representation of the periodic function u can be obtained using the Fourier

series. In the following, x = (ξ , t) will denote an observation of X with ξ an observation

of � = (X1, . . . , Xd) and t an observation of τ , i.e. a point in the periodic dimension.

Trigonometric functions as a composition of functions

Let us consider a T-periodic and continuous real valued function u : R → R. It can be

represented by its truncated Fourier series which is a sum of harmonic functions:

u(t) ≈

m−1
∑

n=0

an cos(ωnt) + bn sin(ωnt) (3)
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where the circular frequencies are such that ωn = nωf (multiplicative constraint on ωn),

with ωf = 2π
T , and the coefficients an and bn defined as follows:

an =
ωf

2π

∫ π
ωf

− π
ωf

u(t) cos(ωnt) dt and bn =
ωf

2π

∫ π
ωf

− π
ωf

u(t) sin(ωnt) dt, (4)

for n = 0, . . . , m − 1.

The truncated Fourier series can be seen as a composition of functions of the form:

v(t) = h(g1(t), . . . , gm(t))

where h is an additive model h(z1, . . . , zm) =
∑m

n=1 hn(zn) with hn(zn) = an cos(zn) +

bn sin(zn) ∈ V , where V = span
{

1, cos(·), sin(·)
}

, and gn(t) = ωn−1t for n = 1, . . . , m.

We propose here to extend the Fourier series to a more generalized framework where

the function v is a multivariate function depending both on t and ξ , where the circular

frequencies ωn are chosen adaptively with no multiplicative constraint and where h is

chosen in a wider set of functions than additive models.

Generalizing Fourier series for the representation of a multivariate function in tensor

format

Let us focus on a function u(x) = u(ξ , t), periodic with respect to t. A natural representa-

tion of u is thus by means of a relevant change of variables:

u(x) ≈ h(g1(x), . . . , gm(x), ξ ) (5)

where gn : R
d+1 → R, n = 1, . . . , m are new variables chosen under the form

gn(ξ , t) = ωn(ξ )t (6)

and where h ∈ V⊗m ⊗H1 ⊗· · ·⊗Hd : R
[0,T]m×�1×···×�d → R. Representing the periodic

function under the form (5) can lead to the definition of a high numberm of new variables

so that we will consider subsets of low rank tensor formats for the high dimensional

function h of dimensionM = m + d.

AM-dimensional function v in a subset of tensors can be written:

v(z) = �(z)(a1, . . . , aL) (7)

where �(x) is a multilinear map with parameters (a1, . . . , aL). We consider here a model

class of rank-structured functions associated with a notion of rank. A well known rank is

the canonical rank associated to the sum of multiplicative models. The canonical rank of

a function h is the minimal integer rankC (v) = r such that

v(z) =

r
∑

k=1

v1k (z1) . . . v
M
k (zM)

and we define the subset of canonical tensors:

T
C
r = {v ∈ H : rankC (v) ≤ r}. (8)
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It canbe associated to theparametrized representation (7)withL = M, whereal ∈ R
r×nl

with nl the dimension of the functional basis on which the functions vl
k
are represented,

k = 1, . . . , r and l = 1, . . . ,M. We can consider other notions of ranks which provide

different models with lower complexity. The α-rank of v, denoted by rankα(v), is the

minimal integer rα such that

v(z) =

rα
∑

k=1

vα
k (zα)v

αc

k (zαc )

with α ⊂ {1, . . . ,M}, and zα and zαc complementary groups of variables. The T -rank of v,

denoted by rankT (v) = {rankα(v) : α ∈ T }, is the tuple r = {rα}α∈T such that

v(z) =

rα
∑

k=1

vα
k (zα)v

αc

k (zαc ), ∀α ∈ T

where T is a collection of subsets of {1, . . . ,M}. We define the subset of rank-structured

functions:

T
T
r = {v ∈ H : rankT (v) ≤ r}. (9)

The complexity of the associated parametrized representations of tensors is linear with

the dimensionM and polynomial with the ranks.

Statistical learningmethod for approximating a function in tensor format with

a change of variables

Supervised statistical learning

We consider a model that returns a real-valued variable Y = u(X). An approximation v

of the function u, also referred to as metamodel, can be obtained by minimizing the risk

R(v) =

∫

X

ℓ(u(x), v(x))dp(x)

over a model class M. The loss function ℓ measures a distance between the observation

u(x) and the prediction v(x). In the case of the least squares method, it is chosen as

ℓ(y, v(x)) = (y − v(x))2.

Let S = {(xk , yk ) : 1 ≤ k ≤ N } be a sample of n realizations of (X, Y ). In practice, the

approximation is constructed by minimizing the empirical risk

RS(v) =
1

N

N
∑

k=1

ℓ(yk , v(xk )), (10)

taken as an estimator of the risk. A regularization term R can be used for stability reasons

when the training sample is small. An approximation ũ of u is then solution of

min
v∈M

1

N

N
∑

k=1

(

yk − v(xk )
)2

+ λR(v), (11)

with the regularization parameter λ ≥ 0, chosen or computed. The accuracy of the

metamodel ũ is estimated using an estimator of the L2 error. In practice, the number

of numerical experiments is too small to sacrifice part of it for the error estimation. The
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error is thus estimated using a k-fold cross validation estimator and more specifically the

leave-one-out cross validation estimator [4] which can be easily evaluated by constructing

one single metamodel [13]. Cross validation estimators can be used for model selection.

In the following, we present a method to determine ũ(x) in a sequence of model classes

M(m) =
{

v(x) = h(g1(x), . . . , gm(x), ξ ); h ∈ Mh, gi ∈ Mg for i = 1, . . . , m
}

(12)

withMh a linear ormultilinearmodel class and gi ∈ Mg a linearmodel class.We consider

here multilinear models and more specifically the tensor subset T T
r in order to handle

the possibly high dimensional m + d problem. We briefly recall the learning algorithm

in a tensor subset [12] and then present the automatic computation of the new variables

zi = gi(x), i = 1, . . . , m.

Learning with tensor formats

Let z ∈ R
M , an approximation of u in a tensor subset (2) can be obtained by minimizing

the empirical least squares risk:

min
a1 ,...,aL

1

N

N
∑

k=1

(

yk − �(zk )(a1, . . . , aL)
)2

+

L
∑

i=1

λiRi(ai) (13)

where λiRi(ai) are regularization functions. Problem (13) is solved using an alternating

minimization algorithm which consists in successively solving an optimization problem

on aj

min
aj

1

N

N
∑

k=1

(

yk − �(zk )(. . . , aj , . . .)
)2

+ λjRj(aj) (14)

for fixed parameters ai, i �= j. Introducing the linear map � j(z)(aj) = �(z)(a1, . . . , aL),

problem (14) yields the following learning problem with a linear model

min
aj

1

N

N
∑

k=1

(

yk − � j(zk )(aj)
)2

+ λjRj(aj). (15)

If Rj(aj) =
∥

∥aj

∥

∥

1
, with ‖v‖1 =

∑#v
i=1 |vi| the ℓ1-norm, problem (15) is a convex optimiza-

tion problem known as Lasso [14] or basis pursuit [15]. The ℓ1-norm is a sparsity inducing

regularization function that yields a solution aj of (15) that may have coefficients equal

to zero. The Lasso is solved using the modified least angle regression algorithm (LARS in

[16]).

The algorithm to solve Problem (13) is described in [11] for the canonical tensor format,

and in [12] for the tree-based tensor format, which is a special case of rank-structured

tensor where T is a dimension partition tree. Adaptive algorithms are proposed to auto-

matically select the tuple yielding a good convergence of the approximation with respect

to its complexity. For tree-based tensor formats, at an iteration i, given an approximation

vi of uwithT -rank (riα)α∈T , the strategy consists in estimating and studying the truncation

errorminrankα (v)≤riα
R(v)−R(u) for different α inT , and choosing to increase the ranks riα

associated with the indices α yielding the highest errors. The algorithm and more details

in the tree-based tensor format case can be found in [12,17].
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Learning method with automatic definition of new variables

We now present the method used to automatically search an adapted parametrization of

the problem by looking for favored directions in the space of the d + 1 input variables. It

consists in writing the approximation under the form (5) where gn(x) can be represented

with a parametrized linear map

gn(x) = w
⊺

nϕ(x) =

p
∑

j=1

wn,jϕj(x) (16)

with wn = (wn,1, . . . , wn,p)
⊺ ∈ R

p the vector of parameters of the representation of gn

on an orthonormal functional basis {ϕj}
p
j=1 of H, and h a M-dimensional function in

the model class of rank structured formats T C
r or T T

r that can be represented with a

parametrized multilinear map

h(z) = �(z)(a1, . . . , aL) (17)

with parameters al , l = 1, . . . , L. The new set of variables z = (z1, . . . , zm, ξ ) is such that

zn = gn(x), n = 1, . . . , m.

Themethod is a Projection Pursuit like method [8] that is generalized to a larger class of

models forh than just additivemodels. It is shown in [18] that under reasonable conditions,

for h ∈ T T
r and g ∈ H we have h ◦ g ∈ L2p(X ). The approximation ũ of the form (5) is thus

parametrized as follows:

ũ(x) = �
(

w
⊺

1 ϕ(x), . . . ,w⊺

mϕ(x), ξ
)

(a1, . . . , aL). (18)

Let (z1, . . . , zm−1) be an initial set of variables. A new variable zm = gm(x) is introduced

using Algorithm 1.

The parameters al , l = 1, . . . , L, and wn, n = 1, . . . , m, solve the minimization problem

(11) over the model class M(m):

min
{al}

L
l=1

,{wn}
m
n=1

1

N

N
∑

k=1

(

yk − �
(

w
⊺

1 ϕ(xk ), . . . ,w⊺

mϕ(xk ), ξ k
)

(a1, . . . , aL)
)2

+

L
∑

i=1

λiRi(ai),

(19)

with xk = (ξ k , tk ). The solution of this problem is found by alternatively solving

min
a1 ,...,aL

1

N

N
∑

k=1

(

yk − �
(

w
⊺

1 ϕ(xk ), . . . ,w⊺

mϕ(xk ), ξ k
)

(a1, . . . , aL)
)2

+

L
∑

i=1

λiRi(ai) (20)
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for fixed (w1, . . . ,wm) using a learning algorithm with rank adaptation [11,12] and

min
w1∈Rp ,...,wm∈Rp

1

N

N
∑

k=1

(

yk − �
(

w
⊺

1 ϕ(xk ), . . . ,w⊺

mϕ(xk ), ξ k
)

(a1, . . . , aL)
)2

(21)

for fixed (a1, . . . , aL). The optimization problem (21) is a nonlinear least squares problem

that is solved with a Gauss-Newton algorithm. The overall algorithm is presented in

Algorithm 2.

In step 5 of algorithm 2, the parametrization of themodel is to be selected in a collection

of parametrizations. In this paper, we consider the rank structured function T T
r where

T is a dimension partition tree over {1, . . . , m}, which corresponds to the model class

of functions in tree-based tensor format [19], a particular class of tensor networks [20].

The new node associated with the new variable zi = gi(x) is added at the top of the

tree. The representation of a function v in T T
r (H) requires the storage of a number of

parameters that depends both on the collection T and on the associated T -rank r, as well

as on the dimensions of the functional spaces in each dimension. To reduce the number

of coefficients that need to be computed during the learning process of a tensor v, one can

then represent v ∈ T T
r (H) for different collections T and associated T -ranks r, choosing

the ones yielding the smallest storage complexity. Furthermore, this adaptation can prove

useful when dealing with changes of variables, as introduced in the previous subsection,

because it can remove the difficulty of how to add a variable: no matter what the initial

ordering of the variables is, an adaptation procedure may be able to find an optimal one

yielding a smaller storage complexity. When T is a dimension partition tree, a stochastic

algorithm is presented in [12] for trying to reduce the storage complexity of a tree-based

tensor format at a given accuracy. This adaptation is not considered in the paper.

Change of variables for periodic functions

In this section we present a generalization of the Fourier series where one does not need a

structured sample (e.g. a grid) in the variable t. Indeed when the function to approximate

is known to be periodic with respect to t, the periodicity of the approximation can be

forced. It is done on the one hand by introducing a functional basis ϕ such that gn = w
⊺

nϕ
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in (16) can be identified to (6) by choosing

ϕj(x) = ϕ
(ξ )
j (ξ )t (22)

where {ϕ
(ξ )
j } is a d-dimensional tensorized orthogonal basis ofH1⊗· · ·⊗Hd . The circular

frequencies in (6) are then expressed as:

ωn(ξ ) =

p
∑

j=1

wn,jϕ
(ξ )
j (ξ ) = w

⊺

nϕ
(ξ )(ξ ). (23)

On the other hand, we choose bases of trigonometric functions {ψn
i }

Pn
i=1 for the represen-

tation of h in the dimensions associated with the new variables zn, n = 1, . . . , m.

Let Tmax be themaximal width of the observation interval in the dimension t. Supposing

this interval is large enough to include the largest periods of the periodic functions that can

be learned, the guarantee for the approximation not to have larger periods is to constrain

the circular frequencies in (6) such that:

ωn ≥
2π

Tmax
, n = 1, . . . , m. (24)

This constraint is imposed for all values taken by ξ in S. Using expression (23), it is recast

under the form

−Aw ≤ −B (25)

where w = (w1, . . . ,wm) ∈ R
p×m, A ∈ R

N×p is the array of evaluations of ϕ
(ξ )
j (ξ ) for the

values (xk1 , . . . , x
k
d
)N
k=1

of ξ in the training set S:

A =

⎡

⎢

⎢

⎣

ϕ
(ξ )
1 (x11 , . . . , x

1
d
) . . . ϕ

(ξ )
p (x11 , . . . , x

1
d
)

...
. . .

...

ϕ
(ξ )
1 (xN1 , . . . , x

N
d
) . . . ϕ

(ξ )
p (xN1 , . . . , x

N
d
)

⎤

⎥

⎥

⎦

, (26)

andB ∈ R
N×m is a full arraywith values−2π/Tmax. The optimization problem (21) for the

computation of the parametersw is replaced with the constrained optimization problem

min
w1∈R

p ,...,wm∈R
p

−Aw≤−B

1

N

N
∑

k=1

(

yk − �
(

w1ϕ(x
k ), . . . ,wmϕ(xk ), ξ k

)

(a1, . . . , aL)
)2

(27)

which is solved with a NonLinear Programming (NLP) method.

Application

The method is applied to the prediction of the wall pressure p for a flow over a cylinder

for two ranges (low and medium) of Reynolds numbers for which we observe two flow

regimes: a laminar flowwith periodic vortex shedding and a laminar boundary layer with a

turbulentwake (sub-critic regime). The automatic re-parametrization enables here to take

into account the specific periodic feature of the pressure p with the time. The variables

of the problem are X = (Re,�, τ ) with τ the time, Re the Reynolds number and � the

angular steps, that take values in X = XRe × X� × Xτ and we have d = 2. The pressure

is evaluated on a tensor grid with
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Fig. 1 Example of a linear tree with five variables yielding the tensor train format [21]:

T = {{1}, {1, 2}, . . . , {1, 2, 3, 4}}

• at low Reynolds numbers: 300 time steps in Xτ = [27 s, 29.4 s], 50 simulations of Re

chosen uniformly on XRe = [70, 200] and 128 angular steps in X� = [0, 2π [,

• at higher Reynolds numbers: 1500 time steps, 11 simulations of Re chosen on XRe =

[7000, 13000] and 320 angular steps in X� = [0, 2π [.

A representation (5) with new variables gn(ξ , t), where ξ = (Re, θ ), is computed with

Algorithm2where the optimizationproblem (21) of step 6 is replacedwith the constrained

optimization problem (27). The new variables gn are represented on a basis of functions

as in (22) where {ϕ
(ξ )
j }Pj=1 is a polynomial basis with maximal partial degree 2 (P = 9).

We choose for the model class of h the tensor train (TT) format associated to the linear

tree T = {{1}, {1, 2}, . . . , {1, . . . ,M − 1}} (see Fig. 1) where M = m + d, the associated

parametrized subset is

{

v = �(a1, . . . , aM); al ∈ R
rl−1×nl×rl , l = 1, . . . ,M

}

with r = (r0, r1, . . . , rM) the TT-rank where r0 = rM = 1, and nl is the dimension

of the functional basis {ψl}
nl
l=1

in dimension l for the representation of h. Here we use

trigonometric bases {1, cos(x), sin(x)} in the dimensions of zi = gi(t, θ , Re) andpolynomial

bases in the dimensions of θ andRe. The sequential quadratic programming (SQL)method

is used to solve (27).
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The accuracy of the metamodel ũ is estimated using the unbiased test error estimator

based on a test set Stest of Ntest realizations of (X, Y ) independent of the training set S:

e2test =
RStest (ũ)

RStest (0)
(28)

whereRStest (v) is the empirical riskdefined in (10).Considering the least squares estimator,

we have e2test =
1

Ntest

∑Ntest
k=1

(yk−ũ(xk ))2

1
Ntest

∑Ntest
k=1

(yk )2
.

Low Reynolds numbers

We first consider the approximation of the wall pressure for low Reynolds numbers for

which the data is given for 50 values of the Reynolds number in XRe = [70, 200]. The

approximation is constructed with the following setting:

• for gi: polynomial bases with a maximal degree of 1 for t and 2 for θ and Re,

• for h: polynomial bases of degree 14 for θ and 3 for Re,

• training sample S using 20 simulations of Re and considering only the 181 first time

steps.

ThealgorithmprovidedanapproximationwithdimensionM = 6 :X = (g1(ξ ), . . . , g4(ξ ), ξ )

and TT-ranks r = [1 3 4 4 4 2 1]. The model error was estimated using two different sam-

ples:

• estimation of the approximation error on the sample Stest with 30 simulations of Re

on the train time range (consisting of the 181 first time steps): e2test = 1.14%,

• estimation of the extrapolation error on the sample Sextra with 30 simulations of Re

on the whole time range (consisting of the 300 available time steps): e2extra = 1.19%.

On Fig. 2 are plotted the predictions with blue crosses and the observations with circles,

the red ones were used for learning the approximation and the green ones for estimating

the model error. We observe a very good match of the predictions with the observations

even beyond the train time range.

The approximation constructed using the proposed change of variable is able to extrap-

olate the wall pressure beyond the time range used for training the approximation. This

extrapolation was made possible by introducing the constraint (24). As an illustration,

Fig. 3 shows the observations (in blue) versus the predictions (in red) on a longer time

interval obtained without constraint. The approximation obviously looses its periodicity.

Table 1 summarizes the results obtainedwith the proposed approach and those obtained

using the change of variable without using the tensor train format. One can observe that

tensor formats enable to break the curse of dimensionality and thus to ease the learning of

the approximation based on observations. Indeed the storage complexity of tensor train

formats is O(MnR2) where n is the order of the dimension of the representation space

in each dimension and R is the order of the rank. That is, it grows only linearly with the

dimension M and quadratically with the rank whereas the storage complexity without

using tensor formats, i.e. on the polynomial chaos, grows factorially or exponentially with

the dimension M. Exploiting low complexity representations as low rank structures is

necessary to address the problem when the dimensionM increases with the definition of

new variables.
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Fig. 2 Low Reynolds numbers. Observations and predictions with respect to time for fixed values of the

other parameters. The predictions are obtained using tensor formats combined with constrained changes of

variables
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Fig. 3 Low Reynolds numbers. Observations and predictions with respect to time for fixed values of the

other parameters. The predictions are obtained using tensor formats combined with changes of variables

(unconstrained)

Table 1 Storage complexity and test error of the approximations obtained with the change of

variable and with and without using Tensor Train (TT) format

Storage complexity Test error e2
test

(%)

TT format + change of variables 594 1.14

Polynomial chaos + change of variables 8482 5.42

High Reynolds numbers

We now consider the approximation of the wall pressure for higher Reynolds numbers

for which the data is given for 11 values of the Reynolds number in XRe = [7000, 13000].

The approximation is constructed with the following setting:

• for gi: polynomial bases with a maximal degree of 1 for t and 2 for θ and Re,

• for h: polynomial bases of degree 20 for θ and 6 for Re,

• training sample S using 8 simulations of Re and considering only the 1000 first time

steps.

ThealgorithmprovidedanapproximationwithdimensionM = 7 :X = (g1(ξ ), . . . , g5(ξ ), ξ )

and TT-ranks r = [1 3 5 5 5 5 1 1]. The model error was estimated using two different

samples:

• estimation of the approximation error on the sample Stest with 3 simulations of Re on

the train time range (consisting of the 1000 first time steps): e2test = 2.97%,

• estimation of the extrapolation error on the sample Sextra with 3 simulations of Re on

the whole time range (consisting of the 1500 available time steps): e2extra = 3.02%.

OnFig. 4 are plotted thepredictionswithblue crosses and theobservationswith circles, the

red ones were used for learning the approximation and the green ones for estimating the
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Fig. 4 High Reynolds numbers. Observations and predictions with respect to time for fixed values of the

other parameters. The predictions are obtained using tensor formats combined with constrained changes of

variables



Chevreuil and Slama Adv. Model. and Simul. in Eng. Sci.           (2021) 8:17 Page 15 of 16

model error. Again we observe a very goodmatch of the predictions with the observations

even beyond the train time range. The TT-rank of the approximation is low making

possible the approximation using few samples of the Reynolds number Re.

Conclusion

This paper presents a new strategy to approximate multivariate functions with peri-

odicity. It gives the principles of the method based on the combination of functions

h(g1(ξ , t), . . . , gm(ξ , t), ξ ) chosen in appropriate classes of functions. The functions gi(ξ , t)

define new variables of the multivariate functions h which is here represented in the class

of rank structured functions. Algorithms are proposed for constructing the approxima-

tion based on observations of the function, a constraint is added for the definition of the

new parameters to promote periodicity of the representation. The numerical simulations

yield good results. An analysis on the convergence of the approximation is to be studied.
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