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In this study, a generalized fuzzy integer programming (GFIP) method is developed for planning waste allocation and facility
expansion under uncertainty.�edevelopedmethod can (i) deal with uncertainties expressed as fuzzy sets with knownmembership
functions regardless of the shapes (linear or nonlinear) of these membership functions, (ii) allow uncertainties to be directly
communicated into the optimization process and the resulting solutions, and (iii) re	ect dynamics in terms of waste-	ow allocation
and facility-capacity expansion. A stepwise interactive algorithm (SIA) is proposed to solve the GFIP problem and generate
solutions expressed as fuzzy sets. �e procedures of the SIA method include (i) discretizing the membership function grade of
fuzzy parameters into a set of �-cut levels; (ii) converting the GFIP problem into an inexact mixed-integer linear programming
(IMILP) problem under each �-cut level; (iii) solving the IMILP problem through an interactive algorithm; and (iv) approximating
the membership function for decision variables through statistical regression methods. �e developed GFIP method is applied to
a municipal solid waste (MSW) management problem to facilitate decision making on waste 	ow allocation and waste-treatment
facilities expansion. �e results, which are expressed as discrete or continuous fuzzy sets, can help identify desired alternatives for
managing MSW under uncertainty.

1. Introduction

Municipal solid waste (MSW) management is a priority for
many developed and developing countries throughout the
world. E
ective planning of MSW is critical for supporting
sustainable socioeconomic development in urban commu-
nities. However, extensive uncertainties may exist in many
system components and impact factors. For example, waste
generation ratewithin a city is related tomany socioeconomic
and environmental factors and exhibits various uncertain
features. Such uncertainties and their interactions can lead
to increased complexities in the related planning e
orts
and will a
ect consequent decision processes. Besides, these
uncertaintiesmay be furthermultiplied becausemany system
components are of multiperiod, multilayer, and multiob-
jective features Li and Huang [1]. Moreover, waste-disposal

facilities in a MSW management system usually have overall
cumulative or daily operating-capacity limits. Increasing
waste generation rates, as a result of population explosion
and economic development, lead to intensi�ed con	icts with
decreasing waste-treatment/disposal capacities. �erefore, it
is desired that the above uncertain and dynamic complexities
be re	ected in e
orts for identifying e
ective environmental
management alternatives.

In the past decades, a number of inexact optimization
techniques were developed to deal with uncertainties and
dynamics in MSWmanagement. �ey were mainly classi�ed
as fuzzy, stochastic, and interval mathematical programming
(FMP, SMP, and IMP, resp.) [2–6]. For example, Li and
Huang [7] proposed an inexact two-stage mixed-integer
linear programming (ITSMILP) method for solid waste
management in the city of Regina, through incorporating
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interval linear programming (ILP), two-stage stochastic pro-
gramming (TSP), and mixed-integer programming (MIP)
within a general mathematical programming framework.
However, IMP could merely deal with interval uncertainties
without distributional information; SMP was inapplicable to
large-scale problems due to its stringent requirements for
information of probabilistic distributions.

Fuzzy mathematical programming (FMP), as a branch
of fuzzy set theory, could generally deal with uncertainties
expressed as fuzzy sets or fuzzy goals/constraints [8–11].
Recently, various FMP methods were employed to deal with
uncertainties in MSW systems [12–15]. For example, Fan et
al. [12] explored a fuzzy linear programming (FLP) method
for dealing with uncertainties expressed as fuzzy sets that
exist in the constraints’ le�-hand and right-hand sides and
the objective function; however, this method was unable to
re	ect dynamic complexities related to capacity expansion
schemes for waste-treatment facilities. Srivastava and Nema
[13] proposed a fuzzy parametric programming model for
identifying desired treatment/disposal facilities, planning
waste management capacities, and allocating waste 	ows
under uncertainty; however, the proposed method generated
deterministic waste allocation schemes without provision of
bases for supporting generation of multiple decision options
corresponding to the uncertain system conditions.

Generalized fuzzy linear programming (GFLP) (or fully
fuzzy linear programming (FFLP)) methods extended tradi-
tional FMP approaches through permitting uncertain infor-
mation in the optimization process and resulting solutions.
Recently, several GFLP (or FFLP) methods were proposed
to deal with uncertain information in both parameters and
decision variables [16–21]. For example, Hosseinzadeh Lot�
et al. [18] developed a lexicography method to solve the FFLP
problem and generate approximate solutions presented as
fuzzy sets. However, previous studies on fuzzy variables in
FMP problemsmainly focused on some special types of fuzzy
sets (such as symmetric, triangular, or trapezoidal fuzzy sets).
Furthermore, some of them might lead to complicated inter-
mediate models and thus were not applicable for large-scale
problems. Fan et al. [19, 20] proposed another kind of fuzzy
programming (named generalized fuzzy linear programming
(GFLP) method) to deal with fuzzy uncertainty in both
parameters and variables, in which all fuzzy sets with known
membership functions can be treated through defuzzi�cation
method (i.e., �-cut method). However, the GFLP approach
cannot re	ect dynamic features in environmental manage-
ment problems.Moreover, no previous studywas reported on
capacity expansion issues under fuzzy conditions through the
generalized fuzzy optimization approach, where expansion
schemes were desired under multiple scenarios and �-cut
levels.

As an extension of developed GFLP approach, a gen-
eralized fuzzy integer programming (GFIP) method would
be proposed for MSW management under uncertainty. �e
proposed GFIP approach integrates the techniques of gener-
alized fuzzy linear programming (GFLP) and mixed-integer
programming (MIP) within an optimization framework. In
detail, (i) the GFIP method can deal with uncertainties
expressed as fuzzy sets with known membership functions,

regardless of whether these functions are linear or nonlinear;
(ii) the proposed GFIP method can allow uncertainties to
be directly communicated into the optimization process and
the resulting solutions; (iii) the GFIP method can re	ect
dynamics in terms of waste-	ow allocation and facility-
capacity expansion; (iv) compared with other inexact mixed-
integer programming approaches (e.g., ITSMILP by Li and
Huang [7]), the GFIP can analyze the inherent interrelation-
ship between the uncertainty of fuzzy parameters (i.e., �-cut
levels) and capacity expansion options of waste management
facilities, and such analysis can help decision makers make
tradeo
s between system reliability and system cost. �en,
a case study will be provided to demonstrate applicability
of the GFIP method to support dynamic analysis for MSW
management under uncertainty. �e results will be used
for generating di
erent decision alternatives under various
system conditions and thus for helping identify desired waste
management policies.

2. Methodology

2.1. Formulation of the Generalized Fuzzy Integer Program-
ming. A GFIP model, with ambiguous coe�cients and deci-
sion variables expressed as fuzzy sets, can be formulated as
follows:

Max �̃ = �̃ × �̃ (1a)

subject to

�̃ × �̃ ≤ 
̃ (1b)

�̃ ≥ 0 (1c)

�̃� = fuzzy continuous variables, �̃� ∈ �̃ ,
� = 1, 2, . . . , � (� < �) (1d)

�̃� = fuzzy integer variables, �̃� ∈ �̃,
� = � + 1, � + 2, . . . , �, (1e)

where �̃ ∈ {�̃}1×�, �̃ ∈ {�̃}�×1, 
̃ ∈ {�̃}�×1, and �̃ ∈ {�̃}�×�; �̃
denotes a set of fuzzy sets; �̃ = (�̃1, �̃2, . . . , �̃�), �̃� =(�̃1, �̃2, . . . , �̃�), 
̃� = (
̃1, 
̃2, . . . , 
̃�), and �̃ = (�̃��)�×�, for
all � ∈ �, � ∈ �. A fuzzy set (�̃) in � can be de�ned as{�, ��̃(�) | � ∈ �, ��̃(�) : � → [0, 1]}, where ��̃(�) is
the membership function or grade of membership [22]. If all

elements in �̃ are integers and��̃(�) is a discretemembership

function, then �̃ is a fuzzy integer set [23].�e value of ��̃(�)
varies between 0 and 1, indicating the possibility of an element� belonging to �̃. ��̃(�) = 1 means that � de�nitely belongs

to the fuzzy set (�̃), while ��̃(�) = 0 denotes that � does not

belong to �̃. �e closer ��̃(�) is to 1, the more likely that �
belongs to �̃; conversely, the closer ��̃(�) is to 0, the less likely
that � belongs to �̃ [22, 24]. An �-cut of �̃ can be de�ned as

an ordinary set (denoted as [�̃]	) in which the membership

degrees of elements exceed �. [�̃]	 is usually a continuous or
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discrete fuzzy interval. Consequently, through the concept of�-cut, each fuzzy parameter can be characterized as a series of
intervals under di
erent �-cut levels. �en, interval analysis
methods can be applied to process these fuzzy intervals.

2.2. Solution Method of GFIP Model through Stepwise Interac-
tive Algorithm. If the parameters and variables inmodel (1a)–
(1e) are triangular fuzzy numbers, several methods can be
applied to solve the model, such as the lexicography method
proposed by Hosseinzadeh Lot� et al. [18] and the methods
of Fan et al. [12] and Kumar et al. [21]. However, when
the parameters of model (1a)–(1e) are expressed through
other kinds of fuzzy numbers, the above methods are not
applicable. Consequently, in this study, a newmethod named
stepwise interactive algorithm (SIA) will be proposed to solve
model (1a)–(1e). �is algorithm is based on computational
principles related to fuzzy intervals [25–28] (see Appendix
section). �e detailed proof of the solution algorithm can be
found in Fan et al. [20]. �e inherent idea of the stepwise
interactive algorithm is based on the design of experiment,
in which the optimization model would be considered as an
experiment with the �-cut levels being the inputs and the
optimal solutions being the outputs. �e detailed procedures
of the SIA method include (i) discretizing the membership
function grade of fuzzy parameters into a set of �-cut levels;
(ii) converting the GFIP problem into an inexact mixed-
integer linear programming (IMILP) problem under each �-
cut level; (iii) solving the IMILP problem through an inter-
active algorithm; and (iv) approximating the membership
function for decision variables through statistical regression
methods. Compared with the previous methods, SIA can
allow uncertainties to be directly communicated into the
optimization process. Moreover, it will not lead to complex
intermediate submodels and thus lead to a relatively low
computational requirement.�is is meaningful when the SIA
method is applied to solve large-scale management models.
Finally, the proposed SIA method can generate solutions
expressed as fuzzy sets.

Since the parameters in model (1a)–(1e) are expressed as
fuzzy sets, these parameters will be defuzzi�ed before the
model is solved. Various defuzzi�cation methods have been
proposed to convert fuzzy sets into crisp sets, including �-
cut, max-membership principle, centroid, weighted average,
mean-max membership, center of sums, center of largest,
and �rst of maxima or last of maxima methods. In this
study, the �-cut would be applied to defuzzify the fuzzy
parameters in model (1a)–(1e) due to its popularity and ease
of implementation. �e concept of �-cut is important in
re	ecting the relationship between fuzzy sets and crisp sets.
Each fuzzy set can be uniquely represented by all of its �-
cuts. As stated by Kreinovich [29], fuzzy data processing is
computable for �-cuts but, in general, not computable for
membership functions. Consequently, the fuzzy parameters
and decision variables in model (1a)–(1e) are defuzzi�ed
through the �-cut method instead of their membership
functions. �rough the �-cut method, the fuzzy parameters
and decision variables in model (1a)–(1e) will be converted
into the related fuzzy intervals. �e optimization model with

interval parameters can then be transformed into determinis-
tic submodels, which can be solved through ordinary solution
methods (e.g., simplex method). �erefore, before solving
model (1a)–(1e), a set of �-cut levels (i.e., �1, �2, . . . , �
) are
selected from the unit interval [0, 1].�en, for any �� ∈ [0, 1],
the associated �-cuts for �̃�, �̃�, �̃��, and 
̃� can be expressed

as (�̃�)	� = [(��)−	� , (��)+	�], (�̃�)	� = [(��)−	� , (��)+	�], (�̃��)	� =[(���)−	� , (���)+	�], and (
̃�)	� = [(
�)−	� , (
�)+	�].
Rank these �-cut levels into an increasing sequence:�(1), �(2), . . . , �(
), where �(1) ≤ �(2) ≤ ⋅ ⋅ ⋅ ≤ �(
). �e

minimum �-cut level [i.e �(1)] will be appointed �rstly to
cut model (1a)–(1e). �en an inexact mixed-integer linear
programming (IMILP) model can be formulated as follows:

Max (�)±	(1) =
�∑
�=1
(��)±	(1) × (��)±	(1) (2a)

subject to

�∑
�=1
(���)±	(1) × (��)±	(1) ≤ (
�)±	(1) � = 1, 2, . . . , � (2b)

(��)±	(1) ≥ 0 � = 1, 2, . . . , � (2c)

(��)±	(1) = interval continuous variables, (��)±	(1) ∈ (�)±	(1) ,
= 1, 2, . . . , � (� < �) ,

(2d)

(��)±	(1) = interval integer variables, (��)±	(1) ∈ (�)±	(1) ,
= � + 1, � + 1, . . . , �,

(2e)

where (�)±	(1) , (��)±	(1) , (��)±	(1) ,(���)±	(1) , and (
�)±	(1) are fuzzy

intervals under �(1). (��)±	(1) = [(��)−	(1) , (��)+	(1)]; (��)±	(1) =
[(��)−	(1) , (��)+	(1)]; (���)±	(1) = [(���)−	(1) , (���)+	(1)]; and (
�)±	(1) =[(
�)−	(1) , (
�)+	(1)]. Fuzzy intervals under other �-cut levels also
have similar expressions. Furthermore, an interval number
(�±) can be de�ned as �± = [�−, �+] = {� | �− ≤ � ≤ �+}.

Model (2a)–(2e) shows the formulation of intervalmixed-
integer linear programming (IMILP)method with all param-
eters expressed as interval numbers. �e IMILP model
was developed through introducing the concept of interval
analysis into amixed-integer linear programming framework
[3]. It allowed uncertainties to be directly communicated into
the optimization processes and resulting solutions and did
not lead to complicated intermediate models [3].

Since model (2a)–(2e) is an inexact optimization model
with all parameters expressed as intervals, it can be solved
through the interactive algorithm proposed by Huang et al.
[3]. Assume that the former �1 coe�cients of model (2a)–
(2e) are positive and the latter �2 coe�cients are negative(�1 + �2 = �). �en model (2a)–(2e) can be converted into
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two submodels. In detail, the �rst submodel corresponding
to (�)+	(1)can be formulated as:

Max (�)+	(1) =
�1∑
�=1
(��)+	(1)(��)+	(1) +

�∑
�=�1+1

(��)+	(1)(��)−	(1)
(3a)

subject to

�∑
�=1

Sign((���)±	(1))
!!!!!!!(���)	(1)

!!!!!!!
−(��)+	(1)

+ �∑
�=�+1

Sign((���)±	(1))
!!!!!!!(���)	(1)

!!!!!!!
+(��)−	(1)

≤ (
�)+	(1) , ∀�

(3b)

(��)±	(1) = interval continuous variables,
� = 1, 2, . . . , �1; �1 + 1, �1 + 2, . . . , �1 + �2;

(�1 ≤ �1, �2 ≤ �2, �1 + �2 = �)
(3c)

(��)±	(1) = interval discrete variables,
� = �1 + 1, �1 + 2, . . . , �1;

�1 + �2 + 1, �1 + �2 + 2, . . . , �
(3d)

(��)±	(1) ≥ 0, ∀�. (3e)

Solutions of (��opt)+	(1)(� = 1, 2, . . . , �1) and (��opt)−	(1)(� =�1+1, �1+2, . . . , �) can be obtained from submodel (3a)–(3e).
�en the second submodel corresponding to (�)−	(1) can be

formulated based on solutions from the �rst submodel, which
can be expressed as follows:

Max (�)−	(1) =
�∑
�=1
(��)−	(1)(��)−	(1) +

�∑
�=�+1

(��)−	(1)(��)+	(1)
(4a)

subject to

�∑
�=1

Sign((���)±	(1))
!!!!!!!(���)	(1)

!!!!!!!
+(��)−	(1)

+ �∑
�=�+1

Sign((���)±	(1))
!!!!!!!(���)	(1)

!!!!!!!
−(��)+	(1)

≤ (
�)−	(1) , for all �

(4b)

(��)±	(1) = interval continuous variables,
� = 1, 2, . . . , �1; �1 + 1, �1 + 2, . . . , �1 + �2,

(�1 ≤ �1, �2 ≤ �2, �1 + �2 = �)
(4c)

(��)±	(1) = interval discrete variables,
� = �1 + 1, �1 + 2, . . . , �1;

�1 + �2 + 1, �1 + �2 + 2, . . . , �
(4d)

(��)−	(1) ≤ (��opt)+	(1) , � = 1, 2, . . . , �1 (4e)

(��)+	(1) ≥ (��opt)−	(1) , � = �1 + 1, �1 + 2, . . . , � (4f)

(��)±	(1) ≥ 0, ∀�. (4g)

Hence, solutions of (��)−	(1)(� = 1, 2, . . . , �1) and

(��)+	(1)(� = �1 + 1, �1 + 2, . . . , �) can be obtained from

submodel (4a)–(4g). �erefore, the �nal solutions for model
(2a)–(2e) can be generated, which are presented as follows:

(��opt)±	(1) = [(��opt)−	(1) (��opt)+	(1)] (5a)

(�opt)±	(1) = [(�opt)−	(1) (�opt)+	(1)] . (5b)

Formulas ((3a)–(3e)) to ((5a)-(5b)) show the detailed
solution process of an IMILP model through the interactive
algorithm (also named two-stepmethod). Based on the inter-
active algorithm, the original IMILP model is �rstly refor-
mulated into two submodels corresponding, respectively, to
its upper and lower bounds of objective function; the two
submodels are then solved separately one a�er another [30].
�e sequence to solve two submodels is subject to the nature
of objective function (max ormin). For amaximized problem
[i.e., model (2a)–(2e)], the submodel corresponding to the
upper bound of the objective function is solved �rst, followed
by solving the submodel corresponding to the lower bound of
the objective function; besides, the optimal solutions from the
�rst submodel should be used as constraints for the second
submodel [30].

Based on solutions of model (2a)–(2e), we will select �(2)
to �(
) in sequence and then formulate corresponding IMILP
models as follows:

Max (�)±	(�) =
�∑
�=1
(��)±	(�) × (��)±	(�) (6a)
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subject to

�∑
�=1
(���)±	(�) × (��)±	(�) ≤ (
�)±	(�) , for � = 1, 2, . . . , � (6b)

(��)±	(�) = interval continuous variables,
� = 1, 2, . . . , �1; �1 + 1, �1 + 2, . . . , �1 + �2,

(�1 ≤ �1, �2 ≤ �2, �1 + �2 = �)
(6c)

(��)±	(�) = interval discrete variables,
� = �1 + 1, �1 + 2, . . . , �1;

�1 + �2 + 1, �1 + �2 + 2, . . . , �
(6d)

(��)±	(�) ⊆ (��opt)±	(�−1) (6e)

(��)±	(1) ≥ 0, ∀�, (6f)

where �(�) ∈ {�(2), . . . , �(
)} and (��opt)±	(�−1) are the optimal

solutions obtained from the IMILP model under �(�−1).
Formula (6e) is proposed to re	ect the property of the fuzzy
number that (��)±	1 ⊇ (��)±	2 holds when �1, �2 ∈ [0, 1] and�1 ≤ �2.

Based on the interactive algorithm, model (6a)–(6f) will
be converted into two submodels as follows.

Submodel 1:

Max (�)+	(�) =
�1∑
�=1
(��)+	(�)(��)+	(�) +

�∑
�=�1+1

(��)+	(�)(��)−	(�)
(7a)

subject to

�∑
�=1

Sign((���)±	(�))
!!!!!!!(���)	(�)

!!!!!!!
−(��)+	(�)

+ �∑
�=�+1

Sign((���)±	(�))
!!!!!!!(���)	(�)

!!!!!!!
+(��)−	(�)

≤ (
�)+	(�) , ∀�

(7b)

(��)±	(�) = interval continuous variables,

� = 1, 2, . . . , �1; �1 + 1, �1 + 2, . . . , �1 + �2,
(�1 ≤ �1, �2 ≤ �2, �1 + �2 = �)

(7c)

(��)±	(�) = interval discrete variables,
� = �1 + 1, �1 + 2, . . . , �1;

�1 + �2 + 1, �1 + �2 + 2, . . . , �
(7d)

(��)+	(�) ≤ (��opt)+	(�−1) , � = 1, 2, . . . , �1 (7e)

(��)−	(�) ≥ (��opt)−	(�−1) , � = �1 + 1, �1 + 2, . . . , � (7f)

(��)±	(�) ≥ 0, ∀�. (7g)

Submodel 2:

Max (�)−	(�) =
�∑
�=1
(��)−	(�)(��)−	(�) +

�∑
�=�+1

(��)−	(�)(��)+	(�) (8a)

subject to

�∑
�=1

Sign((���)±	(�))
!!!!!!!(���)	(�)

!!!!!!!
+(��)−	(�)

+ �∑
�=�+1

Sign((���)±	(�))
!!!!!!!(���)	(�)

!!!!!!!
−(��)+	(�)

≤ (
�)−	(�) , ∀�

(8b)

(��)±	(�) = interval continuous variables,
� = 1, 2, . . . , �1; �1 + 1, �1 + 2, . . . , �1 + �2,

(�1 ≤ �1, �2 ≤ �2, �1 + �2 = �)
(8c)

(��)±	(�) = interval discrete variables,
� = �1 + 1, �1 + 2, . . . , �1;

�1 + �2 + 1, �1 + �2 + 2, . . . , �
(8d)

(��)−	(�) ≤ (��opt)+	(�) , � = 1, 2, . . . , �1 (8e)

(��)+	(�) ≥ (��opt)−	(�) , � = �1 + 1, �1 + 2, . . . , � (8f)

(��)−	(�) ≥ (��opt)−	(�−1) , � = 1, 2, . . . , �1 (8g)

(��)+	(�) ≤ (��opt)+	(�−1) , � = �1 + 1, �1 + 2, . . . , � (8h)

(��)±	(�) ≥ 0, ∀�. (8i)
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From submodels ((7a)–(7g)) and ((8a)–(8i)), we can
obtain the �nal solutions for model (6a)–(6f) under �(�) (' =2, 3, . . . , *) as follows:

(��opt)±	(�) = [(��opt)−	(�) (��opt)+	(�)] (9a)

(�opt)±	(�) = [(�opt)−	(�) (�opt)+	(�)] . (9b)

Based on formulas ((2a)–(2e))–((9a)-(9b)), we can obtain
a series of fuzzy interval solutions for model (1a)–(1e)
under di
erent �-cut levels. �en we can approximate the
membership function for continuous decision variables by
statistical regression methods. In this procedure, the GFIP
model is supposed to be an experiment, with �-cut levels
being its inputs (i.e., independent variables) and the lower
and upper bounds of decision variables being its outputs (i.e.,
dependent variables). Take (��opt)−	 as an example, we can

obtain a regression function between (��opt)−	 and � based on
the fuzzy interval solutions. Such a regression functionwill be
considered as the inverse function of the le� shape function
for �̃�, denoted as -−1(�); then we can acquire the le� shape
function for �̃�, expressed as -(�). In the same way, we can
obtain the right shape function for �̃�, expressed as �(�).
3. Case Study

A hypothetical municipal solid waste (MSW) management
problem is used to illustrate the applicability of GFIP
approach.�e studied system includes threemunicipal cities.
A planning horizon of 15 years is divided into three periods,
with each one having a time interval of 5 years. Two types
of facilities can be available for waste treatment/disposal. A
land�ll is considered in the proposed case due to its crucial
role for MSW disposal in both developed and developing
countries. For example, more than 54 percent of MSW was
land�lled in the United States during 2009 [31], while 89.3
percent of the generated MSW (74.04 million tonnes) was
land�lled in China in 2002 [32]. �e land�ll is typically
characterized as an overall capacity limit. Also, a waste-to-
energy (WTE) facility, which can e
ectively minimize land
depletion caused by land�lling, is employed to serve waste-
disposal needs. It is characterized as a daily capacity limit.

In fact, a MSW management system involves several
processes with socioeconomic and environmental implica-
tions, such aswaste generation, transportation treatment, and
disposal [33]. Extensive uncertainties usually exist in these
processes due to impacts of the economic development, pop-
ulation growth, and human activities.Moreover, probabilistic
methods are not applicable to quantify these uncertainties
when data are insu�cient. Consequently, adoption of fuzzy
set theory would be a potential alternative, especially when
uncertainties can be consciously assumed by decisionmakers
or experts. Furthermore, uncertain inputs in the MSW
management system would lead to variations in the resulting
solutions. �erefore, the GFIP method will be desired to
re	ect uncertain and dynamic complexities in the MSW
management system and generate solutions expressed as
fuzzy sets.

Table 1 shows related waste generation levels and cost
coe�cients, including waste generation rates in three cities,
operation costs of two facilities, and transportation costs for
shippingwaste 	ows.�ese parameters are estimated as trian-
gular fuzzy numbers with knownmost possible values, as well
as le� and right spreads. Table 2 presents capacity expansion
options and related costs forwaste disposal facilities.�e total
capacity of land�ll is (1.8 × 106, 0.2 × 105, 0.3 × 105) tonne,
whichmeans themost possible capacity of land�ll is 1.8×106
tonne, and the lower and upper bound is 1.78 × 106 and1.83 × 106 tonne, respectively. �e daily capacity of WTE
facility is (390, 20, and 20) tonne/day, which means the most
possible capacity and lower and upper bound is 390, 370, and
410 tonne/day, respectively. �e WTE facility will generate
residues of about 30% (10% as its le� and right spread) of the
incoming waste stream. �e revenue from the WTE facility
is approximately $20/tonne, with its le� and right spreads
being $2/tonne. In this study, all parameters are assumed to
be triangular fuzzy numbers. �e triangular fuzzy numbers
are considered in this study because (i) the triangular form
is the simplest type of fuzzy numbers, (ii) many other types
of fuzzy numbers can be estimated through the triangular
fuzzy numbers, and (iii) triangular membership function
can provide the most important information for a fuzzy
set: lower-bound value, upper-bound value, and the most
possible value [34]. Also, other kinds of fuzzy numbers can
be treated through the proposed GFIP approach if their
membership functions are known.

�e problem under consideration is how to e
ectively
allocate waste 	ows and choose appropriate capacity expan-
sion options of waste-disposal facilities under a number
of environmental, economic, and treatment/disposal con-
straints in order to minimize the overall system cost. A GFIP
model can thus be formulated to solve this problem.

In this study, decision variable �̃��� represents the amount
of waste 	ow from city � to waste-treatment facility � in
period �.�eobjective is tominimize the systemcost through
e
ectively allocating waste 	ows from three cities to two
disposal facilities and choosing appropriate waste-disposal-
facility options for excessive waste-disposal requirements.
�e constraints involve relationships between decision vari-
ables and waste generation/management conditions. �us, a
GFIP model can be formulated as follows:

Min �̃ = 1825 3∑
�=1

3∑
�=1

{ 2∑
�=1
�̃��� (T̃R��� + ÕP��) + �̃2��
× [F̃E (F̃T� + ÕP1�)

−R̃E�]}

+ 3∑
�=1

F̃LC�Ã� + 3∑
�=1

3∑
�=1

F̃TC��B̃��
(10a)

subject to
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Table 1: Waste generation levels and cost coe�cients.

Time period

� = 1 � = 2 � = 3

Waste generation W̃G�� (t/day)

City 1 (225, 25, 25) (250, 25, 25) (275, 25, 25)

City 2 (375, 25, 25) (400, 25, 25) (425, 25, 25)

City 3 (300, 25, 25) (325, 25, 25) (350, 25, 25)

Cost of transportation to land�ll T̃R1��
($/t)

City 1 (14.1, 2, 2) (15.5, 2.2, 2.2) (17, 2.4, 2.5)

City 2 (12, 1.5, 2) (13, 1.9, 1.9) (15, 2.2, 1.9)

City 3 (15.1, 2.4, 1.9) (16.5, 2.5, 2.2) (18, 2.6, 2.6)

Cost of transportation to land�ll F̃T�
($/t)

Waste-to-energy facility (10, 1, 1) (12, 1, 1) (14, 1, 1)

Cost of transportation to

waste-to-energy facility T̃R2�� ($/t)

City 1 (11.2, 1.6, 1.6) (12.3, 1.5, 1.5) (13.5, 1.8, 2)

City 2 (11.8, 1.7, 1.6) (12.9, 1.8, 1.8) (14.2, 2, 2)

City 3 (10.2, 1.4, 1.5) (11.3, 1.4, 1.5) (12.6, 1.7, 1.7)

Operation costs ÕP�� ($/t)

Land�ll (50, 8, 7) (58, 10, 10) (68, 15, 15)

Waste-to-energy facility (60, 10, 10) (68, 10, 10) (75, 10, 10)

Table 2: Capacity expansion options and costs for land�ll and WTE facilities.

Data
Time period

� = 1 � = 2 � = 3

Capacity expansion options for WTE
facility (tonne/day)

Δ̃TC1 (option 1) 150 150 150

Δ̃TC2 (option 1) 200 200 200

Δ̃TC3 (option 1) 250 250 250

Capacity expansion options for the
land�ll facility (106 tonne)

Δ̃TC (0.31, 0.01, 0.015) (0.31, 0.01, 0.015) (0.31, 0.01, 0.015)

Capital cost for WTE expansion ($106)

F̃TC1� (option 1) 10.5 8.3 6.5

F̃TC2� (option 1) 15.2 11.9 9.3

F̃TC3� (option 1) 19.8 15.5 12.2

Capital cost for land�ll expansion
($106)

F̃LC� (14, 1, 1) (14, 1, 1) (14, 1, 1)

(1) Land�ll capacity constraint:

1825 3∑
�=1

��∑
�=1

(�̃1�� + �̃2��F̃E) ≤ T̃L

+ Δ̃TC �
�

∑
�=1

Ã� � = 1, 2, 3.
(10b)

(2) WTE facility-capacity constraints:

3∑
�=1
�̃2��� ≤ T̃E + 3∑

�=1

��∑
�=1

Δ̃TClB̃�� � = 1, 2, 3. (10c)

(3) Waste disposal demand constraints:

2∑
�=1
�̃��� ≥ W̃G�� ∀�, �. (10d)
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(4) Nonnegativity constraints:

�̃��� ≥ 0 ∀�, �, �. (10e)

(5) Nonnegativity and binary constraints:

Ã� = {{{{{
≤ 1≥ 0= integer ∀�. (10f)

B̃�� = {{{{{
≤ 1≥ 0= integer ∀', �. (10g)

(6) Land�ll expansion constraint:

3∑
�=1

Ã� ≤ 1. (10h)

(7) WTE facility expansion constraints:

3∑
�=1
B̃�� ≤ 1 ∀�, (10i)

where F̃E is the residue 	ow from WTE to land�ll (% of
incoming mass to WTE facility); F̃LC� is the capital cost of
land�ll expansion in period � ($); F̃T� is the transportation
cost of waste 	ow fromWTE to land�ll in period � ($/tonne);
F̃TC�� is the capital cost of expanding WTE by option '
in period � ($); ÕP�� is the operating cost of facility � in
period � ($/tonne); R̃E� is the revenue from WTE in period� ($/tonne); T̃E is the maximum capacity of WTE facility

(tonne/day); T̃L is the capacity of land�ll (tonne); T̃R��� is
the transportation cost for waste 	ow from city � to facility� during period � ($/tonne); W̃G�� is the waste generation

rate in city � during period � (tonne/day); Δ̃TC is the total

amount of expansion capacity for land�ll (tonne); Δ̃TC� is
the amount of the 'th type of expansion capacity for WTE
(tone/day); �̃��� is the waste-	ow rate from city � to facility �
in period � (tonne/day), � = 1, 2; j = 1, 2, 3; � = 1, 2, 3; Ã� is the
binary decision variable for land�ll expansion at the start of

period �; B̃�� is the binary decision variable for WTE facility
with expansion option ' at the start period of �; � is the index
for facility (� = 1 for land�ll and � = 2 for WTE facility); � is
the index for three cities (� = 1, 2, 3); � is the index for time
periods (� = 1, 2, 3).

In model (10a)–(10i), the objective (i.e., formula (10a)) is
to minimize the total cost of facility expansion and waste-
	ow disposal over the entire planning horizon, which will
cover expenses of handling waste 	ows, charges of expanding
facilities, and revenues from the WTE facility. Constraint
(10b) speci�es that the total amount of waste allocated to the
land�ll must not exceed its existing and expanded capacities.
In this study, one year is assumed to have 365 days, and
there are 5 years in each period. Consequently, the coe�cient

in constraint (10b) would be 1825 (i.e., 365 × 5). Constraint
(10c) means that the actual daily waste 	ows shipped to the
WTE facility should not exceed its existing and expanded
capacities. Constraint (10d) indicates that, for each city in
each period, the waste 	ows transported to the land�ll and
WTEmust be not less than its waste-disposal demand in this
period.�is constraint also assumes that all solid wastes have
to be shipped to a disposal site within a certain period a�er its
generation, and nomass loss is incurred in the transportation
process. Constraints (10f)∼(10i) de�ne the binary variables
related to capacity expansion decisions; constraint (10h)
denotes that the land�ll can only be expanded once within
the entire planning horizon, and constraint (10i) means that
the WTE can be expanded once in each period.

Figure 1 shows the schematic of theGFIPmodel forMSW
management. Obviously, the GFIP model is an integration of
generalized fuzzy linear programming (GFLP) and mixed-
integer linear programming (MILP) methods. Each method
has a unique contribution in enhancing the capability ofGFIP
in dealing with uncertainties and dynamic features in solid
waste management. For example, fuzzy parameters can be
handled by GFLP, and waste management facility expansion
can be addressed by MILP. Besides, a stepwise interactive
algorithm (SIA) is proposed for solving the proposed GFIP
model, which can permit uncertainty to be directly commu-
nicated into the optimization process and resulting solutions.
�rough SIA, the developed GFIP model will �rstly be
converted into several IMILP submodels and then be further
transformed into mixed-integer linear programming (MILP)
submodels. Consequently, the computational complexity of
the GFIP would be reasonable. For example, if � �-cut levels
are identi�ed in solving the GFIPmodel, � IMILP submodels
will be �rstly generated. According to interactive algorithm,
each IMILP submodel can be further converted into two
MILP submodels; thus, the GFIP model will �nally result in2�MILP submodels with deterministic parameters.

4. Result Analysis

In this study, a GFIP model is developed for supporting
decision making in MSW management. A stepwise interac-
tive algorithm (SIA) is proposed to solve the GFIP model.
Based on SIA, six �-cut levels (i.e., 0, 0.3, 0.5, 0.7, 0.85,
and 1) would be considered. Under each �-cut level, the
fuzzy parameters presented in Tables 1 and 2 would be
converted into corresponding fuzzy intervals, and model
(10a)–(10i) would also be transformed into an inexact mixed-
integer linear programming (IMILP) model. Tables 3 to 5
present waste-	ow diversion schemes, capacity expansion
options, and related system costs obtained through IMILP
models under the selected �-cut levels. �e results indicate
that waste-	ow patterns and capacity expansion options
would vary due to temporal and spatial variations in waste
generation rates and waste management conditions.

In period 1, waste from city 1 would be initially shipped
to WTE, with a 	ow amount of 195 tonne/day. For city 1,
the WTE facility would be the �rst choice to serve its waste
disposal requirement. �en the remaining waste would be
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Figure 1: �e schematic of the GFIP model for MSWmanagement.

allocated to the land�ll, with a waste 	ow of (30, 25, and 25)
tonne/day. �e (30, 25, and 25) indicates a triangular fuzzy
number, with 30, 5, and 55 as its most possible value and
lower and upper bound, respectively.�e fuzzy characteristic
of the waste 	ow to the land�ll indicates that the variation in
the waste generation rate of city 1 would be handled through
land�lling. �e waste disposal scheme for city 2 is much
di
erent from that of city 1. �e waste-treatment demand of
city 2 can be satis�ed through land�lling. Consequently, no
waste would 	ow to WTE in this period. Conversely, all of
the generated waste in city 3 would be shipped to WTE in
spite of its variation in waste generation rate.

�e waste allocation schemes for three cities in period 2
would be similar to those in period 1. �e majority of waste
from city 1 would be allocated to WTE, with the residues

being shipped to land�ll. However, compared with the waste
	ows in period 1,morewastewould be transported toWTE in
period 2 as a result of temporally increasing waste generation
rate. Moreover, the amount of waste allocated to WTE from
city 1 would 	uctuate within small intervals under low
plausibilities ((225, 236.6) and (225, 229.9) tonne/day under� = 0 and 0.3, resp.).�is is because the waste generation rate
would vary within signi�cant ranges under low plausibilities.
Meanwhile, land�ll would be the only choice to satisfy the
waste-treatment demand of city 2, while all waste from city 3
would be shipped to WTE.

�e waste-	ow patterns would be changed signi�cantly
in period 3. All waste from the three cities would be delivered
to the land�ll due to its lower operation cost. In detail, waste
	ows shipped to the land�ll from cities 1, 2, and 3 would be
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Figure 2: �e upper bounds of waste 	ows under di
erent �-cut
levels.

(250, 275, and 300), (400, 425, and 450), and (325, 350, and
375) tonne/day, respectively. Also, the (250, 275, and 300),
(400, 425, and 450) and (325, 350, and 375) indicates three
triangular fuzzy numbers, re	ecting uncertainty in resulting
solutions derived from uncertain inputs.

Since parameters in model (10a)–(10i) are expressed as
fuzzy sets, the 	uctuating ranges of these inputs would be
varied under di
erent plausibilities (�-cut levels) and thus
result in variations in the generated solutions. For example,
under � = 0 (the lowest plausibility degree), the amount of
waste allocated to the land�ll from city 1 [denoted as (�111)±	]
would be [5, 55] tonne/day; in comparison, under � = 1
(the highest plausibility degree), this waste 	ow would be 30
tonne/day. As the value of �-cut level increases from 0 to 1,
the lower bound of (�111)±	 would also increase (i.e., 12.5, 17.5,
22.5, and 26.25 tonne/day under � = 0.3, 0.5, 0.7, and 0.85,
resp.), while the upper bound of (�111)±	 would decrease (i.e.,
47.5, 42.5, 37.5, and 33.75 tonne/day under � = 0.3, 0.5, 0.7,
and 0.85, resp.). Figures 2 and 3 show the lower and upper
bounds of waste-	ow patterns under di
erent �-cut levels.
�ey indicate that solutions of waste diversion schemes from
three cities would vary as the variation in �-cut levels. �e
lower bound would increase and the upper bound would
decrease when the �-cut level increases from 0 to 1. Such
variations in waste-	ow patterns would stem from the input
fuzziness of model (10a)–(10i).

Multiple capacity expanding options are considered in
response to fuzzy characteristics of the input parameters.
Table 4 shows capacity expanding options for the land�ll.
Di
erent capacity options would be applied under di
erent
plausibilities (�-cut levels). In detail, the land�ll would be
expanded in period 1 under � = 0. When � = 0, model
(10a)–(10i) would consider all possible values of the waste
generation rates; as a result, the land�ll would be expanded
in period 1 to tackle the variations in waste generation
rates. As the �-cut level increases, uncertainties of the inputs
would decrease, leading to adaptation of expanding option
for the land�ll. When � = 0.3, land�ll expansion would be
applied in period 1 under demanding conditions (i.e., the

X
1

1
1

X
1

1
2

X
1

1
3

X
1

2
1

X
1

2
2

X
1

2
3

X
1

3
1

X
1

3
2

X
1

3
3

X
2

1
1

X
2

1
2

X
2

1
3

X
2

2
1

X
2

2
2

X
2

2
3

X
2

3
1

X
2

3
2

X
2

3
3

� = 1

� = 0.7
� = 0.5
� = 0.3
� = 0

0

100

200

300

400

500

� = 1

� = 0.85

� = 0.85

� = 0.7

� = 0.5
� = 0.3
� = 0

�e lower bounds of waste �ow under di�erent �-cut values

Figure 3: �e lower bounds of waste 	ows under di
erent �-cut
levels.

capacity of land�ll achieves its lower bound and the waste
generation rates reach their upper bounds). �is means that
the existing capacity of land�ll would be su�cient to dispose
of the solid waste under advantageous conditions (i.e., the
capacity of land�ll achieves its upper bound and the waste
generation rates reach their lower bounds). However, when�-cut level increases to 0.5, the land�ll would require an
expansion in period 2 under advantageous conditions due to
the increase in the lower bounds of waste generation rates and
the decrease in the upper bound of land�ll capacity. Under� = 0.7, expansion option of the land�ll would be similar
to that under � = 0.3, except the option being applied in
period 2. As shown in Table 4, when � ≥ 0.85, the land�ll
would be expanded in period 2 under both demanding
and advantageous conditions. In brief, the results in Table 4
suggest that (i) expansion of the land�ll in period 1 leads to
low risk but high system cost and (ii) the land�ll at least is
expanded in period 2.

As shown in Table 5, the WTE facility would generally
be expanded in periods 1 and 2. In period 1, option 1 (i.e.,
150 tonne/day) would be applied for WTE, regardless of
the impacts of uncertain inputs. However, in period 2, the
capacity expanding options would be in	uenced signi�cantly
by system uncertainty. �e WTE facility would be expanded
with di
erent options under di
erent plausibilities in this
period. When � = 0, option 1 is considered to be suitable
for WTE under advantageous conditions, while option 3
is chosen under demanding conditions. As the �-cut level
varies between 0.3 and 0.7, options 1 and 2 are applicable
for WTE under advantageous and demanding conditions.
Furthermore, as shown in Table 5, the WTE facility would at
least be expanded with option 2 in period 2.

Based on the waste-	ow diversion schemes under
selected �-cut levels (as shown in Table 3), we can approxi-
mate their membership functions through statistical regres-
sion. Figure 4 shows themembership functions for the waste-
	ow schemes. It indicates that these membership functions
can be well �tted based on the results in Table 3. However,
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for the variables indicating facility expansion options, it
can hardly obtain their membership function since they are
binary variables. But decisionmakers can still generate appro-
priate waste-	ow diversion schemes and facility expansion
options based on Figure 4 and Tables 4 and 5. For example,
if a decision maker wants to identify the waste management
policy under an �-cut level of 0.6, the waste-	ow patterns can
be obtained through the membership functions in Figure 4
(e.g., (�111)−0.6 = (0.6 + 0.2)/0.04 = 20, (�111)+0.6 = (2.2 −0.6)/0.4 = 40); the facility expansion options can be adopted
based on results under � = 0.5 and 0.7 in Tables 4 and 5.

Table 2 also provides the total system costs (denoted as
the objective function) obtained from the GFIP model under
six �-cut levels.�e results suggest that di
erent plausibilities
of uncertain inputs lead to varied system costs. �e lower
bounds of the objective function correspond to advantageous
conditions, while the upper bounds are associated with
demanding conditions. When � = 0, the system cost

would be $[6.09, 8.02] × 109. Under � = 0.3, the lower
bound of system cost would be $6.18 × 109 and the upper

bound would be $7.27 × 109, leading to a 	uctuating interval
of $[6.18, 7.27] × 109 for system cost. However, the value
of the objective function does not necessarily hold such a
characteristic that as the �-cut level increases, the lower
bound increases and the upper bound decreases (as shown
in Figure 5). For example, the lower bound of the objective

function under � = 0.5 and 0.7 is $6.24 × 109 and $3.8 ×109, respectively. �is is due to the variation in capacity-
expanding options under these two �-cut levels. When� = 0.5, capacity-expanding for land�ll is considered under
both demanding and advantageous conditions; in contrast,
the land�ll would not be expanded under advantageous
conditionswhen� = 0.7, which leads to a signi�cant decrease
of the objective function value.

Generally speaking, the conventional inexact mixed-
integer linear programming (IMILP)methodwould consider
uncertain parameters with known lower and upper bounds.
For the IMILP method, it cannot consider any distributional
information between the lower and upper bounds. In this
study, the solutions of GFIP model under � = 0 are
identical to the solutions obtained from the IMILP model.
As shown in Tables 3 to 5, the solutions of IMILP model
can only provide interval values for waste allocation schemes
and neglect distributional information within these intervals.
Particularly, when distributional information is available for
uncertain inputs, the IMILP method can hardly re	ect the
relationships between uncertainty of the inputs and the
resulting solutions. Conversely, the GFIP method can not
only provide 	uctuating intervals for waste-	ow allocation
schemes (i.e., lower and upper bounds) as well as correspond-
ing capacity expanding options for waste-treatment facilities
but also a
ord plausibilities for such waste management
alternatives.

5. Conclusions

In this study, a generalized fuzzy integer programming
(GFIP) method was developed for solid waste management

under uncertainty. �e developed GFIP could deal with
uncertainties expressed as fuzzy sets that exist in the con-
straints’ le�- and right-sides and the objective function. A
stepwise interactive algorithm (SIA) was proposed to solve
the GFIP model and generate solutions expressed as fuzzy
sets. �e SIA �rstly discretized the membership function
grade into a set of �-cut levels. �en the GFIP model was
converted into a series of IMILP submodels. �e interactive
algorithm proposed by Huang et al. [3] was applied to
solve the IMILP submodels and generate interval solutions
under each �-cut level. �e membership functions for fuzzy
continuous variables were �nally obtained through statistical
regression method based on those interval solutions.

�e developedmethod was applied to a case of municipal
solid waste management to illustrate the applicability of
GFIP method.�e solutions for binary variables, which were
obtained as discrete fuzzy sets, provided di
erent capacity
expansion alternatives for waste-treatment facilities under
di
erent plausibilities of uncertain inputs. �e solutions for
continuous variables, which were expressed as fuzzy sets with
known membership functions, provided optimal schemes
for waste-	ow allocations. �ese solutions were used for
generating decision alternatives and thus helping decision
makers to identify desired policies for MSW management
under uncertainty. Although the case study in this study is
just a hypothetical one, this case involved the main factors
(e.g., transportation, operation, and capacity expansion costs)
in MSW management. Consequently, the developed GFIP
method can also be applied to real-world MSWmanagement
problems. �rough the hypothetical (MSW) case study, the
following advantages of the GFIP approach were presented:
(i) GFIP could deal with fuzzy parameters with any kind of
membership function shape; (ii) the solution process of GFIP
would not generate complicated intermediate submodels; (iii)
the computational requirement was reasonable; and (iv) the
solutions of GFIP exhibited some distributional information,
which was helpful for decisionmaking.�e above advantages
indicated the usefulness and applicability of the developed
GFIP approach in real-world MSWmanagement problem.

Compared with the inexact mixed-integer linear pro-
gramming (IMILP) method, uncertainties presented as fuzzy
sets were incorporated within the GFIP’s optimization pro-
cesses. Solutions obtained fromGFIPmethod speci�ed some
distributional information, which contained not only the
lower and upper bounds with associated plausibility degrees
but also the most possible values.

�e developed GFIP could deal with various fuzzy sets
with known membership functions, regardless of the shapes
of these functions. However, it had di�culties in dealing
with other kinds of uncertainties expressed as probabilistic
distributions. �erefore, improvement for GFIP was further
desired to enhance its capability of dealing with multi-
ple uncertainties through incorporating interval program-
ming or stochastic programming into the GFIP framework.
Besides, the developed GFIP method cannot be used for
evaluating the detailed e
ects of interactions amongmultiple
uncertain inputs. Consequently, the factorial analysismethod
could then be integrated into the GFIP framework to address
the above issue.
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Figure 4: Continued.
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Figure 4: �e membership functions for fuzzy variables.

Table 3: Solutions for the GFIP under each �-cut level.
Waste allocation

�-cut level
0 0.3 0.5 0.7 0.85 1

(�111)±	 [5, 55] [12.5, 47.5] [17.5, 42.5] [22.5, 37.5] [26.25, 33.75] 30(�121)±	 [350, 400] [357.5, 392.5] [362.5, 387.5] [367.5, 382.5] [371.25, 378.75] 375(�131)±	 0 0 0 0 0 0(�112)±	 [0, 38.4] [7.5, 37.6] [12.5, 37.5] [17.5, 32.5] [21.25, 28.75] 25(�122)±	 [375, 425] [382.5, 417.5] [387.5, 412.5] [392.5, 407.5] [396.25, 403.75] 400(�132)±	 0 0 0 0 0 0(�113)±	 [250, 300] [257.5, 292.5] [262.5, 287.5] [267.5, 282.5] [271.25, 278.75] 275(�123)±	 [400, 450] [407.5, 442.5] [412.5, 437.5] [417.5, 432.5] [421.25, 428.75] 425(�133)±	 [325, 375] [332.5, 367.5] [337.5, 362.5] [342.5, 357.5] [346.25, 353.75] 350(�211)±	 195 195 195 195 195 195(�221)±	 0 0 0 0 0 0(�231)±	 [275, 325] [282.5, 317.5] [287.5, 312.5] [292.5, 307.5] [296.25, 303.75] 300(�212)±	 [225, 236.6] [225, 229.9] 225 225 225 225(�222)±	 0 0 0 0 0 0(�232)±	 [300, 350] [307.5, 342.5] [312.5, 337.5] [317.5, 332.5] [321.25, 328.75] 325(�213)±	 0 0 0 0 0 0(�223)±	 0 0 0 0 0 0(�233)±	 0 0 0 0 0 0(�)±	 (×109) [6.09, 8.02] [6.18, 7.27] [6.24, 7.2] [3.8, 7.14] [7, 7.1] 7.05

Appendix

De
nition A.1 (fuzzy set). Let � denote a universal set. �en

a fuzzy set �̃ in� can be de�ned by a membership function
as follows:

��̃ : � N→ [0, 1] . (A.1)

For each � ∈ �, the value of ��̃(�) shows the grade (or

degree) of membership of the element � of� in fuzzy set �̃.
De
nitionA.2 (�-cut). Given a fuzzy set �̃de�ned on� and a

particular number � in the unit interval [0, 1], the �-cut of �̃,

denoted as [�̃]	, is a crisp set that consists of all elements of� whose membership degrees in �̃ are greater than or equal
to �:

[�̃]	 = {� | ��̃ (�) ≥ �, � ∈ [0, 1]} . (A.2)

De
nition A.3 (fuzzy number). A fuzzy number is a convex
normalized fuzzy set in the real number whose membership
function is piecewise continuous.
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Table 4: Capacity expanding options for the land�ll under each �-cut level.
Expanding options

�-cut level
0 0.3 0.5 0.7 0.85 1

(A1)±	 [1, 1] [0, 1] [0, 1] [0, 0] 0 0(A2)±	 0 0 [1, 0] [0, 1] [1, 1] 1(A3)±	 0 0 0 0 0 0

Table 5: Capacity expanding options for the WTE facility under each �-cut level.
Waste allocation

�-cut level
0 0.3 0.5 0.7 0.85 1

(B11)±	 1 1 1 1 1 1(B21)±	 0 0 0 0 0 0(B31)±	 0 0 0 0 0 0(B12)±	 [1, 0] [1, 0] [1, 0] [1, 0] 0 0(B22)±	 0 [0, 1] [0, 1] [0, 1] 1 1(B32)±	 [0, 1] 0 0 0 0 0(B13)±	 0 0 0 0 0 0(B23)±	 0 0 0 0 0 0(B33)±	 0 0 0 0 0 0
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Figure 5:�e objective function values under di
erent �-cut levels.

De
nition A.4 (L-R fuzzy numbers). A fuzzy numberQ is a
so-called --� fuzzy, Q = (�, �, R)��, if the corresponding
membership function satis�es for all � ∈ �:

�� (�) =
{{{{{{{{{{{{{

-(� − �� ) for � − � ≤ � ≤ �,
�(� − �R ) for � ≤ � ≤ � + R,
0 else,

(A.3)

where � is the mean value of Q; � > 0 and R > 0 are
le� and right spread, respectively; - and � are called the
le� and right shape function, respectively, which are strictly
decreasing continuous functions from [0, 1] to [0, 1] such that-(0) = �(0) = 1 and -(1) = �(1) = 0. If -(�) and �(�) are
linear functions, then the corresponding --� fuzzy number
is considered as a triangular fuzzy number.

De
nition A.5. Let V0(�) denote the set of all fuzzy numbers
in �. For any �̃ ∈ V0(�), an �-cut of �̃ can be expressed as a
closed interval:

�±	 = [�−	 , �+	 ] , for any � ∈ [0, 1] , �−	 ≤ �+	 . (A.4)

Remark A.6. For any �̃ ∈ V0(�), suppose two �-cut levels �1,�2 are selected to cut �̃; then these two �-cuts can be
formulated as:

�±	1 = [�−	1 , �+	1] , �±	2 = [�−	2 , �+	2] . (A.5)

If �1 ≥ �2, we have:
�±	1 ⊆ �±	2 , namely �−	1 ≥ �−	2 , �+	1 ≤ �+	2 . (A.6)

De
nition A.7. For �±	 = [�−	 , �+	 ] and 
±	 = [
−	 , 
+	 ], we can
de�ne:

(1) �±	 + 
±	 = [�−	 , �+	 ] + [
−	 , 
+	 ] = [�−	 + 
−	 , �+	 + 
+	 ].
(2) �±	 − 
±	 = [�−	 , �+	 ] − [
−	 , 
+	 ] = [�−	 − 
+	 , �+	 − 
−	 ].
(3) �±	 ⋅ 
±	 = [�−	 , �+	 ] ⋅ [
−	 , 
+	 ] = [�−	
−	 ∧ �−	
+	 ∧ �+	
−	 ∧�+	
+	 , �−	
−	 ∨ �−	
+	 ∨ �+	
−	 ∨ �+	
+	 ].
(4) �e order relation “≤” is de�ned by:

[�−	 , �+	 ] ≤ [
−	 , 
+	 ] i
 �−	 ≤ 
−	 , �+	 ≤ 
+	 . (A.7)

(5) Let [�−	� , �+	�] ⊂ �, � ∈ ^; ^ is the index set; then:
∧
�∈�
[�−	� , �+	�] = [∧

�∈�
�−	� , ∧�∈��+	�] , if ∧

�∈�
�−	� > −∞,

∨
�∈�
[�−	� , �+	�] = [∨

�∈�
�−	� , ∨�∈��+	�] , if ∨

�∈�
�+	� < ∞.

(A.8)

De
nition A.8. Let {�̃� | � ∈ ^} ⊂ V0(�), � ∈ [0, 1]; then
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(1) �̃ = ∧�∈��̃� is de�ned by a fuzzy number �̃� ∈ V0(�)
such that �	 = ∧�∈�(��)	;

(2) b̃ = ∨�∈��̃� is de�ned by a fuzzy number �̃� ∈ V0(�)
such that b	 = ∨�∈�(��)	.

De
nition A.9. Let �̃, 
̃ ∈ V0(�). �en for any � ∈ (0, 1], we
have:

(� ∗ 
)	 = �	 ∗ 
	, (A.9)

where ∗may be any continuous algebraic operation.
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