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Abstract

Traditional contrast enhancement techniques were developed to enhance the dynamic range of images with narrow

histograms. However, it is not unusual that an image with a broad histogram still suffers from low contrast in both the

shadow and highlight areas. In this paper, we first develop a unified framework called the generalized gamma

correction for the enhancement of these two types of images. The generalization is based on the interpretation of the

gamma correction algorithm as a special case of the scalar multiplication of a generalized linear system (GLS). By using

the scalar multiplication based on other GLS, we obtain the generalized gamma correction algorithm. We then

develop an algorithm based on the generalized gamma correction algorithm which uses the recently developed

symmetric logarithmic image processing (SLIP) model. We demonstrate that the proposed algorithm can be

configured to enhance both types of images by adaptively choosing the mapping function and the multiplication

factor. Experimental results and comparisons with classical contrast enhancement and state-of-the-art adaptive

gamma correction algorithms demonstrate that the proposed algorithm is an effective and efficient tool for the

enhancement of images with either narrow or broad histogram.

Keywords: Symmetric LIP model, Generalized linear system, Contrast enhancement

1 Introduction

1.1 Problem formulation

The contrast of an image is one of the most important

factors influencing its subjective quality. An image, which

is subjectively rated as low contrast, is usually associated

with a limited dynamic range. In practice, pixels of an

image can be broadly classified as either in the areas of

shadow, mid-tone, or highlight. They correspond to pix-

els in the lower end, middle part, and the higher end of

the histogram, respectively. An image, which is classified

as global low contrast, can have a narrow histogram in one

of these areas. On the other hand, pixels of an image can

be distributed mostly in the shadow and highlight areas

which have limited dynamic ranges. Such an image is clas-

sified as local low contrast. Figure 1 shows histograms of

the six test images. The first three are typical cases of

images with global low contrast, while the other three are

typical cases of local low contrast.
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To enhance images of global low contrast, we can use

classical dynamic range stretching algorithms such as his-

togram equalization, gamma correction, and linear con-

trast stretching [1]. However, since an image of local low

contrast usually has a broad histogram, these algorithm

may not produce the desired result.

In this work, we focus on the following problem: to

develop a unified framework such that it can be used to

enhance the two types of images.

1.2 A brief review of related works

Image enhancement is an active research area which

has accumulated many papers on contrast enhancement.

Contrast enhancement can be broadly classified as the fol-

lowing: histogram-based methods such as many different

ways of performing histogram equalization; linear con-

trast stretching; nonlinear signal transformation such as

gamma correction; and transform domain-based meth-

ods such as performing enhancement in the wavelet or

Fourier transform domain. Since this paper is on the gen-

eralization of the gamma correction algorithm, we will

only provide a brief review of some related works. Com-

putational intensive image enhancement algorithms such
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Fig. 1 First row: images of global low contrast. Second row: normalized histograms of images in the first row. Third row: images of local low contrast.

Fourth row: normalized histograms of images in the third row. Normalized histogram is the probability distribution function of pixels in an image

as the Retinex [2] and its variants including optimization

through variational methods [3, 4] are not discussed.

In the following discussion, a pixel of an image is rep-

resented by x where the spacial location of the pixel is

omitted to simplify the notation. It is also assumed that

the pixel gray scale has been normalized such that x ∈

(0, 1).

1.2.1 The logarithmic image processingmodel

In [5], the scalar multiplication operation of the logarith-

mic image processing (LIP) model is used to enhance an

image as follows:

y = γ1 ×△ x

= φ−1
LIP(γ1φLIP(x)) (1)

where φLIP(x) = − log(1 − x) and γ1 is an image-

dependent adaptive gain. It is determined by maximizing

the dynamic range of the processed image. The optimal γ

is given by

γ1 =
1

σ
log

[

μ + σ

μ − σ

]

(2)

where μ and σ are the mean and standard deviation of the

transformed image data φLIP(x) = − log(1− x). However,

a drawback of this result is that it only works for images

for which the condition μ > σ is satisfied.

1.2.2 The parametric log-ratiomodel

In [6], the scalar multiplication operation of the paramet-

ric log-ratio (PLR) model is used to enhance an image as

follows:

y = γ2 ⊗ x

= φ−1
PLR (γ2φPLR(x)) (3)
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where

φPLR(x) = − log
1 − x

ηx
(4)

The multiplication factor γ2 and the model parameter

η are determined by the user-specified mapping of the

two input pixels denoted (x1, x2) to the corresponding two

output pixels (y1, y2) by solving the following equations:

y1 = γ2 ⊗ x1 (5)

and

y2 = γ2 ⊗ x2 (6)

1.2.3 The local color correction algorithm

The local color correction (LCC) algorithm [7, 8] is

defined as follows:

y = xγ3(x) (7)

where

γ3(x) = 22f (x)−1 (8)

and f (x) is the pixel value after Gaussian low-pass filtering

of the original image.

1.2.4 Adaptive gamma correction

In the adaptive gamma correction (AGC) algorithm [9],

the gain parameter is based on the modified histogram

which is defined as follows:

p(k) = ǫ

{

hM [h(k) − hm]

hM − hm

}1/2

(9)

where h(k) (k = 0 : 255 for an 8-bit/pixel image)

is the normalized histogram, hM = max{h(n)}, hm =

min{h(n)}, and ǫ is a normalizing factor to ensure
∑255

k=1 p(k) = 1. For a pixel with value k (k is an 8-bit

integer), the gamma correction is performed by 255 ×

(k/255)γ4(k), where

γ4(k) = 1 −

k
∑

n=0

p(n) (10)

Since h(k) is the probability distribution function (PDF)

of pixels in an image, p(k) can be regarded as a modi-

fied PDF. As such, γ4(k) is the complementary cumulative

distribution function with respect to p(k).

1.2.5 Summary

The LCC and AGC algorithms are actually the classi-

cal gamma correction algorithm with different ways of

adaptively calculating the gain γ . Although the LIPmodel-

based algorithm is not directly related to the gamma

correction, their relationship can be seen by rewriting

Eq. 1 as the follows:

y = 1 − (1 − x)γ (11)

A further simplification shows

ȳ = x̄γ (12)

where ȳ = 1 − y and x̄ = 1 − x. Thus, the LIP model-

based algorithm can be regarded as the gamma correction

algorithm operating on the negative image (1− x) and the

result is an enhanced negative image ȳ. The desired result

is then obtained be the inverse y = 1− ȳ. As such, the LIP

model-based scalar multiplication can be regarded as a

generalized gamma correction algorithm. This motivates

us to explore a principled approach for the generalization.

The PLR model-based algorithm can also be considered

a generalized gamma correction algorithm. This is will be

discussed in Section 2.2.

Computationally, all of the above mentioned algorithms

use the exponential operation. The difference in com-

plexity is largely due to the different ways of calculating

the exponent for different algorithms. In an extreme case

where the exponent is fixed, the complexity is the lowest.

In another extreme case where the exponent is adaptively

calculated for each pixel, the complexity is the highest.

Depending on the available hardware resources, a trade-

off between computational complexity and performance

has to be made.

1.3 Contribution of this paper

The motivation is to extend the idea of the scalar multipli-

cation based on the LIP model which has limited success

due to the constraint. The novelty of this work is the devel-

opment of the generalized gamma correction algorithm

by which the two types of low-contrast images can be

enhanced. This is in contrast to the classical gamma cor-

rection algorithm which can only enhance underexposed

or overexposed images. These images belong to the broad

class of global low contrast.

There are two key contributions in this work. (1) We

demonstrate that the scalar multiplication operation of a

generalized linear system is a principled way to develop

the unified framework which is called the generalized

gamma correction. This is because the gamma correction

algorithm is shown to be a special case of the scalar mul-

tiplication. We also show that a natural extension of the

LIP model is to use the recently developed symmetric LIP

(SLIP) model. An important feature of the SLIP model

is that it is the same as the LIP model when the signal

value is in (0, 1). However, in the SLIP model, the signal

is defined in (−1, 1) while in the LIP model, the signal is

defined in (−∞, 1). We demonstrate that such a differ-

ence is essential for the SLIP model to be used as the basis

for the development of the generalized gamma correction

framework. (2) Based on the generalized gamma correc-

tion and the SLIP model, we propose an algorithm which

is an effective and efficient tool for the enhancement of

images suffering either local or global low contrast. We
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also develop a simple method for the classification of

low-contrast images into either local or global low con-

trast. As such, automatic image enhancement with default

parameter settings can be performed.

The organization of this paper is as follows. In Section 2,

after a brief review of the concept of a GLS, we define

and compare several systems based on their generating

functions. We then show that the classical gamma correc-

tion algorithm is a special case of the scalar multiplication

of a GLS for which the generating function is the loga-

rithmic function. This leads naturally to the development

of the generalized gamma correction algorithm in which

the logarithmic function is replaced by other generating

functions. By comparing the properties of scalar multi-

plication operations of different systems, we show that

the SLIP model can be configured to enhance the two

types of low-contrast images effectively. In Section 3,

we describe the proposed dynamic range enhancement

algorithm using the SLIP model-based scalar multipli-

cation. The proposed algorithm has three key elements:

(1) pre-mapping of the signal from (0, 1) to (−1, 1), (2)

determining the multiplication factor and performing

the scalar multiplication, and (3) post-mapping the sig-

nal (−1, 1) to (0, 1). In Section 4, we test the proposed

algorithm using six images. We study the effect of param-

eter setting and compare the performance of the pro-

posed algorithm with those of the state-of-the-art adap-

tive gamma correction algorithms and the classical con-

trast enhancement algorithms including linear contrast

stretching and contrast-limited histogram equalization.

Experimental results show that the proposed algorithm

successfully enhances the two types of images, while other

algorithms considered in this paper can only enhance one

type of image well. In Section 5, we summarize the main

result of this paper.

2 The generalized gamma correction algorithm
After a brief review and the definition of the GLS,

we develop the generalized gamma correction algorithm

which is the scalar multiplication operation of a GLS.

2.1 The generalized linear system

2.1.1 A brief review

The GLS, such as the homomorphic multiplicative system

(MHS) [10, 11], generalized mean filter [12], the log-ratio

(LR) model [13], and the logarithmic image processing

(LIP) model [14], has been studied since the late 1960s.

The LIP model has been applied to many practical prob-

lems [5, 15–26]. Its operations have been justified from

perspectives of physical image formation model, human

vision models [15], and information theory [27]. Based on

a new imaging devicemodel [28], a generalized LIP (GLIP)

model has been developed [29]. Other extensions of the

LIP model include the parametric [21, 30], the pseudo

and the harmonic LIP models [31, 32], and the symmet-

ric extension [33]. The LR model has also been recently

extended from two perspectives: the Bregman divergence

[34] and the triangular norm [6]. The same idea of the LR

model has also been further explored in [35] to study other

generalized linear systems.

2.1.2 Definition

The block diagram of a GLS is shown in Fig. 2, where φ is

called the generating function of the system. The generat-

ing function is strictly monotonically increasing and is a

one-to-one and on-to mapping. For example, let the input

signal set S = {x|x ∈ (m,M)}, where m and M are the

lower and upper bounds of the signal values, respectively.

The mapping φ(x) has the property φ(x) ∈ (−∞,∞).

As such, the inverse mapping has the property: φ−1 :

(−∞,∞) → (m,M).

Different generating functions result in different sys-

tems. Despite their differences, generalized linear systems

have two fundamental operations: vector addition ⊕ and

scalar multiplication ⊗, which are defined by using the

generating function as follows:

x ⊕ y = φ−1
[

φ(x) + φ(y)
]

(13)

and

γ ⊗ x = φ−1 [γφ(x)] (14)

where x, y ∈ S, and γ ∈ R. An important property of the

GLS is that it is closed under the vector addition and scalar

multiplication, i.e., x ⊕ y ∈ (m,M) and γ ⊗ x ∈ (m,M).

This closure property ensures that an image processed by

a GLS will not have the out-of-range problem.

A special value in the signal set is the additive identity

element, denoted by I, and is defined as follows:

x ⊕ I = x (15)

A useful property of the identity element is that it is

preserved under the scalar multiplication

γ ⊗ I = I (16)

This property will be used to develop the proposed

algorithm.

2.1.3 Examples

Prominent examples of generalized linear systems include

the multiplicative homomorphic filter (MHF), the para-

metric LR model, the LIP model, and the SLIP model. Key

elements of these systems are summarized in Table 1.

Fig. 2 Block diagram of the generalized linear system
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Table 1 Examples of generalized linear systems

MHF LIP PLR SLIP

Generating function φ(x) log(x) − log(1 − x) − log 1−x
ηx −sign(x) log(1 − |x|)

Domain x > 0 −∞ < x < 1 0 < x < 1 −1 < x < 1

Identity element I 1 0 1/(1 + η) 0

2.2 Generalized gamma correction

To develop the generalized gamma correction algorithm,

let us rewrite the gamma correction as follows:

y = xγ

= exp(γ log(x))

= φ−1 [γφ(x)]

= γ ⊗ x (17)

where x > 0, γ is a real number, and φ(x) = log(x).

As such, the gamma correction is written as the scalar

multiplication of a particular GLS which is the MHF.

The concept of the GLS provides a theoretical frame-

work to generalize the gamma correction algorithm by

using other generating functions. We will thus call the

scalar multiplication operation of a GLS a generalized

gamma correction. In the past, image enhancement using

the scalar multiplication operation of the LIP model [5]

and the PLRmodel [6] have been studied. In this work, we

study the application of the SLIP model.

2.3 Generalized gamma correction using the SLIP model

The generalized gamma correction due the SLIP-based

scalar multiplication is as follows:

y = γ ⊗ x

= sign(x)
[

1 − (1 ⊣ x|)γ
]

(18)

In Fig. 3c, d, we demonstrate the effects of setting dif-

ferent values of γ . Because in the SLIP model the signal is

defined in the interval (−1, 1) and the gray-scale value of

the image is usually in the interval (0, 1), a pre-processing

step which maps the interval (0, 1) to (−1, 1) is thus

required. Details of this mapping will be discussed in next

section. After the mapping, the scalar multiplication using

the SLIP model can be configured (γ < 1) to enhance the

dynamic range of both shadow and highlight areas at the

cost of compressing the dynamic range of the mid-tone. It

can also be configured (γ > 1) to enhance the dynamic

range of an image with a narrow histogram at the cost of

compression of the dynamic ranges of both shadow and

highlight. This can be clearly seen in Fig. 3c, d.

In Fig. 3, we also demonstrate the main differences

between different generalized gamma correction algo-

rithms due to different generating functions. We can see

that gamma correction (using MHF) can be configured

(γ < 1) to enhance the dynamic range of the shadow

area at the cost of compression of that of the highlight

area and vice versa (γ > 1). The LIP scalar multiplication

has a similar effect as that of gamma correction. Obvi-

ously, these two algorithms are not capable of enhancing

the dynamic ranges of the shadow and the highlight simul-

taneously. The PLR model (defined in Table 1) has a

parameter η (η > 0). In actual applications, it is eas-

ier to indirectly specify η by using the identity element

of the vector addition operation denoted by I0 which is

given by I0 = (1 + η)−1 [6]. We can see from Fig. 3e, f

Fig. 3 Comparison of gamma correction (a), LIP model-based scalar

multiplication (b), the proposed algorithm (c, d), and the PLR

model-based scalar multiplication (e, f)
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that setting different values of I0 leads to an asymmetri-

cal enhancement or compression effects on the shadow,

mid-tone, and highlight areas. For example, when γ < 1,

it will enhance the shadow or the highlight or both areas

depending on the setting of the identity element. On the

other hand, when γ > 1, it will enhance the dynamic

range of the narrow histogram which can be centered at

different pixel values which depend on the setting of the

identity element.

3 Proposed algorithm

3.1 The general structure

Let the input image to be processed be denoted as x and

the final output image be denoted as y. Using the SLIP

model, the signal set is defined as S = {x|x ∈ (−1, 1)}.

Since after proper normalization, the gray scale of digi-

tal images is in the interval (0, 1), the first step of using

the proposed SLIP-based generalized gamma correction

algorithm is to determine a function

u = f (x) (19)

such that f : (0, 1) → (−1, 1). The second step is the appli-

cation of the generalized gamma correction algorithm

v = γ ⊗ u (20)

where v ∈ (−1, 1). The third step is to determine a

function

y = g(v) (21)

such that g : (−1, 1) → (0, 1). The general structure of the

proposed algorithm is shown Fig. 4.

In the following, we define xm and xM as the minimum

and maximum values of the input image x. We also define

the ρ-quantile value denoted by x(ρ) as Pr(x < x(ρ)) = ρ

where xm ≤ x(ρ) ≤ xM and 0 ≤ ρ ≤ 1. In the limiting

cases, we have xm = x(ρ)|ρ=0 and xM = x(ρ)|ρ=1. For

image v, we also define vm, vM, and v(ρ) in the same way

as those corresponding terms in image x.

3.2 Enhancing global low-contrast image

3.2.1 Determine the function f(x)

The dynamic range of the image can be defined as

Rx = x2 − x1 (22)

where x2 = x(ρ2) and x1 = x(ρ1). For example, we can

set ρ2 = 0.995 and ρ1 = 0.005 such that 99% of the pix-

els are in the interval [ x1, x2]. Since images of global low

Fig. 4 The general structure of the proposed algorithm

contrast usually have a narrow histogram, one way to map

the interval (0, 1) to (−1, 1) is by using

u = f (x) = x − b (23)

where xm < b < xM. As such, we have u1 = x1 − b and

u2 = x2 − b.

To determine the parameter b, it is reasonable to assume

that after the scalar multiplication the results are

v1 = γ ⊗ u1 = −c (24)

and

v2 = γ ⊗ u2 = c (25)

where c is a positive constant close to 1. As such, the

dynamic range of the image v is given by

Rv = v2 − v1 = 2c (26)

This assumption ensures that the dynamic range of the

image is increased after the scalar multiplication. Using

Eqs. 24 and 25 and the generating function of the SLIP

model, we can derive the following result:

b =
x2 + x1

2
(27)

3.2.2 Determine the gain γ

Referring to Fig. 3d, the enhancement of the image is

through the scalar multiplication with γ > 1. Setting a

larger value for γ will lead to more contrast enhancement.

We leave this as a parameter for the user to adjust to

achieve the desirable results.

3.2.3 Determine the function g(v)

The final output image is obtained by a simple linear

mapping

y = g(v) =
v − v(ρ1)

v(ρ2) − v(ρ1)
(28)

where ρ1 and ρ2 are user-specified parameters with the

property 0 ≤ ρ1 ≤ ρ2 ≤ 1. One simple way to set

these two parameters is to use the minimum vm and the

maximumvM instead of v(ρ1) and v(ρ2).

3.3 Enhancing local low-contrast image

3.3.1 Determine the function f(x)

We assume that the local low-contrast image has a broad

histogram such as the one shown in Fig 1. We determine

the mapping function f (x) based on the following con-

siderations. Referring to Fig. 3c, in order for the scalar

multiplication to effectively expand the dynamic range of

the image content in both the shadow and highlight areas,

the function f (x) should have the property that f (xm) =

−c and f (xM) = c, where c > 0 and c is a constant very

close to 1, e.g., c = 0.999. As such, the gray-scale values

in the shadow area are mapped to (−1,u1), where u1 < 0

is an image-dependent constant. Similarly, the gray-scale
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values in the highlight area are mapped to (u2, 1), where

u2 > 0 is an image-dependent constant. The center of the

mid-tone should be mapped to 0.

We consider a linear mapping function

f (x) = a(x − b) (29)

When it satisfies the above conditions, it can be shown

that

a =
2c

xM − xm
(30)

and

b =
xM − xm

2
(31)

In the simplest case, if we assume xm = 0, xM = 1, and

c = 1, then the mapping will be

u = f (x) = 2x − 1 (32)

3.3.2 Determine the gain γ

Referring to Fig. 3c, since our goal is to enhance the

dynamic ranges of the shadow and the highlight, the

dynamic range of mid-tone has to be compressed. The

gain γ can be determined by the amount of compression

of the dynamic range of the mid-tone. More specifically,

the mid-tone can be specified by the probability Pr(|u| <

u0) = ρ0. Once ρ0 (0 < ρ0 < 1) is specified, u0 can

be determined and the dynamic range [−u0,u0] will be

compressed based on a simple scaling v0 = τu0, where τ

(0 < τ < 1) is the user-specified parameter. From Eq. 20,

we can determine the scaling factor denoted γ0 as follows:

v0 = γ0 ⊗ u0 (33)

and

γ0 =
φ(v0)

φ(u0)
=

φ(τu0)

φ(u0)
(34)

We set γ = γ0 to enhance the image.

In practice, as in most image processing software pack-

ages, the user can directly specify γ to achieve a desired

outcome. However, obtaining γ using Eq. 34, the user

can have more control over the trade-off between the

compression of the mid-tone and the stretching of the

dynamic ranges for the shadow and highlight.

3.3.3 Determine the function g(v)

For simplicity, we will adopt the same mapping function

as that stated in Eq. 28.

3.4 Automatic enhancement

3.4.1 Image classification

In this section, we describe a simple method to classify an

image as either global or local low contrast. The first task

is to calculate the dynamic range of the input image using

Eq. 22. If it is smaller than a predefined threshold τ , i.e.,

Rx < τ , then the image is classified as global low con-

trast. If Rx ≥ τ , then a further test is performed to see if

the image is of local low contrast. The assumption for the

test is that a global low-contrast image usually has a uni-

modal histogram while the local low-contrast image has

a bimodal histogram. This assumption is justified from

histograms of real images shown in Fig. 1.

The test is through the median absolute deviation

(MAD) δ which is defined for a set of data {dn}n=1:N as

follows:

δ = median{|dn − τ |} (35)

where τ = median{dn} is the median of the data set.

The MAD is a robust measure of the spread of the data

[36]. For an image, all pixels form a set of data denoted as

{xn}n=1:N . We use Otsu’s method [37] to partition pixels

of the image into two sets: {un}n=1:J and {vn}n=1::K , where

J + K = N . We then calculate the MAD for the whole

image δ0, and theMAD for the two sets of pixels δu and δv.

The image is classified as local low contrast when δ0 >

max(δu, δv). This classification rule is based on the obser-

vation that for an image with a bimodal histogram, pixels

can be robustly classified into two classes. The MAD of

each class is usually smaller than the MAD of the whole

image. The proposed classification method is confirmed

in Table 2 which shows the values for images shown in

Fig. 1.

3.4.2 Automatic enhancement

Once the low-contrast image is classified, the proposed

algorithms developed in this paper can be applied. To

enhance the global low-contrast image, the algorithm has

one parameter γ (γ > 1) which can be set to a default

value γ = 2. In actual application, the user can then adjust

the value to achieve the desirable result. Similarly, the pro-

posed algorithm for the local low-contrast image has one

parameter γ (γ < 1) which can be specified through the

trade-off between the compression of the mid-tone and

the expansion of the shadow and highlight. It can also be

set to a default value, e.g., γ = 0.6. The user can then

adjust the value to achieve the desirable result.

Table 2 Image classification based on the dynamic range and

median absolute deviation

Image Rx δ0 δu δv Classification

Rachmaninov 0.4604 0.0272 0.0195 0.0441 Global

Flower 0.4202 0.0480 0.0272 0.0363 Global

Church 0.4254 0.1232 0.0285 0.0285 Global

Iris 0.9650 0.0804 0.0350 0.0246 Local

Street 0.8911 0.1336 0.0830 0.0363 Local

Ferrari 0.8236 0.1245 0.0960 0.0272 Local
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4 Results and comparison
For a color image, we first convert it from the RGB color

space to the HSI space. The intensity component is pro-

cessed. The result is then converted back to RGB space.

For comparison, we have processed the image using the

following algorithms in which the first two are classi-

cal and well established, and the other three are recently

published and have demonstrated good results.

• LCS: linear contrast stretching using MATLAB

function imadjust with default settings
• CLAHE: contrast-limited adaptive histogram

equalization [38] using MATLAB function

adapthisteq with contrast parameter set to 0.004
• LCC: local color correction algorithm [7, 8] with

default parameter settings1

• AGC: adaptive gamma correction2 [9]
• PLR: parametric log-ratio model [6]

We use the standard deviation (σ ), the mean (μ), and

the entropy (H) of the intensity component as numeri-

cal measures to compare images. The standard deviation

has been used as an indicator of the contrast of the

image [39]. The mean is used to measure the overall

brightness of the image. The entropy is a measure of the

flatness of the probability distribution of the gray-scale

values in an image. When the distribution is a uniform

distribution, the upper bound of the entropy of 8-bit is

achieved for an image with gray-scale values quantized

to 8 bits. Achieving higher entropy is one of the goals

in image enhancement, e.g., histogram equalization [1].

However, it should be noted that none of these numeri-

cal measures can replace the human subjective evaluation.

The subjective evaluation depends on a lot of factors

such as the viewing environment, the physical charac-

teristics of the display device, and most importantly, the

differences in viewer’s individual preference of contrast,

sharpness, color, etc. As such, it is a subject currently

under intense investigation and is out of the scope of

this paper.

4.1 Enhancement of global low-contrast images

We use the Rachmaninov image to test the proposed algo-

rithm. This image has a narrow histogram which is a typ-

ical image of global low contrast. Referring to Section 3.2,

we have tested three settings: γ = 2, 5, 7. Results are

shown in Fig. 5 and in Table 3. From these results, we

can make the following observations. Using the proposed

algorithm, the standard deviation of the processed image

increases with the increase of the parameter γ . Com-

pared to the original image, the contrast of the processed

image is significantly enhanced. This is confirmed visually

and numerically. Since the same image may appear to

have different contrast on different display devices, the

parameter γ can be set by the observer to produce a sat-

isfactory result. The entropy of the processed images is

also greater than that of the original image. This is an

indication that the probability distribution of pixels in the

processed image is closer to the uniform distribution than

that of the original image.

Compared with the other algorithms, we can see that

the proposed algorithm produces results visually quite

close to that of the classical LCS. All algorithms tested,

except the LCC algorithm, have improved the image qual-

ity to some extent. This is confirmed from their respective

values of σ , μ, and H. The AGC also enhances the con-

trast, but the overall brightness of the processed image

is also increased. The CLAHE and PLR algorithms pro-

duce similar results in which the enhancement in contrast

is less than those produced by the proposed algorithm

and the LCS. This is confirmed by the standard deviation

of these images. The LCC algorithm increases the over-

all brightness of the image, but it does not enhance the

contrast of the image. As a result, the subjective quality of

these images is not as satisfactory as that of the proposed

algorithm and the LCS.

To further investigate the performance of the proposed

algorithm, we run the same test using an overexposed

flower image. It has a narrow histogram which is concen-

trated in the highlight area. Results are shown in Fig. 6

and in Table 4. From these results, we can make very sim-

ilar observations as those with the Rachmaninov image.

Visually, the quality of the image produced by the pro-

posed algorithm is similar to that produced by the PLR

algorithm but is better than those of other algorithm

tested.

To demonstrate the robustness of the algorithm, we per-

form experiment on the church image. We have tested

three settings: γ = 2, 5, 7. Results are shown in Fig. 7

and in Table 5. From these results, we can clearly see that

the low-contrast original image is due to haze-like effect

rather than inaccurate exposure such as the flower image

or the aging effect such as the Rachmaninov image. The

proposed algorithm has successfully enhanced the con-

trast of this image by removing the haze effect. Similar

results have been achieved by using the linear contrast

stretching. The numerical results shown in Table 5 sup-

port these observations.

Overall, for the three test images, the proposed algo-

rithm has produced images with the largest values of

standard deviation and entropy among all algorithms

tested.

4.2 Enhancement of local low-contrast images

We use the “iris” image to test the proposed algorithm for

the enhancement of images of local low contrast. We test
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Fig. 5 Experimental results using the “Rachmaninov” image

the proposed algorithm (refer to Section 3.3) by setting

ρ0 = 0.1 and τ = 0.5, by which the dynamic range of 10%

of the pixels in the mid-tone will be compressed by a scal-

ing factor of 0.5. To test the performance of the proposed

algorithmwith user-specified γ , we also set γ = 1.2γ0 and

γ = 0.8γ0.

Results are shown in Fig. 8 and in Table 6. From these

results, we can make the following observations. Using

the proposed algorithm, the mean of the processed image

increases with the increase of the parameter γ . This

is an indication that the brightness of the shadow area

has been enhanced. The standard deviation of the pro-

cessed image increases with the increase of of γ but is

always smaller than that of the original image. This is

because the original image has an excessive contrast such

that details in the shadow and highlight areas cannot be

clearly seen. The proposed algorithm enhances the image

by stretching the dynamic range of both areas towards

the mid-tone. This results in a smaller standard devia-

tion. The entropy of the processed image is roughly the

same as that of the original image. Compared with the

original image, the improvement in image quality can be

Table 3 Comparison of the standard deviation σ , the mean μ, and the entropyH of the original and processed Rachmaninov images

Original
SLIP SLIP SLIP

LCS CLAHE LCC AGC PLR
γ = 2 γ = 5 γ = 7

σ 0.0904 0.1439 0.2069 0.2348 0.1635 0.1299 0.0721 0.1800 0.1310

μ 0.3205 0.1789 0.2768 0.3152 0.1899 0.3277 0.4090 0.4645 0.2493

H 5.6565 6.3395 6.9194 6.9596 6.3497 6.6239 5.5958 6.0985 6.0229
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Fig. 6 Experimental results using the over-exposed flower image

observed in both the shadow area (e.g., the leaves of the

plant and the heater below the window) and the highlight

area (e.g., the clouds in the sky). A negative effect of com-

pressing the mid-tone can be observed in the part of the

image where there are trees. Compared with the origi-

nal image, the details of the trees in the processed image

seem to be smoothed. This is because that part of the

image is in the mid-tone and its dynamic range is com-

pressed. This results in lost of contrast which leads to lost

of details.

Compared with the other algorithms, we can see that

the proposed algorithm produces results visually quite

close to that of the LCC and PLR algorithms. The adaptive

histogram equalization (CLAHE) significantly enhances

the highlight area, but it does not enhance the shadow

area. The AGC enhances the shadow area, but it does not

enhance the highlight area. The classical linear contrast

enhancement algorithm does not enhance both areas.

These observations can be explained from the standard

deviation point of view. Refer to Table 6, the standard

deviation of images produced by the LCS, CLAHE, LCC,

and AGC algorithms is quite close to that of the original

image. This indicates that these algorithms do not reduce

the excess contrast of the original image. From the same

point of view, we can understand that the quality of image

produced by the PLR algorithm is similar to that pro-

duced by the proposed algorithm, because the standard

deviations are quite close to each other.

To further investigate the performance of the proposed

algorithm, we process another image which is used in [9].

We test the proposed algorithm (refer to Section 3.3) by

setting ρ0 = 0.15 and τ = 0.7, by which the dynamic range

of 15% of the pixels in the mid-tone will be compressed by

a scaling factor of 0.7. To test the performance of proposed

algorithmwith user-specified γ , we also set γ = 1.2γ0 and

γ = 0.8γ0.

Table 4 Comparison of the standard deviation σ , the mean μ, and the entropyH of the original and processed flower images

Original
SLIP SLIP SLIP

LCS CLAHE LCC AGC PLR
γ = 2 γ = 5 γ = 7

σ 0.1073 0.2345 0.2841 0.3072 0.2289 0.1487 0.1364 0.0988 0.2502

μ 0.9059 0.8062 0.7517 0.7256 0.7654 0.8632 0.8644 0.9408 0.7787

H 5.3145 6.2073 6.3996 6.3502 6.0330 5.9268 5.8500 4.6435 6.2217
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Fig. 7 Experimental results using the church image

Results are shown in Fig. 9 and in Table 7. From

these results, we can make the following observations

which are quite similar to those with the “iris” image.

Using the proposed algorithm, the standard deviation

increases with the increase of the parameter γ . However,

similar to the case of the “iris” image, the standard devi-

ation of the processed image is smaller than that of the

original image. This is because the original image has

an excessive contrast with dark shadow areas such as

the street inside the building and bright highlight areas

Table 5 Comparison of the standard deviation σ , the mean μ, and the entropyH of the original and processed church images

Original
SLIP SLIP SLIP

LCS CLAHE LCC AGC PLR
γ = 2 γ = 5 γ = 7

σ 0.1304 0.2201 0.2801 0.3157 0.2748 0.1406 0.1014 0.1790 0.2216

μ 0.6120 0.5070 0.5002 0.5962 0.5215 0.6143 0.5768 0.7587 0.4739

H 6.5303 7.1614 7.2232 7.2027 7.3673 6.9686 6.4854 6.7082 7.0828
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Fig. 8 Experimental results using the “iris” image

such as the sky. The proposed algorithm enhances the

image by stretching the dynamic range of both areas

towards the mid-tone. As a result, the details of the dark

areas can be easily seen, while the contrast of the sky

is preserved.

Compared with the other algorithms, we can see that

the proposed algorithm produces results visually quite

close to that of the LCC and PLR algorithms. This can be

explained from the standard deviation point of view, i.e.,

the standard deviation of these images are quite close to

each other. The adaptive histogram equalization (CLAHE)

significantly enhances the highlight area, but it does not

enhance the shadow area. The AGC enhances the shadow

area, but it does not enhance the highlight area. The

classical linear contrast enhancement algorithm does not

enhance both areas.

Table 6 Comparison of the standard deviation σ , the mean μ, and the entropyH of the original and processed “iris” images

Original
SLIP SLIP SLIP

LCS CLAHE LCC AGC PLR
γ = 0.8γ0 γ = γ0 γ = 1.2γ0

σ 0.3511 0.2159 0.2452 0.2693 0.3272 0.3337 0.3516 0.3885 0.2774

μ 0.2864 0.3558 0.3384 0.3249 0.3133 0.3204 0.3049 0.3672 0.3578

H 6.6263 6.5340 6.6161 6.6718 6.4636 7.0151 7.2611 6.5198 6.6713
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Fig. 9 Experimental results using the street image

To demonstrate the robustness of the proposed algo-

rithm, we test it using the “ferrari” image3 which has a

broad histogram. We set the parameters for the proposed

algorithm as follows: ρ0 = 0.2 and τ = 0.65. As such, the

dynamic range of 2% of the pixels in the mid-tone will be

compressed by a scaling factor of 0.65. To test the perfor-

mance of the proposed algorithm with the user-specified

γ , we also set γ = 1.2γ0 and γ = 0.8γ0, where γ0 is deter-

mined by the settings ρ0 = 0.2 and τ = 0.65. Results

are shown in Fig. 10 and Table 8. From this figure, we can

clearly see that the results from the proposed algorithm

are similar to those produced by other algorithms. In fact,

when γ = γ0, the proposed algorithm is able to achieve

a good balance between retaining the contrast of the sky

and enhancing the contrast of the bonnet of the car.

For the above three test images, the entropy of the pro-

cessed images by all algorithms is about the same as that

of the original image. This is because these test images

have broad histograms and the aim of the proposed algo-

rithm is not to further broaden the histogram. As such, the

entropy of the processed image does change much from

that of original image. In contrast, a global low-contrast

Table 7 Comparison of the standard deviation σ , the mean μ, and the entropyH of the original and processed “street” images

Original
SLIP SLIP SLIP

LCS CLAHE LCC AGC PLR
γ = 0.8γ0 γ = γ0 γ = 1.2γ0

σ 0.2909 0.2063 0.2345 0.2578 0.2936 0.2853 0.2261 0.3410 0.2641

μ 0.3126 0.3653 0.3474 0.3329 0.3500 0.3939 0.3936 0.4416 0.3940

H 7.2757 7.2092 7.3018 7.3219 7.2224 7.7104 7.4865 7.4435 7.4535
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Fig. 10 Experimental results using the ferrari image

image has a narrow histogram. As a result of enhancement

of the dynamic range of the image, the proposed algorithm

broadens the histogram leading to increase in entropy.

5 Conclusions
In this paper, based on the concept of the generalized

linear system (GLS), we first proposed the generalized

gamma correction algorithm as the scalar multiplication

of a GLS. We then proposed an image enhancement

algorithm by using the recently developed symmetric

LIP (SLIP) model. We show that the proposed can be

configured to effectively and efficiently enhance images of

either global low contrast or local low contrast. While the

classical gamma correction algorithm can only enhance

underexposed or overexposed images, the generalized

gamma correction algorithm can be used to enhance

images with low contrast in areas of shadow, mid-tone,

highlight, or a combination of them. The expansion of

the capability of the gamma algorithm thus constitutes a

novel contribution of this paper. Experimental results and

comparisons with classical and recently developed image

enhancement algorithms demonstrate that the proposed

generalized gamma correction algorithm is an effective

tool.

Table 8 Comparison of the standard deviation σ , the mean μ, and the entropyH of original and processed “ferrari” images

Original
SLIP SLIP SLIP

LCS CLAHE LCC AGC PLR
γ = 0.8γ0 γ = γ0 γ = 1.2γ0

σ 0.2964 0.2376 0.2588 0.2113 0.3233 0.2907 0.2241 0.4099 0.3980

μ 0.2975 0.3238 0.3126 0.3396 0.3564 0.3341 0.3595 0.4416 0.3940

H 6.6430 6.5893 6.6495 6.5291 6.6551 7.1288 6.9007 6.7063 6.7826



Deng EURASIP Journal on Advances in Signal Processing  (2016) 2016:69 Page 15 of 15

Endnotes
1 The LCC algorithm is run remotely from the web site

http://www.ipol.im/pub/art/2011/gl_lcc/
2 The source code is kindly provided by the authors.
3 Available from http://www.ipol.im/pub/art/2011/gl_

lcc/#
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