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Abstract 

We prepare a new method to generate family of distributions. Then, a family of univariate distributions 

generated by the Gamma random variable is defined. The generalized gamma-Weibull (GGW) distribution 

is studied as a special case of this family. Certain mathematical properties of moments are provided. To 

estimate the model parameters, the maximum likelihood estimators and the asymptotic distribution of the 

estimators are discussed. Certain characterizations of GGW distribution are presented. Finally, the 

usefulness of the new distribution, as well as its effectiveness in comparison with other distributions, are 

shown via an application of a real data set. 

Keywords:  Gamma-generated distribution, Generalized gamma-Weibull distribution, 

Weibull distribution, Hazard function, Maximum likelihood estimation, 

Characterizations. 

1. Introduction 

Recently, some attempts have been made to define new families of probability 

distributions that extend well-known families of distributions and at the same time 

provide great flexibility in modelling data in practice. A common feature of these 

generalized distributions is that they have more parameters. Zografos and Balakrishnan 

(2009) and Torabi and Montazeri (2010) defined the Type I and II family of “Gamma-

generated” distributions, respectively. Alzaatre at al. (2013) developed a new method to 

generate family of distributions and called it the T X  family of distributions. Barreto-

Souza and Simas (2013) defined a class of distributions given by 

( )1
0

( ) 1

( ) 0,

G xe

F x e

G x








 


 
 

 

where ( )G x  is a cumulative distribution function (cdf) and   is a constant. The cdf 

F  is called exp-G  distribution. They obtained several mathematical properties of this 

class of distributions and discussed the two special cases: exp-Weibull and exp-beta 
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distributions. Recently, Javanshiri et al. (2013) introduced exp-uniform (EU) distribution 

by taking ( )G x  to be the cdf of the uniform distribution with parameters a  and b  and 

studied its properties and application.  

 

In this paper, we extend the idea of T X  family of distributions to introduce our new 

class as follows: 

 

Let ( )F t  be the cdf of a random variable T  and ( )G x  be the cdf of a random variable 

X  defined on . We define the cdf of T X  family of distributions by 

( ( )) (0)
( ) , .

(1) (0)

F G x F
H x x

F F


 


 

 

Note that ( )H x  is a cdf and for the special case ( ) 1 xF x e   , the distribution is 

simplified to the previous one. When X  is a continuous random variable, the probability 

density function (pdf) and hazard function of this family are given, respectively, by 

 

( ) ( ( ))
( ) ,

(1) (0)

( ) ( ( ))
( ) ,

(1) ( ( ))

g x f G x
h x

F F

g x f G x
r x

F F G x







 

where ( )g x  is pdf corresponding to ( )G x . The rest of the paper is organized as follows. 

In section 2, the Gamma-Weibull distribution is introduced. Properties of this distribution 

are obtained in Section 3. In Section 4, the maximum likelihood estimations are 

discussed. Characterizations are presented in section 5. The proposed model is applied to 

a data set in Section 6. Concluding remarks are given in section 7. 

2. The Generalized Gamma-Weibull Distribution 

The Weibull distribution is a popular distribution for modelling lifetime data as well as 

modelling phenomenon with monotone failure rates. The two-parameter Weibull density 

function is usually expressed as follows: 

1( ; , ) exp , 0,
x

g x x x




 

 


  

    
   

 

where 0   is a scale parameter and 0   is a shape parameter and its cumulative 

distribution function is  

( ; , ) 1 exp , 0.
x

G x x



 


  
     

   

 

 

Considering the following Gamma density function 
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the cdf of the GGW distribution is  

 

1 exp

( ) ,

( ; , , , ) , 0,
1
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and the corresponding pdf is  

 

1 exp exp 1
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where 
1( , ) a t

z
a z t e dt


     denotes the incomplete gamma function, , 0    are scale 

parameters and , 0    are shape parameters. A random variable X  which follows the 

GGW distribution with parameters , ,    and   is denoted by ~ ( , , , )X GGW     .  

 

 
 

 

 

 

 

 



R.S. Meshkat, H. Torabi, G.G. Hamedani 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp201-212 204 

The associated survival and hazard functions of GGW distribution are, respectively, 

given by 

1 exp
1

, ,

( ) ,
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Due to the complicated form of ( )r x , it is not possible to derive its properties 

mathematically. We make some observations via certain plots of ( )r x . For some values 

of the parameters, the plots of the density and the hazard rate function are shown in 

Figures 1 and 2, respectively. 
 

Some of the shape properties of the GGW distribution can be summarized as follows: 

 The distribution is right-skewed when 0.5  . As   increases the degree of right 

skewness increases. 

 The distribution is reverse "J" shaped when 1, 1   , also when 1, 0.5   . 
 

Figure 2 shows that the hazard rate function of the GGW distribution can take monotonic, 

bathtub and unimodal-bathtub shapes for different parametric combinations. 

3. Moments 

In general, k -th non-central moment of a GGW distribution cannot be easily evaluated. 

Considering common definition, k -th non-central moment can be written as  

1

1 exp exp 1

exp

[ ] .
1

exp 1 ( ) ,

k

k

x x

x

E X
x


 







 


 

  
 

 

         
            

           
  
  
  

   
      

                   

 

These measures for the ( , ,0.5,0.7)GGW    distribution are calculated and presented in 

Table 1 for various values of   and  . 
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From Table 1, it can be concluded that for fixed  , the mean, the second moment and the 

variance are increasing functions of  , while the skewness and the kurtosis are 

decreasing functions of  . Also, for fixed  , the mean, the second moment and the 

variance are increasing functions of  , while the skewness and the kurtosis are 

decreasing functions of  . Table 1 also shows that the GGW distribution is right skewed. 

Over-dispersion in a distribution is a situation in which the variance exceeds the mean, 

under-dispersion is the opposite, and equi-dispersion occurs when the variance is equal to 

the mean. From Table 1, the GGW distribution satisfies the over-dispersion property for 

almost all values of the parameters. 

4. Parameter estimation and inference 

Let 1, , nX X  be a random sample, with observed values 1, , nx x  from 

( , , , )GGW     . The log-likelihood function for the vector of parameters 

( , , , )T      can be written as 
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The components of the score vector ( ) , , ,

T
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 are given by  
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where (.)  is the digamma function and (.)mn

pqG  is the Meijer G-function. The maximum 

likelihood estimation (MLE) of  , say ̂ , is obtained by solving the nonlinear system 

( )U   0 . This nonlinear system of equations does not have a closed form solution.  

 

Under conditions that are fulfilled for parameters in the interior of the parameter space 

but not on the boundary, the asymptotic distribution of ˆ( )n   is 1

4( , ( ))N I  0  

where 1( )I    is the inverse of the Fisher information matrix. A 100(1 ) % asymptotic 

confidence interval (ACI) for each parameter i  is given by  

 1 1

/2 /2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) / , ( ) / ,i i i i iAIC z I n z I n 

          

where 
1ˆ ˆ( )iI    is the i -th diagonal element of 

1
ˆ( )



I .  

5. Characterizations 

The problem of characterizing a distribution is an important problem in various fields and 

has recently attracted the attention of many researchers. Consequently, various 

characterization results have been reported in the literature. In designing a stochastic 

model for a particular modelling problem, an investigator will be vitally interested to 

know if their model fits the requirements of a specific underlying probability distribution. 

The investigator, therefore, will rely on the characterizations of the selected distribution. 

These characterizations have been established in many different directions. The present 

work deals with the characterizations of GGW distribution which are based on a simple 

relationship between two truncated moments. Our characterization results presented here 

will employ an interesting result due to Glanzel (1987) (Theorem 5.1 below). The 

advantage of the characterizations given here is that, cdf H  need not have a closed form 

and are given in terms of an integral whose integrand depends on the solution of a first 

order differential equation, which can serve as a bridge between probability and 

differential equation. We believe that other characterizations of GGW distribution may 

not be possible due to the structure of its cdf. 

 

Theorem 5.1. Let  , , PF  be a given probability space and let  ,I a b  be an 

interval for some a b  ( ,a b    might as well be allowed). Let :X I  be a 

continuous random variable with the distribution function F  and let 1q  and 2q  be two 

real functions defined on I  such that  

   1 2| | ( ), ,q X X x q X X x x x H         E E  
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is defined with some real function  . Assume that 1 2

1 2, ( ), ( )q q C I C I   and F  is 

twice continuously differentiable and strictly monotone function on the set I . Finally, 

assume that the equation 2 1q q   has no real solution in the interior of I . Then F  is 

uniquely determined by the functions 1 2,q q  and  , particularly 

  
 

     
  

2 1

exp ,
x

a

u
F x C s u du

u q u q u







 
  

where the function s  is a solution of the differential equation 2

2 1

q
s

q q






 


 and C  is a 

constant, chosen to make 1
I
d F  . 

 

We like to mention that this kind of characterization based on the ratio of truncated 

moments is stable in the sense of weak convergence, in particular, let us assume that 

there is a sequence  nX  of random variables with distribution functions  nF  such that 

the functions 1, 2,,n nq q  and ( )n n   satisfy the conditions of Theorem 5.1 and let 

1, 1 2, 2,n nq q q q   for some continuously differentiable real functions 1q  and 2.q  Let, 

finally, X  be a random variable with distribution F . Under the condition that  1,nq X  

and  2,nq X  are uniformly integrable and the family  nF  is relatively compact, the 

sequence nX  converges to X  in distribution if and only if n  converges to  , where 

  
 

 
1

2

|
.

|

E q X X x
x

E q X X x


  
    

 

This stability theorem makes sure that the convergence of distribution functions is 

reflected by corresponding convergence of the functions 1 2,q q  and  , respectively. It 

guarantees, for instance, the 'convergence' of characterization of the Wald distribution to 

that of the Levy-Smirnov distribution if   , as was pointed out in Glanzel and 

Hamedani (2001), 

Remark 5.2. 

(a)  In Theorem 5.1, the interval I  need not be closed since the condition is only on 

the interior of I . 

(b)  Clearly, Theorem 5.1can be stated in terms of two functions 1q  and   by taking 

 2 1q x  , provided that the cdf F  has a closed form, which will reduce the 

condition given in Theorem 5.1 to    1 |E q X X x x    . However, adding 

an extra function will give a lot more flexibility, as far as its application is 

concerned. 
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Proposition 5.3. 

Let  : 0,X    be a continuous random variable and let    / 1

2 1( )x
q x e


     

and      /

1 2

1
exp

x
q x q x e






 
  

 
 for  0,x   . Then X  has pdf ( )h x  if and only if 

the function   defined in Theorem 5.1 has the form  

    /1 1
1 exp , 0.

2

x
x e x







  
    

  
 

Proof. Let X  have density ( )h x , then 

     
 

 
1 1/
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xe
H x q X x e x
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1

,K  
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Finally 

          /

2 1 2

1 1
1 exp 0 0.

2

x
x q x q x q x e for x







  
      

  
 

 

Conversely, if   is given as above, then 
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2

/2 1
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and hence 

  

 /

1

1
exp 1

ln , 0.

1

x
e

s x x

e








  
  

     
 
    

 

Now, in view of Theorem 5.1, X  has density ( )h x . 



R.S. Meshkat, H. Torabi, G.G. Hamedani 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp201-212 210 

Corollary 5.4. Let  : 0,X    be a continuous random variable and let  2q x  be as 

in Proposition 5.3. The pdf of X  is ( )h x  if and only if there exist functions 1q  and   

defined in Theorem 5.1satisfying the differential equation 

  

   

 

/ /1

/

1
exp

, 0.
1

exp 1

x x

x

x e e

s x x

e

 



 









 





 
 
  

  
  

  

 

Remark 5.5. 

(a)  The general solution of the differential equation in Corollary 5.4 is 

 

   

        

1

/

1/ /1

2 1

1
exp 1

1
exp ,

x

x x

x e

x e e q x q x dx D



 



  











  

  
   

  

  
    

  


 

for 0x  , where D  is a constant. One set of appropriate functions is given in 

Proposition 5.3 with 
1

2
D   . 

(b)  Clearly there are other triplets of functions  1 2, ,q q   satisfying the conditions of 

Theorem 5.1. We presented one such triplet in Proposition 5.3. 

6. Applications 

In this section, the flexibility and applicability of the proposed model is illustrated as 

compared to the alternative Gamma-Weibull (GW.a) distribution introduced by Alzaatre 

at al. (2014) and Gamma-Weibull (GW.p) distribution presented by Provost et al. (2011). 

The Gamma-Weibull model is applied to a data set published in Suprawhardana et al. 

(1999) which consists of time between failures (thousands of hours) of secondary reactor 

pumps. The data set consists of 23 observations. The TTT plot of this set of data in 

Figure 3 displays a bathtub-shaped hazard rate function that indicates the appropriateness 

of the GGW distribution to fit the data set. 

 

In order to compare the models, the MLEs of the parameters, -2log-likelihood, the 

Kolmogorov-Smirnov test statistic (K-S), p-value, the Anderson-Darling test statistic 

(AD), the Cramer-von Misestest statistic (CM) and Durbin-Watsontest statistic (DW) are 

given in Table 2 for this data set. The CM and DW test statistics are described in details 

in Chen and Balakrishnan (1995) and Watson (1961), respectively. In general, the smaller 

the values of K-S, AD, CM and WA, the better the fit to the data. From the values of 

these statistics, we conclude that the GGW distribution provides a better fit to this data 

set than the other models. 
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The fitted densities and the empirical distributions versus the fitted cumulative 

distribution functions of NP, N and SN models are displayed in Figure 4. These plots 

suggest that the GGW distribution is superior to the other distributions in terms of the 

model fitting.  

  

 
 

 

 

 

7.   Conclusions 

In this paper, a new method to generate family of distributions is proposed. Then, a 

family of univariate distributions generated by the Gamma random variable was defined. 

As an special case, the generalized gamma-Weibull (GGW) distribution is studied and its 

parameter estimations are considered. Finally, in order to show the usefulness of the new 

distribution, an application to a real data set is demonstrated. The current study confirms 

that the proposed distribution, with better flexibility, can be considered to be a great 

model for real data in comparison with the other competing distributions.  

Acknowledgement 

The authors are highly grateful to the editor and referees for their valuable comments and 

suggestions for improving the paper. 



R.S. Meshkat, H. Torabi, G.G. Hamedani 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp201-212 212 

References 

1. Alzaatreh, A., Lee, C. and Famoye, F. (2012). On the discrete analogues of 

continuous distributions, Statistical Methodology, 9, 589-603. 

2. Alzaatreh, A., Lee, C. and Famoye, F. (2013). A new method for generating 

families of continuous distributions, Metron, 71(1), 63-79. 

3. Alzaatre, A., Famoyeb, F. and Lee, C. (2014). The gamma-normal distribution: 

Properties and applications, Computational Statistics and Data Analysis, 69,  

67-80. 

4. Barreto-Souza, W. and Simas, A.B. (2013). The exp-G family of probability 

distributions, Brazilian Journal of Probability and Statistics, 27(1), 84-109. 

5. Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-

of-fit test, Journal of Quality Technology, 27, 154-161. 

6. Glanzel, W. (1987). A characterization theorem based on truncated moments and 

its application to some distribution families, Mathematical Statistics and 

Probability Theory (Bad Tatzmannsdorf, 1986)}, Vol. B, Reidel, Dordrecht,  

75-84. 

7. Glanzel, W. and Hamedani, G.G. (2001). Characterizations of univariate 

continuous distributions, Studia Sci. Math. Hungar., 37, 83-118. 

8. Javanshiri, Z., Habibi Rad A. and Hamedani, G. G. (2013). Exp-uniform 

distribution: Properties and characterizations, Journal of Statistical Research of 

Iran, 10, 85-106. 

9. Provost, S.B., Saboor, A. and Ahmad, M. (2011). The gamma-normal 

distribution, Pakistan Journal of Statistics, 27(2), 111-131. 

10. Suprawhardana, S. Prayoto, M, and Sangadji. (1999). Total time on test plot 

analysis for mechanical components of the RSG-GAS reactor, Atom Indones, 

25(2). 

11. Torabi, H. and Montazeri, H. N. (2010). The Gamma-Uniform Distribution, 

Proceeding of the 10th
  Iranian Statistical Conference , 430-437. 

12. Watson, G.S. (1961). Goodness-of-fit tests on a circle, Biometrika, 48, 109-114. 

13. Zografos, K. and Balakrishnan, N. (2009). On families of beta- and generalized 

gamma-generated distributions and associated inference,  Statistical Methodology , 

6 , 344-362. 


	Marquette University
	e-Publications@Marquette
	1-1-2016

	A Generalized Gamma-Weibull Distribution: Model, Properties and Applications
	R. S. Meshkat
	H. Torabi
	Gholamhossein G. Hamedani

	Sampling Algorithm of Order Statistics for Conditional Lifetime Distributions

