
Ricerche di Matematica

https://doi.org/10.1007/s11587-020-00548-y

A generalized Gompertz growth model with applications
and related birth-death processes

Majid Asadi1,2 · Antonio Di Crescenzo3 · Farkhondeh A. Sajadi1 ·

Serena Spina3

Received: 28 May 2020 / Revised: 4 October 2020 / Accepted: 16 November 2020

© The Author(s) 2020

Abstract

In this paper, we propose a flexible growth model that constitutes a suitable generaliza-

tion of the well-known Gompertz model. We perform an analysis of various features of

interest, including a sensitivity analysis of the initial value and the three parameters of

the model. We show that the considered model provides a good fit to some real datasets

concerning the growth of the number of individuals infected during the COVID-19

outbreak, and software failure data. The goodness of fit is established on the ground

of the ISRP metric and the d2-distance. We also analyze two time-inhomogeneous

stochastic processes, namely a birth-death process and a birth process, whose means

are equal to the proposed growth curve. In the first case we obtain the probability

of ultimate extinction, being 0 an absorbing endpoint. We also deal with a threshold

crossing problem both for the proposed growth curve and the corresponding birth

process. A simulation procedure for the latter process is also exploited.

Keywords Gompertz model · Birth-death process · Ultimate extinction probability ·

First-passage-time problem

1 Introduction

Constructing growth curves describing dynamic evolutions is relevant to several

applied fields. Indeed, growth dynamics are exhibited by a large number of real sys-

tems, such as the number of individual infected during an epidemic, the size of a living

body during juvenility, other indicators associated with population growth, etc. The

basic reference in this respect is the well-known Malthusian model, governed by the
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differential equation
d NM (t)

dt
= r NM (t), t > 0, (1)

where NM (t) represents the population size and r > 0 is the growth rate. This leads to

exponential curve, adopted often in population ecology to describe growth in absence

of constraints. Mathematical models associated to phenomena governed by growth

tendency are based on suitable refinements of the exponential curve, such as the logistic

and its generalizations treated in Tsoularis and Wallace [35]. Indeed, the traditional

models are not always appropriate to describe certain growth phenomena since they

involve few parameters. On the contrary, models involving more parameters are much

more flexible and provide in general a better fit of the observed data. In this framework

it is worth mentioning the contribution by Wu et al. [37], that adopted a model based

on the generalized Richards curve for the COVID-19 outbreak. The latter curve is

governed by the differential equation

d NR(t)

dt
= r [NR(t)]p

[

1 −

(

NR(t)

C

)α]

, t > 0,

where NR(t) represents the cumulative number of cases at time t , r is the growth rate

at the early stage, C is the carrying capacity (i.e., the final epidemic size), p ∈ [0, 1]

and α are suitable shape parameters. Other forms of generalized growth models can be

found in further investigations. For instance, Rincón et al. [29] analyzed a generalized

Fujikawa’s growth model described by the equation

d NF (t)

dt
= r [NF (t)]α

[

1 −

(

NF (t)

C

)γ ] [

1 −

(

Nm

NF (t)

)c]

, t > 0,

where r , α, γ , c, C and Nm are constants, with r > 0, K > Nm > 0, and C is the

carrying capacity. Another case of interest has been treated recently by Chakraborty et

al. [9] to propose a generalization of simple equations modeling the growth mechanism

of biological processes, and finalized to generate more flexible shapes. Furthermore,

a detailed treatment of extensions of the Gompertz-type equation in modern science

has been presented in the book by Kyurkchiev and Iliev [24].

Along the lines of the above mentioned researches, the present paper is aimed to

propose a suitable extension of the celebrated Gompertz model. This is a well-known

growth model that is frequently adopted among the sigmoid models for fitting real

data, and is governed by the following differential equation:

d NG(t)

dt
= NG(t)

(

α − β log
NG(t)

y

)

, t > 0, NG(0) = y > 0, (2)

with α, β > 0. Various re-parametrisations of this model have been considered by

Tjørve and Tjørve [34]. The generalization proposed herewith is based on a suitable

exponentiation of the term in parenthesis on the right-hand-side of (2). This leads to

a more flexible growth model, which includes a variety of cases for the asymptotic

analysis. Indeed, it may tend to infinity, or to a finite limit (the carrying capacity), or
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to zero. The resulting model provides also a generalization of a modified Korf model

investigated recently in Di Crescenzo and Spina [12]. For a complete analysis of the

model we study various features of interest, such as the correction factor, the relative

growth rate, the inflection point, the maximum specific growth rate and the lag time.

For the proposed model we also face a threshold crossing problem and perform a

sensitivity analysis of the parameters.

We purpose to analyze also a stochastic counterpart of the proposed model. This is

motivated by the need of describing growth phenomena subject to random perturba-

tions by means of mathematical models based on stochastic processes. Specifically, a

desirable characteristics is that the mean evolution of the process coincides with the

deterministic curve of the proposed model. In this framework, stochastic processes for

the modeling of real growth phenomena have been largely considered in the literature.

We recall the well-known approach based on diffusion processes for the stochastic

model of tumor growth, such as that exploited in Albano and Giorno [1], Giorno et al.

[18], Giorno and Nobile [16], Hanson and Tier [20], Spina et al. [31]. Other studies

including Gompertz and logistic growth models based on stochastic diffusions can

be found in Campillo et al. [8], Himadri Ghosh and Prajneshu [22], and Yoshioka et

al. [38]. Recent advances involving fractional Gompertz growth models in biological

contexts have been analyzed in Ascione and Pirozzi [4], Dewanji et al. [11], Frunzo

et al. [15], and in Meoli et al. [25]. Nevertheless, our analysis will be restricted to the

case of birth-death processes. The usefulness of this family of stochastic processes

in the applications to sciences has been described recently in Crawford and Suchard

[10]. We recall some previous investigations oriented to the analysis of birth-death

processes for logistic and Gompertz stochastic growth, such as Di Crescenzo and

Paraggio [13], Parthasarathy and Krishna Kumar [27], Swift [32] and Tan [33]. Var-

ious computational issues and a first-passage-time problem for time-inhomogeneous

birth-death processes are investigated in Giorno and Nobile [17].

First we study an inhomogeneous birth-death process with linear time-dependent

birth and death rates. The analysis is also developed towards the more interesting case

of a time-inhomogeneous linear birth process. In both cases we specify the conditions

that allow the mean of the process to be identical to the proposed generalized Gompertz

growth curve.

In order to pinpoint the usefulness of the proposed model and the given results we

focus on some applications to real data. Indeed, we show that the considered growth

model is able to provide a good fit to various datasets in real cases of interest. As a first

application we consider the data of the active and of the total number of contagions

over a given period of the COVID-19 outbreak spread in Iran and Italy. Specifically, we

analyze the proposed model, the Gompertz model and the logistic model as candidates

to fit the considered data. We show that, among the cases under investigation, in many

instances the proposed model provides the better fit under two comparison criteria.

Indeed, in order to assess the goodness of the curve fitting, we adopt the ISRP metric

(introduced recently in [5]) and the d2-distance. We point out that this investigation is

finalized to perform a detailed investigation on an extended Gompertz growth model,

rather than to solve the complex problem of finding a proper mathematical model to

describe the evolution of the COVID-19 outbreak. The second application is devoted

to software failure data from Tandem Computers. Also in this case, it is shown that the
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proposed model provides the better fit of the considered data under the ISRP metric

and the d2-distance. This confirms that the model is effective for various instances of

growth dynamics.

Let us now describe the plan of the paper. In Sect. 2 we introduce the model and

illustrate its mean features, including the different shapes exhibited by the growth

curve according to the parameters. Section 3 is devoted to a detailed analysis of the

relevant features of the model. In Sect. 4 we then provide the announced applications of

the proposed model to the number of outbreak contagions and to software failure data.

In Sect. 5 we analyze a special inhomogeneous linear birth-death process, and provide

a condition on the time dependent terms of the birth and death rates such that the mean

of the process is equal to the proposed growth curve. A special case is treated in Sect. 6,

where the case of a pure time-inhomogeneous birth process is considered. We also

face the first-passage-time problem of this process through constant boundaries and

time-varying boundaries. The latter case is developed by means of a simulation-based

approach. To this aim a procedure able to simulate the birth times of the process is

sketched. Some concluding remarks are finally provided in Sect. 7.

2 The proposedmodel

In this paper, we propose and study the growth model NG P D(t), which is solution of

the following differential equation:

d NG P D(t)

dt
= NG P D(t) A

(

1 −
1

Ab
log

NG P D(t)

y

)1+a

, t > 0, NG P D(0) = y,

(3)

with y > 0, A > 0, a > −1, a �= 0 and b > 0. This is a suitable extension of the

Gompertz model governed by Eq. (2). Moreover, such a model is included in the family

of growth models N (t), t > 0, that are described by a different kind of differential

equation, namely
d N (t)

dt
= ξ(t)N (t), t > 0, (4)

where N (t) denotes the size of a population at time t and ξ(t) > 0 is a time-dependent

growth rate function. Suitable choices of the growth rate ξ(t) allow us to define a

variety of models of interest. For instance,

• the constant rate ξ(t) = r yields the classical Malthusian growth (cf. Eq. (1)):

NM (t) = yer t , t > 0, NM (0) = y > 0;

• the rate ξ(t) = ξG(t) := αe−βt refers to the Gompertz growth model (cf. Gompertz

[19])

NG(t) = y exp

{

α

β
(1 − e−βt )

}

, t > 0, NG(0) = y > 0, α, β > 0; (5)
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• the rate ξ(t) = ξK (t) := αt−(β+1) is concerning the Korf growth model (cf. Korf

[23])

NK (t) = y exp

{

α

β
(1 − t−β)

}

, t > 0, NK (0) = 0, α, β > 0; (6)

• the rate ξ(t) = ξDS(t) := α(1 + t)−(β+1) ≡ ξK (1 + t), with α, β > 0, leads to a

recently proposed growth model (cf. Di Crescenzo and Spina [12])

NDS(t) = y exp

{

α

β

[

1 − (1 + t)−β
]

}

, t > 0, NDS(0) = y > 0. (7)

Let us now consider a suitable family of growth models, whose growth rate function

is defined as follows:

ξ(t) = A F̄(t), t > 0, (8)

where F̄(t) = P(X > t) is the survival function of a given nonnegative continuous

random variable X , and A > 0 is a constant. From the differential equation (4) and

Eq. (8), we have that the corresponding growth curve is given by

N (t) = y exp

{

A

∫ t

0

F̄(τ ) dτ

}

, t > 0, N (0) = y > 0. (9)

Hereafter we show that the representation (9) allows to express some properties of

N (t) in terms of the distribution of X .

Remark 1 The ultimate behaviour of the model (9) depends on the nature of the expec-

tation of X , denoted as m := E[X ] =
∫ ∞

0 F̄(τ ) dτ . Indeed, one has

N (t)
t→+∞

→

{

+∞, if m = +∞,

yeAm =: C, if m < +∞,

where C is finite and denotes the carrying capacity of N (t).

Let us now recall the notion of increasing concave ordering (see Section 4.A of

Shaked and Shanthikumar [30]). Given two random variables X i , i = 1, 2, having

distribution functions Fi (t) = 1 − F̄i (t), i = 1, 2, we say that X1 is smaller than

X2 in the increasing concave order (denoted by X1 ≤icv X2) if
∫ t

−∞ F1(τ ) dτ ≥
∫ t

−∞
F2(τ ) dτ for all t ∈ R. Roughly speaking, this means that X1 is both “smaller”

and “more variable” than X2 in some stochastic sense.

Remark 2 The increasing concave order allows to compare growth models of the form

(9). For i = 1, 2, let

Ni (t) = yi exp

{

Ai

∫ t

0

F̄i (τ ) dτ

}

, t > 0, Ni (0) = yi > 0.

It is not hard to see that if y1 ≤ y2, A1 ≤ A2, and X1 ≤icv X2, then N1(t) ≤ N2(t)

for all t ≥ 0.
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In order to propose a flexible growth model representing a generalization of various

previous instances, we assume that X has a generalized Pareto distribution (GPD) with

survival function

F̄(t) =

(

b

at + b

)
1
a
+1

, t ≥ 0, (10)

where a > −1, a �= 0, b > 0. We recall that some characterization results on the GPD

can be found in Asadi et al. [3], in Section 4 of Hashemi et al. [21] and in Section 3.1

of Arriaza et al. [2]. In particular, this family includes three distributions, depending

on the values of a:

– the Pareto distribution, when a > 0;

– the Power distribution, when −1 < a < 0 (in this case the distribution is bounded

above); in particular, the distribution is Uniform if a = 1
2

;

– the Exponential distribution, when a → 0.

Let A > 0, a > −1, a �= 0, b > 0. Due to Eqs. (8) and (9), the model driven by

the GPD survival function (10) has respectively growth rate function

ξ(t) = A

(

b

at + b

)
1
a
+1

, t > 0, (11)

and growth curve

NG P D(t) = y exp

{

Ab

[

1 −

(

b

at + b

)
1
a

]}

, t > 0, (12)

with initial value NG P D(0) = y > 0. Moreover, the function (12) is the solution of

(3).

By taking A = α > 0, a = b = 1/β in (12), one obtains the growth model NDS(t)

given in (7). Moreover, if A = α > 0, b = 1/β and a tends to 0, then the proposed

model (12) gives the Gompertz curve (5).

We point out that the curve (12) exhibits different behavior according to the value

of a > −1, a �= 0. In particular, by studying the derivative

d NG P D(t)

dt
= A NG P D(t)

(

b

at + b

)
1
a
+1

, t > 0 (13)

the following cases arise:

(i) If a > 0, the curve (12) is well defined for all t ∈ (0,+∞); it is an increasing

function for all t > 0; for t → +∞ it tends to the carrying capacity

C = y eAb. (14)

(ii) If −1 < a < 0 and 1
|a|

is an odd integer, NG P D(t) defined in (12) is well defined

for all t ∈ (0,+∞), with NG P D( b
|a|

) = C = y eAb; moreover, the curve NG P D(t)

is increasing for all t > 0, and it goes to infinity for t → +∞.
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Fig. 1 The curve NG P D(t), given in (12), is plotted for y = 1, A = 1, b = 1 and a = −0.5 (solid),

a = −0.3 (dashed), a = −0.2 (dot-dashed), a = 1 (dotted)

(iii) When −1 < a < 0 and 1
|a|

is an even integer, NG P D(t) is well defined for all

t ∈ (0,+∞). Specifically, NG P D(t) is increasing in 0 < t ≤ b
|a|

, with maximum

NG P D( b
|a|

) = C = y eAb, then it is decreasing for t ≥ b
|a|

and tends to zero for

t → +∞.

(iv) If −1 < a < 0 and 1
a

is a non-integer real number, NG P D(t) is defined only for

t ∈ (0, b
|a|

), with lim
t→

(

b
|a|

)− NG P D(t) = C = yeAb. In this case NG P D(t) is an

increasing function for 0 < t < b
|a|

.

In Fig. 1, the curve (12) is plotted for different choices of a, with case (i) for a = 1,

case (ii) for a = −0.2, case (iii) for a = −0.5, and case (iv) for a = −0.3. Note that

when a = −0.3, for case (iv), the curve is defined only in 0 < t < 3.3̄ = b/|a| as

specified above. Moreover, if a = −0.5, the random variable X considered in (8) is

uniformly distributed; in this case the population size NG P D(t) tends to zero, i.e. to

the extinction.

Remark 3 From (10) it is not hard to see that for the GPD distribution one has that
∫ t

0 F(τ ) dτ is increasing in a ∈ (−1, 0) ∪ (0,+∞) and is decreasing in b ∈ (0,+∞)

for all t ≥ 0. Hence, denoting by NG P D,i (t) the growth model (12) characterized by

parameters yi , Ai , ai , bi , i = 1, 2, due to Remark 2 we have that if y1 ≤ y2, A1 ≤ A2,

a1 ≥ a2 and b1 ≤ b2, then

NG P D,1(t) ≤ NG P D,2(t) for all t ≥ 0.

3 Analysis of the growthmodel

In this section we discuss various features of the generalized Gompertz growth model

proposed in (12).
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Fig. 2 The correction factor for model (12) (solid line), for y = 0.1, A = 3, a = b = 10 on the left and

A = 2, a = b = 1 on the right, compared with f (z) = 1 (dashed line) for the exponential growth

3.1 The correction factor and the relative growth rate

In the context of growth analysis, interest is given to models governed by equations

of the following form:

d N (t)

dt
= A N (t) f [N (t)] , t > 0.

The function f is a function of t only through the population size N (t), and is named

a size covariate model. It allows to express the density dependent growth of the curve,

and it is strictly related to the relative growth rate g (see Tsoularis and Wallace [35])

through the following relation:

g[N (t)] :=
1

N (t)

d N (t)

dt
≡ A f [N (t)], t > 0.

We remark that an extension of the relative growth rate, named modified relative growth

rate, has been proposed and studied recently in Pal et al. [26] for the data analysis of

growth models. Moreover, the function f is also called correction factor because

it provides information about the deviation of a growth model from the classical

exponential growth (for which f (z) = 1, z ≥ 0). From Eqs. (3) one has that for the

GPD model the correction factor is given by

f (z) =

(

1 −
1

Ab
log

z

y

)1+a

, z > 0.

As example, Fig. 2 shows some plots of the correction factor for model (12).
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3.2 The inflection point

The monotonicity of the proposed model (12) has been studied in Sect. 2. Now we

focus on the second derivative of NG P D(t) in order to compute the inflection point,

when existing. From (13), the second derivative of NG P D(t), t > 0, results:

d2 NG P D(t)

dt2
= A NG P D(t)

(

b

at + b

)
1
a
+1

[

A

(

b

at + b

)
1
a
+1

−
a + 1

at + b

]

. (15)

For the study of the sign of (15), by considering the analysis shown in Sect. 2 we

report two cases:

– If Ab > a + 1, in cases (i), (iii) and (iv), the curve NG P D(t) is sigmoidal with the

inflection point given by

tI :=
b

a

[(

Ab

a + 1

)a

− 1

]

. (16)

On the contrary, in case (ii) the curve NG P D(t) has two inflection points, i.e. tI

and b
|a|

, with tI < b
|a|

. In particular, it has an upward concavity up to t = tI , a

downward concavity between tI and b
|a|

, then an upward concavity.

– If Ab < a + 1, in cases (i), (iii) and (iv), the curve NG P D(t) has a downward

concavity for all t > 0, whereas in case (ii), NG P D(t) has a downward concavity

up to the inflection point b
|a|

, then it has an upward concavity.

Furthermore, in all the interesting cases, the population at time t = tI is given by

NG P D (tI ) = C e−(a+1),

where C is given in (14).

3.3 Themaximum specific growth rate and the lag time

The study of a growth curve that exhibits a sigmoidal behaviour in proximity of its

inflection point (by approximating the curve in that point with a line) can be of interest

in many phenomena that show lag, growth, and asymptotic phases. Due to the results

of Sect. 3.2, we focus only on the instances of interest, that are cases (i), (iii) and (iv)

analysed in Sect. 2, when Ab > a + 1.

We consider the maximum specific growth rate, say μ, which is the coefficient of

the tangent to the curve NG P D(t) given in (12) in the inflection point tI shown in (16):

μ :=
d NG P D(t)

dt

∣

∣

∣

t=tI

= Ay

(

a + 1

Ab

)1+a

eAb−(a+1). (17)
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Fig. 3 The tangent lines (dotted curves) and the lag times (black point) with y = 0.1, A = 3, a = b = 2

on the left and A = 3, a = b = 1.7 on the right

Moreover, recalling the expressions of tI and NG P D(tI ), the tangent to the curve

NG P D(t) in (tI , NG P D(tI )) is

n := μt + yeAb−a−1

[(

a + 1

Ab

)a
a + 1

a
−

1

a

]

, (18)

with μ expressed in (17). (For notation clarity, we denote by n the y-axis). Moreover,

we introduce the lag time λ as the x-axis intercept of the tangent line. The lag time λ

for the model (12) is the t-axis intercept of (18), that is

λ =
b

a

[(

Ab

a + 1

)a
1

a + 1
− 1

]

. (19)

Note that λ is positive when Ab > (a+1)
1
a
+1. Hence, the sigmoidal function NG P D(t)

evolves with a growth rate that starts at zero and then accelerates to the maximal value

μ, given in (17), in the time period resulting in the lag time λ shown in (19). Examples

of tangent lines (dotted curves) and lag times (black point) are plotted in Fig. 3.

3.4 Threshold crossing

In several contexts of population evolution, it is relevant to know how long time the

population spends below (or above) a certain preassigned value, which can represent

a control threshold or a boundary in the evolution of the given phenomenon. Let

us denote by S such a threshold for a growth model N (t). We are interested in the

time instant in which N (t) reaches S, with S > N (0) = y. Taking into account the

various behaviours that the curve NG P D(t) may have for different choices of a, we are

interested in a generic threshold S > y if the curve grows to infinity, or on a percentage

p of the carrying capacity C = yeAb, or on a percentage of the size of the population

at the inflection point tI given in (16). For a generic S, to obtain the crossing time

instant θ S of NG P D(t) through S, we solve the equation N (θ S) = S, recalling (12).
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Fig. 4 The threshold crossing times θC (p) (on the left) and θI (p) (on the right) are plotted as function of

p, with y = 0.1, a = 2, b = 4 and A = 2, 1.5, 1, from top to bottom

Thus we get the solution

θ S =
b

a

[

(

1 −
1

Ab
log

S

y

)−a

− 1

]

, S > y. (20)

If S is a percentage 0 < p < 1 of the carrying capacity C = y eAb, substituting

S = pC in (20), the time of interest is

θC (p) =
b

a

[

(

−
1

Ab
log p

)−a

− 1

]

, e−Ab < p < 1.

Moreover, when S is a percentage 0 < p < 1 of NG P D(tI ), i.e. S = p y eAb−a−1,

one has that the crossing time is:

θI (p)=
b

a

[

(

−
1

Ab
(log p − a − 1)

)−a

− 1

]

, e−Ab+a+1 < p<1, Ab>a+1.

In Fig. 4, the quantities θC (p) and θI (p) are plotted as a function of p, with some

choices of the parameters.

3.5 Sensitivity analysis

This section is devoted to analyze how the perturbation on each parameter involved in

the model (12) influences the growth of NG P D(t). The parameters are the initial state

y > 0, then A > 0, a > −1, a �= 0, and b > 0. Recalling the study performed in

Sect. 2 about the conditions for the existence, the following analysis can be performed

on NG P D(t), that hereafter will be denoted by N ν
G P D to emphasize the dependence on

a generic parameter ν. Specifically, starting from (12) we expand N ν+ǫ
G P D in a Taylor

series evaluated at ν, with ǫ > 0, for ν = y, A, a and b.
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– Perturbation on y

N
y+ǫ

G P D − N
y
G P D ≈ ǫ exp

{

Ab

[

1 −

(

b

at + b

)
1
a

]}

.

The latter term is positive for all t > 0.

– Perturbation on A

N A+ǫ
G P D − N A

G P D ≈ ǫ N A
G P D b

[

1 −

(

b

at + b

)
1
a

]

.

The latter term is positive for all t > 0.

– Perturbation on a

N a+ǫ
G P D − N a

G P D ≈ ǫ N a
G P D

A

a2

(

b

at + b

)
1
a
+1[

at + (at + b) log

(

b

at + b

)]

.

(21)

To study the sign of (21), we note that due to the analysis performed in Sect. 2, it

is not hard to see that

(

b

at + b

)
1
a
+1

> 0, at + (at + b) log

(

b

at + b

)

< 0,

where the time domain is t > 0 if a > 0, and 0 < t < b
|a|

if −1 < a < 0. Hence,

the right-hand-side of (21) is negative for all t > 0.

– Perturbation on b

N b+ǫ
G P D − N b

G P D ≈ ǫ N b
G P D A

[

1 −

(

b

at + b

)
1
a
(

1 +
t

at + b

)

]

. (22)

The sign of the right-hand-side of (22) is equal to that of the function

h(t) := 1 −

(

b

at + b

)
1
a
(

1 +
t

at + b

)

.

We have h(0) = 0. The first derivative h′(t) is positive for all t > 0 in cases (i),

(iii) and (iv) analyzed in Sect. 2; hence, in these cases one has h(t) > 0 for all

t > 0. In the remaining case (ii), we have h′(t) > 0 for 0 < t < b
|a|

, and h′(t) < 0

for t > b
|a|

. Hence, the function h(t) is surely positive up to t = b
|a|

. Noting that

limt→+∞ h(t) = −∞, from the continuity of h we have that there exists a t̄ > b
|a|

such that h(t̄) < 0 for all t > t̄ .

As example, in Fig. 5 we show the curve NG P D(t) and the effect of the perturbation

ǫ = 0.1 on the parameter y (on the left) and on A (on the right). The same is show in
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Fig. 5 On the left, the curve NG P D(t) for initial value y = 1 (solid) and y = 1.1 (dashed), with A = 1,

a = 0.2, b = 3. On the right, NG P D(t) is plotted for A = 1 (solid) and A = 1.1 (dashed), with y = 0.1,

a = 0.2, b = 3

Fig. 6 On the left, the curve NG P D(t) for a = 0.3 (solid) and a = 0.4 (dashed), with y = 0.1, A = 1,

b = 3. On the right, the same curve is plotted for a = −0.5 (solid) and a = −0.4 (dashed), with y = 0.1,

A = 1, b = 3

Fig. 7 On the left, NG P D(t) for b = 3 (solid) and b + ǫ = 3.1 (dashed), with y = 0.1, A = 1, a = −0.1.

On the right, NG P D(t) is plotted for b = 3 (solid) and b + ǫ = 3.1 (dashed), with y = 0.1, A = 1,

a = −0.2

Fig. 6 for the parameter a, when a > 0 (on the left) and −1 < a < 0 (on the right),

and finally in Fig. 7 for the parameter b in case (iii) (on the left) and in case (ii) (on

the right).
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4 Applications to real data

The usefulness of the results presented in the previous part of the paper emerges in

various contexts in which the proposed generalization of the Gompertz model may

be employed to obtain proper fit of real data. Indeed, in this section we show that the

proposed GPD model (12) is able to fit well some datasets of interest. Two suitable

criteria are then adopted in order to discuss the goodness of fit, by taking into account

also other popular growth curves, i.e. the Gompertz model (5) and the logistic model

NL(t) =
C

1 +
(

C−y
y

)

e−r t
, t > 0, C, r , y > 0. (23)

The considered data analytic examples are related to epidemiology and reliability

contexts. Indeed, the three considered models are used to fit the dataset related to

(a) the active number and the total number of COVID-19 contagions from the 25th

February to the 1st April 2020 in Iran and Italy (cf. [39] and [40], respectively);

(b) a set of Release #1 failure data coming from software products at Tandem Com-

puters (cf. Wood [36]), reported in Table 11.

We use the nonlinear regression to fit the data, in particular the routine lsqcurvefit

of Matlab
®, to solve nonlinear curve-fitting (data-fitting) problems in least-squares

sense leading to the parameters estimation. Note that, we do not consider the Korf

model (6) because for both datasets it does not perform a good fit, due to the fact that

such a model has a slower growth when time increases. Moreover, we do not show the

results related to the DS model (7) since it is a special case of the new model NG P D ,

and thus the fitting is better for the latter one.

Aiming to identify the best fitting model, we use two procedures to estimate param-

eters and check the goodness. In particular, we compute the sum of squared residuals

(SSR) with the routine lsqcurvefit and then we estimate the parameters by means of

ISRP metric. Further we calculate the d2-distance (in the euclidean norm) between

ISRP and the constant parameter. We recall that the ISRP growth metric has been

introduced recently in [5] aiming to determine the true growth curve that best fits the

data (statistically). Indeed, such a metric provides an estimate of the rate parameter

corresponding to the identified growth model in specific time intervals. The ISRP for

the three considered models are respectively:

I S R PG =
β

e−βt − e−β(t+Δt)
log

(

NG(t + Δt)

NG(t)

)

,

I S R PL =
1

Δt
log

[ c y
C−y

1
NL (t)

− 1

c y
C−y

1
NL (t+Δt)

− 1

]

,

I S R PG P D =
1

b

[

(

b
at+b

)
1
a

−
(

b
a(t+Δt)+b

)
1
a

]
log

(

NG P D(t + Δt)

NG P D(t)

)

,

with reference to the growth parameter α, r , A.

123



A generalized Gompertz growth model with applications and…

(a) We consider two data collections: (a1) consists of COVID-19 data n(i) collected

every day from February 25th to April 1st, 2020, whereas (a2) is formed by

the mobile mean of data collected in 3 days, i.e. data(i) = n(i)+n(i+1)+n(i+2)
3

,

i = 1, 2, . . . , 35. The analysis of the mobile mean is suggested by the fact that the

reliability of data on infected by COVID-19 is subject to high variability caused

by external factors, such as fluctuations in the availability of test devices and in

the test response times.

(a1) We show the interpolation of the dataset (a1), for three time intervals, where

Figs. 8 and 9 refer to Italy and Figs. 10 and 11 refer to Iran. In all cases we

have reasonably good fit. In Tables 1, 2 and 3, we report the SSR and the

d2-distance between ISRP and the constant parameter, for the given datasets

(a1). The notation e+05, for example, means ×105. In Table 4, Total and

Active Coronavirus Cases in Italy (March 29-April 1) are compared with

the prediction done with the GPD model (12). The parameters used for the

prediction at i-th day come from the estimation performed until up to the

(i − 1)-th day, with the routine lsqcurvefit of Matlab
®. The same analysis is

shown in Table 5 for Iran, whose Total and Active Coronavirus Cases (March

25-March 29) are compared with the prediction done with the GPD model

(12).

(a2) We show the interpolation of the dataset (a2), for three time intervals, for

Italy in Figs. 12 and 13, and for Iran in Figs. 14 and 15. In all cases we

have reasonably good fit. In Tables 6, 7 and 8, we report the SSR and the

d2-distance between ISRP and the constant parameter, for the given dataset

(a2). In Table 9, Total and Active Coronavirus Cases in Italy (March 28-

March 31) are compared with the prediction done with the GPD model (12).

The parameters used for the prediction at i-th day come from the estimation

performed up to the (i −1)-th day. The same analysis is performed in Table 10,

where Total and Active Coronavirus Cases in Iran (March 28-March 31) are

compared with the prediction done with the GPD model (12).

We report in Tables 11 and 12 the estimates of the parameters for Figs. 8, 9, 10,

11, 12, 13, 14 and 15, and datasets (a1) and (a2), respectively, obtained by means

of the routine lsqcurvefit of Matlab
®. By comparing the SS R and d2 indexes of

the two performed analysis, i.e. cases (a1) and (a2), we observe that (a2) provides

better results. Indeed (a2) takes into account the running average of the data over

3 days. We find that according to the different intervals of time, and the adopted

criteria (SS R and d2), there is a variety in the detection of the best fitting model.

Nevertheless, in the most of cases our proposed GPD model gives the best fitting.

(b) We show in Table 13 the considered data, and in Fig. 16 we interpolate the data

with the Gompertz, the Logistic and the GPD models. In Table 13 we report also

the SSR and the d2-distance between ISRP and the constant parameters A, α, r ,

respectively. In these cases, we can observe that the GPD model fits better than

the others.
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Fig. 8 Interpolation of dataset (a1) for the total case in Italy under the Gompertz (5), logistic (23) and GPD

(12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st April
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Fig. 9 Interpolation of dataset (a1) for the active case in Italy under the Gompertz (5), logistic (23) and

GPD (12) models. From left to right, the data for a 25-th Feb/15-th March, b 25-th Feb/25-th March, c

25-th Feb/1-st April
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Fig. 10 Interpolation of dataset (a1) for the total case in Iran under the Gompertz (5), logistic (23) and GPD

(12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st April

5 Analysis of a special inhomogeneous linear birth-death process

Birth-death processes are largely used to model random evolution. See Callaert and

Keilson [6,7] for the spectral structure of such processes. In this section, we consider a

stochastic counterpart of the growth model introduced in (12) by studying an evolution-

ary model based on a birth-death process. We will consider a continuous-time Markov

chain having an infinite state-space to mimics the growth curve (12) which can reach

any high level when A is large. In particular, we consider a time-inhomogeneous linear

birth-death process {X(t); t ≥ 0} having state space N0, and the absorbing endpoint

0. Denoting by
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Fig. 11 Interpolation of dataset (a1) for the active case in Iran under the Gompertz (5), logistic (23) and

GPD (12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st

April

Table 1 The SSR and

d2-distance between ISRP and

the constant parameter, for data

(a1) in the time interval 25-th

Feb/15-th March

GPD Gompertz Logistic

Total Italy

SS R 7.96e+06 5.28e+05 8.15e+05

d2 0.51 0.27 0.92

Active Italy

SS R 3.92e+06 6.92e+05 8.24e+05

d2 0.51 0.33 0.92

Total Iran

SS R 8.61e+05 1.25e+06 2.94e+06

d2 0.93 3.01 1.88

Active Iran

SS R 1.38e+05 4.18e+05 1.42e+05

d2 2.42 4.06 2.23

Table 2 The SSR and

d2-distance between ISRP and

the constant parameter, for data

(a1) in the time interval 25-th

Feb/25-th March

GPD Gompertz Logistic

Total Italy

SS R 9.35e+07 1.26e+07 7.32e+06

d2 0.29 0.42 1.03

Active Italy

SS R 8.11e+07 9.28e+06 5.94e+06

d2 0.34 0.53 1.02

Total Iran

SS R 2.75e+06 1.48e+06 4.63e+06

d2 1.13 0.85 0.94

Active Iran

SS R 3.29e+06 1.55e+06 3.18e+06

d2 2.14 2.11 1.15
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Table 3 The SSR and

d2-distance between ISRP and

the constant parameter, for data

(a1) in the time interval 25-th

Feb/1-st April

GPD Gompertz Logistic

Total Italy

SS R 9.01+06 3.53e+07 1.74e+07

d2 0.31 0.84 3.22

Active Italy

SS R 7.47e+06 3.35e+07 1.05e+07

d2 0.42 1.11 1.08

Total Iran

SS R 6.97e+07 3.31e+07 3.61e+07

d2 1.56 1.06 0.52

Active Iran

SS R 6.40e+07 3.30e+07 3.60+07

d2 1.56 0.52 1.06

Table 4 Total and active coronavirus cases in Italy versus the prediction done with the GPD model based

on data (a1)

Day 29-th March 30-th March 31-th March 1-st April

Predicted total 96,789 102,153 106,058 109,279

Real total 97,689 101,739 105,792 110,574

Predicted active 75,748 76,713 78,268 80,375

Real active 73,880 75,528 77,635 80,672

Table 5 Total and active coronavirus cases in Iran versus the prediction done with the GPD model based

on data (a1)

Day 29-th March 30-th March 31-th March 1-st April

Predicted total 37,260 39,870 43,477 46,974

Real total 38,309 41,495 44,605 47,593

Predicted active 21,754 23,481 25,128 27,094

Real active 23,278 24,827 27,051 29,084
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Fig. 12 Interpolation of dataset (a2) for the total case in Italy under the Gompertz (5), logistic (23) and

GPD (12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st

April
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Fig. 13 Interpolation of dataset (a2) for the active case in Italy under the Gompertz (5), logistic (23) and

GPD (12) models. From left to right, the data for a 25-th Feb/15-th March, b 25-th Feb/25-th March, c

25-th Feb/1-st April
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Fig. 14 Interpolation of dataset (a2) for the total case in Iran under the Gompertz (5), logistic (23) and GPD

(12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st April
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Fig. 15 Interpolation of dataset (a2) for the active case in Iran under the Gompertz (5), logistic (23) and

GPD (12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st

April

qi, j (t) = lim
h→0

1

h
P[X(t + h) = j | X(t) = i], i, j ∈ N0

the time-dependent transition rates of X(t), we assume that

qi, j (t) =

{

i λ(t), j = i + 1, i ∈ N0 (birth rate),

i μ(t), j = i − 1, i ∈ N (death rate),
(24)

where λ(t) and μ(t) are positive functions, integrable on (0, t) for any finite t > 0.

Note that the rates (24) are linear in i , hence the intensities of new births and deaths

are proportional to the population size at the current time, and to the time-dependent

123



M. Asadi et al.

Table 6 The SSR and the ISRP

metric for data (a2) in the time

interval 25-th Feb/15-th March

GPD Gompertz Logistic

Total Italy

SS R 2.1e+05 2.84e+05 3.09e+05

d2 0.12 0.11 0.94

Active Italy

SS R 1.36e+06 3.11e+05 2.33e+05

d2 0.15 0.15 0.93

Total Iran

SS R 6.91e+05 9.42e+05 2.68e+06

d2 0.72 0.42 1.06

Active Iran

SS R 5.21e+05 9.83e+05 1.91e+06

d2 0.77 0.63 1.01

Table 7 The SSR and the ISRP

metric for data (a2) in the time

interval 25-th Feb/25-th March

GPD Gompertz Logistic

Total Italy

SS R 3.17e+06 1.06e+07 5.03e+06

d2 0.15 0.29 1.02

Active Italy

SS R 2.4e+06 7.28e+06 3.81e+06

d2 0.17 0.34 1.01

Total Iran

SS R 1.06e+07 8.97e+06 1.99e+07

d2 1.05 0.7 0.84

Active Iran

SS R 4.01e+06 6.23e+06 1.05e+07

d2 0.96 0.95 0.83

functions λ(t) and μ(t), respectively. Clearly, λ(t) and μ(t) represent the individual

birth rate and death rate at time t , respectively. We denote with Py,x (t) the transition

probability of X(t), for all t ≥ 0, x ∈ N0 and y ∈ N, i.e. the probability that

the population, starting from y, reaches level x at time t . Note that, we consider

X(0) = y ∈ N as for the growth model (12) the initial state is positive. Taking into

account the results obtained in [12], the process X(t) with rates (24) has transition

probabilities, for y ∈ N,

Py,0(t) =

(

1 −
1

ψ + φ

)y

, (25)

Py,x (t) =

(

φ

ψ + φ

)x m
∑

i=0

(

y

i

)(

y + x − i − 1

y − 1

)

(φ−1 − 1)i

(

1 −
1

ψ + φ

)y−i

,

x ∈ N, (26)
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Table 8 The SSR and the ISRP

metric for data (a2) in the time

interval 25-th Feb/1-st April

GPD Gompertz Logistic

Total Italy

SS R 4.82+06 2.5e+07 1.21e+07

d2 0.14 1.04 0.58

Active Italy

SS R 3.30e+06 2.23e+07 6.33e+06

d2 0.18 0.7 1.05

Total Iran

SS R 5.85e+07 4.05e+07 5.71e+07

d2 1.2 0.78 0.62

Active Iran

SS R 3.84e+07 2.84e+07 3.15+07

d2 0.86 0.87 0.51

Table 9 Total and active coronavirus cases in Italy versus the prediction done with the GPD model based

on data (a2)

Day 28-th March 29-th March 30-th March 31-th March

Predicted total 93,332 98,091 102,302 106,001

Real total 92,472 97,689 101,739 105,792

Predicted active 71,690 74,328 76,954 77,082

Real active 70,065 73,880 75,528 77,635

Table 10 Total and active coronavirus cases in Iran versus the prediction done with the GPD model based

on data (a2)

Day 28-th March 29-th March 30-th March 31-th March

Predicted total 36,827 39,694 42,775 45,031

Real total 35,408 38,309 41,495 44,605

Predicted active 20,366 21,734 22,628 24,787

Real active 21,212 23,278 24,827 27,051

with m = min {y, x}, where ψ = ψ(t) and φ = φ(t) are given by:

ψ(t) = exp

{

−

∫ t

0

[λ(τ) − μ(τ)] dτ

}

, φ(t) =

∫ t

0

λ(τ)ψ(τ) dτ. (27)

Moreover, the conditional mean Ey(t) = E[X(t)|X(0) = y] and the conditional

variance Vy(t) = Var[X(t)|X(0) = y] of X(t) are respectively

Ey(t) =
y

ψ(t)
, Vy(t) = y

[ψ(t) + 2φ(t) − 1]

ψ2(t)
, t ≥ 0. (28)
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Table 11 The estimates of the parameters for Figs. 8, 9, 10 and 11 and dataset (a1)

Model parameters GPD Gompertz Logistic

y, A, a, b y, α, β y, r , C

Figure 8

(a) 33.86, 0.99, 5.54, 24.94 312.57, 0.29, 0.03 441.71, 0.22, 108083

(b) 68.21, 0.61, 0.64, 16.11 127.05, 0.43, 0.05 595.98, 0.19, 335555

(c) 37.05, 0.84, 1.36, 14.12 31.92, 0.62, 0.07 763.65, 0.18, 308078

Figure 9

(a) 48.46, 0.76, 2.61, 20.61 287.61, 0.28, 0.03 397.25, 0.21, 75702

(b) 19.83, 1.06, 1.83, 12.43 114.12, 0.43, 0.05 531.59, 0.19, 299301

(c) 266.05, 0.29, −0.49, 19.75 21.95, 0.67, 0.07 620.14, 0.18, 250126

Figure 10

(a) 0.78, 7.45, 5.64, 2.69 72.12, 0.63, 0.1 295.58, 0.26, 22478

(b) 2.09, 5.81, 7.36, 3.82 215.37, 0.4, 0.07 696.55, 0.17, 48793

(c) 0.44, 12.29, 11.94, 2.68 1033.1, 0.2, 0.01 1615.1, 0.1, 35572700

Figure 11

(a) 1.69, 6.67, 8.97, 3.6 70.59, 0.59, 0.11 247.51, 0.25, 15931

(b) 1.4, 6.74, 7.11, 3.05 160.89, 0.4, 0.08 478.46, 0.17, 14322

(c) 1.19, 7.27, 11.54, 4.12 992.7, 0.11, 0.01 1265, 0.1, 27863500

Table 12 The estimates of the parameters for Figs. 12, 13, 14 and 15 and dataset (a2)

Model parameters GPD Gompertz Logistic

y, A, a, b y, α, β y, r , C

Figure 12

(a) 450.76, 0.25, −0.74, 17.65 375.96, 0.31, 0.03 547.59, 0.22, 133991

(b) 486.89, 0.25, −0.61, 20.42 174.97, 0.42, 0.05 767.64, 0.19, 431844

(c) 384, 0.29, −0.47, 19.74 77.57, 0.54, 0.06 911.76, 0.18, 367830

Figure 13

(a) 446.41, 0.24, −0.78, 17.12 341.83, 0.3, 0.03 490.2, 0.22, 119948

(b) 433.66, 0.25, −0.59, 19.83 159.42, 0.42, 0.05 681.83, 0.19, 383891

(c) 375.33, 0.27, −0.50, 19.39 60.42, 0.56, 0.07 758.03, 0.18, 305811

Figure 14

(a) 0.67, 11.11, 9.73, 2.49 157.82, 0.52, 0.1 438.91, 0.24, 23963

(b) 1.37, 7.87, 10.57, 3.67 437.34, 0.31, 0.06 1001.4, 0.2, 48584400

(c) 0.45, 12.75, 12.8, 2.71 1157.9, 0.2, 0.01 1759.6, 0.1, 38757800

Figure 15

(a) 1.53, 8.18, 13.38, 3.93 150.05, 0.48, 0.10 360.52, 0.23, 16661

(b) 1.88, 7.24, 10.75, 3.67 346.72, 0.29, 0.06 716.36, 0.15, 30460

(c) 0.77, 10.7, 13.54, 3.11 1091.6, 0.1, 0.01 1389.6, 0.1, 3060800
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Table 13 Data (b): Tandem Computers software failure Data; SSR and d2-distance between ISRP and the

constant parameter

Testing times (weeks) 1 2 3 4 5 6 7 8 9 10

Defects found 16 24 27 33 41 49 54 58 69 75

Testing times (weeks) 11 12 13 14 15 16 17 18 19 20

Defects found 81 86 90 93 96 98 99 100 100 100

Data (b) GPD Gompertz Logistic

SS R 39.79 79.34 63.55

d2 0.55 0.71 1.32
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Fig. 16 Interpolation of dataset (b)

Recalling the birth and death rates (24), the population mean satisfies the following

differential equation:
d Ey(t)

dt
= ξ(t)Ey(t), t > 0, (29)

where ξ(t) is the net growth rate per capita of individuals, i.e.

ξ(t) = λ(t) − μ(t), t ≥ 0. (30)

Hence, by noting that equations (29) and (4) have the same form, we get that the

mean of the process X(t) is equal to the growth curve proposed in (12), under the

assumptions (11) and (30). Some properties of Ey(t) and Vy(t) are provided in Table

4 of [12]. Finally, we observe that Py,0(t) is the probability that the population reaches

the extinction prior to time t , being 0 an absorbing endpoint. In particular, from (25)
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the probability of ultimate extinction, conditional by the initial size y, is

πy,0 := lim
t→∞

Py,0(t) =

(

1 −
1

ψ̃ + φ̃

)y

, y ∈ N, (31)

where

ψ̃ = lim
t→∞

ψ(t), φ̃ = lim
t→∞

φ(t), λ̃ = lim
t→∞

∫ t

0

λ(τ) dτ, μ̃ = lim
t→∞

∫ t

0

μ(τ) dτ.

(32)

Obviously, if μ̃ − λ̃ = ∞ or φ̃ = ∞, then πy,0 = 1, i.e. the ultimate extinction is

certain.

5.1 Analysis of a special case

In the following we assume that a > 0, that corresponds to the case (i) of the analysis

performed in Sect. 2. This choice leads to a process X(t) having an increasing behavior

and tending to a carrying capacity. As observed before, the conditional mean of X(t)

verifies the same law of the growth model (12), under Eqs. (11) and (30). In this

section, we focus our attention on this special case.

Proposition 1 The linear birth-death process X(t) with rates specified in (24) has

conditional mean

Ey(t) = y exp

{

Ab

[

1 −

(

b

at + b

)
1
a

]}

, t ≥ 0 (33)

if and only if

λ(t) − μ(t) = A

(

b

at + b

)
1
a
+1

, t ≥ 0. (34)

Proof We substitute the first equation of (27) in (28) and we obtain

Ey(t) = y exp

{∫ t

0

[λ(τ) − μ(τ)] dτ

}

, t ≥ 0.

Hence, the expression (33) holds if and only if

∫ t

0

[λ(τ) − μ(τ)] dτ = Ab

[

1 −

(

b

at + b

)
1
a

]

, t ≥ 0, (35)

that is equivalent to (34). ⊓⊔

We now investigate on the process X(t) taking into account the relation (34). In

this case, we have λ(t) > μ(t), and thus the net growth rate ξ(t) defined in (30)

is decreasing and tends to 0 following a power law. Therefore, a population whose
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conditional mean has a S-shape is well described in this case. Moreover, for (27), the

mean Ey(t) is identical to the curve N (t) given in (12). Hence, due to (34), from (35)

one obtains λ̃ − μ̃ = Ab, with λ̃ and μ̃ defined in (32). From the results shown in

Table 4 of [12], we have that Ey(t) is strictly increasing, and it tends to the carrying

capacity defined in (14), i.e. limt→∞ Ey(t) = yeAb ≡ C . Moreover, we have

ψ(t) = exp

{

−Ab

[

1 −

(

b

at + b

)
1
a

]}

, t ≥ 0, (36)

with ψ̃ = e−Ab, so that Vy(t) is strictly increasing in t .

Example 1 Under the validity of Eq. (34), we now consider various choices of the

function μ(t) listed in Table 14. The transition probabilities (25) and (26) are plotted

in Fig. 17 for y = 1, x = 0 and x = 1, and for some choices of the parameters. In

Table 14 the last column is dedicated to the asymptotic absorption probability (31).

(a) We consider μ(t) = c, with c > 0, i.e. the individual death rate of the populations

is constant. From (27) one has, for t > 0,

φa(t) = c b e−Ab(−Ab)a γa(t) + 1 − exp

{

−Ab

[

1 −

(

b

at + b

)
1
a

]}

, (37)

with γa(t) = Γ

(

−a,−Ab
(

b
at+b

)
1
a

)

−Γ (−a,−Ab), where Γ (·, ·) is the upper

incomplete Gamma function. The expression of the variance follows from (28),

where ψ is given in (36).

(b) We consider μ(t) = c+d (t −t0)I{t≥t0}, with c > 0, d > 0 and t0 > 0, where IA is

the indicator function, such that IA = 1 if A is true, and 0 otherwise. In this case the

individual death rate is constant until time t0 and is linear increasing afterwards,

for instance due to worsening of the environmental or individual conditions. From

(27) one has

φb(t) = φa(t) + d eAb b (−Ab)a (γb2(t) − γb1(t)) ,

where φa(t) is defined in (37) and

γb1(t) = Γ [−a, k(t)] − Γ [−a, k(t0)] ,

γb2(t) = (−Ab)a {Γ [−2a, k(t)] − Γ [−2a, k(t0)]} + Γ [−a, k(t0)]

−Γ [−a, k(t)] ,

with k(t) = −Ab
(

b
at+b

)
1
a
. The expression of the variance follows from (28).

(c) Let μ(t) = c + d sin
(

2π
Q

t
)

, where Q > 0 and c > |d| > 0. This case describes

populations subject to individual sinusoidal death rate, due to i.e. periodic increase
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Table 14 Some choices of μ(t)

and the corresponding extinction

probabilities (31)

Case μ(t) πy,0

(a) c 1

(b) c + d (t − t0)I{t≥t0} 1

(c) c + d sin
(

2π
Q

t
)

1

(d) c
(

b
at+b

)
1
a +1

[

c
A

(

1−e−Ab
)

c
A

(

1−e−Ab
)

+1

]y

Parameters c, d, Q and t0 are positive constants

Fig. 17 Probabilities P1,0(t) and P1,1(t) for the cases specified in Table 13, where c = 2.00001 in all

cases, with a (full line), b d = 1, t0 = 1 (dashed line), c d = 2, Q = 1 (dotted line), d (dot-dashed line)

and decrease of mortality. The function (27) can be expressed in integral form,

and also the variance (28).

(d) Let μ(t) = c
(

b
at+b

)
1
a
+1

, with c > 0; in this case the individual birth and death

rates are proportional; the function (27) becomes

φd(t) =
( c

a
+ 1

)

(

1 − exp

{

−Ab

[

1 −

(

b

at + b

)
1
a

]})

,

and the variance is obtained from (28).

In the first three cases of Table 14 one has ψ̃ = +∞ because μ̃ = +∞, therefore

πy,0 = 1, i.e. the ultimate extinction is certain. On the contrary, μ̃ < +∞ in case (d),

and thus ψ̃ < +∞, so that πy,0 < 1. Moreover, we note that the variance diverges

as t → ∞ for cases (a), (b) and (c), whereas it converges to a constant in case (d). In

Fig. 18 we show some plots of Vy(t), depending on μ(t).

6 Analysis of a special time-inhomogeneous linear birth process

In the previous section, we considered a birth-death process with conditional mean

identical to the growth curve (12). Nevertheless the sample paths of that process may

not reflect the behavior of the growth curve since they can be absorbed at zero (see the
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Fig. 18 For y = 1, A = 2, a, b = 2, the variance Vy(t) is plotted for the cases of Table 13. In case

(a): c = 0.4, 0.8, 1 (from bottom to top). In case (b): c = 1, d = 1, t0 = 5 (solid line) and t0 = 10

(dashed line). In case (c): c = 2.00001, d = 2, Q = 1 (solid line) and Q = 2 (dashed line). In case (d):

c = 0.4, 0.8, 1 (from bottom to top)

probabilities given in Eqs. (25) and (31)). In order to deal with a stochastic process more

suitable to describe a growth phenomenon, we remove the possibility of downward

jumps by assuming that μ(t) ≡ 0 in Eq. (24). This leads to a time-inhomogeneous

linear birth process {X(t); t ≥ 0}, that possesses non-decreasing sample paths, and is

characterized by time-dependent birth rates

qk,k+1(t) = k λ(t), k ∈ S. (38)

Here, S = {y, y + 1, . . .} is the state space and X(0) = y ∈ N is the initial state.

Clearly, the function λ(t) is continuous, positive and integrable on (0, t), for any

t > 0. As usual, we denote with Py,x (t) = P[X(t) = x | X(0) = y] the transition

probabilities of X(t). For y ∈ N and x ∈ S, one has (see, for example, [28]):

Py,x (t) =

(

x − 1

y − 1

)

e−yΛ(t)
(

1 − e−Λ(t)
)x−y

, t ≥ 0, (39)

where

Λ(t) =

∫ t

0

λ(τ) dτ, t ≥ 0 (40)

is the individual time-dependent cumulative birth intensity. By recalling Proposition

3 of Di Crescenzo and Spina [12] and the time-dependent growth rate (11), for a > 0,
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Fig. 19 The mean (45), on the left, and the variance (46), on the right, are plotted for the estimated

values of Fig. 8 (reported in Table 11) for model GPD, from top to bottom for the cases (a), (b) and

(c). On the left, one has Ey(∞) = 1.74 × 1012, 9.62 × 106, 5.23 × 106; on the right, it is Vy(∞) =

9.21 × 1022, 1.36 × 1012, 7.41 × 1011, for the cases (a), (b) and (c), respectively

we have that the linear birth process with rates (38) has conditional mean

Ey(t) = y exp

{

Ab

[

1 −

(

b

at + b

)1/a
]}

, t ≥ 0 (41)

if and only if

λ(t) = A

(

b

at + b

)
1
a
+1

, t ≥ 0. (42)

This condition allows the conditional mean of the time-inhomogeneous birth process

{X(t); t ≥ 0} to be equal to the growth curve given in Eq. (12). Moreover, from (40)

and (42) we have

Λ(t) = Ab

[

1 −

(

b

at + b

)1/a
]

, (43)

and

Λ(t)
t→+∞

→ Ab =

∫ ∞

0

λ(τ) dτ. (44)

This property reflects that the births occur with decreasing time inputs, which is typical

for environments with limited resources. Indeed, under condition a > 0 the process

{X(t); t ≥ 0} reaches a mean saturation level. This is confirmed by the fact that the

conditional mean (41) and the related variance are strictly increasing, with finite limits

Ey(t) = y eΛ(t) t→+∞
→ Ey(∞) ≡ yeAb, (45)

Vy(t) = yeΛ(t)
(

eΛ(t) − 1
)

t→+∞
→ Vy(∞) ≡ yeAb

(

eAb − 1
)

, (46)

for Λ(t) given in (43). In Fig. 19 the mean (45) and the variance (46) are plotted for

suitable choices of the parameters taken from the data considered in Sect. 4. We remark

that the mean and variance exhibit a greater growth for the parameters considered in

the time interval (a), that refers to a case in which the lockdown effects were not yet

prevailing.
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For this process, we also obtain the Fano factor (i.e. the index of dispersion, defined

as the variance over the mean). Indeed, due to Eqs. (45) and (46), the following results

hold:

Dy(t) :=
Vy(t)

Ey(t)
= eΛ(t) − 1

t→+∞
→ eAb − 1. (47)

We thus obtain that Dy(t) is monotonic increasing in t , with Dy(0) = 0. Moreover,

by analysing (47), we note that:

(i) If 0 < A < 1
b

log 2 then X(t) is underdispersed, i.e. Dy(t) < 1 for all t ≥ 0; in

this case the occurrence of births is more regular than a Poisson process.

(ii) If A > 1
b

log 2 then X(t) is underdispersed for t < t∗, and overdispersed for

t > t∗, where

t∗ :=
b

a

[

(

1 −
log 2

Ab

)−a

− 1

]

;

therefore there is more irregularity in the distribution of births with respect to a

Poisson process, for large times.

Now we consider the coefficient of variation of X(t), that from (45) and (46) results:

σy(t) =

√

Vy(t)

Ey(t)
= y−1/2

√

1 − e−Λ(t), t ≥ 0,

where Λ(t) is given in (43); so σy(t) is increasing in t , in A, a and b. Moreover, the

following limiting behaviors are obtained:

σy(t)
t→+∞

→ y−1/2
√

1 − e−Ab,

lim
A→0

σy(t) = 0, lim
A→+∞

σy(t) = y−1/2,

lim
a→0

σy(t) = y−1/2

√

1 − e−Abe−t/b
, lim

a→+∞
σy(t) = y−1/2

√

1 − e−Ab,

lim
b→0

σy(t) = 0, lim
b→+∞

σy(t) = y−1/2.

Therefore, when A → 0 or b → 0 there is a good correspondence between the

deterministic law (12) and the stochastic process with birth rates (38). Clearly, if

A → 0 or b → 0, then λ(t) → 0. This yields that for a low birth rate the two models

exhibit a good agreement.

It is worth mentioning that the knowledge of the transition probabilities (39) allows

to perform a stochastic comparison for the birth processes considered in this section.

To this aim we recall the following notion: Given two discrete random variables X i ,

i = 1, 2, we say that X1 is smaller than X2 in the likelihood ratio order (denoted by

X1 ≤lr X2) if P(X2 = x)/P(X1 = x) increases in x over the union of the supports of

X1 and X2 (see Section 1.C of [30]). Then, in analogy with Remark 3 we are able to

provide the following result.
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Remark 4 From (10) it is not hard to see that for the GPD distribution one has that
∫ t

0 F(τ ) dτ is increasing in a ∈ (−1, 0) ∪ (0,+∞) and is decreasing in b ∈ (0,+∞)

for all t ≥ 0. Hence, denoting by NG P D,i (t) the growth model (12) characterized by

parameters yi , Ai , ai , bi , i = 1, 2, due to Remark 2 we have that if y1 ≤ y2, A1 ≤ A2,

a1 ≥ a2 and b1 ≤ b2, then

NG P D,1(t) ≤ NG P D,2(t) for all t ≥ 0.

6.1 First-passage-time problem

In Sect. 3.4, we considered the threshold crossing problem for the deterministic growth

curve. Now, we analyze the similar first-passage-time problem of the considered

stochastic process through certain thresholds. This is important to analyze relevant

information on the reaching of critical levels in applied contexts. Let y ∈ S be the ini-

tial value and k ∈ N a threshold, with k > y. Aiming to analyze the first-passage-time

random variable

Ty,k = inf{t ≥ 0 : X(t) = k}, X(0) = y,

we denote by gy,k(t) = d P(Ty,k ≤ t)/dt its probability density function (pdf). As in

[12], we have

gy,k(t) = (k − 1)λ(t)Py,k−1(t), t ≥ 0, (48)

where λ(t) and Py,k(t) are given in (42) and (39), respectively. For the behavior of

gy,k(t) in proximity of t = 0 one has:

lim
t→0

gy,k(t) =

{

A y , if k = y + 1

0, otherwise.

As example, in Fig. 20, the density (48) is plotted for some choices of the parameters.

Moreover, Fig. 21 provides some instances of the mean of Ty,k .

For the first-passage-time problem of X(t) through a time-varying boundary we

consider the continuous function t �→ β(t), where β(0) > y, and define

Ty,β = inf{t ≥ 0 : X(t) = β}, X(0) = y,

If β(t) is monotone nonincreasing, then similarly as in Proposition 3 of Di Crescenzo

and Pellerey [14] we have

P[Ty,β > t] =

⌊β(t)−⌋
∑

n=0

Py,n(t), t ≥ 0,

with Py,n(t) given in (39). In more general cases the determination of the first-passage-

time pdf gy,β(t) := d P(Ty,β ≤ t)/dt can be handled by means of computational

methods. In the next section we discuss a simulation procedure for X(t) which can be

used to obtain estimates of first-passage-time pdf’s.
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Fig. 20 Density (48) for A = 2, a = b = 2; on the left: k = 2, 3, 4 (solid, dashed, dot-dashed line) and

y = 1; on the right: k = 3, 4, 5 (solid, dashed, dot-dashed line) and y = 2

k 2

k 3

k 4

k 5

k 6

1 2 3 4 5 6 7
A

1

2

3

4

5

E Ty,k

Fig. 21 For y = 1, the mean of Ty,k is plotted as function of A with a = b = 1

6.2 Simulation

For the birth process {X(t); t ≥ 0}, characterized by time-dependent birth rates (38)

and initial state X(0) = y ∈ N, we can construct a customary event-based simulation

procedure. Denoting by Tk the k-th increment (birth) of the process, with T0 = 0, for

all k ∈ N one has

P(Tk+1 > t | Tk = τ) = e−(k+y)[Λ(t)−Λ(τ)], t > τ ≥ 0,

where Λ(t) is given in (43). This is not a bona fide distribution since, due to Eq. (44),

P(Tk+1 > t | Tk = τ)
t→+∞

→ e−(k+y)[Ab−Λ(τ)] =: ℓ.

Hence, given that Tk = τ ≥ 0, the next birth occurs at a finite time t = Tk+1 with

probability 1 − ℓ, and thus the simulation of Tk+1 can be performed through the steps

indicated hereafter:

1. generate a random variable, say U , uniformly distributed in (0, 1);
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Fig. 22 Simulated sample paths of the birth process X(t), with A = 1, b = 3, (a, y) = (0.5, 7), (1, 5),

(2, 3), (3, 1), from left to right on the top of the figure

2. if U ≤ ℓ then Tk+1 does not occur at a finite time,

else, with U taking value in (ℓ, 1), set

t = Tk+1 = Λ−1

(

Λ(τ) −
1

k + y
log U

)

,

where, with A, a, b > 0, the inverse of Λ(t) is given by

Λ−1(s) =
b

a

[

(

1 −
s

Ab

)−a

− 1

]

, s ≥ 0.

Figure 22 shows examples of simulated sample paths of X(t) obtained by means

of the above sketched procedure. The latter may be used to develop a simulation-

based approach to the first-passage-time problem of the birth process X(t) through a

time-varying boundary β(t). Indeed, estimates of the pdf gy,β(t) can be constructed

in terms of histograms obtained by means of extensive simulations based on the above

procedure. As example, we consider the same case study treated in Sect. 4.1 of [14], for

the boundaries (a) β(t) = log(t +1)+2 and (b) β(t) = 2 sin(π t/5)+7. Estimates of

the corresponding first-passage-time pdf’s have been obtained through 105 simulated

sample paths of X(t) performed by use of MATHEMATICA®. See Fig. 23 for the

corresponding histograms. As in similar cases exploited in the past, in case (a) the

histogram exhibit changes of shapes when the boundary takes integer values, whereas

in the case (b) the histogram reflects the periodicity of the periodic boundary. Moreover,

we point out that the ratio of simulated sample paths of X(t) that reach the boundaries

in the two cases is (a) 0.033 and (b) 0.202, respectively.
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(a) (b)

Fig. 23 Histograms of simulated first-passage times of the birth process X(t) through a β(t) = log(t+1)+2,

and b β(t) = 2 sin(π t/5) + 7, for A = 1, a = 0.5, b = 3, and y = 1

7 Concluding remarks

The choice of a suitable curve to describe a growth phenomenon is always a crucial

task, since not all features of the relevant physical model and of the observed data can

be captured by a given function. In many cases modelers are forced to perform the

analysis on the ground of several curves aiming to compare the pertaining results and

thus to detect the best choice on the basis of suitable statistical indexes. In some cases

the presence of several parameters in the model allow to obtain a better fit of data,

but an excess of parameters leads to a lack of correspondence between the considered

model and the physical reality of the growth event. Hence, a proper compromise

is required between the complexity of the model and its correspondence with the

observed phenomenon.

On the ground of these remarks, in this paper we proposed a growth model that

provides a suitable generalization of the celebrated Gompertz model, but it is not exces-

sively complex. Indeed, it involves three parameters, other than the initial (positive)

value of the growth curve. After a thorough analysis of useful characteristics, we also

focused on applications of the growth curve to real data concerning epidemiological

and reliability contexts, where the proposed model is found very suitable to describe

the observed dynamics under the ISRP metric and the d2-distance. We developed and

analyzed two stochastic counterparts of the proposed model. They are based on an

inhomogeneous linear birth-death process and a linear birth process. In both cases the

correspondence between the growth curve and the mean of such stochastic processes

is insured by a special choice of time-varying coefficients for the birth and death rates.
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