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This paper presents a generalized gradient smoothing technique, the corresponding
smoothed bilinear forms, and the smoothed Galerkin weakform that is applicable to
create a wide class of efficient numerical methods with special properties including the
upper bound properties. A generalized gradient smoothing technique is first presented
for computing the smoothed strain fields of displacement functions with discontinuous
line segments, by “rudely” enforcing the Green’s theorem over the smoothing domain
containing these discontinuous segments. A smoothed bilinear form is then introduced for
Galerkin formulation using the generalized gradient smoothing technique and smoothing
domains constructed in various ways. The numerical methods developed based on this
smoothed bilinear form will be spatially stable and convergent and possess three major
important properties: (1) it is variationally consistent, if the solution is sought in a Hilbert
space; (2) the stiffness of the discretized model will be reduced compared to the model of
the finite element method (FEM) and often the exact model, which allows us to obtain
upper bound solutions with respect to both the FEM solution and the exact solution;
(3) the solution of the numerical method developed using the smoothed bilinear form is
less insensitive to the quality of the mesh, and triangular meshes can be used perfectly
without any problems. These properties have been proved, examined, and confirmed
by the numerical examples. The smoothed bilinear form establishes a unified theoret-
ical foundation for a class of smoothed Galerkin methods to analyze solid mechanics
problems for solutions of special and unique properties: the node-based smoothed point
interpolation method (NS-PIM), smoothed finite element method (SFEM), node-based
smoothed finite element method (N-SFEM), edge-based smoothed finite element method
(E-SFEM), cell-based smoothed point interpolation method (CS-PIM), etc.

Keywords: Elasticity; point interpolation method; finite element method; meshfree
method; solution bound; smoothing operation; bilinear form; variational principle;
Galerkin weakform; numerical method.
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1. Introduction

To solve engineering problems, many powerful numerical methods have been devel-

oped, such as the Finite Element Method (FEM) [Hughes (1987); Liu and Quek

(2003)], Finite Difference Method (FDM), and recently Meshfree Methods (see,

e.g. [Liu and Liu (2003); Liu (2002)]). The FEM is well developed, has a solid

foundation on the variational principles, and is currently the most widely used reli-

able numerical approach with many commercial software packages available. How-

ever, there are three major issues need to be resolved in order to better meet the

demands in solving practical engineering problems in more efficient and convenient

manner.

The first issue is the “over-stiff” phenomenon of a fully-compatible FEM model

of assumed displacement, which can have consequences of (1) the so-called “locking”

behavior for many problems, and (2) inaccuracy in stress solutions. The second

issue concerns with the mesh distortion related problems such as the significant

accuracy loss when the element mesh is heavily distorted. The third issue is the

mesh generation. We, engineers, often prefer using triangular types of mesh as they

can be created much more easily and even automatically. However, it is well-known

that the FEM does not like such elements and often give solutions of very poor

accuracy.

The over-stiff phenomenon is attributed to nature of the fully compatible dis-

placement approach. Many efforts have been made in resolving this issue, espe-

cially in the area of hybrid FEM formulations (see, e.g. [Pian and Wu (2006)]).

Improvements on FEM also carried out for fluid flow problems [Ortega et al. (2007)].

Recently, a so-called α-FEM [Liu, Nguyen and Lam (2008b)] has been developed

by scaling the gradient of strains with a scaling factor so as to provide a proper

“softness” to the model. The α-FEM can not only give much more accurate solution

in stresses, but also produce “nearly” exact solution in energy norm for a class of

problems, with very little change to the standard FEM formulation and codes. It

also offers simple and practical ways to resolve some locking problems. Liu et al. has

also discovered an important fact that the α-FEM is NOT variationally consistent,

and yet it can always (not by any chance) produce much better solution than the

FEM that is perfectly variationally consistent! This finding opens an important win-

dow for the development of a new class of methods via manipulating the strain field

obtained directly from the assumed displacements using the compatibility equation.

We now CAN commit variational crime, as long as we have proper ways to control

the assumed strain field so that the solution can be somehow bounded, so that the

solution will be convergent (even monotonically) when certain consistence of the

assumed primary (displacement) variable is provided.

A smoothed FEM (or SFEM) [Liu, Dai and Nguyen (2007)] has also been for-

mulated recently by combining the FEM procedures and the gradient smoothing

operation that is known as distributional derivatives in classic sense. The smooth-

ing operation has been used in the nonlocal continuum mechanics [Eringen and
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Edelen (1972)], the smoothed particle hydrodynamics (SPH) [Lucy (1977); Mon-

aghan (1982); Liu and Liu (2003)], in resolving the material instabilities [Chen

and Belytschko (2000)] and spatial instability in nodal integrated meshfree meth-

ods and restoring conformability [Chen et al. (2001)], and obtaining upper bound

solution and restoring conformability in meshfree point interpolation methods

[Liu et al. (2005); Zhang et al. (2007)]. The SFEM works very effective for solid

mechanics problems including dynamic problems, can also produce much more accu-

rate stress solution, and n-sided polygonal elements and very heavily distorted mesh

can be used [Liu et al. (2007b)]. Detailed theoretical aspects including stability and

convergence about SFEM can be found in [Dai et al. (2007)]. The study of SFEM

has also clearly shown that the smoothing operation on strains controls the assumed

strain field in a proper fashion to ensure the stability (boundness) and hence the

(monotonic) convergence, and ultimately gives the SFEM some very good features.

This is done again with a very little change to the standard FEM formulation and

codes.

In the other front of development related to meshfree methods, the node-based

smoothed point interpolation method (NS-PIM)a has been developed recently [Liu

et al. (2005); Zhang et al. (2007)] using the node-based smoothing operations [Chen

et al. (2001)]. The NS-PIM is formulated using PIM [Liu (2002); Liu and Gu (2001)]

or RPIM [Wang and Liu (2002)] shape functions possible of discontinuous and with

the Delta function property for easy treatment of essential boundary conditions. It

was found that NS-PIM or (NS-RPIM [Liu et al. (2006)]) is at least linearly conform-

ing (always pass the standard patch tests when linear displacements on the bound-

ary are enforced), can produce much better stress solution, much more tolerant to

mesh distortion, works very well for triangular elements, and more importantly it

provides upper bound solution in energy norm. Based on the idea of NS-PIM and

SFEM, a node-based SFEM (or N-SFEM) has also been formulated. The N-SFEM

can be viewed as a special case of NS-PIM, but based on n-sided polygonal element

mesh [Liu et al. (2007a,b)], and has quite similar properties as NS-PIM. These

works have sent a very clear message that node-based smoothing operation can

offer upper bound solutions for general solid mechanics problems. It is found that

NS-PIM and N-SFEM can produce the so-called spurious modes when they are used

for solving dynamic problems. This is due to their “overly-softness” introduced by

the excessive node-based smoothing operation, leading to temporal instability. To

overcome this problem, a very effective edge-based smoothed FEM (E-SFEM) has

been recently formulated [Liu, Nguyen and Lam (2008a)]. The E-SFEM not only

produces accurate solution, but also is temporally stable and no spurious modes

and hence works very well for dynamic problems.

aThe NS-PIM was originally termed as the linearly conforming point interpolation method (LC-
PIM), because it is at least linearly conforming. We changed the name because the later formula-
tions of cell-based and edge-based smoothing techniques those are all at least linearly conforming,
but distinct in the creation of smoothing domains.
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In this work, we introduce a generalized gradient smoothing technique, the cor-

responding smoothed bilinear form and the Galerkin formulation for computational

methods using both continuous and discontinuous assumed displacement functions.

We then prove the important general properties of the bilinear form, and use it to

formulate a Galerkin weakform that is applicable to establish a class of effective

numerical methods. The smoothed bilinear form offers a unified theoretical founda-

tion for this class of methods that possess some desired superior properties such as

the upper bound property (in energy norm) for solid mechanics problems.

The numerical methods developed based on this smoothed bilinear form will

possess three major important properties: (1) it is variationally consistent, if the

solution is sought in a Hilbert space; (2) the stiffness of the discretized model will

be reduced compared to the FEM model and often the exact model, which allows

us to obtain upper bound solutions with respect to both the FEM solution and the

exact solution; (3) the solution of a numerical method developed using the smoothed

bilinear form are insensitive to the quality of the mesh, and triangular meshes can

be used perfectly without any problems. These properties have been proven and

confirmed by numerical results of SFEM [Dai et al. (2007)], N-SFEM [Liu et al.

(2007a,b)], NS-PIM [Liu and Zhang (2005, 2008)], and the E-SFEM [Liu, Nguyen

and Lam (2008a)].

Our formulation will be largely for two-dimensional (2D) problems. Its extension

to 3D and reduction to 1D is straightforward with changes only in dimension and

rotations.

2. Brief on Basic Equations

We first brief the basic equations for solid mechanics problem of linear elasticity,

for which different weakforms will be established. Consider a two-dimensional solid

mechanics problem with a physical domain of Ω ∈ ℜ2 bounded by Γ. In this paper,

we speak of open domain Ω, meaning that the boundary Γ of the domain is not

included, unless otherwise indicated. The static equilibrium equation for 2D solids

in the domain Ω ∈ ℜ2 can be written as

∂σij

∂xj

+ bi = 0, i, j = 1, 2, (1)

where bi are given external body force and σij is the stress tensor which relates to

the strains tensor εij via the constitutive equation or the Generalized Hook’s law:

σij = Cijklεkl, (2)

where Cijkl is elasticity tensor of material property constants that are symmetrical:

Cijkl = Cjikl = Cijlk = Cklij . (3)

The strains tensor εij relates to the displacements by the following compatibility

equation.

εkl =
1

2

(
∂uk

∂xl

+
∂ul

∂xk

)

, (4)
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where ui, i = 1, 2 is the displacement components in the xi-directions at a

point in Ω.

In matrix form, the equilibrium Eq. (1) becomes (see, e.g. [Liu and Quek (2003)])

LT
d σ + b = 0. (5)

where

Ld

(
∂

∂x1
,

∂

∂x2

)

=












∂

∂x1
0

0
∂

∂x2

∂

∂x2

∂

∂x1












. (6)

The constitutive equation becomes

σ = Cε, (7)

where C is matrix of material properties which entries of Cijkl , σ = {σ11, σ22, σ12}
T

and ε = {ε11, ε22, ε12}
T . The compatibility equation (4) can also be written in the

matrix form of

ε = Ldu, (8)

where u = {u1, u2}
T is the displacement vector. Substituting Eq. (8) into (7) and

then into (5), we have

LT
d CLdu + b = 0. (9)

The boundary conditions can be two types: Dirichlet boundary condition and

Neumann boundary condition. Let ΓD denote a part of Γ, on which homogenous

Dirichlet boundary condition is specified, we then have

ui = 0, on ΓD ∈ Γ. (10)

Let ΓN denotes a part of Γ, on which Neumann boundary condition is satisfied,

σijnj = ti, on ΓN ∈ Γ, (11)

where nj is unit outward normal vector, and t is the specified boundary stress on

ΓN , respectively. The matrix form of Eq. (11) is as follows:

LT
n σ = t, on ΓN ∈ Γ, (12)

where

Ln(nx, ny) =






nx 0

0 ny

ny nx




 . (13)

The matrix form of equations is helpful and will also be used in the following

sections.



June 19, 2008 17:1 WSPC/IJCM-j050 00151

204 G. R. Liu

3. Brief on Weak Form Formulation

We shall now brief the standard weak form formulation for linear elasticity problem

of 2D solids. More details can be found in [Hughes (1987)]. To begin, we introduce

a functional space

S = {υ ∈ H1(Ω)|υi = 0 on ΓD}, (14)

where H1(Ω) is a Hilbert space. By multiplying Eq. (1) with a test function υ ∈ S

and performing integration over the entire domain Ω, we have
∫

Ω

υi

∂σij

∂xj

dΩ +

∫

Ω

biυidΩ = 0, υ ∈ S (15)

where i, j = 1, 2. Applying green divergence theorem yields
∫

Ω

∂υi

∂xj

σijdΩ −

∫

ΓN

υiσijnjdΓ −

∫

Ω

biυidΩ = 0. (16)

Substituting Eqs. (2) and (4) into the above equation leads to
∫

Ω

∂υi

∂xj

(

Cijkl

∂uk

∂xl

)

dΩ

︸ ︷︷ ︸

a(u,υ)

=

∫

ΓN

υiσijnjdΓ +

∫

Ω

biυidΩ

︸ ︷︷ ︸

f(υ)

. (17)

We now have the well-known bilinear form:

a(w, υ) =

∫

Ω

∂υi

∂xj

(

Cijkl

∂wk

∂xl

)

dΩ, (18)

that has basic properties of symmetry and positivity. The linear functional

f(υ) =

∫

ΓN

υitidΓ +

∫

Ω

biυidΩ. (19)

It follows from Eq. (17) that the exact solution of the displacement u ∈ S satisfies

a(u, υ) = f(υ), ∀ υ ∈ S, (20)

where u is the “exact” displacement field of a given problem that satisfies strong

form Eqs. (1), (10) and (11).

4. Brief on the Finite Element Method (FEM)

In practice, it is generally very difficult to solve the governing equations either in

strong or weak forms in analytical means for the exact solution. We then often resort

to numerical methods to obtain approximate solutions. The most popular method

is the traditional finite element method (FEM) based on the weak form formulation

where the Galerkin projection is chosen to obtain an approximate solution ũ. It is

well known that such a FEM solution is the best (in energy norm) possible solution

in the discrete finite element space S̃ (see, e.g. [Hughes (1987)]), that ũ → u when

S̃ → S, meaning that the approximate FEM solution will approach to the exact
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solution when the size of element approaches to zero and the dimension of the FEM

model ℵ → ∞.

The finite element solution ũ satisfies

a(ũ, υ) = f(υ), υ ∈ S̃, (21)

where displacement field ũ ∈ S̃ is expressed in terms of the following interpretation,

ũ(x) =

ℵ∑

i=1

d̃iϕi(x), (22)

where x = {x1, x2}
T , d̃i is a nodal displacement, and ϕi ∈ S̃ is a nodal basis function

(or element shape functions) which has the Delta function property: ϕi(xj) = δij

at node i, and evaluated at coordinate xj .

We then substitute Eq. (22) into Eq. (21), and set ϕi, i = 1, . . . ,ℵ, as the test

function υ, we have the following discrete set of ℵ equations.

ℵ∑

j=1

a(ϕj , ϕi)d̃j = f(ϕi), i = 1, . . . ,ℵ, (23)

which can be written in the matrix form of

K̃d̃ = f̃ , (24)

where K̃ is the FEM stiffness matrix with entries of K̃ij = a(ϕj , ϕi), 1 ≤ i, j ≤ ℵ, d̃

is the vector of nodal displacements d̃i, and f̃ is the vector with entries of f̃i = f(ϕi).

We now state some of the well-known, useful and important properties of FEM.

Remark 4.1. Lower Bound Property: The strain energy related to fully compatible

FEM solution is a lower bound of the exact strain energy.

U(ε̃) =
1

2
a(ũ, ũ) ≤

1

2
a(u, u) = U(ε) (25)

where ε̃ = Ldũ is the strains obtained using the FEM displacements ũ ∈ S̃ ⊂ S,

ε = Ldu is the exact strain obtained using the exact displacements u ∈ S, and U(ε)

is the strain energy of the system defined as

U(ε) =
1

2

∫

Ω

εTCε dΩ. (26)

For the FEM model, the strain energy can be evaluated using any of the following

expressions.

U(ε̃) =
1

2

∫

Ω

ε̃TCε̃ dΩ =
1

2
a(ũ, ũ) =

1

2
d̃T K̃d̃ (27)

and for the exact model we should have

U(ε) =
1

2

∫

Ω

εTCε dΩ =
1

2
a(u, u). (28)

The proof of the lower bound property can be found in a number of references, for

example [Hughes (1987)] in variational formulation and [Liu and Zhang (2008)] in
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matrix formulation based on energy principle. The lower bound property implies

the well-known fact that the FEM solution underestimates the strain energy. This

is equivalent to say that the FEM solution overestimates the total potential energy.

This property of FEM provides a good global measure of the lower bound of the

FEM solution.

Remark 4.2. Monotonic convergence property: For given a sequence of nm nested

element meshes M1, M2, . . . , Mnm
, such that the corresponding solution spaces sat-

isfies S̃M1
⊂ S̃M2

· · · ⊂ S̃Mnm
⊂ Ŝ, then the following inequalities stand

U(ε̃M1
) ≤ U(ε̃M2

) ≤ · · · ≤ U(ε̃Mnm
) ≤ U(ε), (29)

where ε̃mi
is the FEM compatible solution of strains obtained using mesh mi. This

property can be shown easily using the arguments give by Oliveira [1968].

Remark 4.3. Reproducibility of FEM: If u ∈ S̃, the then the FEM will reproduce

the exact solution u. This property can easily be proven [Liu and Quek (2003);

Oliveira (1968)].

5. A Smoothed Bilinear Form

5.1. Function and gradient approximation

We first introduce integral representation of a function (see, e.g. [Liu (2002)]):

wIR(x) =

∫

Ωx

w(ξ)
⌢

W (x − ξ)dξ (30)

where the superscript “IR” stands for integral representation, and
⌢

W is a pre-

described smoothing function defined in the smoothing domain Ωx ⊂ Ω for the

point at x, as shown in Fig. 1. Note that the smoothing domain is “moving” and

hence domains for different x can overlap. The smoothing function can also be

different for different x. For a w ∈ S the integral representation can also be done

for the first derivatives of a function.
(

∂wi(x)

∂xj

)IR

=

∫

Ωx

∂wi(ξ)

∂xj

⌢

W (x − ξ)dξ. (31)

Note that Eqs. (30) and (31) are standard forms of smoothing operations. These

forms was used in the nonlocal continuum mechanics [Eringen and Edelen (1972)],

the smoothed particle hydrodynamics [Lucy (1977); Monaghan (1982)], stabiliz-

ing nodal integrated meshfree methods and restoring conformability [Chen et al.

(2001)], and restoring conformability and obtaining upper bound solution in

meshfree point interpolation methods [Liu and Zhang (2008)]. Using Green’s diver-

gence theorem, Eq. (31) becomes

(
∂wi(x)

∂xj

)IR

=

∫

Γx

wi(ξ)nj

⌢

W(x − ξ)dΓ −

∫

Ωx

wi(ξ)
∂

⌢

W(x − ξ)

∂xj

dξ (32)

where nj is the directional cosine of the outwards normal on Γx.
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Fig. 1. Moving smoothing domains Ωx for integral representation of a function at x, over which
the smooth function is defined. Note that the smoothing domain can be different for different x

and they can overlap. The smoothing functions can also be different for different x.

5.2. Generalized gradient smoothing technique

Note that Eq. (32) requires w being continuous and hence it is at least piecewisely

differentiable, as per the original Green’s divergence theorem. If w is discontinuous

in Ωx,

∫

Ωx

∂wi(ξ)

∂xj

⌢

W (x−ξ)dξ 	=

∫

Γx

wi(ξ)nj

⌢

W (x−ξ)dΓ−

∫

Ωx

wi(ξ)
∂

⌢

W (x − ξ)

∂xj

dξ (33)

We however, “rudely” use Eq. (32) to approximate the gradient of w, for discontin-

uous w in Ωx:

(
∂wi(x)

∂xj

)IR

≈

∫

Γx

wi(ξ)nj

⌢

W (x − ξ)dΓ −

∫

Ωx

wi(ξ)
∂

⌢

W (x − ξ)

∂xj

dξ (34)

This generalization is not rigorous in theory, but it is possible in implementation

because no differentiation upon w is required on the right-hand-side of Eq. (34).

Using Eq. (34) for discontinuous functions can be essentially viewed as “somehow”

making the discontinuous function continuous over Ωx but keeping the function

values on the boundary Γx unchanged. Therefore, in our later definition of smoothed

bilinear forms, we can still “pretend” that the functions are continuous in Ωx and

hence are in a Hilbert space. This generalization is useful and very important for

develop new numerical methods. It allows us to “make” discontinuous functions

continuous, approximate the gradients of discontinuous functions conveniently, and
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The unity ensures that at least the function value at x can be exactly represented

(see, e.g. [Liu and Liu (2003)]). With conditions of unity, we should have the fol-

lowing remarks.

Remark 5.4. Reproducing Property : When
⌢

W satisfies Eq. (37) in the moving

smoothing domain Ωx, the integral representation will be exact: (∂wi

∂xj
)IR = ∂wi

∂xj
,

and hence
⌢

a(w, υ) = a(w, υ).

For simplicity and convenience of the discussion in this paper, we now confine

ourselves using the following special smoothing function that is a local constant.

⌢

W(x − ξ) = W̄ (x − ξ) =

{

1/Ax ξ ∈ Ωx

0 ξ /∈ Ωx

(39)

where Ax =
∫

Ωx

dΩ is the area of smoothing domain the point at x. It is clear that
⌢

W (x − ξ) given above satisfies the conditions of unity, positivity and decay, and
⌢

a(w, υ) becomes

ā(w, υ) =

∫

Ω












(
1

Ax

∫

Ωx

∂υi(ξ)

∂xj

dξ

)

︸ ︷︷ ︸

∂υi

∂xj

Cijkl

(
1

Ax

∫

Ωx

∂wk(ξ)

∂xl

dξ

)

︸ ︷︷ ︸

∂wk

∂xl












dΩ, (40)

which is an averaged form of our continuous smoothed bilinear form. It can be

re-written as

ā(w, υ) =

∫

Ω

1

Ax

(∫

Ωx

∂υi(ξ)

∂xj

dξ

)

Cijkl

(
1

Ax

∫

Ωx

∂wk (ξ)

∂xl

dξ

)

dΩ

=

∫

Ω

∂υi

∂xj

Cijkl

∂wk

∂xl

dΩ, (41)

where

∂υi

∂xj

=
1

Ax

∫

Ωx

∂υi(ξ)

∂xj

dξ =
1

Ax

∫

Γx

υi(ξ)njdΓ, (42)

are the locally averaged gradient at point x in Ωx. Since Ωx changes with x, the

averaged gradient is still a function of x. Again, we use Eq. (42) even if v is not

continues in Ωx. We note that the reproducing property holds for ā(w, υ).

Remark 5.5. Reproducing property : Because satisfies Eq. (37) in the moving

smoothing domain Ωx, the integral representation will be exact: ∂wi

∂xj
= ∂wi

∂xj
, and

hence ā(w, υ) = a(w, υ).
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Note that the use of moving domain can easily reproduce the original bilinear

form. All one needs is to have W̄ with unity property. The moving smoothing

bilinear form is useful when one needs to reduce the consistence requirement on

filed functions, as shown in Eq. (32): the differentiation is now shifted onto the

smoothing function.

Another interesting application of moving smoothing domain is to construct con-

tinuous strain fields, where moving smoothing domains are used to obtain strains

at points in the problem domain, and the point interpolation method is used to

construct continuous strain fields to achieve super-convergence, even using linear

triangular mesh. This paper will not discuss in this direction further. Instead,

we will discuss in more detail on the models that use of stationary smoothing

domains.

5.4. Generalized bilinear form using stationary smoothing domains

In practical formulation of a numerical method, we often need to determine a way

to construct stationary smoothing domains that are fixed for a point of interest.

Generally, stationary domains can overlap, as shown in Fig. 2.

For the convenience in this study, we do not allow the smoothing domains over-

lap, and the smoothing domains are constructed based on an arbitrary manner as

long as Ω =
⋃Ns

n=1 Ωn where Ωn is a smoothing domain for point at xn and Ns is the

number of smoothing domains, as shown in Fig. 3. In constructing Ωn, we require

that the interfaces of Ωn do not share any portion of the discontinuous segments of

the field function, they go across these discontinuous segments, and hence the field

function is continuous on these interfaces of Ωn. We further assume that the strain

in the smoothing domain is constant within each smoothing domain Ωn. Hence the

Fig. 2. Division of problem domain Ω into overlapping stationary smoothing domains Ωn for xn.
The integration cells are neither overlapping nor with gap.
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Fig. 3. Division of problem domain Ω into non-overlapping stationary smoothing domains Ωn for
xn. The smoothing domain is also used as basis for integration.

discretized bilinear form
⌢
aD(w, υ) using a stationary smoothing domain becomes

⌢
aD(w, υ) =

Ns∑

n=1

(∫

Ωn

∂υi(ξ)

∂xj

⌢

W(xn − ξ)dξ

)

Cijkl

(∫

Ωn

∂wk(ξ)

∂xl

⌢

W(xn − ξ)dξ

)

,

=

Ns∑

n=1

An
⌢
εn

T (υ)C
⌢
εn (w) (43)

where
⌢

W satisfies conditions (36)–(38) and it should be chosen for desired accuracy

of integral representation. The simple summation is possible because Ωn is con-

structed in such a way that v and w are continuous on these interfaces of Ωn. The

integrals can be carried out using Eq. (32) for computing
⌢
ε . It is clear that this

bilinear form will still have basic properties, such as symmetry

⌢
aD (w, υ) =

⌢
aD (υ, w), ∀w, υ ∈ S̃ (44)

and positive definite, if the smoothing domain is properly constructed (see Sec. 5.6):

⌢
aD(w, w) ≥ 0, ∀w ∈ S, and

⌢
aD(w, w) = 0 if and only if w = 0 (45)

When the constant smoothing function Eq. (39) is used, we have

āD(w, υ) =

Ns∑

n=1

1

An

(∫

Ωn

∂υi(ξ)

∂xj

dξ

)

Cijkl

(∫

Ωn

∂wk (ξ)

∂xl

dξ

)

(46)

In the implementation and coding, we use the following equivalent line-integral

form:

āD(w, υ) =

Ns∑

n=1

1

An

(∫

Γn

υinjdΓ

)(

Cijkl

∫

Γn

wknldΓ

)

, (47)

or

āD(w, υ) =

Nn∑

n=1

Anε̄T
n (υ)Cε̄n(w) (48)
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where the smoothed strain ε̄n is can now computed using

ε̄n(u) =
1

An

∫

Ωn

ε(x)dΩ =
1

An

∫

Ωn

∂υi(ξ)

∂xj

dξ =
1

An

∫

Γn

Lnu(x)dΓ. (49)

5.5. Smoothed Galerkin weakform solution

We now discuss the solution of a weakform statement using the smoothed bilinear

form. The node-based smoothed point interpolation method (NS-PIM) [Liu and

Zhang (2005, 2008)] is one of the typical examples formulated using the smoothed

bilinear form, which has a number of important properties that have been proven

based on matrix formulation that is popular in mechanics community. It offers a

very simple way to obtain an upper bound solution to the exact solution of a solid

mechanics problem using a triangular mesh and PIM shape functions of different

order and RPIM shape functions [Wang and Liu (2002)]. Here we first define the

smoothed Galerkin weakform and then prove some of the important properties.

The smoothed Galerkin weakform solution
⌢
u ∈ G1

0 satisfies

⌢
aD(

⌢
u, υ) = f(υ), ∀ υ ∈ G

1
0. (50)

Note that here we make no changes to the linear functional, and the displacements

are assumed in the same form as in Eq. (22) with shape functions properly con-

structed.

Remark 5.6. A smoothed Galerkin weak form Eq. (50) using smoothed strain over

stationary smoothing domains is variationally consistent, if the solution as sought

in S.

Proof. To prove the variational consistence, one needs to examine the orthogonal

condition [Simo and Hughes (1998)] that was defined over the problem domain.

Because the strain field here is assumed constant in the stationary smoothing

domains, and the integration over the entire problem domain is simply a summation

of integrations over each of the smoothing domains. Therefore, the orthogonal

condition becomes:
∫

Ωn

⌢
εn

T c(Ldu)dΩ =

∫

Ωn

⌢
εT c

⌢
ε dΩ (51)

Since
⌢
εn is constant in Ωn, and using the fact that

∫

Γn

(Lnu)dΓ =
⌢
εnAn (52)

we immediately have
∫

Ωn

⌢

εn
T c(Ldu)dΩ = (

⌢

εn
T c)

∫

Γn

(Lnu)dΓ

︸ ︷︷ ︸

⌢
ε nAn

=
⌢

εn
T c

⌢

εnAn =

∫

Ωn

⌢

ε T c
⌢

ε dΩ (53)
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which is Eq. (51), and hence the orthogonal condition is satisfied for our smoothed

train field using a stationary smoothing domain.

5.6. Properties of the smoothed bilinear form

In this section, we discuss some of the properties of the smoothed bilinear forms. We

will focus on discussion for functions in H1 space, so that we can have a common

comparison base.

Remark 5.7. Convergence Property : When Ns → ∞ and all Ωn → 0,
⌢

W becomes

Delta functions and the integral representation will be exact. At such a limit
⌢
aD(w, υ) → a(w, υ).

Theorem 5.1. Softening effects: For any w ∈ S and
⌢

W satisfies Eq. (37) for a set

of stationary smoothing domains, we have

⌢
aD (w, w) ≤ a

⌢
D

(w, w), (54)

where

a
⌢
D

(w, w) =

Ns∑

n=1

∫

Ωn

(
∂wi

∂xj

Cijkl

∂wk

∂xl

)
⌢

W(xn − ξ)dξ. (55)

In particular, when the constant smoothing function Eq. (39) is used in these sta-

tionary smoothing domains, we further have

āD(w, w) ≤ a(w, w). (56)

Proof. Using Eq. (43),
⌢
aD(w, w) can be written as

⌢
aD(w, w) =

Ns∑

n=1

(∫

Ωn

∂wi

∂xj

⌢

W(xn − ξ)dξ

)

Cijkl

(∫

Ωn

∂wk

∂xl

⌢

W(xn − ξ)dξ

)

. (57)

To prove Eq. (54), we need only to prove

(∫

Ωn

∂wi

∂xj

⌢

W(ξ)dξ

)

Cijkl

(∫

Ωn

∂wk

∂xl

⌢

W(ξ)dξ

)

≤

∫

Ωn

∂wi

∂xj

(

Cijkl

∂wk

∂xl

)
⌢

W(ξ)dξ

(58)

where
⌢

W =
⌢

W(xn − ξ) is the smoothing function for Ωn satisfying Eq. (37). We now

discretize Ωn into nq small subdomains: Ωn =
⋃nq

q=1 Ωn,q, and using the symmetry
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property of Cijkl , the term on left-hand side of Eq. (58) becomes:
(∫

Ωn

∂wi

∂xj

⌢

W(ξ)dξ

)

Cijkl

(∫

Ωn

∂wk

∂xl

⌢

W(ξ)dξ

)

= lim
nq→∞

(
nq∑

q=1

∂wi

∂xj

∣
∣
∣
∣
q

⌢

W qAq

)

Cijkl

(
nq∑

q=1

∂wk

∂xl

∣
∣
∣
∣
q

⌢

W qAq

)

= lim
nq→∞















nq∑

q=1

⌢

W q
2A2

q

∂wi

∂xj

∣
∣
∣
∣
q

Cijkl

∂wk

∂xl

∣
∣
∣
∣
q

+ 2
⌢

W 1
⌢

W 2 A1A2
∂wi

∂xj

∣
∣
∣
∣
1

Cijkl

∂wk

∂xl

∣
∣
∣
∣
2

+ · · · + 2
⌢

W 2
⌢

W 3 A1A3
∂wi

∂xj

∣
∣
∣
∣
2

Cijkl

∂wk

∂xl

∣
∣
∣
∣
3

+ · · · + 2
⌢

W q−1
⌢

W q Aq−1Aq

∂wi

∂xj

∣
∣
∣
∣
q−1

Cijkl

∂wk

∂xl

∣
∣
∣
∣
q















(59)

Using the triangular inequality, we have

2
∂wi

∂xj

∣
∣
∣
∣
q

Cijkl

∂wk

∂xl

∣
∣
∣
∣
p

≤
∂wi

∂xj

∣
∣
∣
∣
q

Cijkl

∂wk

∂xl

∣
∣
∣
∣
q

+
∂wi

∂xj

∣
∣
∣
∣
p

Cijkl

∂wk

∂xl

∣
∣
∣
∣
p

. (60)

Substituting the above equation into Eq. (59) leads to:
(∫

Ωn

∂wi

∂xj

⌢

W(ξ)dξ

)

Cijkl

(∫

Ωn

∂wk

∂xl

⌢

W(ξ)dξ

)

≤ lim
nq→∞

((
nq∑

q=1

⌢

W q Aq

)
nq∑

q=1

⌢

W qAq

∂wi

∂xj

∣
∣
∣
∣
q

Cijkl

∂wk

∂xl

∣
∣
∣
∣
q

)

=

∫

Ωn

(
∂wi

∂xj

Cijkl

∂wk

∂xl

)
⌢

W(ξ)dξ (61)

which gives Eq. (58) and hence (54). In the above derivation, we used Eq. (35):

lim
nq→∞

nq∑

q=1

⌢

W q Aq =

∫

Ωn

⌢

W(ξ)dξ = 1 (62)

and

lim
nq→∞

nq∑

q=1

⌢

W qAq

∂wi

∂xj

∣
∣
∣
∣
q

Cijkl

∂wk

∂xl

∣
∣
∣
∣
q

=

∫

Ωn

(
∂wi

∂xj

Cijkl

∂wk

∂xl

)
⌢

W(ξ)dξ. (63)

Substituting Eq. (39) into Eq. (58), we further have

1

An

(∫

Ωn

∂wi

∂xj

dΩ

)

Cijkl

(∫

Ωn

∂wk

∂xl

dΩ

)

︸ ︷︷ ︸
⌢
a D(w,w)

≤

∫

Ωn

∂wi

∂xj

(

Cijkl

∂wk

∂xl

)

dΩ

︸ ︷︷ ︸

a(w,w)

(64)

which leads clearly to Eq. (56).
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Theorem 5.1 implies that the smoothing operation provides “softening” effect to

the system. Hence a model established based on the smoothed Galerkin projection

will be “softer” than that based on the Galerkin projection.

Theorem 5.2. Monotonic convergence property: For any w ∈ S, in a given divi-

sion D1 of domain Ω into a set of smoothing domains Ω =
⋃Ns

n=1 Ωn, if a new

division D2 is created by sub-dividing a smoothing domain in D1 into nsd sub-

smoothing-domains: Ωn =
⋃nsd

i=1 Ωn,i, then the following inequality stands

āD1
(w, w) ≤ āD2

(w, w). (65)

Proof. Note that the difference between āD1
(w, w) and āD2

(w, w) is only at the

nth smoothing domain Ωn. Therefore, we need only compare the contributions from

Ωn and the sub-divided
⋃nsd

i=1 Ωn,i. The sub-division gives

∫

Ωn

∂wi

∂xj

dΩ =

nsd∑

q

∫

Ωn,q

∂wi

∂xj

dΩ. (66)

Therefore, we have

1

An

(∫

Ωn

∂wi

∂xj

dΩ

)

Cijkl

(∫

Ωn

∂wk

∂xl

dΩ

)

=
1

An

(
nsd∑

q=1

∫

Ωn,q

∂wi

∂xj

dΩ

)

Cijkl

(
nsd∑

q=1

∫

Ωn,q

∂wk

∂xl

dΩ

)

≤
1

An

nsd∑

q=1

[(
∫

Ωn,q

∂wi

∂xj

dΩ

)

Cijkl

(
∫

Ωn,q

∂wk

∂xl

dΩ

)]

. (67)

In the above equation we used the triangular inequality of norms: sum of energy

norm of functions is no-less than the norm of the summed functions. Therefore,

Eq. (65) stands.

Theorem 5.2 implies that the “softening” effect provided by the smoothed

Galerkin projection will be monotonically reduced with the increase of the number

of smoothing domain in a nested manner. Note that at the extreme case, we can

perform the smoothing operation over the entire domain Ωn = Ω1 = Ω1, in this

case we shall have the following corollary as a special case of Theorem 5.2.

Theorem 5.3. Upper bound to the exact solution: The strain energy of the exact

solution u is no-larger than that of the smoothed Galerkin weakform solution ū ∈ S

when the smoothing operation is performed on the solution u ∈ S

a(u, u) ≤ āD(ū, ū). (68)
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Proof. From Eqs. (20) and (50), we have

a(u, υ) = āD(ū, υ), ∀ υ ∈ S. (69)

Let υ = u (at the minimum of the total potential energy of the Galerkin model),

we should have

a(u, u) = āD(ū, u). (70)

On the other hand, if we let υ = ū (at the minimum of the total potential energy

of the smoothed Galerkin model), we should have

a(u, ū) = āD(ū, ū) (71)

We next examine

āD(ū − u, ū − u)
︸ ︷︷ ︸

≥0

= āD(ū, ū) − 2 āD(u, ū)
︸ ︷︷ ︸

=a(u,u)

+ āD(u, u) ≥ 0 (72)

Using Eq. (71), the positivity and symmetry property of ā(, ), we have

[a(u, u) − āD(u, u)]
︸ ︷︷ ︸

≥0

+ a(u, u) ≤ āD(ū, ū) (73)

With the help of Theorem 5.1, we have [a(u, u) − āD(u, u)] ≥ 0 which gives the

inequality (68).

5.7. On number of smoothing domains

When stationary smoothing domains are used for establishing a smoothed Galerkin

model, the minimum number of smoothing domains needs to be determined based

on the number of filed nodes used. The consideration should be: the total number

of equations that are sampled from all the smoothing domains Ns should be no-

less than the total number of unknowns in the model Nu. For example, for a 2D

solid mechanics problem model with nt (unconstrained) nodes used for displacement

field construction, the total number of unknowns in the model should be Nu = 2nt,

because one node carries two unknowns (displacement components in x and y direc-

tions). The total number of equations that can be sampled from all the smoothing

domains should be 3Ns, because one smoothing domain gives three independent

equations (three strain components). Therefore, Ns = 2nt/3. Based on the same

consideration, we have:

Remark 5.8. Minimum number of smoothing domains: when stationary smooth-

ing domains are used to create a smoothed Galerkin model, the minimum number

of smoothing domains is given in Table 1.

Violation of Table 1, the discretized system equations established using the

smoothed Galerkin weak form will be singular, and no unique solution will be
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Table 1. Minimum number of smoothing domains Nmin
s

for solid mechan-
ics problems.

Dimension of the Problem Minimum Number of Smoothing Domains

1D Nmin
s

= nt

2D Nmin
s

= 2nt/3
3D Nmin

s
= 3nt/6=nt/2

obtained. The use of more smoothing domains does not necessarily guarantee a

nonsingular set of system equations, because it depends also on how the division of

the smoothing domains is performed. As long as the number of smoothing domains

is concerned, a finer division of smoothing domains generally leads to a stiffer model

(see Theorem 5.2). In this regards, to obtain an upper bound solution, one needs to

create a relatively softer model, and hence should use a smaller number of smooth-

ing domains, as it is done in the LC-PIM. On the other hand, when we want to

remove spurious modes and to have temporal stability, we should use more smooth-

ing domains, as we do in the ES-PIM.

5.8. Node-based smoothed point interpolation method

Theorem 5.3 provides very powerful means to develop numerical methods that can

produce upper bound solution to the exact solution in strain energy norm. However,

the exact solution space is not usually attainable or we do not need any numeri-

cal method. Hence we have to perform the smoothing operation based on discrete

solution space that is attainable. The use of the functions created using point inter-

polation produces the so-called node-based smoothed point interpolation method

(NS-PIM).

The NS-PIM [Liu and Zhang (2005, 2008)] and is a typical example using the

smoothed bilinear form, and offers a very simple and general way to obtain an upper

bound solution to the exact solution of a solid mechanics problem. As a mesh free

method, the shape functions are generated using local support domains that are

generally overlapping, and PIM shape functions of different order and RPIM shape

functions are used. Any of the PIM and RPIM shape functions can also be used

without worrying about the compatibility in the NS-PIM procedure, due to the use

of the generalized smoothed bilinear form. The NS-PIM generally uses a triangular

mesh for guiding the node selection for the interpolation and for the smoothing

domain construction, because a triangular mesh can be generated automatically for

complicated problem domains.

In the NS-PIM the smoothing domains are node-based. The problem domain Ω

is meshed with Ne elements of, say, triangles with total of Nn nodes as we do in the

FEM procedure. Based on these triangular elements, the domain is then divided

into Ns smoothing domains Ω =
⋃Ns

n=1 Ωn, and each Ωn contains a node and covers
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n
Ω

n

n
Γ

Field nodes Centroid of triangle Mid-edge-point

Fig. 4. NS-PIM formulation: Triangular elements (bounded by solid lines) and the non-overlapping
stationary smoothing domain Ωn (bounded by dashed lines Γn) for node n created by connecting
the centroids with the mid-edge-points of the surrounding triangles of a node. The smoothing
operation is performed over the entire node-based smoothing cell. The integration is also based on
these smoothing cells.

portions of elements sharing the node, as shown Fig. 4. Therefore, in this case we

have Ns = Nn. The smoothed Galerkin weakform solution ū ∈ G1
0 satisfies

āD(ū, υ) = f(υ), ∀ υ ∈ G
1
0, (74)

where the subscript “D” denotes the division of the problem domain into smoothing

domains based on the finite element mesh. Equation (74) is in fact the so-called gen-

eralized Galerkin weakform with variational consistence, if none of the Ωn is further

divided. In the field function approximation, the PIM or RPIM shape functions are

used in the following interpolation,

ū(x) =

Nn∑

i=1

d̄iϕi(x), (75)

where d̄i is a nodal displacement, and ϕi is nodal shape function that are created

using a point interpolation method. In the NS-PIM, a simple scheme for local sup-

porting node selection is suggested based on the background triangular cells for

shape function construction. The background triangular cells are classified into two

groups: interior cells and edge cells. An interior cell is a cell that has no edge on the

boundary of the problem domain, and an edge cell is a cell that has at least one

edge on the boundary of the problem domain. The node selection scheme is then

based on the order of the interpolation to be used. For linear NS-PIM where linear

interpolation is used, we simple use three nodes of the home cell that houses the

point of interest (usually the quadrature sampling point). For quadratic NS-PIM,
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we quadratic interpolations for interior cells and linear interpolations for edge cells.

Three nodes located at the vertices of the home cell, and the other three nodes

located at the remote vertices of the three neighboring cells. Conformability can be

ensured by the later implementation of nodal integrations with smoothing operation

on strains.

We then substitute Eq. (75) into (74), and set ϕi, i = 1, . . . , Nn, as the test

function υ, we have the following discrete set of ℵ equations.

Nn∑

j=1

āD(ϕj , ϕi)d̄j = f(ϕi), i = 1, . . . , Nn (76)

which can be written in the matrix form of

K̄d̄ = f̃ , (77)

where K̄ is the NS-PIM stiffness matrix with entries of K̄ij = āD(ϕj , ϕi), 1 ≤ i,

j ≤ Nn, d̄ is the vector of nodal displacements d̄i, and f̃ is the vector with entries

of f(ϕi), which is the same as that in the FEM.

The NS-PIM has the same properties presented in Sec. 5.4, as those prop-

erties are derived for any division of domain into smoothing domains. Based on

Theorem 5.3, we further have the following theorem.

Theorem 5.4. Upper bound to the FEM solution: When the solution is sought

in the finite element solution space, the strain energy of the NS-PIM solution ū is

no-less than that of the FEM solution ũ:

a(ũ, ũ) ≤ āD(ū, ū). (78)

The proof of this theorem follows exactly the procedure of Theorem 5.3, but

consider the FEM space S̃.

Theorem 5.4 does not tell whether a NS-PIM solution will be the upper bound

of the exact solution. To answer this, we have the following useful theorem.

Theorem 5.5. Upper bound to the exact solution: The strain energy of the NS-

PIM solution ū is no-less than that of the exact solution u:

a(u, u) ≤ āD(ū, ū), (79)

with exception of a few trivial cases of insufficient smoothing operations.

Precise proof of Theorem 5.5 is difficult, because the conditions for Eq. (79) are

difficult to give in a precise manner. An explanation on Theorem 5.5 based on the

so-called “the battle between the softening and hardening effects” can be found in

Liu and Zhang (2008). We have found Eq. (79) is not true for problems of insufficient

smoothing operations. One such a counter example is when only one linear element

is used in a NS-PIM model. In such a case, the node-based smoothing operation

has no effects and the NS-PIM solution is the same as that of FEM that is a lower

bound of the exact solution. Fortunately, when the element number increases, more
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nodes are shared by more than one elements, hence the smoothing takes bigger

effects resulting in smoothed strains for the nodes, which produces upper bound

solution in energy norm. Many cases have been studied using NS-PIM, and they

all confirm Eq. (79), including the cases studied using LC-RPIM where the RPIM

shape functions are used. Therefore, Theorem 5.5 is of practical importance.

5.9. Smoothed finite element method (SFEM)

The other method that uses the smoothed Galerkin weakform is the so-called

smoothed finite element method (SFEM), where the solution is usually sought in

an H1 space. In the SFEM, the smoothing domains are constructed based on a

FEM mesh, the SFEM model can be established using the same FEM mesh, and

the smoothing domains (or cells) are constructed based on elements. The physical

domain Ω is first meshed with Ne elements of say, quadrilaterals as we do in the

FEM procedure, and an element is further divided to form a number of smoothing

domains/cells, as shown in Fig. 5, which gives a total of Ns smoothing domains,

and Ω =
⋃Ns

n=1 Ωn. In this case we shall have Ns ≥ Ne.

The formulation of SFEM is largely similar to that of NS-PIM, but it uses the

FEM shape functions created based on elements and the element-based smoothing

domains are used. Therefore, it requires little change to the FEM codes. Note that

in the SFEM formulation, n-sided polygonal elements can be used. Many other

good properties of SFEM have been found such as resilience to the element mesh

distortion accurate in stress solution, etc.

y 

x

(a) SC = 1 (b) SC = 2 (c) SC = 3

y 

x

(d) SC = 4 (e) SC = 8 (f) SC = 16

Fig. 5. SFEM formulation: Division of an quadrilateral element in a FEM mesh into smoothing
domains/cells (SC). (a) Only one smoothing cell is used for the element (SC = 1). (b) Two
smoothing cells are used for the element (SC = 2), and so on. The smoothing operation is then
performed for each of these cells.
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Theorem 5.4 stands also for the SFEM, but Theorem 5.5 may or may not stand.

Studies have shown that the validity of Theorem 5.5 will be problem dependent.

For a class of problems called overestimation problems, SFEM can produce upper

bound solution to the exact solution, when a small number of smoothing cells is

used for the elements. For many problems, the SFEM based on linear elements will

not be able to produce upper bound solutions to the exact solution.

Note that the equality in Eq. (79) can be achieved when we use linear triangular

elements. In such a case, the smoothing operation to the elements has no effect

at all, regardless how many smoothing cells is used in an element, and hence the

SFEM produces the same solution as the FEM. This is a typical case that violates

Theorem 5.5, regardless how many elements are used.

5.10. Node-based smoothed finite element method (N-SFEM)

Based on the idea of the smoothed finite element method (SFEM) and the NS-

PIM formulation, a node-based SFEM or N-SFEM has been proposed recently,

and applied to n-sided polygonal elements. In the N-SFEM, the smoothed Galerkin

weakform is used and the smoothing domains are node-based, as shown in Fig. 6.

The problem domain Ω is meshed with Ne elements of n-sides with a total of Nn

node k

cell
(k)

(k)
Γ

: central point of n-sided polygonal element: field node : mid-edge point

Fig. 6. N-SFEM: n-sided polygonal elements (bounded by solid edges) and the non-overlapping sta-
tionary smoothing cells/domains (shaded area) associated with node k. The smoothing operation
is performed over the entire node-based smoothing cell.
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nodes as we do in the FEM procedure and the solution is usually sought in an

H ′ space. Then Ns smoothing domains are formed with each Ωn contains a node

and covers the portions of the elements sharing this node. Therefore, in this case

Ns = Nn.

The formulation of the N-SFEM is similar to that of the NS-PIM except that

FEM shape functions created based on elements are used. Both Theorems 5.4 and

5.5 hold for N-SFEM. Therefore, N-SFEM is also a powerful method that produces

upper bound solutions to the exact solution. Many cases have been studied using

N-SFEM and they all confirm Eq. (80). Therefore, Theorem 5.5 is of practical

importance for N-SFEM. Note also that the upper bound property of N-SFEM

exists for n-sided elements including the triangular elements. It offers an excellent

method for accurate solutions with bounds using triangular element mesh, and

adaptive analysis procedures can be easily implemented.

5.11. The battle of softening and stiffening effects

In the above analysis, we noted that the NS-PIM and N-SFEM can provide an upper

bound for the exact solution in energy norm for structural mechanics problems.

However, the SFEM does not necessarily provide such an upper bound solution

for all the problems. What is the reason behind this discrepancy? The argument

of “battle of softening and stiffening effects” was first put forward by Liu et al.

provides an insightful understanding on this matter. We now discuss more about

this matter in a unified manner based on the new theorems that we established in

this paper.

Based on Theorem 5.1, we know that the smoothed bilinear form produces a

model that is “softer” than the actual solids or structure, so that the strain energy

obtained by NS-PIM (or N-SFEM or SFEM) is “larger” than that of the exact

solution, as long as the smoothing operation is preferred to the exact solution. This

fact is coined as softening effect. This softening effect also exists when the bilinear

form applies to an assumed solution space, meaning that the smoothed bilinear

form produces a model that is “softer” than the numerical model of the actual

solids or structure. Therefore, the strain energy obtained by NS-PIM (or N-SFEM)

is “larger” than that of the FEM solution, as stated in Theorem 5.4.

On the other hand, the FEM approximation creates a model that is “stiffer” than

the actual solid or structure and resulting in an underestimation of strain energy

as stated in Remark 4.1. This is called the “stiffening effect ”, and is caused by the

assumed displacement filed using the FEM shape functions in a conforming/fully-

compatible model. The same effect will also occur when PIM shape functions are

used as long as the formulation is conforming as in the NS-PIM.

The battle between the softening and stiffening effects will determine whether a

NS-PIM (or N-SFEM or SFEM) model can in fact provide an upper bound solution

to the problem.
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The softening effect depends on the following situations in a NS-PIM (or

N-SFEM or E-SFEM or SFEM) model.

• Significantly larger smoothing effects are gained when the smoothing domain is

chosen across the lines of strain discontinuity, such as the interfaces of the ele-

ments or background cells. NS-PIM and N-SFEM models use smoothing domains

cover multiple strain discontinuity lines and hence achieved sufficient smooth-

ing effects to obtain upper bound solutions. The E-SFEM models use smooth-

ing domains covers one strain discontinuity line per domain to gain a moderate

smoothing effect for ultra-accurate solutions.

• For the case of NS-PIM and N-SFEM, the number of elements that connected to

a node of a smoothing domain: The more the elements, the larger the smoothing

effects. As shown in Fig. 4. At node n, there are five elements connected, and at

the corner node q, however, only two elements are connected. In an extreme case, if

element-based smoothing is performed (Ωn is further divided to five sub-domains:

each for an element and the smoothing is performed based on the sub-domains)

and linear shape functions are used, there will be no softening effect at all. In

this case, the NS-PIM and FEM gives naturally the same results, and the NS-

PIM will not provide an upper bound, but a lower bound solution. When higher

order shape functions are used as in the SFEM where bilinear shape functions

are used and in the NS-PIM case where the 2nd order shape functions are used,

an element-based smoothing will still have some softening effects, but it is very

much smaller compared to the node-based smoothing. In this kind of cases, the

model may or may not be able to produce the exact upper bound solution, as we

observed in the SFEM.

• The number of nodes being smoothed. In NS-PIM (or N-SFEM), one does not

have to perform the smoothing operation for all the nodes. If the smoothing

is selectively performed, there will still be some smoothing effects and the gen-

eral properties discussed in Sec. 5.4 will still hold, but the softening effect will

propositionally depend on the number of nodes participated in the smoothing

operation.

• In the case of SFEM, the elements are further sub-divided into smoothing cells.

Therefore, the more the sub-division, the less the softening effects. Therefore,

for an SFEM model producing an upper bound solution, one must use as small

number of sub-division as possible.

• The number of nodes used in the problem domain or density of the background

cells. When a small number of nodes are used, the displacements approximated

using the PIM shape functions in a smoothing domain deviates far from the exact

solution, resulting in a heavy smoothing to the strain field, and hence a strong

softening effect. On the other hand, when a large number of nodes are used,

the displacements approximated using the PIM shape functions in a smoothing

domain is more close to the exact solution, resulting less smoothing effects, and

hence less softening effect. At the extreme of infinitely small elements are used,
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the smoothing effects will diminish and the NS-PIM solution (also the FEM

solution) will approach to the exact solution. Remark 4.2 and Remark 5.9 provide

theoretical supports to this claim.

The stiffening effect depends on the following situations in a NS-PIM (or N-SFEM

or SFEM) model.

• The order of the PIM (or FEM) shape functions used in the displacement approx-

imation. When high order shape functions are used, the displacements approxi-

mated using these shape functions in a smoothing domain are closer to the exact

solution of displacements, which reduces the stiffening effect, and vice versa.

• The number of nodes used in the problem domain. When a small number

of nodes are used, the displacements approximated using the PIM (or FEM)

shape functions in a smoothing domain deviates far from the exact solution,

the stiffening effect is therefore large, and vice verse. At the extreme of infinitely

small elements are used, the stiffening effects will diminish and the NS-PIM solu-

tion (also the FEM solution) will approach to the exact solution.

Generally, the softening effect provided by the smoothing in a NS-PIM (or N-SFEM)

model is more significant than the stiffening effects. This is because the smoothing is

a zero order approximation that is lower than the at least first order approximation

of the displacement resulting in the stiffening effect. Therefore, the NS-PIM (or N-

SFEM) always produces an upper bound solution except a few trivial cases such as:

• Only one element is used. In this case, only element participates in smoothing,

which should not have any smoothing effects, and hence the solutions of NS-PIM

(or N-SFEM) and FEM are the same, and NS-PIM (or N-SFEM) gives a lower

bound solution.

• Too few elements are used resulting in insufficient smoothing effect.

In the numerical study, it has found that NS-PIM (or N-SFEM) can produce upper

bound solutions for all the problems we have studied, except the very special case

mentioned above.

5.12. Issues on spurious modes

It is well-known that FEM model based on the complementary energy principles

can also produce upper bound solutions. Such a model is much more difficult to

establish, and will have the so-called spurious modes: modes that require still-some

but much-less energy to excite. These modes look quite similar to the well-known

hour-class modes in FEM model with reduced integration. The presence of these

kinds of modes will affect the solution for dynamic problems, if a direct-integration-

technique is used for the time matching.

Methods established using the present bilinear form may or may not have such

a phenomenon of spurious modes. We have observed spurious modes in NS-PIM,
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and the N-SFEM, but not in SFEM (when SC ≥ 4). It is the author’s predication

that when a numerical model produces upper bound (in strain energy) solution for

static problems, the model will have spurious modes for dynamic problems. There-

fore, lower bound method is preferred for dynamic problems using direct-integration

techniques, because there will be no spurious modes (if fully-integrated). Note that

the spurious nodes appear only as higher modes, and the more nodes are used in

the (say NS-PIM) model, the higher the spurious modes. At the fine limit, they

disappear according to Remark 5.9. Therefore, when an upper bound method is

used for dynamic problems, one may need to use techniques like the mode super-

imposition method for time integration, so that the higher modes can be excluded.

When one has to use a direct-integration-method, some kind of stabilization tech-

nique may be needed. A very simple way to remove the spurious modes is using the

E-SFEM where the smoothing domains are created based on the edges of the cells.

The E-SFEM is briefed in the next section.

Note that the upper bound methods like NS-PIM and the N-SFEM has no

stability problem at all for static problems, as proven in [Liu and Zhang (2008)]. In

fact their equation systems are very stable and much better conditioned compared to

the lower bound methods such as the FEM, and hence much more resilient to mesh

distortion and accepts all type of element including triangular types of elements.

5.13. Edge-based smoothed finite element method (E-SFEM)

Based on the idea of the smoothed finite element method (SFEM) and the NS-

PIM formulation, and the N-SFEM, an edge-based SFEM or (E-SFEM) has been

proposed recently for general n-sided elements [Liu, Nguyen and Lam (2008a)]. In

the E-SFEM, the smoothed Galerkin weakform is also used and the procedure is

almost the same as the N-SFEM, except that the smoothing domains are created

based on edges of the elements, as shown in Fig. 6. The E-SFEM was devised to

remove the spurious modes observed in N-SFEM. This simple change of smooth-

ing domain has successfully solved the spurious mode problem and produces very

accurate results as shown in the next section.

6. Numerical Examples

We now present two numerical examples to examine the properties discussed in

Sec. 5. We will focus on the upper bound properties due to its importance in

obtaining certified solutions.

6.1. Cantilever loaded at the end

A cantilever of length L and height D subjected to a parabolic traction at the

free end as shown in Fig. 8 is studied here to show these properties of the methods

developed using the bilinear form. The cantilever is assumed to have a unit thickness
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(m)(m)

: centroid of triangle: field node

boundary edge m

edge 

Γ

Γ

k

(k)

Fig. 7. E-SFEM formulation: Triangular elements (bounded by solid lines) and the smoothing
domain Ω (bounded by dashed lines Γ) created by sequentially connecting the centroids of the
surrounding triangles of an edge with the nodes on the edge. The smoothing operation is performed
over the entire edge-based smoothing cell, or equivalently over the two triangles areas shearing the
edge. The integration is performed based on the shaded smoothing domains.

L

D

P

x

y

Fig. 8. Cantilever loaded at the end.

so that plane stress condition is valid. The analytical solution is available and can

be found in a textbook by Timoshenko and Goodier [1970].

ux =
Py

6EI

[

(6L − 3x)x + (2 + ν)

(

y2 −
D2

4

)]

uy = −
P

6EI

[

3νy2(L − x) + (4 + 5ν)
D2x

4
+ (3L − x)x2

]

,

(80)

where the moment of inertia I for a beam with rectangular cross section and unit

thickness is given by I = D3

12 .
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The stresses corresponding to the displacements Eq. (80) are

σxx(x, y) =
P (L − x)y

I
; σyy(x, y) = 0; τxy(x, y) = −

P

2I

(
D2

4
− y2

)

. (81)

The related parameters are taken as E = 3.0 × 107 Pa, ν = 0.3, D = 12m,

L = 48m and P = 1000N. In the computations, the nodes on the left boundary are

constrained using the exact displacements obtained from Eq. (80) and the loading

on the right boundary uses the distributed parabolic shear stresses in Eq. (81).

We first use the SFEM with quadrilateral elements to perform the analysis with

two smoothing cells in each element. The numerical strain energies have been plotted

against the degrees of freedom (DOFs) in Fig. 9 with the FEM solution obtained

using the same mesh. It is seen that the SFEM produces upper bound solution for

this problem, while the FEM produces the lower bound solution.

We next use the N-SFEM and the E-SFEM to solve this problem. In general,

both N-SFEM and E-SFEM can use n-sided polygonal elements of any order. Here

we use triangular elements to perform the analysis with one smoothing cell/domain

for each node for convenience of comparison. The numerical strain energies have

been plotted against the DOFs in Fig. 10 with the FEM solution obtained using

the same mesh and the same set of nodes. It is found that the N-SFEM can also

produce upper bound solution for this problem. Note that when linear triangular

elements are used, the results of the N-SFEM are the same as that in [Dohrmann

et al. (2000)]. It is also found that the E-SFEM produces ultra accurate results
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Fig. 9. Solutions for the cantilever beam obtained using FEM, SFEM with two smoothing cells in
an element and the same triangular mesh in comparison with the exact solution.
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Fig. 10. Solutions for the cantilever beam obtained using FEM, N-SFEM, E-SFEM and the same
triangular mesh in comparison with the exact solution.

that is even more accurate that the FEM solution using quadrilateral elements as

shown in Fig. 10. In addition, it is seen that the E-SFEM is a lower bound solution,

and hence will not produce any spurious modes. All these are achieved by simply

choosing different smoothing cells/domains.

We now use the NS-PIM with triangular elements to perform the same analysis

with one smoothing cell/domain for each node. The numerical strain energies have

been plotted against the DOFs in Fig. 11 with the FEM solution obtained using

the same mesh and the same set of nodes. It is found that the NS-PIM can also

produce upper bound solution for this problem. Note that when linear interpolation

is used the NS-PIM and N-SFEM-T3 will give the same results. However, NS-PIM

can use higher order interpolation based on the same mesh and nodes. For the case

of quadratic NS-PIM shown in Fig. 11, 6 nodes are used in the interpolation in an

overlapping manner, and same triangular mesh of some number of nodes can be

used. For the use of arbitrary number of nodes in the interpolation, reader can refer

to [Liu et al. (2006)].

In summary, for cantilever beam problem, all these three methods produce upper

bound solutions.

6.2. Infinite plate with a circular hole

We now perform the same study as in the previous section for an infinite plate

with a circular hole subjected to a unidirectional tensile load of σ = 1.0N/m at
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Fig. 11. Solutions for the cantilever beam obtained using FEM, NS-PIM and the same triangular
mesh in comparison with the exact solution. For the case of quadratic NS-PIM, 6 nodes are used
in the interpolation in an overlapping manner, and hence same triangular mesh of some number
of nodes can be used.

Fig. 12. Infinite plate with a circular hole and its quarter model.

infinity in the x-direction, as shown in Fig. 12. Due to its symmetry, only the

upper right quadrant of the plate is modeled. Plane strain condition is consid-

ered, E = 1.0 × 103 N/m2, ν = 0.3, and the central circular hole is of radius

a = 1 m. Symmetric conditions are imposed on the left and bottom edges, and

the inner boundary of the hole is traction free. The exact solution for the stress is
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[Timoshenko and Goodier (1970)]

σ11 = 1 −
a2

r2

[
3

2
cos 2θ + cos 4θ

]

+
3a4

2r4
cos 4θ

σ22 = −
a2

r2

[
1

2
cos 2θ − cos 4θ

]

−
3a4

2r4
cos 4θ , (82)

τ12 = −
a2

r2

[
1

2
sin 2θ + sin 4θ

]

+
3a4

2r4
sin 4θ

where (r, θ) are the polar coordinates and θ is measured counterclockwise from the

positive x-axis. Traction boundary conditions are imposed on the right (x = 5.0)

and top (y = 5.0) edges based on the exact solution Eq. (82). The displacement

components corresponding to the stresses are

u1 =
a

8µ

[
r

a
(κ + 1) cos θ + 2

a

r
((1 + κ) cos θ + cos 3θ) − 2

a3

r3
cos 3θ

]

u2 =
a

8µ

[
r

a
(κ − 1) sin θ + 2

a

r
((1 − κ) sin θ + sin 3θ) − 2

a3

r3
sin 3θ

]

,

(83)

where µ = E/(2(1 + ν)), κ is defined in terms of Poisson’s ratio by κ = 3 − 4ν for

plane strain cases.

We first use the SFEM with quadrilateral elements to perform the analysis with

two smoothing cells in an element. The numerical strain energies have been plotted

against the DOFs in Fig. 13 with the FEM solution obtained using the same mesh.
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Fig. 13. Solutions for the plate-with-hole obtained using FEM, SFEM with two smoothing cells in
an element and the same triangular mesh in comparison with the exact solution.
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Fig. 14. Solutions for the plate-with-hole obtained using FEM, N-SFEM and the same triangular
mesh in comparison with the exact solution.

It is seen that the SFEM does not produces upper bound solution for this problem.

It produces a tighter lower bound solution compared to the FEM solution, which

confirms Theorem 5.4.

We next use the N-SFEM with triangular elements to perform the analysis with

one smoothing cell/domain for each node. The numerical strain energies have been

plotted against the DOFs in Fig. 14 with the FEM solution obtained using the same

mesh and the same set of nodes. It is found that the N-SFEM can still produce upper

bound solution for this problem.

We finally use the NS-PIM with triangular elements to perform the same analysis

with one smoothing cell/domain for each node. The numerical strain energies have

been plotted against the DOFs in Fig. 15 with the FEM solution obtained using

the same mesh and the same set of nodes.

In summary, for the plate-with-hole problem, only the N-SFEM and NS-PIM can

produce upper bound solutions. This is because the node-based smoothing provides

sufficient softening effects. For all the examples studied using the N-SFEM and

NS-PIM upper bound solutions were obtained without exception.

6.3. Application to an offshore structure: a riser connector

The 3D codes of NS-PIM and E-SFEM have also been developed. Here we present

one example of NS-PIM applied to solve a real offshore structure problem of a

Floating Production and Storage Unit (FPSO). Fluid transfer of oil-gas-water mix-

ture between FPSO and subsea pipeline is carried out through a riser attached to
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Fig. 15. Solutions for the plate-with-hole obtained using FEM, NS-PIM and the same triangular
mesh in comparison with the exact solution. For the case of quadratic NS-PIM, 6 nodes are used
in the interpolation in an overlapping manner, and hence same triangular mesh of some number
of nodes can be used.

FPSO shipside by the riser connector. The simplified model of riser connector is

shown in Fig. 15 with the load being applied on the top flange of riser connector.

The boundary conditions are defined at the end of I-beams where riser connector is

supported by other structures. This riser connector is made of steel material with

Young’s modulus E = 2.0 × 105 N/mm2, Poisson’s ratio ν = 0.32. The results of a

contour of elemental Von Mises stress are plotted in Fig. 16 in the deformed shape

of the riser connector.

Fig. 16. Simplified model of a three-dimensional riser connector.
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Fig. 17. Contour of the Von Mises stress obtained using a 3D NS-PIM code.

7. Conclusion

In this work, we introduce a generalized gradient smoothing technique, correspond-

ing smoothed bilinear form with different smoothing domains, and proved the

important general properties. The smoothed bilinear form is then used to formulate

a smoothed Galerkin weakform that is applicable for establishing a class of numeri-

cal methods. The smoothed Galerkin weakform is proven to be a unique alternative

for establishing numerical methods for stable (bounded) and monotonically conver-

gent solutions. The smoothed bilinear form establishes a unified theoretical foun-

dation for a class of methods that can produce upper bound solutions (in energy

norm) for solid mechanics problems. The bilinear form has the following properties.

(1) It has the basic properties of positivity and symmetry.

(2) It can have bound properties.

(3) It further relates the requirement of the assumed solution space.

(4) It is capable of establishing numerical methods that produce solutions of both

upper and lower bounds, supper-convergence, ultra accuracy and other desired

properties by properly choosing smoothing cells/domains.

The numerical methods developed based on this smoothed bilinear form, such as

the NS-PIM, N-SFEM and E-SFEM, possess three major important features

(1) The stiffness of the discretized model will be reduced compared to the FEM

model and the exact model, which allows us to obtain upper bound solutions

with respect to both the FEM solution and the exact solution;
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(2) The E-SFEM using triangular mesh can produce solutions of ultra accuracy

that is even more accurate that the FEM solution using quadrilateral elements.

(3) The continuity of the trial and test functions can be reduced, which allows us

to use much more types of methods to create shape functions;

(4) The solution of a numerical method developed using the smoothed bilinear

form is insensitive to the quality of the mesh, and triangular meshes can be

used perfectly without any problems.

(5) There is no increase in the number of the unknowns and the primary variable

is still the nodal displacements. The discrete system equations are symmetrical

and sparse with the same dimension as that of the FEM and hence the same

order in computational efficiency.

Based on the general techniques and theory established in this paper, we can

expect also that by changing the smoothing function, the ways for the smoothing

domain/cell construction, and the use of different shape functions, better numerical

methods with desired properties can be developed. A combined formulation of the

(fully-compatible) Galerkin weakform and the smoothed Galerkin weakform offers

also possibilities for developing numerical methods with supper-convergence prop-

erty. This is because the Galerkin weakform gives lower bound and the smoothed

Galerkin weakform provide upper bound of the exact solution, and therefore there

must be way to obtain an ultra accurate solution that is very close to the exact

solution, and solutions of very fast convergence (Liu, Nguyen and Lam, 2008c).

Finally, we would like to mention that the properties of the generalized bilinear

form for functions in the finite element solution space are becoming clearer recently

for linear elements for the works on SFEM, N-SFEM and E-SFEM. More works,

however, need to be done for higher order elements. In the G1 space, however, it

requires a lot more detailed and in-depth study and analysis. So far we have results

only for NS-PIM with quadratic interpolation and radial PIM interpolations. We

found the results are good for these cases, as presented in this paper and in [Liu and

Zhang (2005, 2008); Liu and Li (2006); Zhang et al. (2007); Li et al. (2007)], but we

do not know precisely how good and why they are good. There are a lot of issues

needs to investigate in these related areas including new territories of functional

analysis for discommodious functions, and the author is still trying hard to study,

examine and understand them. Hopefully, some new interesting properties may be

found when more study is conducted by the author’s group and possibly by other

groups in world.
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