
674 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

A Generalized Hypothetical Reference Decoder
for H.264/AVC

Jordi Ribas-Corbera, Member, IEEE, Philip A. Chou, Senior Member, IEEE, and Shankar L. Regunathan

Abstract—In video coding standards, a compliant bit stream
must be decoded by a hypothetical decoder that is conceptually
connected to the output of an encoder and consists of a decoder
buffer, a decoder, and a display unit. This virtual decoder is known
as the hypothetical reference decoder (HRD) in H.263 and the video
buffering verifier in MPEG. The encoder must create a bit stream
so that the hypothetical decoder buffer does not overflow or under-
flow. These previous decoder models assume that a given bit stream
will be transmitted through a channel of a known bit rate and will
be decoded (after a given buffering delay) by a device of some given
buffer size. Therefore, these models are quite rigid and do not ad-
dress the requirements of many of today’s important video appli-
cations such as broadcasting video live or streaming pre-encoded
video on demand over network paths with various peak bit rates
to devices with various buffer sizes. In this paper, we present a new
HRD for H.264/AVC that is more general and flexible than those
defined in prior standards and provides significant additional ben-
efits.

Index Terms—Hypothetical reference decoder (HRD), video
buffering verifier (VBV).

I. INTRODUCTION

WHEN compressing digital video, the encoder usually
attempts to maintain the image quality nearly uniform

throughout the video sequence, since drops or changes in video
quality result in poor viewing experiences. To achieve this, the
encoder must assign more bits to video frames or segments
that are more difficult to compress (e.g., those that contain
more textured regions or faster motion) and fewer bits to easier
video segments, and as a result the encoding bit rate may vary
significantly over time. Since compressed digital video is often
transmitted through channels of (nearly) constant bit rate, the
bit-rate variations need to be smoothed using buffering mech-
anisms at the encoder and decoder. The sizes of the physical
buffers are finite, and hence the encoder must constrain the
bit-rate variations to fit within the buffer limitations.

Video coding standards do not mandate specific encoder or
decoder buffering mechanisms, but they require encoders to
control bit-rate fluctuations so that a hypothetical reference
decoder (HRD) of a given buffer size would decode the video
bit stream without suffering from buffer overflow or underflow
[1], [2]. This hypothetical decoder is based on an idealized de-
coder model that decoder manufacturers can use as a reference
for their implementations, but its main goal is to impose basic

Manuscript received December 12, 2001; revised May 9, 2003.
The authors are with Microsoft Corporation, Redmond, WA 98052

USA (e-mail: jordir@microsoft.com; pachou@microsoft.com; shanre@mi-
crosoft.com).

Digital Object Identifier 10.1109/TCSVT.2003.814965

buffering constraints on the bit-rate variations of compliant bit
streams.

In previous HRDs [1], [2], the video bit stream is received at a
known bit rate (usually the average rate in bits per second of the
stream) and is stored into the decoder buffer until the buffer full-
ness reaches a desired level. This level is denoted the initial de-
coder buffer fullness and is directly proportional to the start-up
(buffer) delay. When the initial buffer fullness is reached, the de-
coder instantaneously removes the bits for the first video frame
of the sequence, decodes the bits, and displays the frame. The
bits for the following frames are also removed, decoded, and
displayed instantaneously at subsequent time intervals.

An HRD usually assumes that the decoding and display times
preserve some pre-defined constraints, such as a fixed frame
rate, and the system’s end-to-end delay is constant (e.g., for
broadcast applications). This constant-delay mode of operation
is the focus of our contribution. The hypothetical decoder can
also operate in a low-delay mode (e.g., for video conferencing).
Low-delay operation can reduce average end-to-end delay by
building a nominal delay into the system that is lower than the
worst-case delay necessary to send “big pictures” (pictures that
require an unusually large number of bits to encode with ad-
equate fidelity). However, low-delay mode operation produces
incorrect motion rendition caused by the variation in end-to-end
delay in the neighborhood of big pictures, and is therefore unde-
sirable for applications in which achieving good video quality
is more important than reducing average end-to-end delay.

In the constant-delay mode, prior HRDs operate with a fixed
peak bit rate, buffer size, and initial delay. However, in many
of today’s video applications (e.g., video streaming through the
Internet) the peak transmission bit rate varies according to the
network path (e.g., how the user connects to the network: by
modem, ISDN, DSL, cable, etc.) and also fluctuates in time
according to network conditions (e.g., congestion, the number
of users connected, etc.) [3, Ch. 1–2]. In addition, the video
bit streams are delivered to a variety of devices with different
buffer capabilities (e.g., hand-sets, PDAs, PCs, set-top-boxes,
DVD-like players, etc.) and are created for scenarios with dif-
ferent delay requirements (e.g., low-delay streaming, progres-
sive download or pseudo-streaming, etc.) [4, Ch. 8]. As a result,
these applications require a more flexible HRD that can decode
a bit stream at different peak transmission bit rates, and with
different buffer sizes and start-up delays.

We present a new HRD that operates according tosets
of transmission rate and buffer size parameters for a given bit
stream. Each set characterizes what is known as a leaky bucket
model [5], [6] and contains three values , where is
the peak transmission bit rate, is the buffer size, and is

1051-8215/03$17.00 © 2003 IEEE

RIBAS-CORBERAet al.: A GHRD FOR H.264/AVC 675

the initial decoder buffer fullness. (is the start-up or ini-
tial buffer delay.) An encoder can create a video bit stream that
is contained by some desired leaky buckets, or it can simply
compute the sets of parameters after the bit stream has been
generated. Our new HRD intelligently interpolates among the
leaky bucket parameters and can operate at any desired peak
transmission bit rate, buffer size, or delay. To be more concrete,
given a desired peak transmission bit rate, our reference de-
coder will select the smallest buffer size and delay (according to
the available leaky bucket data) that will be able to decode the
bit stream without suffering from buffer underflow or overflow.
Conversely, for a given buffer size , the hypothetical decoder
will select and operate at the minimum required peak transmis-
sion bit rate.

There are multiple benefits of this generalized HRD (GHRD).
For example, a content provider can create a bit stream once,
and a server can deliver it to multiple devices of different capa-
bilities, using a variety of channels having different peak trans-
mission bit rates. Or a server and a terminal can negotiate the
best leaky bucket for the given networking conditions, e.g., the
one that will produce the lowest start-up (buffer) delay, or the
one that will require the lowest peak transmission bit rate for
the given buffer size of the device. In Section IV, we quantify
these benefits for the standard MPEG test sequences encoded
with a recent test model of the H.264/AVC standard (i.e., JM
version 3.2 [7]). We find that in realistic scenarios, the buffer
size and the delay can be reduced by a factor of 14 to 45 at the
same peak transmission bit rate, or the peak transmission bit rate
can be reduced by almost a factor of four at the same physical
buffer size. Alternatively, the buffer size can be increased by a
factor of 45 without increasing the delay at the peak transmis-
sion bit rate, thereby potentially improving the signal-to-noise
ratio (SNR) without increasing the average encoding rate.

In Section II, we describe the standard leaky bucket model
and its associated parameters in more detail. Following that, in
the context of the standard leaky bucket model we review the
reference decoders used in H.263 (HRD) [1] and MPEG (VBV)
[2], and discuss the limitations of these buffer models. Next, we
present our GHRD, which uses leaky buckets, and recom-
mend minor syntax changes in the bit stream for implementing
the GHRD. Finally, we present specific examples of the benefits
over previous reference decoders using H.264/AVC bit streams.

This new HRD has been adopted as part of the H.264/AVC
video coding specification [9]. Other aspects of the HRD in
H.264/AVC are covered in Annex C of the standard [9], or in
[10], [11]. The H.264/AVC video coding specification has been
developed jointly by video codec experts from ITU and ISO, and
the standardization effort is also known by other names, such as
Joint Video Team (JVT), ITU-T H.26L, or ISO MPEG-4 part
10.

II. L EAKY BUCKET MODEL

We first define a leaky bucket model, since it is the basis of all
the hypothetical reference decoders that we will discuss later.

A leaky bucket is a direct metaphor for the encoder’s output
buffer, i.e., the queue between the encoder and the communi-
cation channel. At frame time , the encoder instantaneously

Fig. 1. Leaky bucket bounds in the CBR case. On the left: encoding schedule
(staircase) and its leaky bucket bounds (straight lines). The encoder buffer
fullness is the shaded area between the encoding schedule and the later/lower
leaky bucket bound. On the right: decoding schedule (staircase) and its leaky
bucket bounds. These are simply shifts of the encoding schedule and its bounds
by a constant delay�. The decoder buffer fullness is the shaded area between
the earlier/upper leaky bucket bound and the decoding schedule. Note that the
decoder buffer fullness is the complement of the encoder buffer fullness in
the CBR case. In the center: schedule for packet transmission and reception.
The necessary additional encoder buffering and delay (for packetization) is
the white area between the encoder’s leaky bucket bound and the packet
transmission schedule. The necessary additional decoder buffering and delay
(for de-packetization and jitter) is the white area between the packet reception
schedule and the decoder’s leaky bucket bound.

encodes frame into bits and pours these bits into the leaky
bucket.1 In the constant bit rate (CBR) case, the leaky bucket
drains its accumulated bits into the communication channel at
a fixed bit rate , and the encoder must add enough bits to
the leaky bucket often enough so that the leaky bucket does
not underflow (i.e., become empty) in any interval of time. On
the other hand, the encoder must not add too many bits to the
leaky bucket too frequently, or else the leaky bucket, which has
capacity , will overflow. Thus, the leaky bucket, which may
begin at an arbitrary initial state (with), con-
strains the encoding sequence , Graphi-
cally, the encoding sequence, or encodingschedule, can be rep-
resented by the cumulative number of bits encoded by time,
as illustrated in the left half of Fig. 1. Furthermore, the leaky
bucket constraint can be represented by the two parallel lines
bounding the encoding schedule. The later/lower line represents
the schedule on which bits drain from the leaky bucket, and the
earlier/upper line represents the capacity constraint of the leaky
bucket, that is, an upward shift of the later/lower line bybits.

Although a leaky bucket is a metaphor for the encoder buffer,
it also characterizes the decoder buffer, i.e., the queue between
the communication channel and the decoder. In the CBR case,
after the encoded bits traverse the channel, they enter the de-
coder buffer at a fixed bit rate . Then, at frame time

, where is a constant encoding-to-decoding delay,
the decoder instantaneously extractsbits from the decoder
buffer and decompresses frame, . This decoding
schedule, , , is illustrated in the right half
of Fig. 1. If, after the first bit enters the decoder buffer, the de-
coder delays at least seconds before decoding the
first frame, then the decoding schedule is guaranteed not to un-

1Note that the frames in the bit stream are ordered in decoding order. Any
re-ordering of pictures can be done for the purposes of displaying (e.g., a given
P frame could be decoded before a givenB frame, but the latter could be dis-
played earlier). The decoding time for a frame must not be later than its display
time.

676 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

derflow the decoder buffer, due to the leaky bucket bounds in-
herited from the parallel encoding schedule. Furthermore, with
delay , if the capacity of the decoder buffer is at least

, then the decoding schedule is guaranteed not to overflow the
decoder buffer, again due to the leaky bucket bounds inherited
from the parallel encoding schedule. In fact, observe that the
fullnesses of the encoder and decoder buffers are complements
of each other in the CBR case [8]. Thus, the leaky bucket model
determines both the minimum decoder buffer size and the min-
imum decoder buffer delay using three parameters,, , and

, by succinctly summarizing with upper and lower bounds the
encoded sequence , .

The leaky bucket model can also be used with variable bit rate
(VBR) channels, such as packet networks. If the VBR channel
has a long-term average bit rate that equals the long-term av-
erage bit rate of the encoded sequence, then it is often convenient
to continue to use the above CBR leaky bucket bounds. At the
decoder, the buffering and the delay due to the leaky bucket
can be augmented by additional buffering and delay to accom-
modate both de-packetization and packet network delivery jitter.
Likewise, at the encoder, the buffering and delay can be aug-
mented by additional buffering and delay to accommodate pack-
etization. The additional buffering and delay at both the en-
coder and decoder are illustrated in Fig. 1. The resulting total
amount of buffering and delay are sufficient to guarantee con-
tinuous media playback without stalling due to decoder buffer
underflow and without loss due to decoder buffer overflow. In
essence, at the decoder, the leaky bucket provides a deadline by
which packets must be available for decoding, or risk being late.
Similarly, at the encoder, the leaky bucket provides a deadline
by which the encoded bits will be available for packetization.

For VBR channels that have asustainablepeak bit rate
greater than the long-term average bit rateof the encoded
sequence, then it is beneficial to characterize the encoded se-
quence using a leaky bucket with the higher leak rate

, yet allowing the leaky bucket to underflow (become empty)
when the channel drains the bucket faster than the encoder can
fill it. To illustrate, Fig. 2 shows thesameencoding and de-
coding schedules as in Fig. 1, using a leaky bucket with the
higher leak rate . As in Fig. 1, the later/lower bound on the
encoding schedule is the schedule by which bits drain from the
leaky bucket and are transmitted or packetized. In Fig. 2, how-
ever, flat spots in this transmission schedule indicate intervals in
which the bucket is empty because there is nothing to transmit.
The earlier/upper bound on the encoding schedule represents
the capacity constraint of the leaky bucket: an upward shift of
the transmission schedule by bits. Since the bucket drains
at a rate greater than , the bucket can have a capacity
smaller than , while still not overflowing, and/or can start with
an initial state smaller than . The transmitted bits enter the
decoder buffer after a constant transmission delay. If, after the
first bit enters the decoder buffer, the decoder delays at least

seconds before decoding the first frame, then the
decoding schedule is guaranteed not to underflow the decoder
buffer. Furthermore, with delay , if the capacity of
the decoder buffer is at least , then the decoding schedule is
guaranteed not to overflow the decoder buffer. In this VBR case,
the encoder buffer fullness and the decoder buffer fullness are

Fig. 2. Leaky bucket bounds in the VBR case. The encoding and decoding
schedules are the same as in the CBR case in Fig. 1 (thus they have the same
average bit rate), but the peak transmission bit rateR is higher, resulting
in a lower buffer sizeB , a lower initial delayD = F =R , and a lower
encoding-to-decoding delay� . On the left: the encoding schedule is bounded
below/right by the schedule by which bits leave the encoder bucket and are
nominally transmitted. Flat spots indicate intervals in which the bucket is
empty because there is nothing to transmit. The encoding schedule is bounded
above/left by an upward shift of the transmission schedule byB bits. This is
the constraint imposed on the encoding schedule by the leaky bucket capacity.
On the right: the decoding schedule is bounded above/left and below/right by
rightward shifts of the transmission schedule. The earlier of these shifts is the
schedule at which bits nominally arrive in the decoder buffer. Note that the
encoder and decoder buffer fullnesses are no longer complementary. However,
the decoder buffer fullness is bounded by the complement of the encoder buffer
fullness (dotted).

no longer complementary. However, the complement of the en-
coder buffer fullness provides a tight (achievable) upper bound
to the decoder buffer fullness. The advantage of using a leaky
bucket with a peak rate greater than the average rate is that it
allows a smaller decoder buffer size and delay for the same en-
coded sequence.

Clearly, a VBR channel is a generalization of a CBR channel,
and in either case a single leaky bucket is specifiable by three
parameters , where:

• is the peak transmission bit rate (in bits per second)
at which bits may leave the encoder buffer and enter the
decoder buffer after a constant delay;

• is the capacity (in bits) of the encoder or decoder buffer;
• is the initial decoder buffer fullness (in bits) before the

decoder can start removing bits from its buffer.2 and
determine the initial or start-up delay, where
seconds.

A leaky bucket with parameters is said tocontainan
encoded bit stream if there is no overflow of the encoder buffer
(i.e., the leaky bucket) or equivalently, if there is no underflow
of the decoder buffer. Thus, a leaky bucket that contains an en-
coded bit stream provides constraints on the stream’s encoding
and decoding schedules so that the resources necessary to de-
code it are predictable.

A leaky bucket characterization of an encoded bit stream is
especially important when the bit stream is encoded off line (for
applications such as playback from a local disk, or streaming
video on demand over a packet network from a remote server).
When an entire bit stream is recorded and encoded before play-
back, it is essential that the decoder buffer and delay require-

2A leaky bucket can also be specified by parameters(R;B; F), whereF
is the initial encoder buffer fullness. In this paper, we have chosen to use the
initial decoder buffer fullnessF = F , unless otherwise indicated. They are
related byF + F = B.

RIBAS-CORBERAet al.: A GHRD FOR H.264/AVC 677

ments be stored along with the encoded bit stream, so that it
will be possible for a decoder to know whether it will be able
to decode a bit stream and what start-up delay to give it. The
leaky bucket model provides a way to parameterize these re-
quirements.

When the bit stream is encoded online, that is, when the en-
coder is connected directly to the transmission channel (for ap-
plications such as point-to-point video telephony), then in some
circumstances, e.g., communication over a variable rate packet
network with very low jitter, the encoder can control or at least
know the instantaneous bit rate at which bits arrive at the
receiver. In this case, rather than use a leaky bucket model, it
may be better to use a low-delay mode, in which the receiver
may decode each frame of data as soon as it is fully received.
In such a mode, the decoder buffer underflow is impossible (by
definition) and decoder buffer overflow can be prevented by the
encoder either by reducing to match the number of bits per
frame, or by increasing the number of bits per frame to match

. Unfortunately, low-delay mode does not preserve presen-
tation timing; constant end-to-end delay is sacrificed. Thus, the
leaky bucket model is also important for on-line applications
when precise presentation timing is important (e.g., for broad-
casting high quality video live), or when the encoder cannot con-
trol or know the instantaneous rate at which bits arrive at
the receiver, or when is anyway either a positive constant
or zero (e.g., for transmission in a multiplex over an isochronous
channel).

In this paper, we focus on generalizing the above single
leaky bucket model to multiple leaky buckets for H.264/AVC.
As mentioned earlier, other aspects of the HRD in H.264/AVC,
such as low-delay mode, are not addressed here, but are
explained in [9]–[11].

Before exploring multiple leaky buckets, let us be more spe-
cific about how a single leaky bucket with parameters
works in H.264/AVC. As indicated above, let be the
encoder schedule and let be the corresponding decoder
schedule. The leaky bucket starts with initial fullness, which
means that if frame 0 is inserted into the leaky bucket at time

, then transmission of the initial bit of frame 0 begins (after a
delay of) at time

Transmission of the final bit of frame 0, indeed the final bit of
any frame for , ends at time

Hence, transmission of the initial bit of the subsequent frame
begins at time

that is, when frame is inserted into the leaky bucket or
when frame completes transmission, whichever is later. Now,

assuming a constant transmission delay, the initial bit of frame
0 begins its arrival in the decoder buffer at time

Similarly, the final bit of frame 0, or indeed the final bit of any
frame for , ends its arrival in the decoder buffer at time

The initial bit of the subsequent frame will begin its arrival in
the decoder buffer at time

which follows since for all .
The last three displayed equations form the basis of the HRD
model in H.264/AVC. (In the specification, is known as
the and is known as the

.) The decoder buffer
will not underflow if and only if for all , frame arrives in the
decoder buffer before it is due for removal, that is,

This will be true if for all , which will in turn
be true if (which in turn will be true if the
encoder buffer does not overflow). Hence, the decoder buffer
capacity is usually set equal to the encoder
buffer (leaky bucket) capacity in order to minimize
both the decoder delay and the decoder buffer size .
For this reason, we do not ordinarily distinguish between
and and we set .

Evolution of the encoder and decoder buffers can also be de-
scribed in terms of buffer fullness. If the encoder buffer (the
leaky bucket) starts with initial fullness , then when frame 0
is inserted into the encoder buffer, the fullness of the encoder
buffer rises to

Thereafter, the fullness of the encoder buffer after inserting
frame , is

(1.0)

The encoder buffer will not overflow if and only if
for all . The complement of these equations describes an
upper bound on the decoder buffer fullness after removing frame

for . If the decoder waits until the decoder buffer fullness
reaches before removing and decoding the frame 0, then the
fullness of the decoder buffer falls to

Thereafter, the upper bound on the fullness of the decoder buffer
after removing frame, , can be expressed as

(1.1)

678 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

Fig. 3. Decoder buffer fullness when decoding a generic video bit stream that
is contained in a leaky bucket having parameters(R;B; F). R is the peak
incoming (or channel) bit rate in bits per second,B is the buffer size in bits,
andF is the initial decoder buffer fullness in bits.D = F=R is the initial or
start-up (buffer) delay in seconds. The number of bits for theith frame isb .
The coded video frames are removed from the buffer (typically according to the
video frame rate), as shown by the drops in buffer fullness.

It is simple to prove by induction that for all ;
that is, (1.0) and (1.1) are complements. That the complement
of the encoder buffer fullness is indeed an upper bound on the
fullness of the decoder buffer can be seen from the fact that
in any time interval of length , at most bits can enter
the decoder buffer. Hence, as illustrated in Fig. 2, a leftward
shift by of the later/lower bound on the decoding schedule
must lie below its upward shift by . In other words, the actual
decoder buffer fullness is bounded above by the complement
of the encoder buffer fullness. Furthermore, the bound is tight,
for if the encoder ever fills up the leaky bucket then the actual
decoder buffer fullness achieves the bound. Thus, if a decoder
buffer size is minimally sufficient to contain the upper
bound on the decoder buffer fullness, then it is also minimally
sufficient to contain the actual decoder buffer fullness. Hence,
in the remainder of the paper, we safely use (1.1) as a surrogate
for the actual decoder buffer fullness, and refer to it simply as
the “decoder buffer fullness.” Since this is now complementary
to the encoder buffer fullness, we are able to focus exclusively
on the decoder buffer fullness, and we drop the superscript “”
from our notation. Fig. 3 illustrates the decoder buffer fullness
as a function of time for a bit stream that is contained in a leaky
bucket having parameters .

We now make the following observation. A given video
stream can be contained in many leaky buckets. For example, if
a video stream is contained in a leaky bucket with parameters

, it will also be contained in a leaky bucket with a
larger buffer , , or in a leaky bucket with
a higher peak transmission bit rate , , or in
a leaky bucket with larger start-up delay , ,

. Moreover, it can also be contained in a leaky bucket
with a lower peak transmission bit rate , , if
the video is time-limited. In the worst case, asapproaches 0,
the buffer size and initial buffer fullness will need to be as large
as the bit stream itself. Put another way, a video bit stream can
be transmitted at any peak transmission bit rate (regardless of
the average bit rate of the clip) as long as the buffer size and
delay are large enough.

Thus, for any value of the peak transmission bit rate, we
can find the minimum buffer size and the minimum initial
buffer fullness that will contain the bit stream. This can be
done by iterating (1.1), as illustrated by the Matlab code in Ap-
pendix B. Surprisingly, both minima can be achieved simultane-

Fig. 4. Illustration of peak bit rateR and buffer sizeB values for a
given bit stream. This curve indicates that in order to transmit the stream at a
peak bit rateR, the decoder needs to buffer at leastB (R) bits. Observe that
higher peak rates require smaller buffer sizes. Alternatively, if the size of the
decoder buffer is B, the minimum peak rate required for transmitting the bit
stream is the associatedR (B).

ously, as we prove in Appendix A (Proposition 2), even though
in general the buffer size required to contain the bit stream stays
the same or increases as the initial buffer fullness decreases.

By computing for each , we can plot a curve of
values such as the one in Fig. 4.3

A key observation is that the curve of pairs for
any bit stream (such as the one in Fig. 4) is piecewise linear and
convex. Let us illustrate this interesting property using a simple,
intuitive example. Consider the three plots of decoder buffer
fullness in Fig. 5. These plots are generated when decoding a
video bit stream that contains five frames, where
are the number of bits per frame , respectively. The
peak transmission bit rate is (top), (middle), and
(bottom), and .

For clarity, the buffer (in each of the three cases) is initially
filled to the maximum value (which here represents the phys-
ical buffer size), i.e., , although other initial values could
have been selected as well. As expected, the minimum buffer
size required to decode the bitstream decreases with larger peak
transmission bit rate, i.e., .
One can easily show that

(2)

where is the time interval between frames, which in this
example is assumed to be constant (i.e., the decoding frame
rate is frames/s). Observe that the formulas for
and correspond to two different points on the same

3This curve is actually computed from a real video bit stream using (1.1) in
the Matlab program of Appendix B.

RIBAS-CORBERAet al.: A GHRD FOR H.264/AVC 679

Fig. 5. The plots illustrate the decoder buffer fullness when decoding a video
bit stream transmitted at bit rateR (top),R (middle), andR (bottom), where
R < R < R . Observe that the minimum buffer size required to decode the
bitstreams isB (R) > B (R) > B (R).

straight line of slope , and that the values of for all bit
rates between and will lie on that line as well, because the
respective decoder buffer plots would fall in between the top
and middle plots in Fig. 5. For transmission bit rates slightly
larger than , the value of will still lie on that same line,
but at some point, the buffer will fill up within some frame
interval (here between frames 1 and 2, as seen in the bottom
plot of Fig. 5) and the formula for will change to that of
a straight line of slope . The value of derived in
(2) falls on this second straight line. Fig. 6 illustrates the curve
of values in this example.

Although this is a specific example, one can intuitively see
that the decoder buffer plot for any video bit stream (of any
number of frames) can be analyzed using the same process. As
the peak transmission bit rate increases, the value of will
decrease following straight line formulas of the same form as
those in (2), i.e., a summation of the number of bits forframes
and a slope — . The next line in the sequence will
have fewer frames in the summation and hence a less negative
slope, and as a result a piecewise linear curve that is monoton-
ically decreasing such as that in Fig. 6 can be plotted. Since
each new segment in the sequence has a less negative slope,
such a piecewise linear curve is convex. For completeness, a
rigorous proof of the piecewise linear and convex properties of
the curve of pairs (using induction) is provided in

Fig. 6. Illustration of(R ;B) pairs for the bit stream used in the decoder
buffer plots of Fig. 5. As the channel rate increases,B decreases following
a piecewise linear curve. Observe thatB (R) andB (R) lie on the same
straight line of slope�3� , while B (R) lies on the line of slope�� , as
indicated in (2).

Appendix A. Not surprisingly, such linear and convex proper-
ties apply to as well, which is also shown in Ap-
pendix A.

Because of the convexity, if points of the curve are pro-
vided, the decoder can linearly interpolate the values to arrive at
some points that are slightly but safely
larger than . In this way, as we quantify in
Section V, one is able to safely reduce the buffer size, and the
delay, by well over an order of magnitude, relative to a single
leaky bucket containing the bit stream at its average rate. Al-
ternatively, for the same delay, one is able to reduce the peak
transmission rate by almost a factor of four, or possibly even
improve the SNR.

III. PREVIOUS WORK

We next explain the hypothetical reference decoders in
MPEG and H.263 in the context of leaky bucket models.

A. MPEG’s Video Buffering Verifier (VBV)

The VBV [2] can operate in two modes: CBR and VBR.
MPEG-1 and MPEG-4 only support the CBR mode, while
MPEG-2 supports both modes.

The VBV operates in CBR mode when the bit stream is con-
tained in a leaky bucket having parameters and the
following conditions hold:

• the average bit rate of the stream;
• the value of is stored in the syntax parameter

vbv_buffer_size using a special size unit (i.e., 161024
bit units);

• the value of is stored in the syntax element vbv_delay
associated to the first video frame in the sequence using
a special time unit (i.e., number of periods of a 90 KHz
clock);

• the decoder buffer fullness follows the following equa-
tions:

(3)

The encoder must ensure that is always greater than or
equal to zero while is always less than or equal to. In other
words, the encoder must ensure that the decoder buffer does not
underflow or overflow.

680 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

The VBV operates in VBR mode when the bit stream is con-
tained in a leaky bucket having parameters and the
following conditions hold:

• the peak or maximum rate. is higher
than the average rate of the bit stream;

• , i.e., the buffer fills up initially;
• the value of is represented in the syntax parameter

vbv_buffer_size, as in the CBR case;
• the value of is not stored and vbv_delay is set to FFFF

(in hex);
• the decoder buffer fullness follows the following equa-

tions:

(4)

The encoder must ensure that is always greater than or
equal to zero. That is, the encoder must ensure that the decoder
buffer does not underflow. However, in this VBR case, the en-
coder does not need to ensure that the decoder buffer does not
overflow. If the decoder buffer becomes full, then it is assumed
that the encoder buffer is empty and hence no further bits are
transmitted from the encoder buffer to the decoder buffer.

The VBR mode is useful for devices that can read data up to
the peak rate . For example, a DVD includes VBR clips
where is about 10 Mbps, which corresponds to the max-
imum reading speed of the disk drive, even though usually the
average rate of the DVD video stream is only about 4 to 6 Mbps.

Fig. 7 illustrates plots of decoder buffer fullness for some bit
streams operating in CBR and VBR mode, respectively.

There are some aspects of VBV that we do not address here
because they are either not relevant with respect to this contri-
bution, or are simply special cases of the leaky bucket model.
For example, the VBV includes a low-delay mode that tolerates
frame skipping.

B. H.263’s HRD

The HRD model for H.263 [1] (which is equivalent to that in
H.261) operates in low-delay mode. It resembles the CBR mode
of MPEG’s VBV, except for the following.

• The decoder inspects the buffer fullness at some time in-
tervals and decodes a frame as soon as all the bits for the
frame are available. This approach results in a couple of
benefits: 1) the start-up delay is minimized becauseis
usually just slightly larger than the number of bits for the
first frame and 2) if frame skipping is common, the de-
coder simply waits until the next available frame. As men-
tioned above, the latter is enabled in the low-delay mode
of MPEG’s VBV as well.

• The check for decoder buffer overflow is done after the
bits for a frame are removed from the buffer (i.e.,

must be less than or equal to, for all
). This relaxes the constraint for sending largeframes

once in a while, but there is a maximum value for the
largest frame.

(a)

(b)

Fig. 7. Examples of typical plots of decoder buffer fullness for (a) CBR and
(b) VBR for MPEG-2’s VBV model.

• The transmission bit rate varies along time, and it is as-
sumed that both encoder and decoder know the bit rate at
each time instant.

The HRD in H.263 is suitable for low-delay communications
(e.g., video conferencing). Observe that in such HRD, the de-
coding and display times vary significantly across frames, and
hence this approach is not appropriate for constant-delay time-
preserving applications.

C. Limitations of Previous Models

Observe that all previous hypothetical reference decoders op-
erate at only one point of the curve in Fig. 4. As a result,
these decoders have the following drawbacks.

• If the bit rate available in the channel is lower than
(e.g., this is common for internet streaming and progres-
sive download, or when an MPEG VBR clip needs to be
transmitted at a rate lower than the peak), strictly speaking,
the hypothetical decoder would not be able to decode the
bit stream.

• In practice, a decoder will not know the size of the
buffer required for this lower rate, and generally it
will run into buffer problems while decoding the bit
stream. The best that a smart decoder could do would
be to find a tight upper-bound for the buffer size. One
can easily show that an almost tight4 upper bound is

, where is the time length
or duration in seconds of the video sequence (to be
more specific, is the time difference between the
decoding times of the last and first frames in the

4A tight upper bound, which depends on the initial decoder buffer fullnessF
of the original buffer, isB = (B � F)(R =R) + F + (R � R)T . This is
because the initial buffer fullnessF of the new decoder buffer must be at least
F + (R � R)T to guarantee that the new decoder buffer will not underflow
by timeT when it receives bits at rate onlyR < R, and because the headroom
B � F must be at least(B � F)(R =R) to guarantee that the new decoder
buffer will not overflow by time(B � F)=R when it receives bits at rateR .

RIBAS-CORBERAet al.: A GHRD FOR H.264/AVC 681

coded bit stream). Clearly, this bound increases the
buffer size and delay requirements very rapidly and
may not be very useful in practice (especially ifis
large and is significantly lower than).

• If the available bandwidth is larger than (e.g., this
is also common for internet streaming, as well as for
local playback), the previous hypothetical decoders could
operate in the VBR mode and decode the bit stream.
However, as no additional information on the Rate-Buffer
curve is available, the buffer size required to decode the
bit stream cannot be reduced (as we will see later in the
examples).

• If the physical buffer size in a decoder device is smaller
than , the device will not be able to decode that bit
stream.

• If the buffer size is larger than , the device will be able
to decode the bit stream but the start-up delay will be the
same.

• More generally, if a bit stream is generated according to
a leaky bucket and no other leaky bucket pa-
rameters are known, one will not usually be able to be dis-
tribute such bit stream through different networks having
peak transmission bit rates smaller than, and to a va-
riety of devices with buffer sizes smaller than. Also, the
start-up delay will not be minimized.

IV. A GENERALIZED GHRD

We present a GHRD that can operate given the information
of leaky bucket models

(5)

each of which contains the bit stream. Without loss of generality,
let us assume that these leaky buckets are ordered from smallest
to largest bit rate, i.e., . Let us also assume that
the encoder computes these leaky bucket models correctly, and
hence .

The desired value of can be selected by the encoder. (If
, the GHRD is essentially equivalent to the VBR mode

of MPEG’s VBV). The encoder can choose to:

1) pre-select the leaky bucket values and encode the bit
stream with a rate control that makes sure that all of the
leaky bucket constraints are met;

2) encode the bit stream and then use (1.1) to compute a set
of leaky buckets containing the bit stream atdifferent
values of ;

3) do both.

The first approach can be applied to live or on-demand trans-
mission, while 2) and 3) only apply to on-demand.

The number of leaky buckets and the leaky bucket param-
eters (5) are inserted into the bit stream. In this way, the decoder
can determine which leaky bucket it wishes to use, knowing the
peak bit rate available to it and/or its physical buffer size. The
leaky bucket models in (5), as well as all the linearly interpolated
or extrapolated models, are available for use. Fig. 8 illustrates a
set of leaky bucket models and their interpolated or extrapo-
lated values.

Fig. 8. Example of(R;B) values available for the GHRD, all of which are
guaranteed to contain the bit stream.T is the time length or duration of the
encoded video sequence.

The interpolated buffer size between points and
follow the straight line

(6)

Likewise, the initial decoder buffer fullness can be linearly
interpolated

(7)

The resulting leaky bucket with parameters is guar-
anteed to contain the bit stream, because, as we prove in Propo-
sition 1 of Appendix A, the minimum buffer size is convex
in both and , that is, the minimum buffer size corre-
sponding to any convex combination

, , is less than or equal to
.

As discussed earlier, observe that ifis larger than , the
leaky bucket will also contain the bit stream, and
hence and are the buffer size and initial decoder buffer
fullness recommended when . If is smaller than ,
then the upper bound can be used (and
one can set), where is the time length of the video
sequence in seconds. These values outside the range of
the points are also shown in Fig. 8.

The number of bits required for the leaky bucket parameters
is minimal. If , , and were encoded in the same units as

, vbv_buffer_size, and vbv_buffer_delay (in the MPEG-2
bit stream syntax), then the number of bits required for these
elements would be 30, 18, and 16, respectively, for a total of 64
bits per leaky bucket. The number of leaky bucketscould
be specified with 8 bits. This information would be succinct
enough that it could be re-specified at any point in the bitstream,
such as at all random access points.

In the H.264/AVC specification, the number of leaky buckets
is specified with a variable-length code in the range 1 to 32.
Each bit rate in bits per second is specified with a variable-length
mantissa in the range 1 to 2 and a fixed-length base-2 ex-
ponent in the range 6 to 21. Each buffer size in bits is specified

682 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

with a variable-length mantissa in the range 1 to and a
fixed-length base-2 exponent in the range 4 to 19. All of these
are in the HRD Parameters section of the video usability infor-
mation (VUI). The initial decoder buffer delay in 90-kHz ticks
is specified in the Buffering Period section of the supplemental
enhancement information with a fixed-length code. The number
of bits in this code is specified in the HRD parameters section
of the VUI by a fixed-length code in the range 1 to 32.

V. EXPERIMENTAL RESULTS: EVALUATION OF THE GHRD

To evaluate the benefits of the GHRD, we encoded a 130-s
video clip (which contained a sequence of 13 MPEG clips com-
bined, i.e., “Stefan”, “Akiyo”, “Mother and Daughter”, “Fun
Fair”, “Foreman”, “Bream”, “News”, “Sean”, “Children”, “Mo-
bile & Calendar”, “Weather”, “Container”, and “Hall”) with the
Test Model JM version 3.2 [7] with the default parameters (i.e.,
five reference frames, 1/8th motion accuracy, arithmetic coding
ON, hadamard transformON, error robustnessOFF, B frames
OFF, andRD optimizationON, and a motion search range of 16
pixels). We set and used the formula (1.1) to provide
the plot in Fig. 9. To be more concrete, we ran
the simple Matlab program in Appendix B which makes use of
(1.1).

The bit stream in Fig. 9 was produced with and
yielded an average bit rate of 600 kbits/s. As shown in the figure,
at a constant transmission bit rate of 600 kbits/s, the decoder
needs a buffer size of about 16 500 kbits. With an initial decoder
buffer fullness equal to 16 500 kbits, the start-up delay is about
27 s. Thus, this VBR encoding (produced with no rate control)
shifts bits by up to 27 s in order to achieve constant quality over
its encoded length.

The figure also shows that at a peak transmission bit rate of
2400 kbits/s (e.g., the video bit-rate portion of a 2CD), the
decoder needs a buffer size of only 370 kbits, sufficiently small
for a consumer hardware device. With an initial buffer fullness
equal to 370 kbits, the start-up delay is only about 0.15 s.

Thus, for this encoding, two leaky bucket models might typ-
ically be useful.

1) (, ,).
This leaky bucket permits transmission of the video over a
CBR channel, with a delay of about 27 s. While this delay
may be too large for many scenarios, it is probably ac-
ceptable for streaming or progressive download of movies
over the Internet, for example.

2) (, ,).
This leaky bucket permits transmission of the video over
a shared network with peak rate 2400 kbits/s, or permits
local playback from a 2 CD, with a delay of about 0.15
s. This subsecond delay is acceptable for random access
playback with VCR-like functionality.

If only the first leaky bucket is specified in the bit stream,
but not the second, then even when playing back over a
channel with peak bit-rate 2400 kbits/s, the decoder would
use a buffer of size 16 500 kbits and thus the delay would
be . This is too
large for random access playback with VCR-like functionality.
However, if the second leaky bucket is specified as well, then

Fig. 9. Plot of leaky bucket parameters(R;B) for an H.264/AVC compressed
video clip with QP = 26. The points labeled with “�” correspond to the
minimum buffer sizeB needed to contain a bit stream with the associated
rateR . These points were computed from the bit stream using the Matlab
program in Appendix B, which uses the formulae in (1.1) and scans bit rates
from 50 kbits/s to 3 Mbps in increments of 50 kbits/s. The other points between
the “�” are linearly interpolated. Observe that, in practice, only a small subset
of points (e.g., 4 or 5) may characterize the curve fairly well.

at peak bit-rate 2400 kbits/s the buffer size drops to 370 kbits
and the delay drops to 0.15 s, as we have seen.

On the other hand, if only the second leaky bucket is speci-
fied, but not the first, then at a constant transmission rate of 600
kbits/s, even a smart decoder would be forced to use a buffer
that is far larger than necessary, to ensure that the buffer will not
overflow:

. This corresponds to an
initial delay of 391 s, or about 6.5 min, over three times the
length of the original clip, which is far from acceptable. How-
ever, if the first leaky bucket is specified as well, then at rate 600
kbits/s the buffer size drops to 16 500 kbits and the delay drops
to 27 s, as we have seen.

Moreover, if both leaky buckets are specified, then the
decoder can linearly interpolate between them [using (6) and
(7)], for any bit rate between 600 and 2400 kbits/s, thereby
achieving near-minimal buffer size and delay at that rate.
Extrapolation is also more efficient both below 600 kbits/s
and above 2400 kbits/s, compared to extrapolation with only a
single leaky bucket anywhere between 600 and 2400 kbits/s.

As the above example shows, even just two leaky buckets
can provide well over an order of magnitude reduction in buffer
size (e.g., a factor of 234 370 kbits/16 500 kbits14 in one
case and 16 500 kbits/370 kbits45 in another), and a corre-
sponding reduction in delay (e.g., 391 s/27 s14 s in one case
and 6.9 s/0.15 s 45 s in another) at a given peak transmission
bit rate.

Conversely, it is also possible to reduce the peak transmission
bit rate for a given decoder buffer size. Indeed, as is clear from
Fig. 9, if the curve can be obtained by interpolating and/or
extrapolating multiple leaky buckets, then it is possible for a
decoder with a fixed physical buffer to choose the minimum
peak transmission bit rate needed to safely decode the bit stream

RIBAS-CORBERAet al.: A GHRD FOR H.264/AVC 683

without decoder buffer overflow. For example, we know from
the figure that if the decoder has a fixed buffer of size 16 500
kbits, then the peak transmission bit rate for the encoding can be
as low as 600 kbits/s. However, if only the second leaky bucket
is specified, but not the first, then the decoder can reduce the bit
rate to no less than

. In this case,
compared to using a single leaky bucket, using just two leaky
buckets reduces the peak transmission rate by almost a factor of
four, for the same decoder buffer size.

It is quite likely that having multiple leaky buckets can also
improve the quality of the reconstructed video,at the same av-
erageencoding rate, in the following sense. Suppose both leaky
buckets are available for the encoding described above. Then,
as we have seen, it is possible to play back the encoding with a
delay of 27 s if the peak transmission rate is 600 kbits/s, and
with a delay of 0.15 s if the peak transmission rate is 2400
kbits/s. However, if the second leaky bucket is unavailable, then
the delay increases from 0.15 to 6.9 s at 2400 kbits/s. To re-
duce the delay back to 0.15 s without the benefit of the second
leaky bucket, it would suffice to re-encode the clipwith rate
control by reducing the buffer size (of the first leaky bucket)
from 16 500 kbits to , a
factor of 45. This would ensure that the delay is only 0.15 s if the
peak transmission rate is 2400 kbits/s. However, the quality of
this rate-controlled stream would vary over time, and it is quite
likely that the average quality (SNR) would be lower than that
of the original constant-quality stream at the same average bit
rate. Unfortunately we cannot yet evaluate this decrease in SNR
with objective tests, because as of this writing there is no rate
control in the test model of H.264/AVC. Thus we can only con-
jecture that specifying a second leaky bucket can increase the
SNR with no change in the average bit rate (except for the ad-
ditional bits per clip to specify the second leaky bucket). This
increase in SNR would be visible on playback for every peak
transmission rate.

The benefits of specifying multiple leaky buckets in a gen-
eralized hypothetical reference decoder appear, of course, only
in heterogeneous situations, where a single encoding is trans-
mitted over channels with different peak bit rates, or to devices
with different physical buffer sizes. However, this is increas-
ingly the case. Content that is encoded offline and stored on a
disk is often played back locally as well as streamed over net-
works with different peak rates. Even for local playback, dif-
ferent drives speeds (e.g., 1CD through 8 DVD and be-
yond) affect the peak transfer rate. And of course the peak trans-
mission bit rates through network connections also vary dramat-
ically according to the speed of the limiting link, which is typi-
cally near the end user (e.g., 100 or 10 baseT Ethernet, T1, DSL,
ISDN, modems, etc.). Buffer capacities of playback devices also
vary significantly, from desktop computers with gigabytes of
buffer space to small consumer electronic devices with buffer
space that is smaller by several orders of magnitude. Typically,
content providers spend a significant amount of effort creating a
single bit stream (e.g., top studios may spend over 80 h to create
a DVD), and they wish to reach the largest audience, with the
best user experience. The multiple leaky buckets in the proposed
generalized hypothetical reference decoder make it possible for

Fig. 10. Same plot as Fig. 9 but whenQP = 38. Once again, observe that
only a subset of these points (e.g., 4 or 5) already characterize this curve well.
In this case, the average bit rate of the clip is 150 kbits/s and the related buffer
size and delay are 3500 kbits and 23 s, respectively. If the clip were streamed in
a LAN or DSL channel with higher bit rate, say 500 kbits/s, our new approach
would reduce the buffer size requirement to only 116 kbits, and the new start-up
delay would be only 0.23 s.

the same bit stream to be transmitted over a variety of chan-
nels with the minimum startup delay, minimum decoder buffer
requirements, and maximum possible quality. This applies not
only to video that is encoded off-line, but also to live video that
is broadcast simultaneously through different channels to dif-
ferent devices. In short, the proposed GHRD adds significant
flexibility to the transmission of existing bit streams.

On the other hand, it must be remembered that although dif-
ferent leaky buckets may describe transmission of an encoded
bit stream at different peak transmission bit rates, the different
leaky buckets do not alter the average bit rate of the encoded
bit stream. Thus, although the different leaky buckets for an en-
coded bit stream may help the decoder to choose the minimal
buffer size and startup-delay to play back the stream flawlessly
under the prevailing network conditions, once the stream begins
to play, the stream’s multiple leaky buckets do nothing to adapt
the stream’s encoded bit rate to fluctuating network conditions.
However, the leaky bucket bounds can be used by the decoder
to decide, for example, whether its buffer is in danger of under-
flowing or overflowing under the prevailing network conditions.
If so, then the decoder can switch to a new stream with a dif-
ferent average bit rate, and a whole new set of associated leaky
buckets. As with any stream switch (e.g., after a seek), the new
set of leaky buckets can be used to bound the decoding schedule
of the new stream, to ensure that the decoder buffer will not un-
derflow or overflow after the stream switch, given the desired
start-up delay.

Fig. 10 shows a further example of an H.264/AVC clip com-
puted with a higher QP. Some of the benefits of the proposed
approach in this case are quantified in the caption of the figure.

VI. CONCLUSIONS

We have presented a hypothetical reference decoder which is
a generalization of those in prior standards. This new GHRD re-

684 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

Fig. 11. Decoder buffer state as a function of time.

quires only a few syntax elements at random access points of the
bit stream, and provides much higher flexibility for bit stream
delivery through today’s emerging networks where bandwidth
is variable and terminals have a variety of bit rate and buffering
capabilities. This new reference decoder enables these new sce-
narios, while reducing the transmission delay to a minimum for
the available bandwidth. In addition, it minimizes the channel
bit-rate requirement for delivery to devices with given physical
buffer size limitations. In our tests using H.264/AVC video bit
streams, we found that the buffer size and the start-up delay
for some terminals can be reduced by a factor of 14 to 45, or
the peak transmission bit-rate requirement can be reduced by
almost a factor of four. The GHRD is applicable to any multi-
media (e.g., video, audio) data compression and communication
system. It has recently been adopted as part of the H.264/AVC
video codec standard specification.

APPENDIX I

A. Proof That the Curve is Decreasing and
Convex

In this Appendix, we prove that both the minimum decoder
buffer size and the minimum decoder buffer delay
are decreasing, convex functions of the bit rate. Therefore,
knowing the values of one of these functions at several bit rates,
say , allows the decoder to linearly
interpolate the values to arrive at a value that is
slightly but safely larger than .

Our first goal is to derive expressions for and as
functions of the bit rate and an initial buffer state. Fig. 11
illustrates the decoder buffer state as a function of time, where
is the size of the decoder buffer in bits,is the rate at which bits
arrive into the decoder buffer in bits per second, andis the
number of bits that the decoder accumulates before extracting
and decoding the first frame. Define , and let

, , denote the number of bits coded
for frame at time (relative to), where is the number
of frames in the sequence. Then the number of bitsin the
decoder buffer immediatelyafter frame is extracted can be
expressed recursively as

This can be made nonnegative for all (for
fixed and) by making sufficiently large. is the
smallest such sufficiently large. That is, for any fixed

The decoder buffer delay is . Hence,
for fixed and , the minimum decoder buffer delay is

To show that these are convex inand (and various other
properties), it simplifies matters slightly to consider the state of
theencoderbuffer as a function of time. The encoder buffer can
be considered as a leaky bucket of sizebits that leaks bits at a
constant rate bits per second into the channel (and from there,
after a fixed delay, into the decoder buffer). The encoder inserts

bits into the bucket at each time corresponding to frame
. The bucket may drain completely before another frame is in-

serted, in which case no bits are transmitted while the bucket
is empty. The bucket begins with initial fullness bits. These
initial “dummy” bits are not transmitted. However, they re-
strict the size of the first few framesto at most

bits, thereby serving to limit the decoding delay. (In
a constant bit-rate system, in which the encoder buffer is not
allowed to underflow, the initial “dummy” bits would also
serve to delay transmission of the first real encoded bits, thereby
preventing buffer underflow. In a VBR system, this would not be
necessary (see Figs. 1 and 2.) If the bucket sizeis sufficiently
large, then the number of bits in the bucket immediately after
frame is inserted can be expressed recursively as

Note that this expression does not depend on the bucket size.
Lemma 1: For all , . That is, and are

complementary.
Proof: By induction, using the formulas for and :

Clearly, . For , assume .
Then it is not difficult to see that .

Lemma 2: . That is, is the maximum
number of bits in the leaky bucket.

Proof: Using Lemma 1,
.

Lemma 3: is monotonically nonincreasingas a func-
tion of , for fixed .

Proof: Let . We show that
by first showing that for each , then in-
voking Lemma 2. By induction: Clearly, . For

, assuming , it is easy to see that
, hence

the conclusion follows.
Lemma 4: is continuousas a function of , for fixed
.

Proof: By induction, is continuous in , for each
. Apply Lemma 2.

Lemma 5: is piecewise linearas a function of , for
fixed .

Proof: By induction, is piecewise linear in , for
each . Apply Lemma 2.

Lemma 6: is convexas a function of , for fixed .
Proof: By induction, is convex in , for each .

Apply Lemma 2.
The following lemmas are similarly proved.

RIBAS-CORBERAet al.: A GHRD FOR H.264/AVC 685

Lemma 7: is monotonically nondecreasingas a func-
tion of , for fixed .

Lemma 8: is continuousas a function of , for fixed
.
Lemma 9: is piecewise linearas a function of , for

fixed .
Lemma 10: is convexas a function of , for fixed .
A fortiori, the following can be similarly proved.
Proposition 1: is convexas a bi-variate function of

and .
As a bi-variate function of and , denote

.
Definition 1: . This is the

minimum possible buffer size given.
Definition 2: . This is the

initial decoder buffer fullness given and .
Definition 3: . This is the

minimum possible initial decoder buffer fullness given.
Definition 4: . This is the

corresponding initial encoder buffer fullness.
Lemma 11: For some ,

for
for

That is, for fixed , is a constant as a function of
until reaches a breakpoint , after which point
increases as a constant plus.

Proof: By Lemma 7, . Fur-
thermore, by Lemmas 7, 9, and 10, the (right) derivative

is nonnegative and is stepwise increasing. Hence,
it suffices to show that must equal either 0 or 1. In
turn, by Lemma 2, it suffices to show that for all, the (right)
derivative must equal either 0 or 1. Let be
the first index for which . Then by
induction, for , and
otherwise.

Lemma 12: For some ,

for
for

That is, for fixed , decreases as a constant minus
until reaches a breakpoint , after which point is
constant.

Proof: Follows from Lemma 11 and Definition 2.
Proposition 2: For any , and are simul-

taneously achieved by , and this is the
only value of at which both minima are achieved.

Proof: Follows from Lemmas 11 and 12 and Definition 4.
We now turn our attention to .
Lemma 13: ismonotonically decreasingas a function

of , for fixed .
Proof: For fixed , the numerator is monotonically non-

increasing (by Lemma 3), while the denominator is strictly in-
creasing.

Lemma 14: is continuousas a function of , for fixed
.

Proof: Follows from the continuity of (Lemma 4).

Lemma 15: is convexas a function of , for fixed .
Proof: Except at the finite number of points where

does not exist,
, by the chain rule. Both terms are negative

and increase monotonically to zero, by Lemmas 3 and 6.
The following are corollaries of Lemma 12.
Lemma 16: is monotonically nonincreasing as a

function of , for fixed .
Lemma 17: iscontinuousas a function of , for fixed
.
Lemma 18: is piecewise linearas a function of ,

for fixed .
Lemma 19: is convexas a function of , for fixed .

APPENDIX II

A. Matlab Program for Computing the Curve
for a Bit Stream

clear all;

clf;

% bits(i) is number of bits per frame i.

% Frame rate in frames=s of the given stream.

FrameRate = 30;

% Number of frames.

N = max (size(bits)).

% Calculate data for R� B plot

j = 0;

% Test bit rates from 50 kbps=s to 3 Mbps.

% Assume an initial (dummy) buffer sizeB = R�20:.

% buff1 is buffer state before frame removal.

% buff2 is buffer state after frame removal.

% Assume that initially buffer is full :

% F = buff1(1) = B.

for R = 50000 : 50000 : 3000000

j = j + 1;;

B = R�20;;

buff1 = zeros(1; N+ 1);

buff1 = zeros(1; N);

buff1(1) = B;;

minbuff = buff1(1);

for i = 1:1:N,

buff2(i) = buff1(i)� bits(i);

if (buff2(i) < minbuff)minbuff = buff2(i);

end

buff1(i + 1) = buff2(i) + R=FrameRate;

if (buff1(i + 1) > B) buff1(i + 1) = B;

end

end

% Minimum buffer size in bits:

Bmin = B� minbuff;

% Peak bit rate in kbps.

X(j) = R=1000;

% Minimum buffer size in kbits:

Y(j) = (Bmin)=1000;

% Simulate leaky bucket to find Fmin.

% Set buffer size to be its minimum value.

686 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

% Initially assume Fmin is zero.

% Whenever underflow occurs do (1) and (2).

% (1) increase Fmin by underflow amount.

% (2) reset buffer.

B = Bmin;

Fmin = 0;

Buff1(1) = Fmin;

for i = 1:1:N

buff2(i) = buff1(i) � bits(i);

if (buff2(i) < 0)

Fmin = Fmin + (0� buff2(i))

buff2(i) = 0;

end

buff1(i + 1) = buff2(i) + R=FrameRate;

if (buff1(i+ 1) > B) buff1(i + 1) = B;

End of loop for R

end

holdoff;

plot(X; Y;' � �');

ylabel(' Bmin (kbits)')

xlabel(' Rmin (kbits=s)');

hold

axis([0 max(X) 0 max(Y)]);

Explanation of the Matlab program follows.

• We initially set the buffer size to any arbitrary value (in
this case the bit rate times 20 s, but we could have chosen
any other value).

• We then compute the value of buffer fullness along time
using (1.1).

• Next, we determine the smallest buffer size needed to con-
tain the bit stream “ ”, where min-
buff is the minimum value of buffer fullness. Observe that
minbuff could be negative, which simply says that the
original arbitrary buffer size was too small to contain the
bit stream, i.e., .

• Finally, we compute the minimum initial buffer fullness
. We start setting to 0 and increase it as much

as needed to prevent decoder buffer underflow. will
take the smallest value in for which underflow
does not occur

Observe that one could use a very small rate increment in the
program above, compute the derivatives of the
curve at each point, and then determine the critical points at
which the derivative does not exist (i.e.,the points where the
segments of the piece-wise lines of different slopes join).

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable suggestions. They are also grateful to Dr. G.
Sullivan for providing many insightful comments and revisions.

REFERENCES

[1] “Annex B, hypothetical reference decoder,” in Video Coding for Low
Bit Rate Communication, ITU-T Recommendation H.263, Jan. 1998.

[2] “Annex C, video buffering verifier,” in Information Tech-
nology—Generic Coding of Moving Pictures and Associated Audio
Information: Video (MPEG-2/H.262), 2000, ISO/IEC 138 180-2.

[3] J. Crowcroft, M. Handley, and I. Wakeman,Internetworking Multi-
media. San Mateo, CA: Morgan Kaufmann, 1999.

[4] J. Keyes,Webcasting. New York: McGraw-Hill, 1997.
[5] C.-Y. Hsu, A. Ortega, and A. R. Reibman, “Joint selection of source

and channel rate for VBR video transmission under ATM policing con-
straints,”IEEE J. Select. Areas Commun., vol. 15, pp. 1016–1028, Aug.
1997.

[6] A. R. Reibman and B. G. Haskell, “Constraints on variable bit-rate video
for ATM networks,” IEEE Trans. Circuits Syst. Video Technol., vol. 2,
pp. 361–372, Dec. 1992.

[7] “JVT test model JM,” in Joint Video Team (JVT) of ITU-T SG16/Q15
(VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG), Klagenfurt, Austria,
July 2002, Doc. JVT-D147.

[8] H.-M. Hang and J. J. Chen, “Source model for transform video coder
and its application—Part II: Variable frame rate coding,”IEEE Trans.
Circuits Syst. Video Technol., vol. 7, pp. 299–311, Apr. 1997.

[9] T. Wiegand and G. Sullivan, “Final draft international standard (FDIS) of
joint video specification (ITU-T rec. H.264 ISO/IEC 14 496-10 AVC),”
in Joint Video Team (JVT) of ITU-T SG16/Q15 (VCEG) and ISO/IEC
JTC1/SC29/WG1, Annex C, Pattaya, Thailand, Mar. 2003, Doc. JVT-
G050, pp. 195–202.

[10] E. Viscito, “HRD and related issues,” inJoint Video Team (JVT) of ITU-T
SG16/Q15 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG), Klagen-
furt, Austria, July 2002, Doc. JVT-D131.

[11] N. Peterfreund, “Time-shift causality constraint on the CAT-LB HRD,”
in Joint Video Team (JVT) of ITU-T SG16/Q15 (VCEG) and ISO/IEC
JTC1/SC29/WG11 (MPEG), Geneva, Switzerland, Oct. 2002, Doc.
JVT-E1333.

Jordi Ribas-Corbera (S’95–M’96) received the En-
ginyer Tècnic de Telecomunicacions degree from the
Escola d’Enginyeria La Salle, Barcelona, Spain, in
1990, the M.S. degree in electrical engineering from
the University of California, Irvine, in 1992, and the
Ph.D. degree in electrical engineering (systems) from
the University of Michigan, Ann Arbor, in 1996.

During 1994, he was with the Advanced Video
Processing Laboratory, NTT Human Interface
Labs, Yokosuka, Japan. From 1996 to 2000, he was
with the Digital Video Department, Sharp Labs of

America, Camas, WA. He joined Microsoft Corporation in February 2000,
where he is currently the Group Program Manager for the Windows Media
Codec team in the Digital Media Division. His team develops the core com-
pression and signal processing components for Windows media, such as the
Windows Media Audio (WMA) and Windows Media Video (WMV) codecs.
He has actively participated in the development of compression standards such
as ISO MPEG-4, ITU-T/H:263+, and ITU-T/H.264, and in industry consortia
such as the DVD Forum or MPEG-LA’s MPEG-4 Visual Patent Holders group.
He is the author of numerous contributions to standards and peer-reviewed
technical papers in academic conferences and journals, and has been an invited
speaker for a number of industrial conferences and seminars, such as at Cable
Labs, EBU, NAB, and SMPTE. He has been awarded seven patents and has
eight pending.

Dr. Ribas received the Young Investigator Award in the 1997 IS&T/SPIE In-
ternational Conference on Visual Communications and Image Processing, and
the Sharp Labs President’s Award in 1999.

RIBAS-CORBERAet al.: A GHRD FOR H.264/AVC 687

Philip A. Chou (SM’87–M’87–SM’00) was born in
Stamford, CT, in 1958. He received the B.S.E. degree
from Princeton University, Princeton, NJ, in 1980,
the M.S. degree from the University of California,
Berkeley, in 1983, both in electrical engineering and
computer science, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
in 1988.

Since 1977, he has worked for IBM, AT&T
Bell Laboratories, Princeton Plasma Physics Lab,
Telesensory Systems, Speech Plus, Hughes, Xerox,

VXtreme, and Microsoft, where he was variously involved in office automa-
tion, motion estimation, character recognition, speech compression, LPC and
text-to-speech synthesis, compression of digitized terrain, speech and document
recognition, and multimedia network communication. His research interests
are data compression, pattern recognition, and multimedia processing and
communication. During 1994-1995, he was a consulting Associate Professor
at Stanford University. Since 1998, he has been an Affiliate Professor at the
University of Washington, Seattle. Currently, he is with Microsoft Corporation,
Redmond, WA.

Dr. Chou serves on the IEEE Technical Committee for Image and Multidi-
mensional Signal Processing (IMDSP). From 1998 to 2001, he served on the
Editorial Board of the IEEE TRANSACTIONS ONINFORMATION THEORY as an
Associate Editor for Source Coding. He is the recipient (with Tom Lookabaugh)
of the 1993 Signal Processing Society Paper award. He is a member of Phi Beta
Kappa, Tau Beta Pi, Sigma Xi, and the IEEE Computer, Information Theory,
Signal Processing, and Communications societies, and was an active member
of the MPEG committee.

Shankar L. Regunathan received the B.Tech degree in electronics and com-
munication from the Indian Institute of Technology, Madras, in 1994, and the
M.S. and Ph.D. degrees in electrical engineering from the University of Cali-
fornia, Santa Barbara, in 1996 and 2001, respectively.

Currently, he is with Microsoft Corporation, Redmond, WA.

