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A GENERALIZED INDEX

OF CONCENTRATION

REIN TAAGEPERA
University of California, Irvine

JAMES LEE RAY

University of New Mexico

SOCIOLOGICAL METHODS & RESEARCH, Vol. 5 No. 3, February 1977

A generalized nth power index of concentration is defined; for n = 1 it yields
the entropy-based "relative redundancy, 

" 

and for n = 2 it yields the Ray and
Singer (1973) concentration coefficient. Relations are established with a
dozen other indices of concentration, diversity, fragmentation, differentiation,
and inequality used in social science literature. Explicit conversion formulas
are given for these often apparently unrelated indices. For multicomponent
systems, equivalent two-component systems are defined.

~evising indices to reflect the related concepts of concen-
tration and of inequality is a task which has occupied

the time and talents of a sizable number of scholars. This is,
perhaps, not surprising, since inequality is a concept which
plays an important role in several and diverse areas of social
science, be it economics (where the focus is, usually, on the
inequality of the distribution of wealth), political science

(where interest centers on the distribution of power in societies,
legislative bodies, or the international system), or sociology
(where the diversity of races, ethnic groups, or classes in a

society receives the most attention).
The result of this wide interest in the concept of inequality

and persistent index-construction efforts is, naturally enough, a
large number of indices. The definitions of a number of them
are given in Table 1. Indeed, anyone who decides to use a

measure of concentration or inequality in his work may find an
embarrassment of riches if he tries to select among these

alternatives.

A review of the literature suggests that most social scientists
are likely to select the Gini index. This index, as Alker (1965:
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41) explains, &dquo;sums for each individual in the population the
difference between where he is on the Lorenz curve, and where
he would be expected to be in the case of democratic equality.&dquo;
The Gini index is basically reasonable, but, as one of us has
shown in a previous article (Ray and Singer, 1973), it has some
characteristics which make it less than ideal for some purposes.
Most importantly, if one uses Alker’s (1965) formula for

approximations in case of discrete distributions (which is

necessary because the Gini index was originally devised for
continuous distributions), the index has an upper limit of ( 1 -
1 /N) where N is the number of components. If one is comparing
distributions among systems with small numbers of com-

ponents, this upper limit can exert a distorting effect on the
index scores. A distribution between a two-component entity
may receive a much lower inequality score than a distribution

TABLE 1

Conversion Formulas for Some Concentration and Inequality Indices
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TABLE 1 (Continued)

among a five-component entity simply because the upper limit
of the index is .50 in the first case, but .80 in the second case.

This problem may seem obvious, or even trivial, but it has been
ignored, with unfortunate results (e.g., by Starr, 1972), and it
seemed worth pointing out.

The scholar in search of an index might turn to the Schutz
coefficient (Alker, 1965). This measure is based on the slope of
the Lorenz curve, and in effect reflects how close the slope of
the line below the equal share point is to zero, or how close the
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slope of the line above the equal share point is to infinity. This
would be a poor choice, however, since this index also has an
upper limit of ( 1 - 1 /N), as shown by Ray and Singer (1973).

If our scholar is inclined to continue his search, he is likely to
find that economists have devised a series of indices of

industrial concentration, i.e., inequality of the distribution of
shares of the market among the firms in a given industry. One
of the best known is the Herfindahl-Hirschman (HH) index of
industrial concentration (Herfindahl, 1950), which equals the
sum of the squares of each component’s percentage share. This
measure has been refmed at least a couple of times to meet
various specialized needs, e.g., by Hall and Tideman (1967) and
by Horvath ( 1970)-see definitions in Table 1. All of these are

worth considering if one is interested in industrial concentra-

tion. But, again, they may not be appropriate in every case
when one is interested in some other kind of inequality. HH, for
example, has a lower limit of ( 1 - 1 /N), and the scores of this
index are greatly affected by a change in N-especially, of
course, when N is small.

This problem, and others, led Ray and Singer (1973) to
create CON, defined as

N 1

CON / 
1 E Pi2 N 1 

1

’ 

i= 1 
1 

N

1 -_1 , [1] ]
U 1-&horbar;V ~ 

N

where Pi equals the fractional share of the ith category. CON is
essentially a normalized coefficient of variation (cf. Theil,
1967: 125). One of the advantages of such a measure is that its
range is always 0 to 1, no matter what N is. The process of
creating that measure lead to the discovery that there is a rather
lengthy list of concepts, all of which are related to but different
from inequality, and all of ’which have been measured with
indices which, like CON, are based on 2 Pi2. Greenberg (1956),
for example, presents such an index to measure linguistic
diversity. Rae and Taylor (1970) have used a similar index to
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measure fragmentation, or party concentration in parliaments
and other legislative bodies. Michaely (1962) uses such an index
to measure geographic concentration of transactions. Other

important examples include Lieberson’s (1969) index of popu-
lation diversity, Bachi’s (1956) and Simpson’s (1949) indices of
diversity, the Bell (1954) index of ecological segregation, and
the Gibbs and Martin (1962) index of diversification in

industry.
There is an additional set of concepts, the indices for which

are not only based on I Pi 2 , but which are also virtually
identical to CON. For example, Amemiya’s (1963) index of
economic differentiation is equal to CON2 . Labovitz and Gibbs
(1964) present a measure of the division of labor (D) which is
equal to ( 1 - CON2 ). Exactly equivalent to D is the Mueller et
al. (1970) index of qualitative variation (IQV). Finally, Janda’s
(1971) index of party articulation is exactly equivalent to CON.

By now it should be obvious that there is a large number of
concepts which share similarities with the concept of equality
(and, of course, with the opposite concepts of inequality and 

’

concentration). Even those concepts discussed above (and in

Ray and Singer, 1973) do not, however, constitute the full list.
Another concept related to concentration and quality is

entropy (H), which we will discuss in more detail.

AN ENTROPY-BASED INDEX

OF CONCENTRATION

The concept of entropy (H) occupies a central place in

thermodynamics and statistical physics (see, e.g., Kittel, 1958)
as well as in information and communication theory (see, e.g.,
Yaglom and Yaglom, 1969). Its use in measurement of

economic inequality has been discussed in detail by Theil

(1967), who has also used it (1969) to solve political problems
involving the distribution of seats and votes among various

parties. Since few concepts manage to be useful both in physical
and social sciences, entropy is a concept of great and possibly
unsurpassed generality in sciences.
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If there are N possible states in which a system can be, and if
Pi is the probability that the system will be found to be in state
i, then entropy is defined as

N

H = - E Pi in Pi- [2] ]
i= I

For our purposes Pi represents the fractional share of the ith
component or category. If concentration of property is com-

plete, one of the Pi is unity and all the others are zero; the
corresponding value of entropy can be shown to be zero. On the
other extreme, if there is complete equality, Pi = 1 /N for all the
N components; entropy then reaches its maximum value, which
is In N.

If we want to have an index ranging from 0 to 1, we will have
to normalize H by dividing it by its maximum value. However,
this &dquo;relative entropy&dquo; H/ln N is zero for complete concentra-
tion and unity for complete equality; it is, hence, an index of
uniformity or equality. In order to have an index of concentra-
tion or inequality we merely have to subtract the relative

entropy from one. The resulting concentration index is often

called &dquo;relative redundancy&dquo; (RR) in communication theory. In
terms of entropy,

RR= In N - H [3 ]~’ 
ln N 

- ~ 
.

In terms of the fractional shares of the N components,
N

. 1nN+E Pi lnPi
RR = 

i=l 
. (4)F,R InN .. [4]

Theil (1967: 92n.) prefers to use the nonnormalized redun-

dancy (In N - H) because it can more easily be decomposed
into individual-to-subgroup and subgroup-to-group redun-
dancies. The upper limit of redundancy (In N) increases with
the number of components. It can well be argued that

concentration of power into the hands of one person is greater
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in the case of a total population of one million than in the case
of a total population of 10 people; redundancies would be 13.8
and 2.3, respectively. But for purposes of comparison there are
also advantages in using relative redundancy where the maxi-
mum possible concentration within a system leads to index
value &dquo;one&dquo; irrespective of the system size.

Compared to the Ray and Singer concentration index CON
[I I which also varies from 0 to 1, RR does not depend as
heavily on the share of the largest component. (This is so

because the product of Pi by itself has been replaced by the
product of Pi and its natural logarithm.)

While many other inequality and concentration coefficients
can be easily converted to CON because they have the same
core expression I Pi2, the relative redundancy cannot, because
its very summational core is different: EPi In Pj. The whole 

’

appearance of the two indices appears fundamentally different,
with CON containing a square root sign, and with RR involving
logarithms rather than powers of N and of Pi. However, it will
be seen that both CON and RR are special cases of a more
general concentration index, which will be presented next.

A GENERALIZED INDEX OF CONCENTRATION

Apart from the conceptually satisfying interpretation of CON
as normalized standard deviation, the power index 2 in E Pi2 is
not critical for defining a concentration index-we would also
obtain a workable index if we used a power index of 3 or of 1.5

instead of 2. Normalization terms would of course be different.

Consider the generalized summational core I Pin where n is
any positive number. For complete concentration (Pi = 1, and

Pi = 0 for i =~ 1) its value is 1. For complete equality of all

components (Pi = 1 /N for all i) it reaches a minimum value of
[N ( 1 /N)n ] = Nl - n . In order to have a zero value for complete
equality we have to subtract N1-&dquo; from the core. In order to
maintain the maximum value of 1 for complete concentration
we must divide by ( 1 - Nl - n ). The result is
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N
2; p i n - N1-n

Bn 
i=l 

P~n - 

~ 

Nl ~ n 

. [5 ]Bn = 1 - NI- n . [5~

Since we first raised all the Pi’s to the nth power, we might
want to carry out the inverse operation (i.e., taking the nth
root) on the normalized expression, out of a general sense of
symmetry. The generalized nth degree concentration index is
then

N 1
2 Pn-N1-n -
i=l 1 

~ 
n

Cn ~ ~ l Pin - ~ -n ] ~ . ’ ’ 

[6]Cn = 
&horbar;&horbar;&horbar;&horbar;&horbar;&horbar;,&horbar;&horbar;&horbar;&horbar;&horbar; 

. [6]n= 
1-Nl-&dquo;

Obviously, for n = 2, we reobtain the expression in equation 1,
so that CON = C2. A less obvious finding is that the relative
redundancy is generated by the same general expression when n
tends toward the value 1: RR = Ci.1

Another possible way to carry out the inverse operation
would be to do so on the core, before normalizing:

N 
1/n 

N 
1/n

( I Pin -N(1-n)/n { E Pin/N _ 1 1

An - i=1 1 - N~1-n~/n _ i=1 (1~)1/n - 1 N . [7]

N .

The expression (I Pin~N)1/n is a generalized nth power average
of the N quantities Pi. With n = 1, it yields the usual arithmetic
average. With n = 2 it yields the &dquo;root mean square&dquo; of Pi :

N

RMS = E Pi2/N [8]
i=1 1

which is widely used in physics, e.g., for diffusion of gases and
for alternating currents (Semat, 1957: 312, 592). Thus, An is a
normalized generalized average. 

’
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In order to compare the characteristics and merits of C1, of
C2 , and of other possible Cn , complete Cn (n) curves were

calculated and plotted for a variety of distributions of shares.

Figure 1: Variation of the generalized concentration index Cn with n, for various
concentration levels (in percent shares) of a two-component system. Note
locations of the entropy-based Relative Redundancy and of the variation
coefficient-based CON.
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The same was done for the intermediary expression Bn and for
the alternative expression An .

Figure 2: Variation of the intermediary index B~ with n, for various concentration
levels of a two-component system. Note locations of Relative Redundancy
and of Amemiya Index of Economic Differentiation.
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Consider first the simplest possible structure of wealth

distribution-the one involving two components only: N = 2

Figure 3: Variation of the normalized generalized average An with n, for various
concentration levels of a two-component system.
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and Pi + P2 = 1. The corresponding Cn (n) curves for various
power distributions are shown in Figure 1. The Bn (n) curves are
shown in Figure 2, while the An (n) curves are shown in Figure
3. These patterns are quite typical, for any number N of

components. 
’

For n = 0 we always have Co =0. As n tends to infinity, Cn
tends to the value PI of the largest of the shares Pi. In most
cases the slope of the Cn (n) curve stays positive (as in Figure 1 ),
so that Pi is.the maximum value Cn takes. The only exception
arises when the two largest components have equal or nearly
equal shares. An example is shown in Figure 4, where the

percent distribution 45-35-20-0-0 yields a peak value Cn =
0.4744 at n = 3.3 while the value at infinite n is PI = 0.45. For
a ten-component system where five shares are equal to 20% and
the other five are 0%, the peak is around CI.8 = 0.335. In all
cases C2 is larger than C1.

The curve for intermediary index Bn usually starts with Bo =
0, reaches a peak at n less than 3, and gradually decreases again
to 0 as n tends to infinity, as seen in Figure 2. An exception
occurs when some of the components have perfectly zero

shares; then Bo = N&dquo;/N - 1) where N’ is the number of perfectly
zero components. In the example shown in Figure 4 (percent
distribution 45-35-20-0-0), the initial value Bo = 0.5 is also the
maximum value of B~, but this is not always the case. Thus, for
the distribution 70-20-10-0-0 the peak value is around Bo =

0.515, while Bo = 0.5. If the smallest components are ever so
slightly larger than zero, then Bo immediately drops to 0 (as
seen in Figure 4, for distribution 45-34.99-19.99-0.01-0.01),
while the rest of the Bn (n) curve is not visibly altered. For N =
2 the peak of Bn occurs around n = 2.5, and it can easily be
shown that B2 = B3. For a larger number of components the
peak value always has been found to be at n less than 2,
although we cannot prove that it must be so. The qualitative
decision on whether to include or exclude zero or near-zero size

components (45-35-20-0-0 versus 45-35-20, in Figure 4)
. strongly affects the outcome.
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Figure 4: The Cn(n) and Bnin) curves for three quantitatively similar but qualita-
tively different percent share configurations: (1) 45-35-20-0-0-several zero
components; (11) 45-34.99-19.99-0.01-0.01-several very small com-

ponents ; (111) 45-35-20-zero or near-zero size components omitted. The

Cn and Bn curves always cross at n = 1 where C1 = B1 = Relative
Redundancy.
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The curve for the normalized generalized average An starts
from Ao = 1 - NG where G is the geometric average of all the

P~. As n increases, An usually decreases and then increases again,
but patterns sometimes are more complex. As n tends to

infinity, An always tends to (NPl - 1 )/(N - 1 ) where PI is the
share of the largest component.

In order to describe inequality systems one could choose
arbitrarily a certain value of n and one of the expressions Cn,
Bn , or An . But it would be preferable to have a value of n
dictated by some features of the very pattern in Figures 1 to 3,
such as minima or maxima of curves. Unfortunately, the
maximum of the Cn (n) curve almost always depends on the
largest share Pi alone, while the maximum of the Bn (n) curve
depends almost uniquely on the share of the smallest com-
ponents (cf. Figure 4). The minimum of the An (n) curve also
seems to be a poor indicator of the degree of inequality.
Choosing arbitrarily the value n = 1 to describe the system
would have the advantage of saving us a choice between the
generalized expressions An’ Bn , and Cn , since Al = BI = CI =
RR. Another possibility is to reduce every inequality system to
a simpler system as described in the next section.

Figure 5: Equivalent two-component systems at various n values, for given C~. PI is
the major component and P2 is the minor component of the two-

component system ( in percentage).
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EQUIVALENT TWO-COMPONENT SYSTEMS (ETS)

If a system with three or more components has the same C2
value as a two-component system, then we could say that these
systems are equivalent on the level n = 2. Establishing such
equivalent two-component systems (ETS) is made easy by the
use of Figure 5, which shows the share P1 1 of - the major
component of the two-component system which has a given
value of C~. (Figure 5 is just another way of looking at the data
in Figure 1.) For example, the system 32-32-32-2-2 has C2 =
.365 and is thus seen to be equivalent to a 68-32 system on level
n = 2, according to Figure 5. On the level n = 1 (C1 = .223) it is
equivalent to a 77-23 system. When the system contains many
small components, the equivalent two-component systems on
level n = 2 and n = 1 can differ considerably; thus, for the .

system 45-35-20-0-0 we would have C2 = .435 leading to an ETS
of 72-28, but C1 = .348 leading to an ETS of 83-17. However,
in most cases the ETS are more or less the same over a wide

range of n while the values of Cn differ considerably, depending
on n. Thus, the ETS might represent a fairly stable basis for
comparing system concentrations. It would further have the

appeal of direct visualization of its meaning.
A simple relation between Cn and the major component Pl 1

of the corresponding ETS exists for n = 2 and only for n = 2:

2 1 ~l
2PI = C 2 + I 

I;p12 - N 
1 

2 
+ 1912Pl . = C2 + 1 = &dquo;’&dquo; 1 N + 1. [9]~ ’ 

Y 1 - 1/N

The minor component is of course simply 1 - Pl . Because of
this simple relation (which stands out in Figure 5 as a straight
line) this definition for ETS might have some merit.

CONVERSION FORMULAS

Concentration and inequality are related concepts (see Theil,
1967: 128) but they are not quite identical. Consider two



[382]

isolated continents, each of which has complete concentration
of power in the hands of one country, so that Cn = 1 and the
Gini index is close to one. When the two continents establish
contacts and thus form a single system, concentration (as
measured by Cn ) drops markedly, while the Gini index of

inequality does not change.
As shown in the introduction, a large variety of concentra-

tion and inequality indices (and also of equality and fragmenta-
tion indices) have been proposed and used. Table 1 shows a

number of them, with definitions and, where possible, conver-
sion formulas into the generalized Cn notation. Relationships
with C2 have been discussed in detail in Ray and Singer (1973)
for the indices RT, M, IED and D. The same paper also

developed the expression for the Gini index as used in Table 1.
In general, concentration and inequality coefficients fall into

two broad categories.

(1) Indices where the summational core contains both the share sizes Pi
and the rank index i. Two such indices are used-Gini and TH.

They are easily convertible into each other (as shown in Table 1)
but they cannot be converted into the Cn system. Before these
indices can be calculated, the components must be rearranged in

. order of decreasing share size to determine the respective i values.

These indices may reflect inequality more than concentration.

(2) Indices where the summational core contains Pi but not i. In these
cases i is merely a label (rather than a rank indicator) and the
components can be labeled and added in any order. Such indices
can usually be converted into the Cn; the only exception is the
Schutz coefficient. These indices may reflect concentration more

than inequality.

Irrespective of the index used, we are facing the qualitative
dilemma illustrated in Figure 4: whether to exclude or include
very small-size categories. Was Austria in 1939-1944 a nonexist-
ing state or a zero-power state? When calculating concentration
of automotive industry, do you include workshops producing
five specialty cars per year? These issues are far from being
clear-cut, and results differ considerably depending on the total
number N of components we choose to include.
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CONCLUSIONS .

We have formulated a generalized nth power index of
concentration (Cn ) and established its relations with most

previously used indices. It cannot be said that any of the levels
n is clearly preferable, but both C, and C2 have certain

desirable special properties. In general, higher levels of n yield
higher concentration index values. The equivalent two-com-
ponent system at n = 2 might offer a relatively stable and
intuitively interpretable measure of inequality or concentration.
Two qualitative problems remain to be solved: the treatment of
small and zero-size components, and the relation between

inequality and concentration. 

NOTE

1. A proof of this result is available upon request from the first author.
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