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Abstract A new item response theory (IRT) model with

a tree structure has been introduced for modeling item

response processes with a tree structure. In this paper,

we present a generalized item response tree model with

a flexible parametric form, dimensionality, and choice of

covariates. The utilities of the model are demonstrated with

two applications in psychological assessments for investi-

gating Likert scale item responses and for modeling omitted

item responses. The proposed model is estimated with the

freely available R package flirt (Jeon et al., 2014b).

Keywords IRT · Tree · IRTree · Item response process ·
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Introduction

Item response theory (IRT) models are widely used tools for

analyzing categorical item responses in psychological and

behavioral assessments. IRT models focus on understanding

the terminal outcome of a person’s choice among several

discrete options. Mathematically, the probability of select-

ing a particular response category can be explained as a

function of the person’s latent trait and the item’s properties.

In this study, we are concerned with a new type of IRT

model that focuses not only on the outcome but also on the
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internal cognitive or psychological decision process. The

model can describe a postulated internal decision process

with a tree structure, which is composed of sub-trees and

their corresponding internal nodes and branches. The tree

continues to diverge through branches until it reaches

leaves. The leaves are the terminal nodes that represent

the observed categorical item responses. The model will be

referred to as an item response tree model due to its utiliza-

tion of the tree structure (e.g., Boeckenholt, 2012; De Boeck

& Partchev, 2012).

Figure 1 illustrates four tree structures that can be used to

represent different cognitive processes for an item with four

response categories (numbered from 1 to 4).

In a tree structure, circles represent nodes, arrows rep-

resent branches, and leaves are item response outcomes

(1 to 4). Tree (a) represents a sequential selection of the

response in order from Categories 1 to 4, while Tree (b)

describes a two-stage selection process where a group of

two adjacent categories is first chosen (either Categories

1 and 2 or Categories 3 and 4) and then the final answer

is selected within the pair of adjacent categories. In Tree

(c), the selection of Category 1 is qualitatively differen-

tiated from the other three Categories (2, 3, and 4) and

not choosing Category 1 requires a follow-up decision. In

Tree (d), Categories 1 and 2 are two qualitatively distinct

options, which are also differentiated from Categories 3

and 4. The selection between 3 and 4 involves a second

decision.

Tree (a) is denoted as a ‘linear’ tree in that at least one

branch from each internal node leads to a terminal node,

whereas Tree (b) is denoted as a ‘nested’ tree since branches

from an internal node lead to another internal node. Trees

(c) and (d) can be seen as a combination of linear and

nested trees. Trees (a) and (b) are ‘binary’ trees because

they involve a choice between two branches, whereas Trees
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mailto:jeon.117@osu.edu
mailto:deboeck.2@osu.edu


Behav Res (2016) 48:1070–1085 1071

(a) (b)

(c) (d)

Fig. 1 Four tree structures (a) to (d) for four-category observed responses (1, 2, 3, and 4). Y ∗
1 to Y ∗

3 represent internal nodes 1 to 3, respectively

(c) and (d) are ‘polytomous’ trees in that more than two

branches are involved.

Item response trees can also be utilized to describe dis-

tinctive features of item response categories. For instance,

Tree (a) in Fig. 1 can be used to describe a unipolar scale

that includes choices such as ‘not at all sad’, ‘slightly sad’,

‘mostly sad’, and ‘completely sad’ while Tree (b) is utilized

to describe a bipolar scale with options such as ‘completely

sad’, ‘somewhat sad’, ‘somewhat joyful’, and ‘completely

joyful’. To describe Likert scales with a middle response

category (e.g., ‘neither sad nor joyful’, ‘perhaps’, ‘not sure’,

‘undecided’, ‘?’, etc.), Tree (c) can be used where the first

outcome 1 represents the undecided (middle) category while

Categories 2 to 4 represent regular response categories. It

should be noted that in the current practice of item anal-

ysis, the differences between various response/test formats

are usually ignored and the responses are analyzed as if they

were interval scale data or ordinal scale data (e.g., using

ordinal factor/IRT models).

Differentiating slow and fast intelligence (Partchev & De

Boeck, 2012), modeling motivated misreports to sensitive

survey questions (Boeckenholt, 2013), examining content

and response styles in multiple-choice items (Plieninger

& Meiser, 2014), and modeling skipped and non-reached

item responses (Debeer et al., submitted) are some of the

examples of how item response tree models have been uti-

lized. These prior approaches, however, have some limita-

tions. For instance, the models proposed by De Boeck and

Partchev (2012) do not allow for trees with more than

two branches and rely on one-parameter logistic models,

while Bockenholt (2012) is based on one-parameter probit

models.

The purpose of this article is to present a generalized

item response tree modeling framework that is flexible in

several aspects: specifically, by utilizing nodes as build-

ing blocks, a node-specific, possibly different IRT model

can be specified at each node. Latent variables can be uni-

dimensional or multi-dimensional and can be node-specific

or shared between nodes. Similarly, item parameters can

also be node-specific or shared across nodes. Explanatory

variables for persons and items can be incorporated to inves-

tigate sources of heterogeneity in a response scale. We will

show that the proposed framework can be readily estimated

with a standard IRT software package.

We will provide two examples to demonstrate the utilities

of the proposed modeling framework: (1) for investigating

the characteristics of three-point and four-point Likert scale

items and (2) for examining response omission behaviors

in psychological assessments. Note that not all the vari-

ants of the general model and all the aspects of the specific

illustrated models will be discussed in this paper.

The outline of this paper is as follows: In the “Models”

section, we present the general tree modeling framework

with examples and extensions. In the “Estimation, software,

and model selection” section, we describe a software pack-

age that is used for estimation and discuss model selection.
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We provide a few case studies in the “Applications” section.

We conclude with some discussion in the “Discussion”

section.

Models

We will begin with an illustrative example of a generalized

item response tree model. We then provide a general model

formulation, describe its various extensions, and discuss

several related models.

Example

Suppose there is a Likert scale with items that include

three response categories: ‘No’, ‘Perhaps’, and ‘Yes’. Let us

assume that a particular response category is the outcome of

the following two-stage decision process: (1) in Stage 1, the

person decides on the certainty of the answer (i.e., perhaps),

and (2) in Stage 2, the person decides on the direction of the

answer (i.e., agree or disagree). The terminal nodes are the

result of the sequence of the Stage 1 and Stage 2 decision

process. Figure 2 illustrates the tree structure that represents

this two-stage decision process.

The specified tree starts from the initial internal node Y ∗
1 ,

which is related to the certainty on item i for person p. If

the person is uncertain, the left branch of the first sub-tree

is chosen, which leads to the terminal outcome ‘Perhaps’.

If the person is certain, the right branch is chosen, which

leads to the next sub-tree with the second internal node Y ∗
2 .

The second internal node Y ∗
2 represents the direction of the

decision, i.e., agree or disagree.

Within a sub-tree, choosing a branch can be parameter-

ized with an IRT model; in other words, the probability of

selecting a branch is expressed as a function of the per-

son’s latent trait (related to the choice of a branch) and the

item parameters. The latent variable can also be seen as a

Fig. 2 Item response tree for person p to item i for three response

categories (‘Perhaps’, ‘No’, and ‘Yes’)

source of heterogeneity between subjects in the correspond-

ing decision (e.g., some people more often choose the right

branch than the left branch while other people more often

choose the left branch than the right branch).

Let Y ∗
pi1 denote the choice of a left or right branch at

Node 1 for person p (p = 1, ..., N ) to item i (i = 1, ..., I ).

Suppose the left and right branches are represented by 0 and

1, respectively. The probability of choosing the right branch

(Ypi1 = 1) is then modeled with a regular two-parameter

item response model as follows:

Pr(Y ∗
pi1 = 1|θp1) = g−1

(

αi1θp1 + βi1

)

, (1)

where θp1 represents person p’s latent trait that involves in

choosing the right branch at Node 1 (indicating “certainty”),

g−1 is the inverse of the link function (which is typically

a logit or probit link for a binary choice), and αi1 and βi1

are the slope (or discrimination) and the intercept (or eas-

iness) parameters, respectively, for item i at Node 1. The

slope parameters αi1 can be interpreted as the sensitivity or

relevance of item i to the probability of choosing the right

branch at Node 1 and the intercept parameter βi1 can be

interpreted as the degree of easiness in choosing the right

branch for item i at Node 1.

At Node 2, Y ∗
pi2 represents whether person p chooses

‘Yes’ (right branch) or ‘No’ (left branch). Note that the deci-

sion at Node 2 (Y ∗
pi2) is conditional on the decision at Node

1. That is, only when Y ∗
pi1 = 1, the outcome at Node 2 Y ∗

pi2

is observed. Suppose the left and right branches at Node 2

are represented with 0 and 1, respectively. The conditional

probability of choosing the right branch given Y ∗
pi1 = 1 is

then modeled with a two-parameter item response model as

follows:

Pr(Y ∗
pi2 = 1|θp2) = g−1

(

αi2θp2 + βi2

)

, (2)

where θp2 is the person p’s latent trait that involves in

choosing ‘Yes’ rather than ‘No’ (indicating admission or

negation, respectively), and αi2 and βi2 are the item slope

and intercept parameters for item i at Node 2. For notational

simplicity, that the probability of Y ∗
pi2 = 1 is conditional on

the earlier decision Y ∗
pi1 = 1 and the associated latent trait

θp1 at Node 1 is omitted in Eq. 2.

The model formulation with Eqs. 1 and 2 is based on two

important assumptions: (1) internal node outcomes (condi-

tional on the earlier decisions and on the latent variables

involved) are independent of each other, and (2) only one

path is allowed to be associated with an observed outcome.

These two assumptions imply that each observed outcome

(‘Perhaps’, ‘No’, ‘Yes’) is the result of a unique sequence of

conditionally independent internal decisions.

The probability of an observed response (‘Perhaps’,

‘No’, ‘Yes’) can now be computed as the product of the

conditional probabilities of the internal decisions that are

involved in the path to the observed outcome. Suppose the
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three observed outcomes Ypi (‘Perhaps’, ‘No’, and ‘Yes’)

are coded as 1, 2, and 3, respectively. The probability of

observing each outcome can then be expressed as follows:

Pr(Ypi = 1|θp1) = Pr(Y ∗
pi1 = 0|θp1), (3)

Pr(Ypi = 2|θp1, θp2) = Pr(Y ∗
pi1 = 1|θp1)Pr(Y ∗

pi2 = 0|θp2), (4)

Pr(Ypi = 3|θp1, θp2) = Pr(Y ∗
pi1 = 1|θp1)Pr(Y ∗

pi2 = 1|θp2), (5)

where Pr(Y ∗
pi1 = 0|θp1) = 1−Pr(Y ∗

pi1 = 1|θp1), Pr(Y ∗
pi2 =

0|θp2) = 1 − Pr(Y ∗
pi2 = 1|θp2), and Pr(Y ∗

pi1 = 1|θp1) and

Pr(Y ∗
pi2 = 1|θp2) are specified in Eqs. 1 and 2, respectively.

The following mapping matrix T streamlines how each

observed outcome Ypi is related to the internal decisions

Y ∗
pi1 and Y ∗

pi2 at Nodes 1 and 2:

(6)

For instance, Ypi = 1 corresponds to (Y ∗
pi1, Y ∗

pi2) =

(1, NA), where NA represents a missing observation (recall

that Ypi = 1 does not involve Node 2 in the path).

General model formulation

Here we provide a general formulation of the item response

tree model with K nodes for M terminal observed outcomes.

The mapping matrix T is of size M × K whose (m, k)-th

element Tmk (m = 1, ..., M, k = 1, ..., K) represents the out-

come at the internal node k (that is associated with the mth

observed outcome). When Node k includes L branches, Tmk

take values 0, 1, 2, ..., (L − 1) (and NA when Node k does

not appear in the path to terminal observed outcome m).

The conditional probability of internal outcome Tmk at

Node k (given the earlier internal outcomes and latent traits

involved) can be formulated as follows:

Pr(Y ∗
pik = Tmk|θpk) = g−1

(

αikθpk + βik

)

, (7)

where θpk is the latent variable for person p at Node k, and

αik and βik are the item slope and intercept parameters for

item i at Node k. When Node k includes two branches, the

link function g(·) can be a logit or probit function as dis-

cussed in the “Example” section (we utilize a logit link for

our analysis later). When Node k involves more than two

branches, a different link function can be specified, such

as an adjacent logit or a cumulative link function (that

are used to formulate a generalized partial credit model

(Muraki, 1992) and a graded response model (Samejima,

1969), respectively). Equation 7 assumes a single latent trait

θpk at Node k. In principle, however, a node can be mul-

tidimensional, that is, Node k can involve more than one

latent variable. A multidimensional extension per node is

straightforward, but we limit our discussion here to a unidi-

mensional node (a single latent trait per node) for illustrative

simplicity.

Using the conditional probabilities of internal outcomes

Y ∗
pik = Tmk (7), the model for observed terminal outcome

Ypi = m (m = 1, ...,M) can be formulated as follows:

Pr(Ypi = m|θp1, ..., θpK)

= Pr(Y ∗
pi1 = Tm1, ..., Y

∗
piK = TmK |θp1, ..., θpK),

=

K
∏

k=1

Pr(Y ∗
pik = Tmk|θp1, ..., θpK)tmk , (8)

where tmk = Tmk if Tmk = 0 or 1 and tmk = 0 if Tmk =

NA (k = 1, .., K , m = 1, ...,M). The K latent variables

θp = (θp1, ..., θpK)′ are assumed to follow a multivariate

normal distribution with θp ∼ N(0, �), where � is a K×K

covariance matrix. That is, the K node-specific latent traits

are allowed to be correlated with each other.

It is important to note that model (8) is equivalent to a K-

dimensional item response model fitted to the node-specific

internal outcomes (Y ∗
pi1, Y

∗
pi2, ..., Y

∗
piK) (of length K). For

clarification, we re-write model (8) for νpik = g(Pr(Y ∗
pik =

1|θpk)) (k = 1, 2, ..., K and g(·) is the link function) in a

matrix form as follows:
⎡

⎢

⎢

⎢

⎣

νpi1

νpi2

...

νpiK

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

αi1 0 · · · 0

0 αi2 · · · 0

0 0
. . . 0

0 0 · · · αiK

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

θp1

θp2

...

θpK

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

βi1

βi2

...

βiK

⎤

⎥

⎥

⎥

⎦

. (9)

For all item responses (i = 1, ..., I), the model includes I

items in each of the K dimensions (nodes) and each dimen-

sion involves latent trait θpk . There are no cross-loadings

between dimensions; thus, model (6) is equivalent to a

simple-structure K-dimensional item response model.

Hence, the model is identified by complying with conven-

tional identification constraints for simple-structure multidi-

mensional IRT models. Specifically, we apply constraints on

the latent distribution, θp ∼ N(0, �), where the means are

fixed to 0 and the variances (diagonal elements of �) are fixed

to 1 (so that all loading parameters can be freely estimated).

In the next four sub-sections (“A bifactor structure” to

“Item and person covariates”), we will illustrate how the

general model (8) can be modified with a bifactor structure,

node-specific main effects, simplified latent structures, and

item- and person- covariates.

A bifactor structure

The general model formulation (7) presumes that each inter-

nal node involves a node-specific latent trait, implying that
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the response scale itself is assumed to be multidimensional.

This creates the problem of how a score can be determined

for the latent trait one intends to measure.

If the nodes are only partly specific and share a com-

mon latent variable, then a bifactor structure may help. For

instance, in a depression scale item with four options, ‘not at

all sad’, ‘slightly sad’, ‘mostly sad’, and ‘completely sad’,

the common latent trait (or the general factor) would repre-

sent the degree of sadness (or depression), which is intended

to be measured with this depression scale. If one is willing

to impose an assumption that node-specific latent traits are

independent of each other given the general latent trait,

the model for internal outcome (7) can be modified with a

bifactor structure as follows:

Pr
(

Y ∗
pik = 1|θpk

)

= g−1
(

α
g
ikθ

g
p + αikθpk + βik

)

, (10)

where α
g
ik is the slope parameter for item i at Node k, which

is associated with the general latent trait θ
g
p for person p,

and αik is the node-specific slope parameter for item i at

Node k for latent trait θpk . With this bifactor version, K + 1

latent traits are specified and they are assumed to follow

a multivariate standard normal distribution with a diagonal

covariance matrix (that is, all latent variables are assumed

to be independent of each other).

Node-measurement invariance and node-main effects

The general model formulation (7) allows for a set of node-

specific item parameters (αik and βik). When node-specific

item parameters are different across nodes, it means that

items show different measurement properties depending on

the nodes. That is, measurement is not invariant across

nodes or ‘node-measurement invariance’ does not hold.

Node-measurement invariance is empirically testable. A

simple way for testing node-measurement invariance is to

exploit the ‘main’ effects for nodes. Specifically, we can

decompose node-specific item parameters into common

item parameters (equal across nodes) and node-main effects

parameters (equal across items). The item parameters βik

and αik for item i at Node k can be decomposed as follows:

βik = βi + δβk
, (11)

αik = αi + δαk
, (12)

where βi and αi are the common parameters for item i,

while δβk
and δαk

are the node-main effects for the item

intercept and slope parameters, respectively, at Node k. If

the node-specific item parameters can be reduced to the

sum of the common item parameters and node-main effects,

then the item parameters are the same across nodes and

Node k creates an impact to the latent trait distribution.

Specifically, significant values of δβk
and δαk

represent

non-ignorable impacts to the mean and variance of the dis-

tribution of θpk , respectively. One can then conclude that

node-measurement invariance does hold for item i (because

differences are in the distribution, not in the item parame-

ters). However, if the node-specific item parameters cannot

be reduced into the main effects of the node (i.e., the model

with node-specific item parameters (βik , αik) fits better than

the simplified model with the node-main effect parame-

ters and common item parameters (βi , δβk
, αi , δαk

)), then

measurement invariance does not hold with the response

scale.

Item parameter decomposition shown in Eqs. 11 and 12

can also be used for parameter reduction. (e.g., I × K item

slope parameters are reduced to I + K parameters). A sim-

ilar idea is used in formulating the rating scale model to

simplify item response category threshold parameters in the

partial credit model.

Simplifying latent structures

Suppose some (or all) of the node-specific latent traits are

not differentiable from one another. We then can simplify

the latent structure of the model by collapsing those latent

variables. Suppose all K latent traits are perfectly corre-

lated with each other; that is, a single general latent variable

is sufficient to explain the mechanism of choosing differ-

ent response categories. The general model (7) can then be

simplified as

g(Pr(Y ∗
pik = 1|θp)) = αikθp + βik. (13)

Note that the latent trait θp no longer includes subscript

k, meaning that there is a single latent trait across nodes.

The unidimensional latent trait θp is assumed to follow

a standard normal distribution. In the modified model

(13), the item parameters αik and βik are still node-

specific; but they can also be simplified using the node-main

effects parameters and common parameters as discussed in

the “Node-measurement invariance and node-main effects”

section.

Item and person covariates

If one is interested in explaining variability in the item

parameters and latent traits across or within nodes, it is use-

ful to introduce item and person covariates in the model.

By incorporating node-specific explanatory variables for

persons and items, model (7) can be modified as follows:

g(Pr(Y ∗
pik = 1|θpk)) =

Q
∑

q

αkqXikqθpk +

L
∑

l

βklWikl, (14)

θpk =

M
∑

m

γkmZpkm + θ ′
pk,
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where αkq is the regression coefficient for the qth covariate

Xikq (q = 1, ..., Q) that explains the slope parameters in

internal node k, βkl is the regression coefficient for the lth

covariate Wikl (l = 1, ..., L) that explains the intercept para-

meters in Node k, and γkm is the regression coefficient for

the mth covariate Zpkm (m = 1, ..., M) in Node k. Note that

when person covariates are used, θ ′
pk no longer indicates

person p’s latent trait at Node k; instead, θ ′
pk is the residual of

the person trait that is not explained by the covariates. There-

fore, when the measurement of the latent trait is the main

goal of the data analysis, person covariates may not be used.

Model (14) can be simplified by constraining (some or

all) node-specific regression coefficients to be equal across

nodes. For instance, shared covariate effects across nodes

can be imposed for all parameters with the following con-

straints: αkq = αk′q , βkl = βk′l , and γkm = γk′m for k �= k′.

Related models

Item response tree models are characterized with two main

features: (1) the models are formulated based on a tree

structure and (2) the models allow for multiple sources of

individual differences for a response scale.

In cognitive psychology, multinomial processing tree

models utilize a tree structure in model formulation. The

models have been widely used for assessing the cognitive

processes postulated in experimental settings (Riefer

& Batchelder, 1988). Recently, multinomial processing

tree models were applied to analyze personality assess-

ments (Batchelder, 2009), to model binary choice data

(Batchelder et al., 2009), and to capture individual differ-

ences (Klauer, 2010).

In IRT, a tree structure has been exploited in rather

implicit ways for modeling categorical item responses. For

example, sequential models (also called continuation ratio

models, Tutz, 1990) are formulated based on a sequential

choice rule, which assumes all options are reviewed in a

sequential manner from the first option to the last option.

Culpepper (2014) presented new item response models

based on a sequential decision rule for analyzing partially

ordered item responses and for investigating repeatedly

attempted item responses.

A divide-by-total scoring rule, which assumes all possi-

ble options are considered at once before the final answer is

chosen, is also applied to formulate the partial credit model

(Masters, 1982), the generalized partial credit model (Muraki,

1992), and the rating scale model (Andrich, 1978). Recently,

Revuelta (2010) and Suh and Bolt (2010) employed a divide-

by-total type of scoring rule in order to capture different

types of decision making strategies for multiple-choice

items.

The models discussed above assume a single source of

individual differences in a response scale. There are other

types of IRT models that concentrate on capturing mul-

tiple sources of individual differences in categorical item

responses. For instance, Johnson (2003) and Johnson (2007)

incorporated multiple latent traits to capture individual dif-

ferences in response styles. Bolt et al. (2012) presented

a multidimensional version of the nested logit model that

allows for different latent traits to be involved in choosing

distractors for multiple-choice items.

De Boeck and Partchev (2012) and Boeckenholt (2012)

presented item response models that are based on a tree

structure and allow for multiple sources of individual differ-

ences. These item response tree models can be specified as

special cases of the proposed generalized item response tree

models. Furthermore, the models discussed earlier in this

section, such as sequential models, partial credit models,

and their extensions with multiple latent traits can also be

formulated within the proposed tree modeling framework.

However, the proposed modeling framework does not allow

for multiple paths to an observed outcome; therefore, the

model developed by Boeckenholt (2013), which includes

multiple paths, would not be constructed with the current

framework.

Estimation, software, and model selection

Estimation and software

As discussed in the “General model formulation” section,

generalized item response tree models can be formulated

as a simple-structure K-dimensional item response model.

It is important to recall that (1) we use the K-dimensional

internal outcomes Y∗
p = (Y∗

p1, ..., Y∗
pK ) as the response

variable for estimation and (2) the response matrix Y∗
p can

contain missing values if the kth node does not contribute

to generating a particular observed outcome (e.g., see the

mapping matrix T in Eq. 6 includes ‘NA’ for Y ∗
pi2 when

Ypi = 1). Hence, generalized item response tree models

can be estimated with standard IRT software packages that

allow for multidimensionality as well as missing data. If one

wants to estimate the modified versions that were discussed

in the “A bifactor structure” to “Item and person covariates”

section, then only software that allows all these options can

be considered.

Here we use the R package flirt (Jeon et al., 2014b) for

this general purpose. The package flirt, which is based on

a convenient modular approach, can be a useful tool for

fitting various generalized item response tree models. For

instance, one can specify a different type of IRT model per

node in terms of parametric forms, dimensionality, item and

person covariates, and link functions. The package flirt also

provides an efficient maximum likelihood (ML) estima-

tion option, i.e., a modern expectation-maximization (EM)
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algorithm, which implements an efficient E-step combined

with graphical model theory (Lauritzen, 1995; Rijmen et al.,

2008). Specifically, the E-step replaces the numerical inte-

gration over the joint latent space by a sequence of integra-

tions over smaller subsets of (i.e., low dimensional) latent

variables. The gain for the efficient E-step is considerable,

especially when estimating multidimensional models for

which high-dimensional numerical integration is required

over the joint space of all latent variables. For example, for a

three-dimensional one-parameter logistic (1PL) model with

108 items (36 items per dimension) and 1,069 subjects, the

Laplace approximation with the R package lme4 (Bates and

Maechler, 2009) (which was adopted by Partchev and De

Boeck (2012) for estimation of item response tree models)

took nearly four hours (14,264 seconds) whereas flirt took

809 seconds on a Intel Pentium Dual-Core 2.5-GHz proces-

sor computer with 3.2 GB of memory. For details on the

modeling framework and the estimation framework of flirt,

see Jeon et al. (2014a) and the website http://faculty.psy.

ohio-state.edu/jeon/lab/flirt.php.

Model selection

ML estimation of the generalized item response tree models

allows for model selection using likelihood-based fit statis-

tics, such as the likelihood-ratio (LR) statistics, the Akaike’s

information criterion (AIC), and the Bayesian Information

criterion (BIC).

In this study, we utilize the LR statistics to compare

nested tree models. Suppose L0 and L1 are the maximum

value of the likelihood of the data for Model 0 (with p0

number of parameters) and for Model 1 (with p1 number of

parameters) and Model 0 is nested within Model 1. Then,

χ2 = −2 × (log L0 − log L1) follows a Chi-squared dis-

tribution with p1 − p0 degrees of freedom. The LR test

rejects that the null hypothesis (H0 : L0 = L1) if χ2 is

larger than a Chi-square percentile with p1 − p0 degrees of

freedom.

LR tests can be used with a specified item response

tree model, for instance, to test the significance of node-

main effects for item parameters (by comparing models

with and without the node-main effects parameters). It

should be noted that LR tests are suitable only for com-

paring tree models of the same size (i.e., same number of

internal nodes). Depending on the specified tree structure,

the data size used for estimation (the vector of internal

outcomes) changes. The likelihood values are not com-

parable when two models are applied to different size

data. In addition, LR tests are conservative for a compari-

son of models with a different dimensionality because one

dimension less implies variance of zero (for the dimen-

sion), which is a boundary value in the parameter space

(e.g., Baayen et al., 2008).

Applications

Here we provide two applications of the generalized item

response model for psychological assessments: (1) modeling

Likert scale item responses and (2) investigating missing item

responses. Specifically, we test whether the Likert scale

response categories can be assumed to be ordinal and exam-

ine the nature of omitted item responses in the tree modeling

framework. All data analyses were carried out with the R

package flirt. We conducted a simulation study to show

parameter recovery of the estimation. The procedure and

results are provided in the “Appendix”.

Modeling Likert scale item responses

Psychological constructs such as personality and attitudes

are frequently measured with Likert scale items. The re-

sponse categories in Likert scales are typically coded numer-

ically and in ascending order (e.g., ‘strongly agree’, ‘agree’,

‘disagree’, and ‘strongly agree’). Applied researchers often

treat them as continuous variables (e.g., 0,1,2,3) or collapse

them into dichotomized categories (e.g., 0,1). These com-

mon conventions, however, can result in biased parameter

estimates, incorrect standard errors, and inaccurate model

fit information (Johnson, 2003; Rhemtulla et al., 2012).

Alternatively, ordinal factor analysis models (Christof-

fersson, 1975) and ordinal IRT models (e.g., partial credit

models (Masters, 1982), rating scale models (Andrich,

1978), and graded response models (Samejima, 1969)) are

used for analyzing Likert scale item response data. It is

important to note that these ordinal models assume that the

response categories are ordinal. This assumption may not

be true, however if the response categories show qualita-

tive differences rather than ranking or intensity differences.

For instance, a middle response category that is commonly

used, such as “Neutral” or “Undecided”, may not be part of

a true order with the other response categories (e.g., agree

or disagree). A tree will allow for a partial ordering of the

response categories.

Here we apply a generalized tree approach for investigat-

ing two types of Likert scale item responses. A generalized

item tree model is constructed to test the ordinality assump-

tion of the response categories. Several modifications of the

model are estimated and compared to determine an optimal

structure of the model.

Three-point Likert scale

The first example uses the verbal aggression dataset from

De Boeck and Wilson (2004) and Vansteelandt (2000). The

data were obtained from 316 first-year psychology students

(243 females and 73 males), presented with a verbal aggres-

sion inventory with 24 items. The inventory concerns the

http://faculty.psy.ohio-state.edu/jeon/lab/flirt.php
http://faculty.psy.ohio-state.edu/jeon/lab/flirt.php
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source of verbal aggression (type of situation) and its inhibi-

tion (discrepancy between wanting and doing). Specifically,

each item consists of one of four frustrating situations (bus,

train, store, and operator), one of two situation types (other-

to-blame, self-to-blame), one of three verbally aggressive

behaviors (cursing, scolding, and shouting), and one of two

behavioral modes (wanting and doing). An example item is

“A bus fails to stop for me. I would want to curse.”: This

corresponds to the ‘cursing’ aggressive behavior with the

‘wanting’ behavior mode in the ‘other-to-blame’ situation

related to the ‘bus’. “A bus fails to stop for me. I would actu-

ally curse” corresponds to the ‘cursing’ aggressive behavior

but with the ‘doing’ behavior mode in the ‘other-to-blame’

situation related to the ‘bus’. For each item, a three-point

Likert scale (‘No’, ‘Perhaps’, and ‘Yes’) was used indicat-

ing whether respondents would agree to give an aggressive

verbal response to the scenario.

Such three response categories are often treated as ordi-

nal (e.g., ‘No’, ‘Perhaps’, ‘Yes’). Johnson (2003) re-analyzed

the data for investigating heterogeneity in response styles

of the ordered response categories. Here we will model the

data with a two-stage decision process that is postulated as

follows: (1) in Stage 1, the person decides on the direction

of the response (admission vs. negation), and (2) in Stage

2, the person decides on the certainty of the answer given

admission, ‘Yes’ or ‘Perhaps’). Figure 3 illustrates the item

tree that represents this two-stage decision process.

This tree contains two internal nodes: The first node (Y ∗
1 )

is related to the direction of the answer, i.e., the decision on

negation of verbal aggression (‘No’) vs. admission of ver-

bal aggression (‘Perhaps’, ‘Yes’); its left branch represents

negation and its right branch represents admission. The sec-

ond node (Y ∗
2 ) represents the certainty of the admission;

its left branch represents that the person is not certain and

therefore chooses ‘Perhaps’; its right branch represents that

Fig. 3 Item response tree for the three-point Likert scale with the

‘No’, ‘Perhaps’, and ‘Yes’ categories

the person is certain about his/her admission and chooses

‘Yes’. The terminal nodes (i.e., observed response cate-

gories) represent the result of these internal choices. Recall

that in Fig. 2 the ‘Perhaps’ category is differentiated in Stage

1 instead of in Stage 2. The tree in Fig. 2 is useful for finding

out whether the ‘Perhaps’ response stems from a prelimi-

nary feeling of certainty. The tree in Fig. 3 is more useful

for testing whether the ‘Perhaps’ response is a way to admit

verbal aggression. Based on the model fit, the tree in Fig. 3

(log-likelihood = −6087.22) appears to be a better repre-

sentation of the item response process for the data than the

tree in Fig. 2 (log-likelihood = −6188.76).

Based on the tree in Fig. 3, we fit a two-dimensional

item response tree model. The correlation between the two

dimensions is estimated as 0.38. This indicates that the two

decision processes (direction and certainty) are only weakly

correlated, implying that the resulting outcomes of the two

internal processes are not closely related to each other. That

is, the three response categories (‘No’, ‘Perhaps’,‘Yes’) may

not be really ordinal. The response scale seems to be mul-

tidimensional, meaning that a different latent variable is

measured depending on the response option chosen by the

person (also per item).

Additionally, the following three models are fit to test the

dimensionality and internal measurement invariance of the

tree (across nodes). All three are modifications of the initial

model with node-specific latent trait and item parameters:

(1) Model 1: a reduced two-dimensional tree model that

includes node-specific main effects parameters (but

not node-specific item slopes and intercepts),

(2) Model 2: a unidimensional tree model that assumes

a single latent variable (but with node-specific item

slopes and intercepts), and

(3) Model 3: a bifactor tree model that assumes a general

latent trait for all response categories in addition to the

latent traits for the two internal nodes.

The results suggest the following: First, the full two-

dimensional model fits better than the reduced, node-main

effects model (Model 1) based on the LR test (χ2 = 134.27,

df = 46, p < 0.01). The estimated node main effects are

–2.69 for the slope parameter and –0.98 for the intercept

parameter, which correspond to 0.068 and 0.37 in the odds,

respectively. The two parameters are significant based on

the LR test (χ2 = 61.99, df = 2, p < 0.01). Second, the full

two-dimensional tree model fits better than the unidimen-

sional model (Model 3) (χ2 = 380.04, df = 1, p < 0.01) but

worse than the bifactor tree model (χ2 = 247.05, df = 47,

p < 0.01). This analysis shows that (1) the measurement

properties are not invariant across nodes in this response

scale and (2) the scale is multidimensional but a general

latent trait (that summarizes all dimensions) can be mea-

sured. In fact, the general latent trait would be the better
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measurement than an ordinal model latent trait because it

takes node specificity into account, whereas the ordinal

model (which assumes a single latent trait) does not.

To illustrate this point, we fit the regular graded response

model to the data and compare the latent trait estimates

from the regular graded response model with the latent

scores of the general factor from the bifactor item response

tree model. We also compare them with the sum scores.

The results show that (1) the latent trait estimates from the

graded response model are nearly perfectly correlated with

the sum scores (with the correlation of 0.97), and (2) the

correlation of the sum scores with the latent trait estimates

of the general factor from the bifactor tree model is 0.81.

The former makes sense given that both the sum scores

and the graded response model are based on the assump-

tion that the response scale is ordinal. The latter implies that

the response scale may not be perfectly ordinal. Further-

more, approximately 46 % of the people show more than

10 % difference in ranking when the bifactor item response

tree model is applied than when the graded response model

is applied. These results suggest that inference and deci-

sion based on subjects’ latent trait scores can be biased

if non-ordinality of a response scale is ignored in data

analysis.

Four-point Likert scale

The second example uses the four-point Likert scale item

responses from the British sample of the 1992 Euro-

barometer Survey (Reif and Melich, 1992) provided by

Bartholomew et al. (2008). The survey was administered

to 392 people and seven questions in the survey measured

people’s perceptions of science and technology. An exam-

ple question is ‘Science and technology are making our

lives healthier, easier, and more comfortable’. Each question

provided the four response categories, ‘strongly disagree’,

‘disagree to some extent’, ‘agree to some extent’, and

‘strongly agree’. The scale was comprised of two dimen-

sions but for simplicity purposes we focus on one dimension

containing four items (pertaining to comfort, work, future,

and benefit).

For the four-point Likert scale, it is typically assumed

that the response categories are ordinal from strongly dis-

agree to strongly agree. To examine features of this response

scale, we posit the following linear tree with three nodes

as in Fig. 4: (1) Node 1: strongly disagree vs. the three

higher categories, (2) Node 2: disagree vs. the two higher

categories, and (3) Node 3: agree vs. strongly agree.

Here the first node (Y ∗
1 ) represents choosing against

strong negation (‘strongly disagree’), the second node (Y ∗
2 )

represents choosing against negation (‘disagree’), and the

third node (Y ∗
3 ) represents choosing in favor of strong

admission (‘strongly agree’). The terminal nodes (four

Fig. 4 Item response tree for four-point Likert item responses. SD is

strongly disagree, D is disagree, A is agree, and SA is strongly agree

observed response categories) indicate the result of the

internal decision processes.

We first fit a three-dimensional tree model to the data.

The estimated correlation is 0.54 between Dimensions 1

and 2, 0.13 between Dimensions 1 and 3, and 0.82 between

Dimensions 2 and 3. This suggests that Dimension 1 is

not correlated with Dimension 3 but somewhat correlated

to Dimension 2, while Dimension 2 is highly correlated to

Dimension 3. It shows that choosing against ‘strongly dis-

agree’ (Dimension 1) is not really related to choosing in

favor of ‘strongly agree’ (Dimension 3). It is important to

note that if the scale were ordinal, one would expect high

correlations between all decisions (choosing for the branch

to the right). The low correlation between Dimension 1 and

Dimension 3 indicates that this four-point Likert scale may

not be perfectly ordinal.

Like for the previous example, we fit three additional

models to test the dimensionality and internal measurement

invariance of the tree:

(1) Model 4: a reduced three-dimensional model that

includes the node-main effects parameters (but not

node-specific item slopes and intercepts),

(2) Model 5: an unidimensional model that assumes a sin-

gle latent variable across all nodes (with node-specific

item slopes and intercepts), and

(3) Model 6: a bifactor tree model that assumes a general

latent trait for all response categories in addition to

the node-specific latent traits (with node-specific item

slopes and intercepts).

The full three-dimensional model fits better than the

reduced node-main effects model (Model 4) based on the

LR test (χ2 = 20.35, df = 12, p < 0.01). Compared

with Node 1 (as the reference node), the estimated node-

main effects for the discrimination parameter are −0.91

and −0.92 for internal nodes 2 and 3, which correspond

to about 0.4 (both) in the odds. The estimated node-main
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effects for the intercept parameter are −2.79 and −6.34 for

internal nodes 2 and 3, which correspond to about 0.006

and 0.002 in the odds, respectively. Jointly, the four param-

eters are significant based on the LR test (χ2 = 440.03,

df = 4, p < 0.01). This suggests that the items are less dis-

criminating for choosing against ‘disagree’ (Node 2) and for

choosing in favor of ‘strongly agree’ (Node 3) than choosing

against ‘strongly disagree’ (Node 1). The threshold is higher

for choosing against ‘strongly disagree’ (Node 1) than for

choosing against ‘disagree’ (Node 2). The model fit of the

three-dimensional model is better than the unidimensional

model (Model 5) (χ2 = 23.42, df = 3, p < 0.01) but it is

similar to the bifactor tree model (Model 6) (χ2 = 3.83,

df = 8, p = 0.87). Similar to the previous example, this anal-

ysis shows that (1) node-measurement invariance may not

hold with the response scale and (2) the scale is multidimen-

sional, while the bifactor structure can provide a summary

measurement.

Similar to the previous example, we compare latent trait

estimates from the graded response model and the general

factor of the bifactor item response tree model with the sum

scores. The sum scores are more highly correlated with the

latent trait estimates from the graded response model (with

the correlation of 0.96) than with the latent trait estimates

from the bifactor tree model (with the correlation of 0.86).

This result implies that this scale may not be perfectly ordi-

nal. In addition, approximately 32 % of the people show

more than 10 % difference in ranking when the bifactor

item response tree model is applied than when the graded

response model is applied. This result implies that inference

based on subjects’ latent trait scores can be biased when

ordinality is forced to be assumed in data analysis.

Modeling missing responses

Missing data occur in most psychological and behav-

ior assessments (Orme and Reis, 1991; Stevens, 1996;

Allison, 2001; Pigott, 2001; Streiner, 2002; Acock, 2005).

The APA Task Force on Statistical conference (Wilkinson &

Statistical Inference, 1999) recommended that researchers

report patterns of missing data and use statistical tech-

niques to address the missing data problems. However,

adequate reporting and handling of missing data is often

ignored in practice (Peng et al., 2006; Saunders et al., 2006;

Schlomer et al., 2010).

Common treatments for missing data are deletion (e.g.,

listwise, pairwise) and imputation methods (e.g., non-

stochastic, stochastic). Deletion methods remove cases with

missing values from data analysis whereas imputation meth-

ods substitute plausible values for missing values. Deletion

of full cases can be used only when missing data are miss-

ing completely at random (MCAR); otherwise, the observed

data are a biased subset of the complete data. Imputation

methods are generally preferred to the deletion methods,

but imputation methods still require at least missing at ran-

dom (MAR). When missing is not at random (MNAR), any

missing data technique can result in a biased inference. A

better strategy is to incorporate the underlying missing data

mechanism in modeling the data.

An item response tree approach can be a useful tool for

modeling the missing data mechanism. For instance, the

missing item response can be specified as another response

category in addition to the existing response categories. Hol-

man and Glas (2005) and Glas and Pimentel (2008) utilized

tree-type IRT models to deal with omitted and non-reached

item responses in ability testing, respectively. Recently,

Debeer et al. (submitted) adopted an IRT tree modeling for

analyzing both skipped and non-reached item responses in

ability tests. Here we apply the proposed generalized item

response tree approach to investigate omitted item responses

in psychological assessments.

Modeling omitted item responses

The data come from the 38th round of the State Survey con-

ducted by University’s Institute for Public Policy and Social

Research (2005). The survey was administered in 2005 to

949 Michigan citizens. Five questions measured the public’s

faith and trust in charity organizations, such as ‘Charitable

organizations are more effective now in providing services

than they were five years ago’ and ‘I place a low degree of

trust in charitable organizations’. A four-point Likert scale

was used with four response categories ‘strongly agree’,

‘somewhat agree’, ’somewhat disagree’, and ’strongly dis-

agree’. In this dataset, the responses were coded from 0

to 3, with larger scores indicating less favorable views of

charities. There were also missing values for each item.

Linear tree with ordinal responses Let us assume that we

are only interested in separating out omitted responses from

regular ordinal item responses. The following two stages

can then be posited: (1) in Stage 1, the person decides

on responding (i.e., omit or not omit) and (2) in Stage

2, the person chooses one category among the four ordi-

nal response categories (i.e., strongly disagree to strongly

agree). See Fig. 5 for the tree representation of this process.

The tree in Fig. 5 includes two internal nodes: Y ∗
1 repre-

sents response omission, and Y ∗
2 represents a relative degree

of faith/trust in charity. The four regular response categories

are commonly assumed to be ordinal. Although ordinality

of the scale will be tested as in the previous applications, we

focus first on modeling the missing responses.

We fit a two-dimensional tree model to the data where

a regular two-parameter IRT model is used in Dimension 1

but a graded response model is applied in Dimension 2. The

two-dimensional model fits better than the unidimensional
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Fig. 5 Linear tree with two nodes for omitted (missing) responses as

well as four response categories. SA is strongly agree, A is agree, D is

disagree, and SD is strongly disagree

model based on the LR test (χ2 = 131.53, df = 1, p < 0.01).

In the two-dimensional model, the estimated correlation is

very low (−0.10) between Dimension 1 (involvement) and

Dimension 2 (charity). This makes clear that skipping items

differs from the construct that is intended to be measured

with the scale (with the regular item responses). The full

two-dimensional model (log-likelihood = −5796.03) does

not fit better than the reduced version with a zero correlation

between the two dimensions (log-likelihood = −5796.80).

This implies that for this data the missing data mecha-

nism may be considered ignorable (i.e., missing at random;

MAR), but it will be shown that this conclusion needs to be

modified based on further analysis.

Elaborated nested tree We expand the linear tree speci-

fied above by elaborating the regular response process. The

following four-stage process can then be postulated: (1) in

Stage 1, the person decides on responding (i.e., omit or not

omit) (2) in Stage 2, the person decides on the direction (i.e.,

agree or disagree), (3) in Stage 3, the person decides on the

intensity of admission (i.e., strongly agree or agree), and (4)

in Stage 4, the person decides on the intensity of negation

(i.e., strongly disagree or disagree). See Fig. 6 for the tree

representation of this process.

Note that Stages 3 and 4 are not sequential because either

Stage 3 or Stage 4 can follow after Stage 2 but not both. It

means that the specified tree is nested instead of linear.

This tree includes four internal nodes: Y ∗
1 represents

involvement, Y ∗
2 represents direction (i.e., admission vs.

negation), Y ∗
3 represents strong admission, and Y ∗

4 repre-

sents strong negation. The terminal nodes (i.e., omitted

response and four observed response categories) represent

the result of this nested four-stage decision process.

We fit a four-dimensional tree model to the data. The esti-

mated correlation is −0.04 between Dimension 1 (respond-

ing) and Dimension 2 (direction), 0.20 between Dimension

1 (responding) and Dimension 3 (strong admission), and

−0.35 between Dimension 1 (responding) and Dimension

4 (strong negation). This confirms again that the decision

for skipping items is distinct from the regular response pro-

cesses. Omission (Dimension 1), the opposite of response,

is positively related to strong negation (Dimension 4), which

suggests that omission is related to negative attitudes, and

the MAR condition is in fact not fulfilled. In addition, the

estimated correlation is 0.34 between Dimension 2 (direc-

tion) and Dimension 3 (strong admission), and 0.49 between

Dimension 2 (direction) and Dimension 4 (strong negation).

The estimated correlation between Dimension 3 (strong

admission) and Dimension 4 (strong negation) is 0.63. This

latter conclusion suggests an underlying extreme response

style.

We also fit the following three models to evaluate the

dimensionality and node-measurement-invariance of the

tree:

(1) Model 7: an unidimensional model that assumes a sin-

gle latent variable across all nodes (with node-specific

item slopes and intercepts),

(2) Model 8: a three-dimensional model with a latent trait

for Node 1 (responding), a latent trait for Node 2

(direction), and a latent trait for Nodes 3 and 4 (extrem-

ity) (with node-specific item slopes and intercepts),

and

(3) Model 9: a reduced three-dimensional model that

includes the main-node effects slope and intercept

parameters for Node 4 (compared to Node 3) (with

node-specific item slopes and intercepts for Nodes 1

and 2).

We did not fit the bifactor version of the model here because

a general trait would not be helpful in explaining both the

omission and regular item processes.

Fig. 6 Nested tree with four nodes for omitted (missing) responses as

well as four response categories. SA is strongly agree, A is agree, D is

disagree, and SD is strongly disagree



Behav Res (2016) 48:1070–1085 1081

The four-dimensional model fits better than the unidi-

mensional model (Model 7) (χ2 = 255.13, df = 6, p < 0.01)

or the three-dimensional model (Model 8) (χ2 = 85.86,

df = 3, p < 0.01). The three-dimensional model fits bet-

ter than its reduced, node-main effects model (Model 9)

based on the LR test (χ2 = 19.32, df = 8, p = 0.01).

Compared with Node 3, the estimated main effects for the

discrimination parameter is 0.29 (1.34 in the odds) and

the estimated main effects for the intercept parameter is

−0.33 (0.72 in the odds) for Node 4. The two parame-

ters are jointly significant based on the LR test (χ2 =

20.35, df = 2, p < 0.01). This suggests that overall the

items are more discriminating and the threshold is higher

for choosing in favor of strongly disagree than choosing

in favor of strongly agree. Because the four-dimensional

model seems to have a better fit, it can be concluded that

although being extreme on one end of the response scale is

highly positively related to being extreme on the other hand

(correlation of 0.63), being extreme is not just one latent

variable.

Consequences of ignoring missing not at random

(MNAR) We conducted an experiment to illustrate the con-

sequence of ignoring missing not at random (MNAR). We

utilized the verbal aggression data used in the “Three-point

Likert scale” section. The data consist of complete

responses to 24 items for 316 students. We generated

MNAR in the data by applying the following procedure:

First, we computed the probability (pij ) of a positive reac-

tion (Yes and Perhaps) for all item responses. Second, if

pij < 0.3 (low probability), we replaced at random 50 %

of such cases with missing (NA). For one item (item 21),

which produced no missing with pij < 0.3, a higher thresh-

old pij < 0.5 was applied. As a result, the simulated data

contain about 8 % to 49 % (with average 36 %) of MNAR

cases across items. We then specified the item response tree

model by treating missing values as an additional response

category. The tree structure used for the model formulation

is shown in Fig. 7.

We then fit the following three models to the simulated

data:

(1) Model 10: a two-parameter graded responses model

(ignoring missing data),

(2) Model 11: a two-parameter graded responses model

(treating missing data as incorrect (‘No’) responses),

and

(3) Model 12: a two-parameter item response tree model

with the tree structure in Fig. 7.

Note that the regular graded response model (Model

10) treats missing data as ignorable (missing at random),

Fig. 7 Tree with two nodes for missing responses as well as two

response categories (‘No’ vs. ‘Perhaps’/‘Yes’)

whereas the item response tree model (Model 12) takes into

account the possibility that missing data follow a different

response mechanism than non-missing responses. Treating

missing data as incorrect responses is a common practice in

applied research. In a formally equivalent way, we treated

missing responses as ‘No’ (Model 11).

Finally, we obtained and compared the latent trait

estimates from the three models. For the item response

tree model (Model 12), the latent trait estimates for

Node 2 were considered for comparison because Node 2

refers to the psychological mechanism of main interest,

while Node 1 refers to a response omission mechanism.

Figure 8 displays the estimated latent traits from the three

models.

The figure shows that the latent trait estimates from

Model 12 are different (tend to be smaller) than those from

Models 10 and 11, while the latent trait estimates from Mod-

els 10 and 11 are similar to each other. Specifically, the

correlation between the estimated latent trait scores from

the graded response model (Model 10) and from the model

treating missing as ‘No’ responses (Model 11) is 0.97. How-

ever, the correlations between the Node 2 latent score from

the tree model (Model 12) and the latent score from the

graded response model (Model 10) and the model treating

missing as ‘No’ (Model 11) are much lower: 0.50, 0.38,

respectively. In terms of subject ranking, approximately

91 % of the subjects show more than 10 % difference in

ranking when Model 12 is applied than when Models 10

and 11 are applied. These results suggest that when MNAR

is treated as ignorable (Model 10) and treated as ‘No’

responses (Model 11), the inference on the persons’ latent

traits can be biased to some degree.
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Discussion

Traditional IRT models focus on studying observed cate-

gorical item responses. The “black-box” decision process

that leads to the observed item responses is, however, typi-

cally not of much interest in common IRT analysis. In this

article, we presented generalized item response tree models

that can be useful for investigating underlying decision pro-

cesses. The item response tree models can also be useful for

describing distinctive features of item response categories

and for investigating multiple sources of heterogeneity in

a response scale. These purposes are often neglected in

traditional IRT analysis.

The proposed generalized item response tree modeling

framework is flexible in its parametric form, dimensionality,

and choice of explanatory variables. In particular, one can

test whether a general latent trait can be used to summa-

rize potentially multidimensional response categories with a

bifactor structure. It is noteworthy that the bifactor version

of the tree model has a computational advantage for maxi-

mum likelihood estimation, because the total dimensionality

involved in calculating the likelihood can be remarkably

reduced based on the conditional independence assump-

tion between latent variables when a bifactor structure is

exploited (Gibbons and Hedeker, 1992; Gibbons et al.,

2007; Rijmen, 2009; Jeon et al., 2013).

We provided two kinds of applications to demonstrate

the utilities of the proposed approach for investigating

Likert-scale item responses and missing responses for psy-

chological assessments. We also showed that exploiting a

bifactor structure in a item response tree model can be

a measurement solution when the response categories are

multidimensional and may not be perfectly ordinal. In addi-

tion, we showed that a proposed tree modeling approach can

be useful for testing the MAR assumption on missing item

responses.

We introduced the new IRT package, flirt for maxi-

mum likelihood estimation of the proposed framework.

The package flirt can be a useful tool for efficiently

estimating high-dimensional tree models with explanatory

variables. With flirt, different types of IRT models can

be specified per node (dimension) in terms of paramet-

ric forms, dimensionality, link functions, covariates, and

so on.

One limitation of the proposed model is that the tree

allows only one unique path to an observed response cate-

gory. This restriction may be relaxed by allowing for multi-

ple paths to an observation as in Boeckenholt (2013). How-

ever, further research is needed to embrace multiple-path

tree models in the current framework because including

multiple paths may not only produce a model identifica-

tion problem but also make it impossible to convert the tree

−
2

−
1

0
1

2

Respondents

θ

Grad

Tree

No

1 15 32 49 66 83 102 123 144 165 186 207 228 249 270 291 312

Fig. 8 Latent trait estimates from the regular graded response model (Graded), the item response tree model (Tree), and the graded response

model with missing treated as incorrect responses (No)
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model to a standard IRT model that can be estimated with a

standard IRT software package.
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Appendix

We carried out a simulation study to show parameter recov-

ery of the generalized item response tree models. We uti-

lized the verbal aggression data used in the “Three-point

Likert scale” section. We specified a two-dimensional tree

model with two nodes (based on the tree structure shown in

Fig. 4). The parameter estimates from the model were used

as the data generating values. The two-dimensional latent

scores were generated from a multivariate normal distribu-

tion with the estimated means and covariance matrix. Based

on a sample size of N = 316 (same as the empirical data),

100 datasets with a total of 97 parameters (48 item discrimi-

nation parameters + 48 intercept parameters + 1 covariance

parameter) were generated and evaluated using the package

flirt.

Figure 9 displays boxplots of the estimated error (ψ̂m −

ψm, where ψm and ψ̂m are the true and estimated values for

the mth parameter, m = 1, ..., 97).

In Fig. 9, each boxplot shows the distribution of the esti-

mated error for the corresponding parameter across 100

simulated datasets. The bold horizontal line (inside the inner

box) denotes the median of the data, the lower and upper

ends of the box indicate the first and third quartiles, respec-

tively, and the lower and upper ends of whiskers denote

the minimum and maximum values, respectively. For most

parameters, the estimated errors ranged from −1.0 to 1.0

(only a few parameters showed a maximum/minimum error

greater than ±1.0 but smaller than ±2). The bias estimates

(the means of the estimated errors across datasets) were

small and ranged from −0.16 to 0.035 with a mean of -

0.03 (only seven cases were greater than ±0.10). The mean

squared error (MSE) estimates were also quite small and

ranged from 0.007 to 0.40 with the mean of 0.04 (only two

cases were greater than 0.20).

This result suggests that true parameter values of the

specified item response tree model were recovered quite

well using the package flirt.
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Fig. 9 Estimated error (ψ̂m − ψm) for 97 parameters (m = 1, ...,

97). The parameters are aligned in the order of 48 item discrimination

parameters (item 1 to item 24 for Node 1 and item 25 to item 48 for

Node 2), 48 intercept parameters (item 1 to item 24 for Node 1 and

item 25 to item 28 for Node 2), and 1 covariance parameter
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