
A Generalized Kalman Filter for Fixed
Point Approximation and Efficient
Temporal-Difference Learning

David Choi & Benjamin Van Roy

Springer Science + Business Media, LLC 2006

Abstract The traditional Kalman filter can be viewed as a recursive stochastic
algorithm that approximates an unknown function via a linear combination of
prespecified basis functions given a sequence of noisy samples. In this paper, we
generalize the algorithm to one that approximates the fixed point of an operator that
is known to be a Euclidean norm contraction. Instead of noisy samples of the desired
fixed point, the algorithm updates parameters based on noisy samples of functions
generated by application of the operator, in the spirit of Robbins–Monro stochastic
approximation. The algorithm is motivated by temporal-difference learning, and our
developments lead to a possibly more efficient variant of temporal-difference learn-
ing. We establish convergence of the algorithm and explore efficiency gains through
computational experiments involving optimal stopping and queueing problems.

Keywords Dynamic programming . Kalman filter . Optimal stopping . Queueing .

Recursive least-squares . Reinforcement learning . Temporal-difference learning

1. Introduction

We consider the problem of fixed point computation:
Given an operator F acting on functions J : S7!<, find a function J* such that

J* ¼ FJ*.
Our interest is in cases where S is finite but very large; we are motivated by

problems in which elements of S are identified with vectors of d variable compo-

Discrete Event Dyn Syst (2006) 16: 207–239
DOI 10.1007/s10626-006-8134-8

This research was supported in part by NSF CAREER Grant ECS-9985229, and by the ONR under
Grant MURI N00014-00-1-0637.

D. Choi (*)
Lincoln Laboratory, Massachusetts Institue of Technology, 244 Wood Street,
Lexington, MA 02420-9108, USA
e-mail: dchoi@11.mit.edu

B. Roy
Departments of Management Science and Engineering and Electrical Engineering,
Stanford University, Stanford, CA 94305, USA

B. Van Roy

nents, and the cardinality of S therefore grows exponentially in d. In such situations,
a fixed point is often too large to store, let alone compute. Known as Bthe curse of
dimensionality,’’ this phenomenon gives rise to prohibitive computational require-
ments for many problems of practical interest.

1.1. Contractions and Successive Approximations

In this paper, we develop approximation methods for fixed point problems where
the cardinality n of S is finite, though possibly enormous, so that mappings of the
form S7!< can be represented by vectors in <jSj. An approximation is sought for the
fixed point of an operator F : <jSj 7!<jSj, assumed to be a contraction with respect to
a weighted Euclidean-norm k�kD, defined by

kJkD ¼ ðJ 0DJÞ1=2;

where D is a positive definite diagonal matrix. Without loss of generality, we let the
diagonal elements of D sum to 1, so that they can be viewed as probabilities over S.

By virtue of being a contraction, the operator F is guaranteed to possess a unique
fixed point J*, and given sufficient compute time, one can generate successive
approximations according to

Jtþ1 ¼ FJt;

that converge to J*. In particular, for any J0 2 <n, we have Jt!J*. Unfortunately,
the curse of dimensionality often renders the successive approximations method
intractable.

1.2. Fitting Basis Functions

One simple approach to alleviating computational requirements involves approxi-
mating each iterate Jt by a linear combination of prespecified basis vectors �1; . . .;
�K 2 <jSj, in a spirit reminiscent of statistical regression. In particular, for each t, a
weight vector rt 2 <K is generated with the intent of offering an approximation

XK

k¼1

rtðkÞ�k � Jt:

Or defining a matrix

F ¼
j j
�1 � � � �K
j j

2
4

3
5;

the approximation can be written as Frt. One method for generating the sequence of
weight vectors iteratively solves for rtþ1 satisfying the relation

Frtþ1 ¼ PFFrt;

where P is a projection operator that projects onto the span of �1; . . .; �K with
respect to k�kD. (In our discussion, jSj is finite, so P is easily verified to be P ¼
FðF0

DFÞ�1
F

0
DÞ:Þ As established by Tsitsiklis and Van Roy (1997), this sequence of

208 Discrete Event Dyn Syst (2006) 16: 207–239

approximations converges to a fixed point Fr* equalling PFFr*, which satisfies an
error bound

kJ*� Fr*kD � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p kJ*� PJ*kD;

where � is the contraction factor of F. In other words, the resulting approximation
error is within a constant factor of the best possible, which is the error associated
with the projection PJ*.

Our developments in this paper are motivated by ongoing work on approximation
methods for large-scale dynamic programming. To put our formulation and algo-
rithms in perspective, let us present a relevant example, involving optimal stopping
problems as treated in Tsitsiklis and Van Roy (1999) and Van Roy (1998).

Example 1: Approximate Value Iteration for Optimal Stopping Problems

Consider a discrete-time Markov process x0; x1; x2; . . . evolving on a finite state

space S, with dynamics characterized by an n� n irreducible aperiodic transition

matrix P. Let the �-field generated by x0; . . .; xt be denoted by F t. A stopping time is a

random variable � taking on values in 0; 1; 2; . . . such that for any t, the event f� � tg
is F t -measurable. We consider an optimal stopping problem of the form

max
�

E ½��Gðx� Þjx0�;

where G is a reward received upon stopping, � is a discount factor in ð0; 1Þ, and the

maximization is over stopping times.
This problem can be solved by dynamic programming. In particular, letting an

operator T : <n 7!<nbe defined by

T J ¼ maxðG; �PJÞ

for J 2 <jSj and with the maximization taken pointwise, the problem amounts to

computing the fixed point J* 2 <jSj of T . It is well known that T is a contraction with

respect to the maximum norm, and therefore, it possesses a unique fixed point. Given

J*, an optimal stopping time �* can be generated according to

�* ¼ minftjGðxtÞ � J*ðxtÞg:

It has been shown in Tsitsiklis and Van Roy (1999) that T is contraction with

respect tok�kD, where the diagonal entries of D correspond to stationary probabilities

�ðxÞ of the Markov process. This motivates use of the approximation method

discussed in the previous section. In particular, when the state space underlying an

optimal stopping problem is too large and exact solution is infeasible, one can select

basis functions �1; . . . ; �K and then hope to generate an approximation within their

span using the iteration

Frmþ1 ¼ PTFrm;

where the projection matrix P (given by P ¼ FðF0
DFÞ�1

F
0
D) projects onto the span

of �1; . . . ; �K with respect to k�kD.
As in Tsitsiklis and Van Roy (1999), given the limit Fr* of this sequence, one

might generate an approximately optimal stopping time �~ according to

�~ ¼ minftjGðxtÞ � ðFr*ÞðxtÞg:

Discrete Event Dyn Syst (2006) 16: 207–239 209

1.5. Stochastic Samples

The advantage of the iteration Frmþ1 ¼ PFFrm over the standard successive approx-
imations iteration Jmþ1 ¼ FJm is that it updates a weight vector rm of dimension K

rather than a vector Jm of dimension n � K. However, the iteration is still
impractical in many contexts for the following reasons:

1. The iteration Frmþ1 ¼ PFFrm entails computation of ðFFrmÞðxÞ for all x 2 S,
and then its projection to the span of F. Due to the curse of dimensionality, jSj
can be enormous, making it impossible to compute or store this many values.

2. It is often difficult to compute ðFFrmÞðxÞ exactly, even for a particular x. This is
because the value of ðFFrmÞðxÞ can depend on every component of Frm, and the
number jSj of components can be enormous.

It turns out that both of these obstacles can often be tackled using stochastic
algorithms. In particular, it is often the case that, given some x 2 S and r 2 <k, one
can efficiently generate a noisy stochastic sample �ðxÞ such that E½�ðxÞ� ¼ ðFFrÞðxÞ,
and that there are efficient algorithms that converge to Fr* using a reasonable
number of such samples. We will discuss such algorithms later. For now, let us moti-
vate the obstacles and how the samples of interest might be generated in the optimal
stopping context introduced in the previous section.

Example 2 Stochastic Sampling for Optimal Stopping Problems: To approxi-

mate the solution of an optimal stopping problem, we proposed an iteration
Frmþ1 ¼ PTFrm. It is clear that, if the underlying state space is intractable, we should

not aim at computing TFrm. However, we might hope to compute a sample value

ðTFrmÞðxÞ ¼ max GðxÞ; �
X

y2S
PxyðFrmÞðyÞ

 !
;

for a representative state x. If there are only a few possible states that can follow x,
there will be only a few nonzero Pxy’s, and the summation can be computed

efficiently. In this case, we can obtain ðTFrmÞðxÞ. However, when there are many

possible states that could follow x, the summation becomes intractable. In the spirit of

Monte-Carlo methods, however, we might try to generate an unbiased estimate.

In particular, instead of summing over all possible states that could follow x,
sample a single state y according to transition probabilities Pxy. Since y is a stochastic

sample for the next state, we might hope to use y to produce an unbiased estimate of

ðTFrmÞðxÞ. One might imagine using an estimate of the form maxðGðxÞ; �ðFrmÞðyÞÞ;
however, this estimate is not unbiased, since Ey½maxðGðxÞ; �ðFrmÞðyÞÞjx� is generally
greater than ðTFrmÞðxÞ.

Instead of trying to find an unbiased estimate for ðTFrmÞðxÞ, we can circumvent

the problem by estimating an entirely different (though related) value ðHFrmÞðxÞ,
where the operator H is defined as

HQ ¼ �PmaxðG;QÞ:

It is well known (see Section 6.8.4, p. 358 of Bertsekas and Tsitsiklis (1995)) that H is

also a k�kD -norm contraction with fixed point Q* defined by

Q* ¼ �PJ*;

210 Discrete Event Dyn Syst (2006) 16: 207–239

and that Q* also satisfies

J*ðxÞ ¼ maxðGðxÞ;Q*ðxÞÞ:

As a result, a sample �ðxÞ ¼ �maxðGðyÞ; ðFrmÞðyÞÞ can be generated efficiently and

serves as an unbiased estimate of ðHFrmÞðxÞ. However, the fixed point of H—and

therefore the function we are going to end up approximating—is not J*, but rather
Q*. We will discuss later algorithms that produce weights r* such that Fr* approxi-

mates Q* and maxðG;Fr*Þ approximates J*.

1.4. Stochastic Steepest Descent and Temporal-Difference Learning

Our work is motivated largely by the temporal-difference learning algorithm (TD)

(Sutton, 1988). As presented in Tsitsiklis and Van Roy (1997) and Van Roy (1998),

TD operates along the lines of our discussion, using stochastic samples �ðxÞ to
estimate ðFFrÞðxÞ. The stochastic estimation error can be represented as a zero
mean noise term w ¼ �ðxÞ � ðFFrÞðxÞ. The iterations for TD also depend on a
tuning parameter � 2 ½0; 1� and a stepsize schedule �t; for the case where � ¼ 0, the
iterations take the form:

rtþ1 ¼ rt þ �t�ðxtÞððFFrtÞðxtÞ þ wtþ1 � ðFrtÞðxtÞÞ;

where xt 2 S is generated by some sampling mechanism, �ðxÞ 2 <k ¼ ½�1ðxÞ; . . . ;
�KðxÞ�0, and ðFFrtÞðxtÞ þ wtþ1 represents a stochastic sample generated and used by
the algorithm. Roughly speaking, a random sample xt is drawn, and then rt is
adapted to reduce the difference between ðFFrtÞðxtÞ and ðFrtÞðxtÞ. There is a rich
literature on convergence analysis of this algorithm (Dayan, 1992; Gurvits et al.,
1994; Pineda, 1997; Sutton, 1988; Tadić, 2001; Tsitsiklis and Van Roy, 1997; Van
Roy, 1998; and Warmuth and Schapire, 1997). Though more complicated sampling
mechanisms will be considered later, we will limit attention for now to a situation
where each sample xt is independently drawn from S with probabilities given by the
diagonal elements of D.

A more sophisticated interpretation of Temporal Difference learning might view
the algorithm as a generalization of stochastic steepest descent. A formula for
stochastic steepest descent would be written as:

rtþ1 ¼ rt þ �t�ðxtÞðJ*ðxtÞ þ wtþ1 � ðFrtÞðxtÞÞ:

At each iteration, stochastic steepest descent estimates the gradient of the error
function kJ	 � FrtkD, and then adapts the weights rt in the direction of the estimated
gradient. Note, in particular, that for stochastic steepest descent,

E½rtþ1jrt� ¼ rt þ �tF
0DðJ*� FrtÞ ¼ rt �

1

2
rrkJ*� Frtk2D:

TD differers from stochastic steepest descent in that it applies to problems for which
J* is unavailable, as is the gradient of the error function kJ*� FrkD. TD instead
estimates the gradient of kFFrt � Frk2D with respect to r, and then adapts the
weights rt in the direction of the estimated gradient.

Discrete Event Dyn Syst (2006) 16: 207–239 211

1.5. The Fixed Point Kalman Filter

A well known alternative to stochastic steepest descent is the Kalman filter, also

known as recursive least-squares. While stochastic steepest descent chooses rt to adapt
ðFrtÞðxtÞ towards J*ðxtÞ, recursive least-squares chooses rt to give the best fit to J* at
all points x1; . . .; xt drawn up to that point. The Kalman filter is best known as a
method for recursively solving the least-squares problem to find rtþ1 without having
to store x0; . . .; xt. Many features of the Kalman filter are specific to its more
common applications in control theory and communications, so we do not consider
them here. For the problem of estimating J* from samples J*ðx1Þ; . . .; J*ðxtÞ, the
iterates rt generated by the Kalman filter satisfy

rt ¼ argmin
r

Xt�1

s¼1

ðJ*ðxsÞ þ wsþ1 � ðFrÞðxsÞÞ2;

taking rt to be the vector of minimum norm when there are multiple candidates r that
minimize the right hand side. The iterates are computed recursively according to

rtþ1 ¼ rt þ
1

t
Ht�ðxtÞðJ*ðxtÞ þ wtþ1 � ðFrtÞðxtÞÞ; ð1Þ

where

Ht ¼
1

t

Xt

s¼1

�ðxsÞ�0ðxsÞ
 !�1

;

assuming that the summation
Pt

s¼1 �ðxsÞ�0ðxsÞ is nonsingular. As this summation
may be singular for small values of t, any of three different methods are commonly
used.

1. The pseudo-inverse is used instead of matrix inversion; i.e., x ¼ Ayy minimizes
kAx� yk, and if there are multiple vectors attaining this minimum, it is the one
of minimal norm.

2. The matrix is regularized, meaning that

Ht ¼
	

t
I þ 1

t

Xt

s¼1

�ðxsÞ�0ðxsÞ
 !�1

;

for some small value 	.
3. Additional states x�
; . . .; x�1 are drawn, until

P0
s¼�
 �ðxsÞ�0ðxsÞ is nonsingular.

At each iteration, the matrix Ht equals

Ht ¼
1

t

Xt

s¼�

�ðxsÞ�0ðxsÞ

 !�1

:

In this paper, we assume that the first method is implemented.
The Kalman Filter generally converges in far fewer iterations than stochastic

steepest descent. One interpretation for the faster convergence of the Kalman filter
is that the iterates are identical if the matrix Ht happens to equal the identity I. This

212 Discrete Event Dyn Syst (2006) 16: 207–239

occurs when the basis functions are chosen to be orthonormal. The Kalman filter
can be seen as a steepest descent algorithm that adaptively rescales the basis
functions to compensate for functions that are chosen to be poorly scaled.

We now motivate the methods presented in this paper by analogy with the
Kalman filter. Similarly with the case of stochastic steepest descent, when samples of
the function J* are unavailable, the Kalman filter is inappropriate. TD can be
viewed as a generalization of stochastic steepest descent that is applicable when J* is
unavailable. In this paper, we study an analogous generalization of the Kalman
filter, which we call the fixed point Kalman filter. The fixed point Kalman filter
updates iterates according to

rtþ1 ¼ rt þ �tHt�ðxtÞððFFrtÞðxtÞ þ wtþ1 � ðFrtÞðxtÞÞ; ð2Þ

where �t is a sequence of scalar step sizes and Ht is a sequence of matrices con-
verging to ðF 0DFÞ�1.

There are many versions of the fixed point Kalman filter, each associated with a
step size sequence �t, a sequence of matrices Ht. We discuss two versions:

1. The one most closely resembling the Kalman filter generates weights satisfying

rt ¼ argmin
r

Xt�1

s¼1

ððFFrsÞðxsÞ þ wsþ1 � ðFrÞðxsÞÞ2 ð3Þ

taking rt to be the vector of minimum norm when there are multiple candidates
r that minimize the right hand side. This is accomplished by setting the matrix
Ht to

Ht ¼
1

t

Xt

s¼1

�ðxsÞ�0ðxsÞ
 !y

;

and the step sizes to �t ¼ 1=t.
2. In the previous version, the weights rt are chosen so that Frt fits prior samples

ðFFrt�1ÞðxtÞ þ wt; ðFFrt�2Þðxt�2Þ þ wt�1; Note that, since �t ¼ 1=t, each prior
sample is weighed to an equal extent. However, it seems that more recent
samples should be more relevant than those collected in the distant past,
because the weight vector rt has evolved over time. In order to place more
emphasis on recent samples, we can reduce the rate of decay of this step size
sequence. For example, one could employ a sequence �t ¼ a=ðaþ tÞ for some
large a. Slowing down the decay of the step size in this way can often lead to
faster convergence. In particular, though 1=t is the optimal step size sequence
for the traditional Kalman filter which has a fixed Btarget’’ of J*, the fact that the
Btarget’’ Frm of the fixed point Kalman filter is evolving motivates maintenance
of larger step sizes for a greater number of iterations.

1.6. Least-Squares TD

Least-squares temporal-difference learning (LSTD) is another generalization of the

Kalman filter amenable to situations where the desired function J* is not directly
available. This algorithm was introduced by Bradtke and Barto (1996), who also
provide some convergence theory. An excellent discussion of the algorithm and

Discrete Event Dyn Syst (2006) 16: 207–239 213

extensions can also be found in Boyan (1999). Relevant convergence theory and
related extensions are developed in Bradtke and Barto (1996), Nedic and Bertsekas
(2001), and Lagoudakis and Parr (2001). In this section, we explain similarities and
differences between the fixed point Kalman filter and LSTD, for the special case of
� ¼ 0.

At each iteration, LSTD minimizes the empirical squared error between Fr and
PFFr. Its iterates satisfy

rtþ1 ¼ argmin
r

Xt

s¼1

ððFFrÞðxsÞ þ wsþ1 � ðFrÞðxsÞÞ2:

For problems involving autonomous systems or fixed policies, F is linear, and rt is
the solution to a linear least-squares problem, which can be efficiently solved. Em-
pirical studies show that LSTD converges faster than TD, when F is linear Boyan
(1999) and Bradtke and Barto (1996). However, for the more general case where F

is nonlinear, the iterates are difficult to compute and LSTD cannot be applied in a
straightforward manner. In such cases, the fixed point Kalman filter can be viewed
as a relaxation of LSTD whose iterates satisfy a slightly different equation:

rtþ1 ¼ argmin
r

Xt

s¼1

ððFFrsÞðxsÞ þ wsþ1 � ðFrÞðxsÞÞ2;

which can be efficiently computed.

1.7. Contributions and Organization of the Paper

The main contributions of this paper consist of:

1. A proof that the fixed point Kalman filter converges.
2. Computational experiments demonstrating potential advantages over TD.

The main benefit offered by the fixed point Kalman filter is that it appears to converge

in fewer iterations than TD. The compute time required per iteration grows, but even

factoring in this increase, the rate of convergence in terms of compute time should

compare favorably against that offered by TD. Furthermore, in the Blearning’’

context, where samples used to update iterates are associated with empirical

observations, the faster convergence delivered by the fixed point Kalman filter

translates to more effective use of observations.

This paper represents an extended version of an earlier one Choi and Van Roy

(2001). This earlier paper did not present the convergence proofs included in the

current paper. This extended paper also reports empirical results from new case

studies.

The remainder of the paper is organized as follows. In the next section, we present

and prove a convergence theorem. This theorem is proved using a supermartingale

convergence theorem as a starting point because to the best of our knowledge, there

are no general stochastic approximation theorems available in the literature that

apply directly to our particular problem. In Section 3, we present computational

results. The results are generated through experiments involving an optimal stopping

problem and a queueing problem. In the optimal stopping context, the operator F of
interest is a contraction with respect to a weighted Euclidean norm k�kD, along the

214 Discrete Event Dyn Syst (2006) 16: 207–239

lines we have discussed, and both TD and the fixed point Kalman filter are
guaranteed to converge. This is not true, however, in the queueing context. Here, we
apply TD and the fixed point Kalman filter even though the operator F is not a
contraction with respect to a weighted Euclidean norm. Nevertheless, our
computational results are promising, as both algorithms appear to generate effective
control policies. Closing remarks are made in a concluding section.

2. A Convergence Theorem

In this section, we establish convergence of the fixed point Kalman filter. Our devel-

opment closely follows Tsitsiklis and Van Roy’s (1997) and Van Roy (1998) proof of

convergence for TD, though significant additional work is required. The convergence

proof for TD in Tsitsiklis and Van Roy (1997) and Van Roy (1998) makes use of a

general stochastic approximation result from the text of Benveniste et al. (1991). To

the best of our knowledge, the fixed point Kalman filter cannot be reduced to a form

that satisfies the assumptions imposed by the convergence theorems in this text.

In the next section, we provide an extension to a convergence theorem presented in

Benveniste et al. (1991). This extension can be used to establish convergence of the

fixed point Kalman filter, which we will do subsequently. It is worth noting that,

though the result of the next section extends that of Benveniste et al. (1991) in one

dimension, to keep the exposition brief, assumptions are made that in many ways

limit the scope of the result relative to that in Benveniste et al. (1991).

2.1. A General Convergence Theorem

We consider a stochastic approximation algorithm that generates a sequence of

vectors �t 2 <n according to

�tþ1 ¼ �t þ �tGthð�t; xt; xtþ1Þ; ð4Þ

where �t is a sequence of scalar step sizes, Gt is a sequence of n� n matrices, h is a
function from <n to <n, and x0; x1; x2; . . . is a sequence of samples drawn from a
finite set S. We take all random variables to be defined on a probability space
ðW;F ;PÞ with respect to an increasing sequence of �-fields F t 2 F . We will impose
several assumptions on the variables in the above iteration. Our first assumption
concerns the step sizes and is standard in flavor.

ASSUMPTION 1 The step size sequence �t is deterministic (predetermined), non-

increasing, and satisfies

X1

t¼0

�t ¼ 1; and
X1

t¼0

�2t <1:

A second assumption relates to the samples xt.

ASSUMPTION 2 Each xt is measurable with respect to F t, and the sequence

x0; x1; x2; . . . is generated by an irreducible aperiodic Markov chain. Furthermore, x0
is drawn from the invariant distribution of this Markov chain.

Discrete Event Dyn Syst (2006) 16: 207–239 215

Since the process is generated by an irreducible aperiodic Markov chain, there is a

unique invariant distribution. We will denote this distribution by �. Also, let D be the
diagonal matrix whose diagonal elements are �ð1Þ; . . .; �ðnÞ, and let k�kD be the
weighted Euclidean norm defined by kJk2D ¼ J0DJ, for any J.

Our next assumption defines requirements on Gt, which involve its convergence
to the identity matrix I. The assumption may appear somewhat nonstandard; it is
motivated by the desire to bound the speed of convergence of the pseudo-inverse
matrix Ht ¼ ð1

t

Pt
s¼1 �ðxsÞ�0ðxsÞÞ

y used in the Kalman filter iterates. If the pseu-
doinverse in Ht is taken on a poorly conditioned matrix, the norm kHtkD may take
arbitrarily large values, complicating the analysis of its convergence. As a result, we
found it most convenient to bound the rate of convergence of Ht as a function of
sup�kH�kD.

ASSUMPTION 3 Each Gt is F t-measurable, and the sequence Gt converges to I with

probability one. Furthermore, there exists a nonincreasing deterministic scalar se-

quence �t and a function : <7!< such that kGtþ1 � GtkD � �t ðsup�kG�kDÞ <1,
for all t, and

P
t �t�t <1, with probability one.

The discussion of Assumption 9 will more explicitly establish the connection be-

tween Ht used in the Kalman filter, and the Gt used in the general convergence
theorem. The next assumption calls for Lipshitz continuity of h with respect to �.

ASSUMPTION 4 There exists a scalar C such that for all x; y; �; �,

khð�; x; yÞ � hð�; x; yÞkD � Ck�� �kD:

Note that this assumption implies that there exists a scalar C such that

khð�; x; yÞkD � Cð1þ k�kDÞ:

Furthermore, this assumption implies that the steady-state expectation hð�Þ ¼ E½h
ð�; xt; xtþ1Þ� of h is also Lipshitz continuous.

Our final assumption ensures that h appropriately orients parameter adjustments.

ASSUMPTION 5 There exists a scalar c > 0 such that

�0Dhð�Þ � �ck�k2D;

for all � 2 <n, and hð0Þ ¼ 0.

Note that this assumption implies that h possesses a unique root at � ¼ 0.
For now, we state the general convergence theorem.

THEOREM 1 Let Assumptions 1–5 hold. Then, for any �0 2 <n, the sequence �t
generated according to Eq. (4) converges to 0 with probability one.

We defer the proof of this theorem to the Appendix. This theorem will be used in

the next section to prove the convergence of the fixed point Kalman filter, where we

further discus the above assumptions and how they can be verified for the algorithm.

216 Discrete Event Dyn Syst (2006) 16: 207–239

2.2. Convergence of the Fixed Point Kalman Filter

Recall that the fixed point Kalman filter relies on a sequence of matrices Ht and
generates iterates according to

rtþ1 ¼ rt þ �tHt�ðxtÞððFFrtÞðxtÞ þ wtþ1 � ðFrtÞðxtÞÞ:

We once again take all random variables to be defined on a probability space
ðW;F ;PÞ with respect to an increasing sequence of �-fields F t 2 F . As in the
previous section, we will assume that xt 2 S for a finite set S, and that x0; x1; x2; . . . is
generated by an irreducible aperiodic Markov chain with invariant distribution �
and we take D to be the diagonal matrix with diagonal entries given by �. We
introduce four assumptions. The first is that F is a contraction.

ASSUMPTION 6 There exists � 2 ð0; 1Þ such that for all J; J 2 <n,

kFJ � FJkD � �kJ � JkD:

We let J* denote the fixed point of F.
Our second assumption ensures that the basis functions are linearly independent.

It is not absolutely necessary, but is introduced to simplify the exposition.

ASSUMPTION 7 The columns of F are linearly independent.

Let P denote the projection matrix FðF0DFÞ�1
F

0D, and recall that PF is a
contraction with contraction factor �. We denote the fixed point of PF by Fr*. By
Assumption 7, this identifies a unique r*.

The next assumption concerns the noise wt, formalizing the notion of a stochastic
sample �ðxÞ that was introduced in Section 1.3.

ASSUMPTION 8 For each t, wt is generated according to wt ¼ wðrt; xt; xtþ1Þ, for
some function w. Furthermore, E½wðr; xt; xtþ1Þjxt� ¼ 0, for all r; xt, and there exists a

scalar C such that

kwðr; x; yÞ � wðr; x; yÞkD � Ckr � rkD;

for all r; x; y.

Roughly speaking, the stochastic sample approximating ðFFrtÞðxtÞ must be un-
biased and have bounded error for Assumption 8 to hold. For the experiments in
this paper, the fact that the state space is finite is sufficient to establish the bound
given in this assumption.

Our final assumption applies to the convergence of Ht. As stated before, Ht may
take large values before converging, so its rate of convergence can be difficult to
bound in the usual ways.

ASSUMPTION 9 Each Ht is F t-measurable, and the sequence Ht converges to

ðF0DFÞ�1, with probability one. Furthermore, there exists a nonincreasing determin-

istic scalar sequence �t and a function : <7!< such that kHtþ1 �HtkD � �t ðsup�k
H�kDÞ <1, for all t, and

P
�t�t <1, with probability one.

Discrete Event Dyn Syst (2006) 16: 207–239 217

To motivate why this assumption should hold for practical algorithms, consider a

sequence Ht defined by

Ht ¼
1

t

Xt

s¼1

�ðxsÞ�0ðxsÞ
 !y

:

Clearly, Ht converges to ðF0DFÞ�1 (as 1
t

Pt
s¼1 �ðxsÞ�0ðxsÞ converges to F

0DF, Ht

must converge to its inverse, since matrix inversion is locally continuous for
nonsingular matrices). Let us discuss why the remaining conditions are satisfied. The
sequence can alternatively be written as Ht ¼ L

y
t , where Lt evolves according to

Ltþ1 ¼ Lt þ
1

t þ 1
ð�ðxtþ1Þ�0ðxtþ1Þ � LtÞ:

Let H ¼ suptkHtkD. It holds that H <1, since Ht is non-singular for all t. Since
matrix inversion is locally Lipshitz over the space of positive definite matrices, there
is a scalar cðHÞ such that

kLy �MykD � cðHÞkL�MkD;

for kLykD � H, kMykD � H. It follows that

kHtþ1 �HtkD ¼ t

t þ 1
Htþ1 �Ht

����
����
D

þ 1

t þ 1
Htþ1

����
����
D

� cðHÞ t þ 1

t
Ltþ1 � Lt

����
����
D

þH

t

¼ cðHÞ
t

k�ðxtþ1Þ�0ðxtþ1ÞkD þ H

t
:

Therefore,

kHtþ1 �HtkD � ðHÞ
t

;

for some scalar ðHÞ. Hence, the assumption is satisfied by setting �t ¼ 1=t, in which
case

P
�t�t <1 holds since we assume that

P
�2t <1.

We now state the convergence theorem for the fixed point Kalman filter.

THEOREM 2 Let Assumptions 1, 2, 6, 7, 8, and 9 hold. Then, for any r0 2 <K,
the sequence rt generated by the fixed point Kalman filter converges to r* with

probability one.

Proof: We will apply Theorem 1 to prove the present theorem. In doing so,
we will associate �t with Frt � Fr*. We set

hð�; x; yÞ ¼ FðF0DFÞ�1�ðxÞððFFrÞðxÞ þ !ðFr; x; yÞ � FrÞ;
and it follows that

hð�Þ ¼ FðF0DFÞ�1
F

0DðFFr � FrÞ
¼ PðFFr � FrÞ
¼ PFFr � Fr:

Furthermore,

Gt ¼ FHtF
0ðFðF0DFÞ�1

F
0Þ�1:

218 Discrete Event Dyn Syst (2006) 16: 207–239

Assumptions 1 and 2 are common to Theorems 1 and 2. To establish convergence
of �t ¼ Frt � Fr* to 0, we must show that Assumptions 3, 4, and 5 hold.

We begin with Assumption 3. Since Ht converges to ðF0DFÞ�1, Gt converges to I.
Let �t be a sequence and a function satisfying the conditions of Assumption 9.
Since the mapping from Ht to Gt is linear and F has full rank, it is easy to see that
there exist scalars c1 and c2 such that

kGtþ1 � GtkD � c1kHtþ1 �HtkD and kHtkD � c2kGtkD:
It follows from Assumption 9 that

kGtþ1 � GtkD � c1�t sup
�

 ðc2kG�kDÞ:

Hence, Assumption 3 holds, being satisfied by a sequence �t ¼ c1�t and a function
 ðGÞ ¼ ðc2GÞ.

Assumption 4 follows immediately from the fact that F is a contraction mapping
(Assumption 6) and w is Lipshitz continuous in � (Assumption 8). We are left with
the task of establishing validity of Assumption 5. For any � ¼ Fr � Fr*, we have

�0Dhð�Þ ¼ ðFr � Fr	Þ0DðPFFr � FrÞ
¼ ðFr � Fr*Þ0DðPFFr � Fr*Þ þ ðFr � Fr*Þ0DðFr*� FrÞ
� kFr � Fr*kDkPFFr � Fr*kD � kFr � Fr*k2D
� ð�� 1ÞkFr � Fr*k2D;

where the first inequality follows fromCauchy–Schwartz, and the second follows from
the fact that F is a contraction (Assumption 6). Note that 1� � > 0. Furthermore,

hð0Þ ¼ PFFr	 � Fr	 ¼ 0:

We have verified that all assumptions of Theorem 1 are satisfied. Theorem 2
follows.

3. Computational Results

In this section, we discuss experimental results comparing TD(0) and the fixed-point
Kalman filter. Our first case study involves an optimal stopping problem introduced
in Tsitsiklis and Van Roy (1997). In this case, the fixed-point Kalman filter converges
faster than TD(0), as anticipated. A second case study, we consider a queueing
problem for which an optimal policy is known. In this context, neither TD(0) nor the
fixed point Kalman filter are guaranteed to converge. Nevertheless, both appear to
deliver good control policies, with the fixed point Kalman filter converging faster
and exhibiting more robustness than TD(0).

3.1 An Optimal Stopping Problem

We consider a fictitious financial derivative whose payoff at the time of exercise is equal

to the current price of a particular stock divided by its price one hundred days ago. The

security, once bought, may be held indefinitely by its holder while the price of the stock

fluctuates autonomously, until its exercise is desired. As a result, the payoff of the

derivative also fluctuates as an autonomous process until the decision is made to stop

the process (by exercising the option), at which time a reward is collected.

It has been shown Karatzas and Shreve (1998) that the value of this security is

equal to the optimal reward for a particular optimal stopping problem, whose

Discrete Event Dyn Syst (2006) 16: 207–239 219

particulars we introduce here. Let be the constant continuously compounded short-
term interest rate of a money market available for investment. Let the actual price
of the stock pt be modeled by a geometric Brownian motion

pt ¼ p�100 þ
Z t

s¼�100

�psdsþ
Z t

s¼�100

psdws;

for some positive scalars p0; �; and �, and a standard Brownian motion wt. Then the
value of the security is equal to the discounted (with discount factor e�) payoff of
the security under the optimal exercise policy, but with the stock price modeled as pt

~

rather than pt, where pt
~ evolves according to

dpt
~ ¼ pt

~ dt þ �pt
~ dwt:

We now cast the task of finding an optimal exercise policy as an optimal stopping
problem. Let fxtjt ¼ 0; 1; 2; . . .g be a Markov process where xt 2 <100 and xtðiÞ ¼
pt�i
~ =pt�100

~ , for all i ¼ 0; 1; . . . ; 100. Let GðxÞ ¼ xð100Þ and � ¼ e�. Let �	 be the
stopping time that produces the optimal expected reward

sup
�>0

E½��Gðx�Þjx0 ¼ x�:

3.1.1 Approximating the Optimal Payoff

Because the state space <100 of the process xt is quite large, we cannot hope to com-
pute an optimal stopping policy to produce �*. Instead, we compute a suboptimal
policy with the stopping time � dependent upon features collected from x. Our
experiment replicates the one reported in Van Roy (1998). The features, repre-
sented by a set of 16 basis functions F ¼ ½�1 . . .�16�, span a space of much lower
dimension than <100. In Tsitsiklis and Van Roy (1999), a stopping policy is derived
from a linear combination of these basis functions, with the weights produced from
temporal-difference learning algorithm.

We repeat the experiment, recalculating the weights using the fixed point Kalman
filter, to show that the weights produced by the fixed point Kalman filter converges
to their steady state values much sooner than those produced by temporal difference
learning.

Let j¼ i=50�1. The basis functions were chosen heuristically, using arguments that
can be found in Tsitsiklis and Van Roy (1999). For reference, the functions were as
follows:

�1ðxÞ ¼ 1

�2ðxÞ ¼ GðxÞ
�3ðxÞ ¼ min

i¼1;...;100
xðiÞ � 1

�4ðxÞ ¼ max
i¼1;...;100

xðiÞ � 1

�5ðxÞ ¼
1

50
argmin
i¼1;...;100

xðiÞ � 1

�6ðxÞ ¼
1

50
argmin
i¼1;...;100

xðiÞ � 1

�7ðxÞ ¼
1

100

X100

i¼1

xðiÞ � 1ffiffiffi
2

p

220 Discrete Event Dyn Syst (2006) 16: 207–239

�8ðxÞ ¼
1

100

X100

i¼1

xðiÞ
ffiffiffi
3

2

r
j

�9ðxÞ ¼
1

100

X100

i¼1

xðiÞ
ffiffiffi
5

2

r
3j2 � 1

2

� �

�10ðxÞ ¼
1

100

X100

i¼1

xðiÞ
ffiffiffi
7

2

r
5j2 � 3j

2

� �

�11ðxÞ ¼ �2ðxÞ�3ðxÞ
�12ðxÞ ¼ �2ðxÞ�4ðxÞ
�13ðxÞ ¼ �2ðxÞ�7ðxÞ
�14ðxÞ ¼ �2ðxÞ�8ðxÞ
�15ðxÞ ¼ �2ðxÞ�9ðxÞ
�16ðxÞ ¼ �2ðxÞ�10ðxÞ

However, for our experiment, we worked only with basis functions �1; . . .; �10.
When the full array of basis functions �1; . . .; �16 was tested with the fixed point
Kalman filter, it appeared that the matrix H�1

i tended towards singularity,
suggesting that �11 . . . ; �16 were contained in the span of �1; . . .; �10.

3.1.2 Experimental Results

Using our ten basis functions, we generated a sequence of weight vectors

r0; r1; . . .; r1�107 by initializing r0 ¼ 0 and running ten million iterations of TD(0)
with a constant step size of �t ¼ :001, and a second sequence of weight vectors by
initializing r0 ¼ 0 and running ten million iterations of the fixed point Kalman filter
with a constant step size of �t ¼ :01 10000

10000þt
. We reprint the iterative formula for the

fixed point Kalman filter here for reference:

rtþ1 ¼ rt þ �tHt�ðxtÞððFFrtÞðxtÞ þ wtþ1 � ðFrtÞðxtÞÞ;
where

Ht ¼
1

t

Xt

s¼1

�ðxsÞ�
0ðxsÞ

 !y

;

and the estimate ðFFrtÞðxtÞ þ wtþ1 (for both TD and the fixed point Kalman filter) is
given by

ðFFrtÞðxtÞ þ wtþ1 ¼ �maxððFrtÞðxtþ1Þ; xtð100ÞÞ:
At each iteration, the feature weights rt were recorded. As rt evolved, the

performance of the policy was periodically evaluated by drawing 1000 test
trajectories. For the policy at that iterate, the discounted payoff was computed for
each of the test trajectories, and the average discounted payoff was taken as
measure of the performance of the current policy. For each policy that was tested,
the variance of the resulting empirical average was estimated to be less than 0.001.

For both TD and the fixed point Kalman Filter, a range of step sizes schedules
were tested, of the form �t ¼ a b

bþt
, for a 2 f101; 100; 10�1; . . .; 10�5g, and for b 2

f1000; 10000;1g (with b ¼ 1 meaning that �t ¼ a for all t). The schedule whose
policy performance converged fastest was chosen. For the fixed point Kalman filter,

Discrete Event Dyn Syst (2006) 16: 207–239 221

�t was set to zero for the first 20,000 iterations, allowing the matrix Ht to adapt
(from its initialized value H0 ¼ 100I) before the weights rt were allowed to change.

Figure 1 plots the performance of the evolving policy given by the feature weight
trajectories under the fixed point Kalman filter and under TD(0). For this
application, it is uncertain what the optimal policy is. As a result, it is difficult to
rate the optimality of the policy given by TD(0) or by the fixed point Kalman filter.
In Tsitsiklis and Van Roy (1999), however, the resulting policy was shown to
outperform a baseline policy. The fixed point Kalman filter produces payoffs that
converge faster than those given by the TD(0) policy—in fact, the payoffs converge
almost immediately when the policy is produced using the fixed point Kalman filter.

In order to quickly adapt from the initial weight values, the stepsize was chosen to
be large and to decay slowly. As a result, although the payoffs converge rapidly using
the Kalman filter, the feature weights themselves are not as well behaved. Figure 2
plots the feature weights as they are adapted by the fixed point Kalman filter and by
TD(0). The weights of the fixed point Kalman filter oscillate noisily. However, the
fluctuation in the weights does not seem to affect the policy. It could be that the
while oscillations in rt were large, the resulting change in ðFrtÞðxÞ was small for
states x that were commonly visited. It seems that the values of the weights could
possibly be oscillating about a fixed point; however, it is unclear from the figure. The
weights produced by TD(0) are less noisy, and it seems clear that the TD(0) weights
have not reached their steady state values yet.

To produce less noisy weights, the Kalman filter was rerun with a different
stepsize schedule. The difference was that this time, �t was fixed to zero for the first
two-hundred thousand iterations, giving Ht more time to adapt. The result was
faster, smoother convergence of the weights to their steady-state values. The policy
and weights of the alternate stepsize schedule for the fixed point Kalman filter are
shown in Fig. 3.

The options pricing experiment was repeated, for the same range of stepsize
schedules, and using the same ten basis functions, but with a poorly scaled eleventh
basis function added to the feature set. This basis function was random noise with an
expected value of 455. The behavior of the Kalman filter remained unchanged;
however, unless much smaller step-sizes were used, the weights generated by tem-
poral difference learning would blow up to the point of overflow. As a result, as shown

20 40 60 80 100 120 140 160 180
0.2

0.4

0.6

0.8

1

1.2

TD Learning

re
w

a
rd

CPU time (seconds) CPU time (seconds)

20 40 60 80 100 120 140 160 180
0.2

0.4

0.6

0.8

1

1.2

Fixed Point Kalman Filter

re
w

a
rd

Fig. 1 The average discounted payoff of two evolving policies for options pricing

222 Discrete Event Dyn Syst (2006) 16: 207–239

in Fig. 4, the best choice of stepsize for TD produced a much-degraded convergence
rate. The poor performance of the policy given by TD is explained by the magnitude
of the weights, shown in Fig. 5. Because a smaller stepsize is chosen, the weights
adapt much more slowly in temporal-difference learning—with the exception of the
weight corresponding to the poorly scaled feature. In contrast, the fixed point
Kalman filter still converges rapidly to the policy performance attained in the
previous tests. The reason for this is that the Kalman filter iterates automatically
rescales the basis functions by the matrix Ht, where Ht is depends on the empirical
statistics of each basis function. In this example, the eleventh basis function is
statistically much larger than, and uncorrelated with, the other basis functions. As a
result Ht gives low weight to the eleventh basis function without changing the
weights of the other basis functions.

It is worth noting that in each of the examples, most of the adaptation for the
fixed point Kalman filter was unnecessary, since the weights would oscillate noisily
without changing the policy. For this study, the extra simulations were illuminating
for pedagogical reasons, in that they showed the policy could be stable even when

20 40 60 80 100 120 140 160 180
0.2

0.4

0.6

0.8

1

1.2

re
w

a
rd

CPU time (seconds)

Fixed Point Kalman Filter

20 40 60 80 100 120 140 160 180
–1

–0.5

0

0.5

1

Fixed Point Kalman Filter

CPU time (seconds)

w
e

ig
h

ts

Fig. 3 The average discounted payoff, and the underlying feature weights, of an alternate evolving
policy by the Fixed Point Kalman Filter

20 40 60 80 100 120 140 160 180
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2
Fixed Point Kalman Filter

CPU time (seconds)

w
e
ig

h
ts

20 40 60 80 100 120 140 160 180

–0.4

–0.2

0

0.2

0.4

0.6

TD Learning

CPU time (seconds)

w
e
ig

h
ts

Fig. 2 The feature weights of two evolving policies for options pricing

Discrete Event Dyn Syst (2006) 16: 207–239 223

the weights are noisy. In practice, however, a stopping criterion for the filter would
have been convenient, if such a rule could be found.

3.2 Queueing Networks

As a second experiment, we applied temporal difference learning and the fixed point

Kalman filter to the problem of designing a controller for a queueing network. A

queueing network consists of d queues, each of which can be thought of as a state
variable xðiÞ; i ¼ 1; . . .; d, taking on values in f0; 1; 2; . . .g. The state variable xðiÞ

represents the number of jobs in the queue; when a job arrives at queue i then the
state variable xðiÞ is incremented by one, and when a job leaves queue i then xðiÞ is
decremented by one.

For our discussion of queueing networks, we depart from the most general
formulations, and define time as a series of discrete instances ft ¼ 1; 2; 3; . . .g
(although continuous time formulations are also possible). At each instance of t, the
controller chooses to service some of the jobs in the queues. Generally, not all the

20 40 60 80 100 120 140 160 180

–2

–1

0

1

2

3

4

x 10
–3 TD Learning

CPU time (seconds)

w
e
ig

h
ts

20 40 60 80 100 120 140 160 180
–1

–0.5

0

0.5

1

w
e
ig

h
ts

CPU time (seconds)

Fixed Point Kalman Filter

Fig. 5 The feature weights for two evolving policies for options pricing, with degraded basis
functions

20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

TD Learning

CPU time (seconds)

re
w

a
rd

20 40 60 80 100 120 140 160 180
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Fixed Point Kalman Filter

CPU time (seconds)

re
w

a
rd

Fig. 4 The average discounted payoffs of two evolving policies for options pricing, with degraded
basis functions

224 Discrete Event Dyn Syst (2006) 16: 207–239

resident jobs in a queueing network can be serviced at once, and the probability of a
job leaving or arriving at a queue at time t depends on how many jobs were chosen
for service at time t and what queues those jobs resided in.

Let U denote the space of all possible service allocations, and let ut be the
particular decision made by the controller at time t. Let xt 2 X be a d dimensional
vector where x

ðiÞ
t denotes the length of queue i at time t and X denotes the space of

all possible queue lengths. Then x1; x2; . . . is a Markov decision process; xt depends
probabilistically only on the previous state xt�1 and the control decision ut�1.

At each instance t, a cost is imposed based on the current queue lengths xt. The
goal is to design a controller that maps states to actions so as to minimize the
expected discounted cost. We write the expected discounted cost as E½P1

i¼1 �
icðxiÞj

x0�, where � is the discount factor, x0 is the initial state, and cðxiÞ is the cost when the
queue lengths are given by xi.

In many respects, the problem of designing a controller for a queueing network is
similar to the optimal stopping problem from the previous section. The costs cðxiÞ,
for example, can be thought of as negative rewards. However, the action space is
quite different for the two problems. As a result, the contraction F for problems
such as the queueing network will be different than the contraction seen in the
optimal stopping problem.

3.2.1 Finding the Optimal Policy without Special Problem Structure

For such a queueing system, even without any additional problem structure, the opti-

mal control policy can be found by calculating the fixed point of a dynamic program-

ming operator F that is also a contraction (although not in the sense of the k�kD
norm). We define the contraction F here. Let X �U be the space of all allowable
state action pairs. Let Q : X �U ! < be a function mapping state action pairs to
real values. Let pðx; u; yÞ be the probability of transitioning from state x to state y

given action u.
The distribution of next state xtþ1 given previous state x ¼ xt and control decision

u ¼ ut. Then the contraction F is defined pointwise by

FQðx; uÞ ¼ cðxÞ þ �
X

y2X
ðpðx; u; yÞmin

u
Qðy; uÞÞ:

LetQ* be the fixed point of F. If J	 is the value function satisfying Bellman’s equation

J*ðxÞ ¼ min
u

ðcðxÞ þ �
X

y2X
ðpðx; u; yÞJ*ðyÞÞÞ;

then the function Q* is defined by

Q*ðx; uÞ ¼ cðxÞ þ �
X

y2X
ðpðx; u; yÞJ*ðyÞÞ;

and Q* satisfies

min
u

Q*ðx; uÞ ¼ J*ðxÞ;

Discrete Event Dyn Syst (2006) 16: 207–239 225

so that the optimal control policy for the queueing network is to choose ut at each
time t to solve

min
u

Q*ðxt; uÞ:

The reader may find detailed discussions of Q-learning in Bertsekas and Tsitsiklis
(1995). We state here that, as with the value function J	, the enormous (possibly
infinite) size of X �U precludes the exact computation of the fixed point Q* of F.
Instead, we can try to approximate the fixed point F using the methods described in
this paper, temporal difference learning and the fixed point Kalman filter. Since
there exists no norm k�kD such that F satisfies the assumptions of Theorem 1, the
theoretical results of this paper do not apply.

3.2.2 Klimov’s Problem: A Queueing Network with Special Structure

For our experiment we will work with a special case of the queueing problem known

as Klimov’s problem. For this problem, the optimal controller has already been

derived Varaiya et al. (1985). We will use TD and the Fixed Point Kalman Filter to

generate new controllers without any foreknowledge of the optimal control. For this

problem, we can easily find the optimal bounds on the performance of our controller

that we will produce through fixed point approximation methods.

A Description of Klimov’s Problem In Klimov’s problem (also known as Cashier’s
Nightmare), we are given a queueing network with d queues, and the following
additional assumptions.

1. Exactly one job is serviced at any time t.
2. The serviced job does not leave the network; instead it is placed in a new queue.
3. All other jobs remain in their queues.

As a result, the total number of jobs always remains constant at some initial value
that we denote by k.

To complete the description of the network, we formulate the state transition
probabilities and costs. The cost cðxÞ at state x is equal to g 0x for some vector of
costs g. This means that the cost is given by a weighted sum of the queue lengths.
We will introduce x^ as an alternate representation of the state that allows for a
simpler description of the state transition probabilities. Since the number of jobs
remain constant, we can enumerate the jobs 1; . . .; k. Let x

ð̂iÞ
t 2 f1; . . .; dg denote the

queue 1; . . .; d that the ith job resides in at time t. Let x^t 2 f1; . . .; dgk denote a state
representation where the ith element of x^t is given by x

ð̂iÞ
t . Note that xt can be found

from x^t.
We now introduce the state transition probabilities of x^. Let P 2 <d�d be a matrix

whose i; jth entry denotes transition probability pij from queue i to queue j, for
i; j 2 f1; . . .; dg. Let u^t 2 f1; . . .; kg denote the job being serviced at time t. To reduce
notational clutter, we will denote u^t by u and x

ð̂uÞ
t by l. Then, given x^t, x

^
tþ1 is given by

the following rule: for all i 6¼ u,

x
ð̂iÞ
tþ1 ¼ x^

ðiÞ
t :

For i ¼ u,

x
ð̂iÞ
tþ1 ¼ j w:p: pl j:

226 Discrete Event Dyn Syst (2006) 16: 207–239

We note that a more general formulation of Klimov’s problem can be found in
the original solution (Varaiya et al., 1985). In that paper, we note that the inter-
service waiting time is a exponential random variable (whereas in our case it is
always taken to be 1), and so time is defined by a Poisson process ft ¼ t1; t2; t3; . . .g,
with the goal to minimize E½P1

i¼1 �
ticðxtiÞjx0�. However, the continuous and discrete

time versions of Klimov’s problem both produce the same controller, if the discount
factor and cost per state are related by a factor that depends on the interarrival
times E½tiþ1 � ti� of the continuous time formulation (For a more complete
discussion of continuous and discrete time dynamic programming problems, see
Bertsekas (1995b)—specifically Vol. 2, Section 5.1).

The Optimal Controller For the queueing network as described in Klimov’s
problem, the optimal service policy can be constructed without knowledge of the
value function. The optimal policy in this case can be stated as a priority list of
queues, where at each iteration the non-empty queue with the highest priority on
the list is serviced. As a result, the lowest priority queue is never serviced unless it is
the only non-empty queue in the network. If all jobs reside in the lowest priority
queue, then the optimal policy is to service any job in that queue, until a single job
leaves the lowest priority queue. If all jobs except one reside in the lowest priority
network, then the optimal policy will be to service that job continuously, until all
jobs reside in the lowest priority queue. As a result, the stationary distribution under
the optimal policy assigns non-zero probability to only those states where at most
one job resides outside the lowest priority queue. The lowest priority queue will be
the one with the lowest cost.

The exact priority of the queues is computable and will depend on the costs and
transition probabilities of the queueing network. However, since the lowest priority
queue is known to be the one with lowest cost, it is simple to construct a policy that
achieves the optimal stationary distribution, without computation of the actual
priorities. The optimal stationary distribution is achieved by any policy that services
the lowest priority queue only if no other non-empty queues exist.

3.2.3 Experimental Parameters

Although the optimal policy can be found without solving for the Value Function in

the case of Klimov’s problem, for our experiments we will try to approximate the

optimal policy of a network satisfying the assumptions of Klimov’s problem, using

fixed point approximation techniques. The goal of our experiment is to solve a

problem where exact fixed point calculation fails, but also where the performance of

our approximate policy can be quantified in comparison to the optimal policy.

For our specific experiment, we picked k ¼ 200 jobs and d ¼ 100 queues,
randomly chose the transition probabilities over the uniform simplex. The vector
of costs g was chosen to be ½0:99; 0:98; 0:97; . . .; 0:01; 0:0�. The discount factor � was
chosen to be 0:996.

3.2.4 Approximating the Optimal Policy

Under exact fixed point calculation methods, we would be required to search for the

fixed point of F over the space of all functions of the form X �U ! <, where X �U

is the set of all possible state-action pairs. However, the enormous size of X �U

Discrete Event Dyn Syst (2006) 16: 207–239 227

precludes such a computationally expensive method. Instead, we will use temporal
difference learning and the fixed point Kalman filter to approximate the fixed point
of F.

Our approximation was taken from the linear hull of 100 basis functions, one
function for each queue. We enumerate the basis functions as �ðiÞ : X �U ! <,
i ¼ 1; . . .; 100. Let xðiÞ; i ¼ 1; . . .; 100 denote the current length of queue i. We chose
�ðiÞ to be equal to the expected length of queue i at the next time step, given current
length xðiÞ and current action u. The motivation for these basis functions was simply
that the basis functions should depend on the queue lengths and the action chosen.

Let pui; u 2 1; . . .; 100; i 2 1; . . .; 100 be the ðu; iÞth element of the transition matrix
P (giving the probability that if queue u is serviced, a job from queue u transitions to
queue i.) Let IðxðuÞÞ be the indicator function returning 1 if xðuÞ is non-zero. Let IuðiÞ
be the indicator function returning 1 if i ¼ u. Then,

�ðiÞðx; uÞ ¼ xðiÞ þ ðpui � IuðiÞÞIðxðuÞÞ:

3.2.5 Experimental Results

Two million iterations of TD(0) and the fixed point Kalman filter were run, producing

two weight trajectories rt. We print the formula for the fixed point Kalman filter for
reference:

rtþ1 ¼ rt þ �tHt�ðxt; utÞððFFrtÞðxt; utÞ þ wtþ1 � ðFrtÞðxt; utÞÞ;

where

Ht ¼
1

t

Xt

s¼1

�ðxs; usÞ�
0ðxs; usÞ

 !y

;

and the estimate ðFFrtÞðxt; utÞ þ wtþ1 is given by

ðFFrtÞðxtÞ þ wtþ1 ¼
Xd

i¼1

cðiÞlðiÞ þ �min
u

ððFrtÞðxt; uÞÞ:

To speed up convergence, we used some random state exploration. With probability
0:0003, ut was chosen randomly (with uniform probability) from all non-empty
queues. Otherwise, ut was given by

ut ¼ argmin
u:xðuÞ>0

ðFrtÞðxt; uÞ:

At each iteration, the cost cðxtÞ was recorded. A range of constant stepsizes were
tested ð10ð0Þ; 10�1; . . .; 10ð�8ÞÞ. For the fixed point Kalman filter, the cost cðxtÞ
converges soonest with a stepsize of 0:01; for temporal-difference learning, cðxtÞ
converged fastest with a stepsize of 0:00001.

Figure 6 plots the costs cðxtÞ incurred while training the sequence of weights rt.
As shown, the Kalman filter produces a policy achieving optimal costs, while TD(0)
produces a non-optimal policy. For problems where the contraction is not with
respect to a weighted Euclidean norm k�kD, the convergence theorems do not apply,
so it is possible for the algorithms to converge to differing policies (or to not
converge at all) We comment that the optimality of the Kalman filter policy was

228 Discrete Event Dyn Syst (2006) 16: 207–239

verifiable for this experiment only because in Klimov’s problem, the optimal policy
is well-known: all jobs except one should permanently reside in the cheapest queue.

Figure 7 show the actual trajectory of each of the elements of rt as they are
adapted by temporal difference learning and the fixed point Kalman filter. The
behavior of the weights appears to be quite complex.

For both the TD(0) and Kalman filter experiments, the weights were allowed to
adapt for 2,000,000 iterations. We note that the average CPU time elapsed per
iteration of the fixed point Kalman filter was 0.0225 s. The average CPU time elapsed
per TD(0) iterations was 0.0138 s (the total computations took roughly 12 h for each
algorithm and each choice of stepsize). However, the iterations could have been
halted much sooner, after 2,000 s, with no change in the policy. Note that in order to
reduce the elapsed running time, we used a recursive rank-1 update formula to
calculate Ht from Ht�1:

Ht

t
¼ Ht�1

t � 1
� Ht�1�ðxtÞ�

0ðxtÞHt�1

ðt � 1Þ2 þ ðt � 1Þ�ðxtÞHt�1�ðxtÞ

We used this update for both the options pricing and queueing system experiments.

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140
TD Learning

CPU time (seconds)

c
o
s
ts

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140
Fixed Point Kalman Filter

CPU time (seconds)

c
o
s
ts

Fig. 6 The cost of the states that were visited while training two policies for servicing a queueing
network

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
–100

–50

0

50

100

150

200

250

300
TD Learning

CPU time (seconds)

w
e
ig

h
ts

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
–100

–50

0

50

100

150

200
Fixed Point Kalman Filter

CPU time (seconds)

w
e
ig

h
ts

Fig. 7 The feature weights of two evolving policies for servicing a queueing network

Discrete Event Dyn Syst (2006) 16: 207–239 229

3.2.6 A Smaller Queueing Problem

We also used the fixed point Kalman filter and TD(0) to produce approximate value

functions for a much smaller queueing problem. The problem is the same as before,

except that the number of jobs has been reduced from 100 to 10, with the number of

features correspondingly reduced to ten also.

In this case, both algorithms converge to value functions that give the optimal policy,

in roughly the same time, as shown in Figs. 8 and 9. The trajectory of the weights is

especially interesting for the TD-learning algorithm in this example.

Our final comment is that these tests were run using MATLAB on a Sun Blade 1000

(the options pricing example) and a Sun ULTRA 60 workstation (the queueing system

example).

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120
TD Learning

CPU time (seconds)

c
o
s
ts

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120
Fixed Point Kalman Filter

CPU time (seconds)

c
o
s
ts

Fig. 8 The cost of the states that were visited while training two policies for servicing a small
queueing network

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120
TD Learning

CPU time (seconds)

w
e
ig

h
ts

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

140
Fixed Point Kalman Filter

CPU time (seconds)

w
e
ig

h
ts

Fig. 9 The feature weights of two evolving policies for servicing a queueing network

230 Discrete Event Dyn Syst (2006) 16: 207–239

4. Conclusion

The fixed point Kalman filter can be interpreted in several different ways. First, it can be

viewed as a generalization of the Kalman filter suitable for approximating the fixed

point of a D-norm. Second, the algorithm can also be thought of a variation on
TD(0) in which basis functions are adaptively rescaled to be orthonormal for better
performance. Finally, the algorithm can be viewed as a relaxation of LSTD that can
be efficiently implemented when approximating the fixed point of a non-linear
operator.

We proved a convergence theorem for the fixed point Kalman filter, which parallels

similar results for TD. We have also carried out some simulations, which thus far show

that the fixed point Kalman filter outperforms TD(0) in problems where the behavior
of both algorithms are well understood. The results also suggest that the fixed point
Kalman filter is more robust than TD(0) against basis functions that are Bill-
conditioned’’ (i.e., far from D-orthonormal).

After these cursory simulations, we suggest that in cases where the state space
evolves with a stationary distribution �, the behavior of both TD and the fixed point
Kalman filter are well understood, and the fixed point Kalman filter can be expected
to outperform TD learning. In the more general case of a Markov decision process,
the behavior of neither algorithm is well-understood, and it is not clear when the
fixed point Kalman filter will actually converge faster than TD learning (if it should
converge at all). However, the general idea behind the fixed point Kalman filter—
that adaptive algorithms should account for the scaling and orthogonality of their
basis functions—is a practical one, as demonstrated by the poor behavior of TD with
the addition of a single poorly scaled basis function. In cases where near-optimal
policies (involving large numbers of basis functions) are sought for complex
problems, we may expect significant advantages from the fixed point Kalman filter.

In the broader literature on TD, there exist many application areas where TD
and the fixed point Kalman filter can be applied, but only without any theoretical
rationale for their convergence. However, TD has already been tested on many such
problems with good experimental results. These problems include a world class
computer backgammon player (Tesauro, 1995), channel allocation for cellular
networks (Bertsekas and Singh, 1997), job shop scheduling (Zhang and Dietterich,
1995), and inventory control (Van Roy et al., 1999). On the other hand, problems
have also been constructed for which TD has been shown not to converge (de Farias
and Van Roy, 2000). We expect that similar claims, both positive and negative, will
hold for the fixed point Kalman filter.

Appendix

A Proof of Theorem 1

In this Appendix, we prove Theorem 1, which asserts that �t converges to 0, with
probability one. Without loss of generality, we will as an intermediate step prove the
convergence of �t using one additional assumption about the sequence Gt. In
particular, we will first prove the convergence of �t under the working assumption
that there exists a (deterministic) scalar GG such that suptkGtkD � G, with probability 1.

Discrete Event Dyn Syst (2006) 16: 207–239 231

The majority of this Appendix is devoted to this proof, showing that for any G, �t
converges to 0 with probability 1.

While this additional assumption will greatly facilitate the analysis, we note that it
does not actually hold for the fixed point Kalman filter. Therefore, the assumption is
lifted using the following argument: since Gt converges to I (Assumption 3), the
probability 	

G
that suptkGtkD � G goes to 0 as GG!1.1 Given a scalar G, it is easy to

construct a F t-measurable process eGGt such that eGGt ¼ Gt, for all t, for sample paths
satisfying suptkGtkD � G. Proving that �t converges to 0 for such a process estab-
lishes that �t converges to 0 for a set of sequences Gt, generated by the original
process, of probability 1� 	

G
. Since 	

G
can be set arbitrarily close to 0, such a proof

establishes convergence of �t to 0 with probability one.
We will use the following variant of the Supermartingale Convergence Theorem,

which can be found in Benveniste et al. (1991) (Lemma 2 on page 344):

THEOREM 3 Let Zi, Ai, Bi, and Yi be finite nonnegative random variables adapted

to an increasing sequence of �-fields G0;G1;G2; . . . such that
P

Ai <1 and
P

Bi <1
with probability one. If

E½Ziþ1jGi� � ð1þAiÞZi þ Bi � Yi; ð5Þ

for all i, then X
Yi <1 and Zi ! Z;

for some scalar Z <1, with probability 1.

We will associate various terms in our stochastic approximation algorithm with

variables involved in Theorem 3, as we now explain. First, let x 2 S be a distinguished
state (arbitrarily chosen). Let ti be the time of the ith visit to state x. Let Gi be the �-
field generated by information available up to time ti. Let Zi ¼ k�tik2D. We denote
the difference between �tiþ1

and �ti by

siþ1 ¼
Xtiþ1�1

t¼ti

�tGthð�t; xt; xtþ1Þ:

We also define an approximation to siþ1:

~siþ1 ¼
Xtiþ1�1

t¼ti

�tiGtihð�ti ; xt; xtþ1Þ:

Note that si and~si are Gi-measurable. In the next subsection, we will prove the
following lemma:

LEMMA 1 There exists a scalar c > 0 and a (random) index i	 such that

�0tiDE½s~iþ1jGi� � �c�tik�tik2D;

for all i � i	.

1 If 	
G
converges to a positive number as G!1, then with some nonzero probability, suptkGtkD ¼ 1

with that probability. However, suptkGtkD must be less than 1 with probability one, by Assumption

3. As a result, 	
G
must converge to zero.

232 Discrete Event Dyn Syst (2006) 16: 207–239

Let

Yi ¼ � 2�0tiDE½s~iþ1jGi�
h i�

:

Note that Yi is nonnegative. We will also later prove the following lemma:

LEMMA 2 There exist finite nonnegative random variables Ai and Bi, adapted to

Gi, such that
P

Ai <1,
P

Bi <1, and

AiZi þ Bi � 2�0tiDE½siþ1 � s~iþ1jGi� þ 2�0tiDE½s~iþ1jGi�
h iþ

þE½s2iþ1jGi�;

with probability one.

Hence, choosing Ai and Bi to be variables identified by this lemma, Eq. (5) is sat-
isfied by our definitions:

E½Ziþ1jGi� ¼ E k�tiþ1
k2DjGi

h i

¼ E k�ti þ siþ1k2DjGi

h i

¼ E k�tik2D þ 2�0tiDsiþ1 þ ksiþ1k2DjGi

h i

¼ E k�tik2D þ 2�0tiDs~iþ1 þ 2�0tiDðsiþ1 � s~iþ1Þ þ ksiþ1k2DjGi

h i

� ð1þAiÞZi þ Bi � Yi:

Since conditions of Theorem 3 are satisfied, we have
P

Yi <1 and Zi!Z <1, for
some scalar Z. Lemma 1 implies that there exists a (random) index i* such that
Yi � c�tiZi, for all i � i*. Together with the fact that

P
Yi <1 and

P
�ti ¼ 1, this

implies that Z ¼ 0. In other words, the subsequence �ti converges to 0. Furthermore,
since the distinguished state was arbitrary, convergence of the subsequence holds for
any choice of x. Since there are a finite number of states in S, it follows that the
entire sequence �t converges to 0.
We have just proven Theorem 1. Our proof was not quite self-contained, though—it
made use of Lemmas 1 and 2, which we will prove in the following subsections.

A.1 Proof of Lemma 1

By Assumption 5, there exists a scalar c1 > 0 such that �0Dhð�Þ � �c1k�k2D for all �.
Furthermore, by Assumptions 5 and 4, there exists a scalar c2 such that khð�ÞkD �
c2k�kD. Hence, we have

�0tiDE½~siþ1jGi� ¼ �0tiDE
Xtiþ1�1

t¼ti

�tiGtihð�ti ; xt; xtþ1ÞjGi

" #

¼ �tiE½tiþ1 � ti��0tiDGtihð�tiÞ

¼ �tiE½tiþ1 � ti� �0tiDhð�tiÞ þ �0tiDðGti � IÞhð�tiÞ
� �

� �tiE½tiþ1 � ti� �c1k�tik2D þ c2kGti � IkDk�tik
2
D

� �
:

Discrete Event Dyn Syst (2006) 16: 207–239 233

The lemma follows from the fact that kGti � IkD converges to 0.

A.2 Proof of Lemma 2

Recall our working assumption that there is a (deterministic) scalar G such that
suptkGtkD � G with probability one. We begin with a helpful lemma that places a
bound on how quickly �t can change over time.

LEMMA 3 There exists a scalar C such that

k�tþ� � �tkD � ��tG
Y��1

j¼1

ð1þ �tþjGCÞð1þ k�tkDÞ;

for all t and � � 1.

Proof: By Assumption 3, there exists a scalar C such that

khð�; x; yÞkD � Cð1þ k�kDÞ:

Let Dt;� ¼ k�tþ� � �tkD and at;� ¼ �tþ�GC. We then have Dt;0 ¼ 0 and

Dt;�þ1 � Dt;� þ k�tþ�þ1 � �tþ�kD
� Dt;� þ �tþ�kGtþ�kDCð1þ k�tþ�kDÞ
� Dt;� þ �tþ�GCð1þ k�tkD þ Dt;� Þ
¼ ð1þ at;� ÞDt;� þ at;� ð1þ k�tkDÞ:

It follows that

Dt;� �
X�

j¼1

Yj�1

k¼1

ð1þ at;��kÞat;��jð1þ k�tkDÞ

� ��tG
Y��1

j¼1

ð1þ at;jÞð1þ k�tkDÞ:

According to Lemma 3, it follows that k�tkD can only increase by a factor of
ð1þ �tþjGCÞ (modulo the linear term) at each time step. Note that this factor
approaches 1 as t grows. One implication of this and the assumption that

P
�2t <1

is that the growth of k�tkD is sub-exponential. This is articulated in the following
corollary, which we state without proof (the proof is straightforward).

COROLLARY 1 For any nonnegative scalars a, p, and q, there exists a scalar c such

that

X1

�¼0

e�a��pk�tþ� � �tkqD � �qt cð1þ k�tkqDÞ;

for all t.

234 Discrete Event Dyn Syst (2006) 16: 207–239

Recall that our goal is to establish existence of finite nonnegative random variables

Ai and Bi, adapted to Gi, such that
P

Ai <1,
P

Bi <1, and

AiZi þ Bi � 2�0tiDE½siþ1 � ~siþ1jGi� þ 2�0tiDE½~siþ1jGi�
h iþ

þE½s2iþ1jGi�;

with probability one. For shorthand, let

�i ¼ 2�0tiDE½siþ1 � ~siþ1jGi� þ 2�0tiDE½~siþ1jGi�
h iþ

þE½s2iþ1jGi�;

�
ð1Þ
i ¼ E

Xtiþ1�1

t¼ti

�tGtðhð�t; xt; xtþ1Þ � hð�ti ; xt; xtþ1ÞÞjGi

" #
;

�
ð2Þ
i ¼ E

Xtiþ1�1

t¼ti

�tiðGt � GtiÞhð�ti ; xt; xtþ1ÞjGi

" #
;

�
ð3Þ
i ¼ E

Xtiþ1�1

t¼ti

ð�t � �tiÞGthð�ti ; xt; xtþ1ÞjGi

" #
;

�
ð4Þ
i ¼ 2�0tiDE½~siþ1jGi�

h iþ
;

�
ð5Þ
i ¼ E½s2iþ1jGi�;

and note that

�i ¼
X5

k¼1

�
ðkÞ
i :

For each �ðkÞ, we will prove a lemma that there exist sequences A
ðkÞ
i and B

ðkÞ
i such

that
P

A
ðkÞ
i <1,

P
B

ðkÞ
i <1, and j�ðkÞi j � A

ðkÞ
i k�tikD þ B

ðkÞ
i . Letting Ai ¼

P5
k¼1 A

ðkÞ
i

and Bi ¼
P5

k¼1 B
ðkÞ
i , it is easy to see that Lemma 2 follows from these lemmas, which

we state and prove in the remainder of this section.

LEMMA 4 There exist sequences A
ð1Þ
i and B

ð1Þ
i such that

P
A

ð1Þ
i <1,

P
B

ð1Þ
i <1,

and j�ð1Þi j � A
ð1Þ
i k�tikD þ Bi

ð1Þ, for all i.

Proof: By Assumption 4, there exists a scalar c1 such that khð�; x; yÞ � hð�; x; yÞ
kD � c1k�� �kD, for all x; y. Hence,

j�ð1Þi j ¼ E
Xtiþ1�1

t¼ti

�tGtðhð�t; xt; xtþ1Þ � hð�ti ; xt; xtþ1ÞÞjGi

" #�����

����� � �tiGc1E
Xtiþ1�1

t¼ti

k�t � �tikDjGi

" #
:

Since Prftiþ1 � ti � �g � ae�b� for some a; b � 0, Corollary 1 implies that there
exists a scalar c2 such that

E
Xtiþ1�1

t¼ti

k�t � �tikDjGi

" #
� �tic2ð1þ k�tikDÞ;

Discrete Event Dyn Syst (2006) 16: 207–239 235

for all i. Letting A
ð1Þ
i ¼ B

ð1Þ
i ¼ �2tiGc1c2, the result follows from the fact that

P
�2ti

<1.

LEMMA 5 There exist sequences A
ð2Þ
i and B

ð2Þ
i such that

P
A

ð2Þ
i <1,

P
B

ð2Þ
i <1,

and j�ð2Þi j � A
ð2Þ
i k�tikD þ Bi

ð2Þ, for all i.

Proof: By Assumption 4, there exists a scalar c such that khð�; x; yÞkD �
cð1þ k�kDÞ for all �; x; y. Furthermore, by Assumption 3, there is a deterministic
nonincreasing sequence �i and a scalar c

G
such that

kGt�1 � GtkD � �tcG
;

for all t. We therefore have

j�ð2Þi j ¼ E
Xtiþ1�1

t¼ti

�tiðGt � GtiÞhð�ti ; xt; xtþ1ÞjGi

" #�����

�����

� E
Xtiþ1�1

t¼ti

�tikGt � GtikDjGi

" #
cð1þ k�tikDÞ

� E ðtiþ1 � tiÞ
Xtiþ1�1

t¼ti

�tikGt�1 � GtkDjGi

" #
cð1þ k�tikDÞ

� E ðtiþ1 � tiÞ
Xtiþ1�1

t¼ti

�ti�tcG
jGi

" #
cð1þ k�tikDÞ

� E ðtiþ1 � tiÞ2jGi

h i
�ti�ticG

cð1þ k�tikDÞ:

By Assumption 3,
P
�ti�ti <1. The result follows.

LEMMA 6 There exist sequences A
ð3Þ
i and B

ð3Þ
i such that

P
A

ð3Þ
i <1,

P
B

ð3Þ
i <1,

and j�ð3Þi j � A
ð3Þ
i k�tikD þ Bi

ð3Þ, for all i.

Proof: By Assumption 4, there exists a scalar c such that khð�; x; yÞkD � cð1þ k�kDÞ
for all �; x; y.

j�ð3Þi j � E
Xtiþ1�1

t¼ti

ð�ti � �tÞGthð�ti ; xt; xtþ1ÞjGi

" #
� E

Xtiþ1�1

t¼ti

ð�ti � �tÞjGi

" #
Gcð1þ k�tikDÞ:

Let

A
ð3Þ
i ¼ B

ð3Þ
i ¼ E

Xtiþ1�1

t¼ti

ð�ti � �tÞjGi

" #
Gc:

236 Discrete Event Dyn Syst (2006) 16: 207–239

Let � ¼ t2 � t1. Recalling that �t is a decreasing sequence, converging to zero, we have

X1

i¼1

A
ð3Þ
i ¼

X1

i¼1

E
Xtiþ1�1

t¼ti

ð�ti � �tÞjGi

" #

�
X1

t¼0

E
X��1

�¼0

ð�t � �tþ�Þ
" #

¼ E
X��1

�¼0

X1

t¼0

ð�t � �tþ�Þ
" #

¼ E
X��1

�¼0

X1

t¼0

X��1

k¼0

ð�tþk � �tþkþ1Þ
" #

¼ E
X��1

�¼0

X��1

k¼0

X1

t¼0

ð�tþk � �tþkþ1Þ
" #

� E
X��1

�¼0

X��1

k¼0

X1

t¼0

ð�t � �tþ1Þ
" #

¼ E
X��1

�¼0

��0

" #

� �0E½�2�:

The result follows.

LEMMA 7 There exists a sequence B
ð4Þ
i such that

P
B

ð4Þ
i <1 and j�ð4Þi j � B

ð4Þ
i , for

all i.

Proof: Note that �
ð4Þ
i � 0. Lemma 1 implies that �

ð4Þ
i is positive only a finite num-

ber of times. Hence,
P
�
ð4Þ
i <1. Letting B

ð4Þ
i ¼ �

ð4Þ
i , the result follows.

LEMMA 8 There exist sequences A
ð5Þ
i and B

ð5Þ
i such that

P
A

ð5Þ
i <1,

P
B

ð5Þ
i <1,

and j�ð5Þi j � A
ð5Þ
i k�tikD þ Bi

ð5Þ, for all i.
Proof: By Assumption 4, there exists a scalar c1 such that khð�; x; yÞk2D �
c1ð1þ k�k2DÞ, for all �; x; y. Hence,

�
ð5Þ
i

���
��� ¼ E ksiþ1k2DjGi

h i

¼ E
Xtiþ1�1

t¼ti

�tGthð�t; xt; xtþ1Þ
�����

�����

2

D

jGi

2
4

3
5

� �2tiG
2
E
Xtiþ1�1

t¼ti

khð�t; xt; xtþ1Þk2DjGi

" #

� �2tiG
2
E
Xtiþ1�1

t¼ti

c1ð1þ k�tk2DÞjGi

" #
:

Discrete Event Dyn Syst (2006) 16: 207–239 237

Since Prftiþ1 � ti � �g � ae�b� for some a; b � 0, Corollary 1 implies that there exists
a scalar c2 such that

�
ð5Þ
i

���
��� � �2tiG

2
c2ð1þ k�tik2DÞ;

for all i. The result follows from the fact that
P
�2ti <1.

References

Barto A, Crites R 1996. Improving elevator performance using reinforcement learning, Adv Neural
Inf Process Syst, 8:1017–1023.

Bellman R, Dreyfuss S 1959. Functional approximations and dynamic programming, Math Tables
Other Aids Comput, 13:247–251.

Benveniste A, Métivier M, and Priouret P 1991. Adaptive Algorithms and Stochastic Approx-
imations. Berlin Heidelberg New York: Springer<Verlag

Bertsekas DP 1995a. Nonlinear Programming. Athena Scientific.
Bertsekas DP 1995b. Dynamic Programming and Optimal Control. Athena Scientific.
Bertsekas DP, Singh S 1997. Reinforcement learning for dynamic channel allocation in cellular

telephone systems. Adv Neural Inf Process Syst. MIT, vol. 9, p. 974.
Bertsekas DP, Tsitsiklis JN 1995. Neuro-Dynamic Programming. Athena Scientific.
Borkar V 1995. Probability theory: an advanced course. Berlin Heidelberg New York: Springer<

Verlag
Boyan J 1999. Least-squares temporal difference learning. Proceedings of the Sixteenth Interna-

tional Conference (ICML) on Machine Learning, pp. 49–56.
Boyan J 2002. Technical update: least-squares temporal difference learning, Mach Learn, 49(2):233–

246.
Bradtke SJ, Barto AG 1996. Linear least-squares algorithms for temporal-difference learning, Mach

Learn, 22:33–57.
Choi DS, Van Roy B 2001. A generalized kalman filter for fixed point approximation and efficient

temporal-difference learning, proceedings of the international joint conference on machine
learning.

Dayan PD 1992. The convergence of TD(�) for general (�), Mach Learn, 8:341–362.
de Farias DP, Van Roy B 2000. On the existence of fixed points for approximate value iteration and

temporal-difference learning, J Optim Theory Appl, 105(3).
Gurvits L, Lin LJ, and Hanson SJ 1994. incremental learning of evaluation functions for absorbing

markov chains: New Methods and Theorems, preprint.
Karatzas I, Shreve SE 1998. Methods of Mathematical Finance. Berlin Heidelberg New York:

Springer.
Lagoudakis M, Parr R 2001. Model-free least-squares policy iteration. Neural Inf Process Syst

(NPIS-14).
Nedic A, Bertsekas DP 2001. Policy evaluation algorithms with linear function approximation. Tech.

Rep. LIDS-P-2537, MIT Laboratory for Information and Decision Systems, December 2001.
Pineda F 1997. Mean-field analysis for batched TD(�), Neural Comput, 1403–1419.
Sutton RS 1988. Learning to predict by the method of temporal differences, Mach Learn, 3:9–

44.
Tadić V 2001. On the convergence of temporal-difference learning with linear function

approximation, Mach Learn, 42:241–267.
Tesauro G 1995. Temporal difference learning and TD-gammon, Communications of the ACM,

38(3).
Tsitsiklis JN, Van Roy B 1997. An analysis of temporal-difference learning with function

approximation, IEEE Trans Automat Contr, 42:674–690.
Tsitsiklis JN, Van Roy B 1999. Optimal stopping of markov processes: Hilbert Space Theory,

approximation algorithms, and an application to pricing high-dimensional financial derivatives,
IEEE Trans Automat Contr, 44(10):1840–1851.

Van Roy B 1998. Learning and value function approximation in complex decision processes, Ph.D.
dissertation, MIT.

238 Discrete Event Dyn Syst (2006) 16: 207–239

Van Roy B, Bertsekas DP, Lee Y, and Tsitsiklis JN 1999. A Neuro-dynamic programming approach
to retailer inventory management, Proc. of the IEEE Conf Decis Contr.

Varaiya P, Walrand J, and Buyukkoc C 1985. Extensions of the multiarmed bandit problem: the
discounted case, IEEE Trans Automat Contr, 30(5).

Warmuth M, Forster J 2000. Relative loss bounds for temporal-difference learning. Proc. of the
Seventeenth International Conference on Machine Learning, pp. 295–302.

Warmuth M, Schapire R 1997. On the worst-case analysis of temporal-difference learning
algorithms, Journal of Machine Learning, 22(1,2,3):95–121.

Zhang W, Dietterich TG 1995. A reinforcement learning approach to job-shop scheduling. Proc. of
the International Joint Conference on Artificial Intellience.

Discrete Event Dyn Syst (2006) 16: 207–239 239

	A Generalized Kalman Filter for Fixed �Point Approximation and Efficient �Temporal-Difference Learning
	Abstract
	Introduction
	Contractions and Successive Approximations
	Fitting Basis Functions
	Section315
	Section316
	Section318
	Section319
	Experimental Parameters
	Approximating the Optimal Policy
	Experimental Results
	A Smaller Queueing Problem

	Appendix
	A Proof of Theorem 1
	Outline placeholder
	Section227
	Section228

	References

