
A GENERALIZED KOSZUL COMPLEX. II.
DEPTH AND MULTIPLICITY

BY
DAVID A. BUCHSBAUM AND DOCK S. RIM (i)

Introduction. In a previous paper [3], a general complex was described which
could be associated with a map of modules over a commutative ring. Also men-
tioned in that paper were several areas which could be investigated in which this
complex would play a relevant role. In this paper, we investigate two of those
areas, namely depth and multiplicity.

The notion of the /-depth of a module £, where / is an ideal in a commutative,
noetherian ring R, was introduced in [1; 7]. If/ :R'"->R" is a map, then we may
consider the annihilator of Coker A"/ (where A* denotes fcth exterior product),
and call this ideal/(/). We then ask how the 7(/)-depth of a module may be deter-
mined and show that this number may be computed in terms of the homology
groups of the Koszul complex associated with the map / (Theorem 2.4). As a
result, we obtain another proof of the generalized Cohen-Macaulay unmixedness
theorem.

As for multiplicity, the idea is to assign a non-negative integer to a module M
of finite length, which agrees with the usual multiplicity when M is of the form
R /q. We do this by studying a generalized Hilbert characteristic polynomial for the
module M, which involves representing M as the cokernelof a map f:Rm -+R".
The study of this polynomial leads to a generalization of the Krull principal ideal
theorem (Theorem 3.5). We eventually prove that the Euler-Poincaré characteristic
of the complex associated with the map / : R'" -* R" is related to the leading
coefficient of the Hilbert polynomial associated with this map (Theorem 4.2).

§1 deals with the complex associated with a map f:A->B. Although the
definition here differs slightly from that given in [3], it boils down to the samething
when A = Rm and B = R". All the properties of this complex which are needed
in the subsequent sections of this paper are proved in the first section.

The second section deals with the notion of depth, yielding the generalized
Cohen-Macaulay theorem, while the third section treats in detail the characteristic
polynomial of a map, the consequent generalization of the Krull principal ideal
theorem, and multiplicity of modules of finite length. In this section, we also
introduce the idea of a parameter matrix, generalizing the notion of system of
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parameters. In the last section we construct a double complex which yields the
relationship between the Euler-Poincaré characteristic of the Koszul complex of
a map and the leading coefficient of the Hilbert polynomial of the map. The double
complex is constructed in far more generality than is needed for this paper, but
it will be used in subsequent papers in this series.

It will be evident to the reader that the results obtained in this paper are pre-
liminary in nature. However, they give sufficient indication of the directions in
which one may go.

Throughout this paper, all rings will be assumed commutative and noetherian,
and all modules will be finitely generated, unless otherwise stated.

1. Complexes associated with a bilinear form. All modules in this section are
modules over a fixed ring R.

If y.AxB^yR is a bilinear form of R-modules, each element a in A induces a
linear functional on B and in turn is uniquely extended to a derivation coa of
degree —1 on the exterior algebra, AB, of B. Since toaicoai(ß) = — coa2toai(ß),
we define, for each a = ax A---Aapin A^andßin A9B,cox(ß) = coaicoa2---coap(ß)
which is an element in Aq~pB. Extending by linearity, we obtain a map
A"A® AqB^> Aq~pB. If ß = bx A--Abq, it is easy to see that

coa(ß)=     E     (-l)ZJ*dct(y(ahbjk))by A-A hu A- Abjp A- Abq,
Jl<:-<j

where b means to delete b.
We define a complex (£(y, AA) by

•••->• a£®7\b~®7\b"®ab~® a¿-> ab®7\b ®7vb® a a
-> ab®7\b® aa-* ab® aa^ aa,

where AB = £sèl As£ and the boundary operator d„ is defined by

n-2

dn(X0®Xy® -®V-i®«) = £ (-l)^o®---®'l¡AAi+1®--®An_1®a
;=o

+ (-l)n_,A0®-®^-2®^ -,(«)•

Thus the boundary operator d can be given by the recursion formula :

d^Ao®«) = coXo(ct),

d„(X0   ® Xy   ® ß)   =   X0 AXy   ® ß - X0  ® d„_y(Xy ® ß).

The following lemma shows that <&(y, A A), with the boundary operator d defined
above, is a chain complex.

Lemma 1.1. d2 = 0.
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Proof. dxd2(X0®Xx®a) = dx(X0 AXx®cc-X0®coXl(á)) =coXa^i(ct)-û)XocoÀl(a) - 0.
Now, proceeding by induction on n, we have

dnd„+x(XQ®Xx®X2®ß)

- dn(X0 AXx®X2®ß-X0® dn(Xx ® X2® ß))

= dtt(X0AXx®X2®ß-X0®XxA*2®ß +X0®Xx®d„_x(X2®ß))

= X0AXxAX2®ß-X0AXx®da-x(X2®ß)

-X0AKAX2®ß + X0®dn-i(XiAl2®ß)

+ A0 A Ai ® d„_1(A2 ® /J) - ¿0 ® d^iili ® d„-i(X2®ß))

= X0® d„^id„(Xx ® X2® ß) = 0(by induction hypothesis).

It is clear that the correspondence (y; A, B) -»—* (£(7, A A) or (y; A, B)
•*—* C(y, B) is a functor from the category of bilinear forms into the category of
chain complexes, where the category of bilinear forms has as its objects the
forms (y; A,B), and as maps (y;A,B)-f(y';A') B'), pairs of maps fA:A-*A',
fB:B^B' suchthat y' (fA ®fB) = y.

In this paper, we will be interested in certain subcomplexes of the complex
(£(y, A A). Namely, for each pair of integers p, q, we define the complex
d(y,ApA,q)by

-►   I AS0B® AS,B® AS2B® Ap+ISi¿-> I AS0B® ASlB® Ap+ls'A

-*  I AS0B® Ap+i(M- A"A,

where s¡ ̂  1 for i > 0. Similarly, d(y, ApB,q) can be defined.
Our notation Gfj, ApA,q) may be a little ambiguous since

£(y,A-1A,q)*(£(y,A-2A,q)

whereas A ~lA = A ~2A = 0. However, we use this notation to specify the degree
p, as well as the module A.

It is clear that a map (y ; A ; B) -> (y' ; A', B') of bilinear forms induces a chain map
<£(y, ApA,q)-+(i(y', ApA',q), i.e., (y;A,B) ~^<£(y, A"A,q)is a functor.

Proposition 1.2. Given a bilinear form y : A x B -+ R, we have:
(1) (E(y, Ap^4,<z) is homotopically trivial for q^O.
(2) 0-><%>, ApA,q + 1)-♦<£(?, A'A,q)-> A"B®(£(y, Ap*qA,l)->0 is exact.
(3) IfA = A'@R, then 0 -* £(j', A PA', q) -> (%>, A "A, q) -»<%>', Ap"! A',q)-*0

is exact where y' is the restriction of y to A' x B.

Proof. (1) Define a homotopy s : (£„(7, ApA,q)^><ítt+x(y, A" A,q) by s(ot) = l®a.
Then (ds + sd)(a) = d(l ® a) + 1 ® d(a) = a- 1 ® d(a) + 1 ® d(a) = a.
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(2) d(y,ApA,q + 1) is a subcomplex of £(j, ApA,q) and (£(y, ApA,q) modulo
Œ(y, A"A,q 4-1) is simply AqB®<í(y, Ap+qA,l). We observe here that the
canonical map (£(y, A"A,q)~* A''B®d(y, Ap+qA,l) is of degree —1, i.e.,

0->Œn(y, ApA,q + l)^Uy, ApA,q)->AqB®<in„x(y, Ap+qA,l)->0
is exact.

(3) (£(}>', ApA',q) is a subcomplex of &(y, ApA,q) and, under the identification
ASA= ASA' ©''W, d(y,A"A,q) modulo <&(y', ApA',q) is simply
e(y, Ap~lA',q).

Corollary 1.3. Assume that B is R-projective. Then the following statements
are equivalent:

(1) (£(7, ApA,q) is acyclic for all p, q such that p + q = n.
(2) S(y, A!'A,q) is acyclic for all p, q such that p + q ^ n.

Proof. (1)=>(2): It suffices to show that the acyclicity of (£(y, ApA,m — p)
for all p implies the acyclicity of (£(y, Ap A,m — p—l) for all p, where m is an
arbitrary integer. But this follows immediately from the exactness (by 1.2, (2)) of
0->G(y ApA,m-p)^(ï(y,ApA,m-p-i)^Am~p~iB®C(y,Am~1AA)^0,
together with the fact that B, and hence also Am~p~ lB, is projective.

Given an R-homomorphism/:Rm -» R", we have a bilinear form

y(f) :Rm x R"*-> R, where R"*= Hom(R",R),

and in turn we get the complexes (£(y(f), A" Rm,q). We define the (generalized)
Koszul complex, K(A"f), for each p to be the complex G(y(/), ApRm, n + 1 — p)
augmented by the map

A"/ApRm Jlj¿^ APR\
i.e.,

•••-»      It     A50R"*® AS1R"*® Ap+l5'Rm^     I      AS0RB*® Ap+S0Rm

where s¡ ̂  1 for all 1 k 1. It is easy to see that Ap/-d = 0 andR"(Ap/) is a chain
complex of length m — n + 1 for 1 ^ p 1% n. This Koszul complex, K(Apf), may be
viewed as an approximation to a projective resolution of the R-module, Coker A pf

For each R-module £, Hit(Apf,E) and H*(A"f,E) shall mean the homology
and cohomology of the complex K(A"f) with coefficients in £, i.e., H*(Apf,E)
= H(K(A"f)®E) and H*(Apf,E) = H(Hom(K(A"/),£)).

Proposition 1.4. (1) Por any map f:Rm-> R",K(Apf) is homotopically triv-
ial whenever p>n or p^O.
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(2) Iff:Rm^R" is an epimorphism, then £(y(f), ApRm,q) is homotopically
trivial for all pairs p,q such that p + q ¿¡n.

(3) If f:Rm-*R" is an epimorphism, then K(Apf) is homotopically trivial
for all p.

Proof. (1) If p > n,then APR" - 0 and hence K(Apf) = <%</). APR m, n +1 - p).
But then, by (1) of 1.2, it is homotopically trivial since n + 1 — p ^ 0. The case
p ^ 0 is trivial to see.

(2) Since (%>(/), ApRm,q) is a free complex, homotopic triviality is the same
as acyclicity. By 1.3, it suffices then to show that (%>(/), ApRm,n — p) is acyclic
for all p. If, however, we can show acyclicity after localizing at each maximal
ideal of R, we will have this result. Hence we may assume that R has a unique
maximal ideal, and we proceed by induction on m.

If m = n (since/is assumed to be an epimorphism, we of course have m ^ n),
then f:Rm-*R" must be an isomorphism, since it is onto. The complex
(%</), ApR",n-p) is simply A"~pRn*® A"R"- APR", which is obviously
an isomorphism. Thus for m = n, we have the result. If m > n, we can always
find a decomposition Rm = Rm~l®R such that / restricted to Rm_1 is still an
epimorphism (since projectives over R are free). Letting /' denote this restriction
of/to Rm-1, we obtain the exact sequence

0^G(y(/'),ApRm-1,n-p)^G(7a),ApRm,n-p)^C:(r(/'),Ap-1Rra-1,n-p)->0.

Since the induction hypothesis implies the acyclicity of the extreme complexes,
we obtain the acyclicity of the middle one.

(3) We again proceed by induction on m, the case m = n being trivial.
We first observe that the exact sequence in (3) of 1.2, augmented by
APR", takes the form

0 - K( A"/') - K( AY) - GW), Ap" 'R"1- ', n + 1 - p) - 0 ,
where/' is again the restriction of /to Rm~* If we choose the summand Rm_1
of Rm so that /' is still an epimorphism, then the induction hypothesis
yields the acyclicity of K(A pf), and part (2) of this proposition gives the acyclicity
of the right-hand complex (since p — 1 + n + 1 — p = n). Thus the middle
complex, K(Apf), is acyclic. Since K(A"f) is also a free complex, acyclicity
implies homotopic triviality.

Corollary 1.5(2). Supp i/#( Ap/,£) and Supp H*(Apf,E) are both contained in
Supp Coker/n Supp £.

Proof. It is clear that for any prime ideal p in R, the localization (K(Apf))v is
the same as K(Apf®Rv)- Thus, if p is not in Supp Coker/, then/®Rp is an

(2) For each A-module M, Supp M = the set of all prime ideals p in R such that Mp j= 0.
It follows from primary decomposition theory that Supp M = the set of all primes containing
Ann (AÍ) where Ann CM) is the set of all r e R such that rAf = 0.
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epimorphism and so the complex (K( Apf))v is homotopically trivial; thus p is
neither in Supp Hi((Apf,E) nor in Supp H*(Apf,E). Of course, if p is not in
Supp £, the conclusion is even more obvious.

We will now give another description of the complex (£(y(/), ApR'",g) which
will be used later.

If we are given a map g : A -* B of R-modules, then we get the algebra map
Ag '■ AA -* AB, and in turn we get the complex £)(#, AB) which is defined by

•••-> AA®7^Ä®7^Ä® AB^ AA®~ÄÄ® AB^ AA® AB-» AB,

where A A= 2sèi   ASA and
p-i

d(X0®Xy®- ® Xp®ß)= I(-l)Úo®"-®¿¡AA¡+i®-®/lp®i8
¡ = o

+ (-l)%®-®Vi®^AiS
(Xp Aß of course means A#(AP) Aß)-

For each pair of integers p and q, we may consider the subcomplex X)(#, Ap£, g)
of D(g,AB), defined by

••• -»   S   A"0A® AS1A® AS2A® Ap_Es'B-> I As?4® ASM® Ap" Is,B

-»   I ASM® AP_SUB-» APB

where s¡ ̂  1 for i ^ 1.
Now let a map f:Rm->Rn be given. Then it induces/* :R"*-»Rm*and so we

may consider the complex £)(/*, ApRm* g)- We have

Proposition 1.6.<£(y(f), A"Rm,q) «£(/*, Am_pRm* g) as chain complexes.

Proof. Let ylt—, ym be a free basis of Rm, and set ¿j = y*A ••• A y*, which is
a generator of AmRm*U>*, ■ • •, y*m is the dual basis to yit—,yJ. Then n : AR m-> ARm*
given by

«(a) =    Z    tDjCa A .Pi, A - AflX A - A rf,(a e Am~'Rm)

is an isomorphism, which sends Am~'Rm onto A' Rm* Looking at the two complexes

<%</), A"Rm,fl):

••• -> I AS0R"*® AS1R"*® Ap+IS'Rm-> I AS0R"*® Ap+s°Rm-> ApRm,

^(f*, Am~pRm*,q):

■■■ -*  Z ASoR"*® AS,R"*® Am"(p+Is,)Rm*-^Z AS0R"*® Ara~(p+So)Rm*

-> Am~pRm**
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we are led to define a map %(/), ApRm,<7) ->£>(/*, Am~"Rm*,a) by
"o ® ■" ® uk ® a ~* uo ® ••• ® uk ® Ka)> which is an isomorphism of modules.
To show that it is a chain isomorphism, it suffices to show that hcou(a) = ± uh(a)
for u in AR"*and a in ARm- We may, of course, actually assume u is in A Rm*.
We claim that hcou(<x) = (-l)v("'a)uA^(a)where

v(u, a) = (d(a) -1) + (d(a) - 2) + • • • + (d(a) - d(u))

where d(j?) means the homogeneous degree of ß. To show this, we first observe that
if hcoUl(a) = (- l)v(Ui,cr)MiAÄ(oc) for all a   (i = 1,2), then

K,a«(«) = ^Hl«„2(a) = (-l)v(""i0U2W)«iA^W2(a)

= (-l)^'^.^lAt/2Aft(a)

(since v(ux,coU2(cc)) + v(«,,a) = (d(a) - d(u2)—1) + ••• + (d(a) - d(w2) - d(u2))
+ (d(a) —1) + ••• + (d(a) — d(u2)) = v(ux Au2,<x)). Therefore we may assume that
u is in R m* and because of linearity, we may assume u = y* and a = y¡, A ■ • • A y¡m _,
with ij < ••• < im_(. If ¿j # 1, then it is trivial to see that hcou(a) = 0 = u A h(a).
Thus we may assume that a = yx A"- A vm-,.Then

^vî(v! A •■• A ym-t) = ft(v2 A ••• A ym-t)

= Z tö4(y2 A ••• A ym-, A y¡, A •■• A y¡t+1)v* A ••• A vft+,
= (-ir-'-1û)i(y1A-A>'m)yitAy:-t+iA-A3':

-(-ir_,"1J'?A*(yiA-Ay..,).
Since m-t—1 = v(yf,yi A ••• A ym-(), this completes the proof.

2. The depth of a matrix and Koszul complex. For an R-module E, a sequence
of elements <xx, • ••,otd in R is called a proper E-sequence if, for each i, 1 «í i <J d,
£/(<*!, •••,a,)£ ,¿ 0 and oe¡ is not a zero divisor for £/(ax,--•,«;_!)£. Given an
ideal / in R and an R-module £ such that R // ® E # 0, the length of a maximal
proper £-sequence contained in the ideal / is a finite number and does not
depend on the choice of a maximal proper E-sequence [1;7]. We call this length
the I-depth of £(3) and denote it by depth (/; E). (It is customary to define
depth (/ ; £) = oo if R/7 ® £ = 0, i.e., if Supp R/I n Supp E=0.) It is well known
(and actually is an immediate consequence of our Proposition 2.1 below)
that depth (/;£) = depth (rad I;E) = infpDl depth (/„;£„). We further define
depth £ = infm depth(m;E) where m runs through all maximal ideals of R. The
main purpose of this section is to relate the integer, depth (/;£), with a homo-
logical invariant of the Koszul complex, generalizing the results in [2]. We begin
with a proposition of a general nature.

(3) Previously it was called /-codimension of E [1 ; 2], but we are adopting Grothendieck's
terminology to avoid possible confusion.
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Proposition 2.1. Given an ideal I in R let Tl (i ^0) be an exact connected
sequence of covariant functors [4] from the category of finitely generated R-
modules into itself such that

(1) T(a) = a for every homothety ot in R.
(2) Supp T(E) cz Supp R /1 and T°(E) = 0 if and only i/Supp R¡In As(E)=0

where As(E) is the set of all associated primes to the R-module E. Then for each
R-module E such that E¡IE ^ 0, we have that depth (/;£) = the smallest integer
qfor which Tq(E) ^ 0. Furthermore, if T°(*) = Hom(M,*) for some fixed R-
module M, then Td(E) = Ext£ (M, E), where d = depth (/;£).

Proof. Let c(E) be the smallest integer q for which Tq(E) ^ 0. We show
that c(E) — depth(/;£) by induction on the non-negative integer depth(/;£).

Since £//£ ^ 0, depth(7;£) = 0 if and only if every element in / is a zero-
divisor for £, i.e., if and only if / is in the union of the associated primes of £.
Thus depth(/;£) = 0 if and only if SuppR/7 n As(E) + 0, i.e., if and only if
T°(£) # 0. Hence depth (/;£) = 0 if and only if c(£) = 0.

Assume now that depth(/;£) > 0, and let txx,---,otd be a proper £-sequence
contained in / with d = depth(/;£). Then 0->£^-+ £->£/a,E->0 is exact
and E/oiyE^O. Furthermore, depth(l;E/otyE) = d — 1 and hence c(E¡UyE)
= depih(I;E¡axE) by our induction assumption. It follows from the exactness of

■■■^Ti~1(E/axE)^Ti(E) —-^ T\E)-^ T\E¡ay£)-> •••

that T'(otx) is a monomorphism for all i z%c(E/iXyE). Consequently we must
have that V(E) = 0 for all i ^ c(E¡a.yE) since Supp T\E) c Supp R ¡I and hence
V(<xy) h= T'(ahy) = a\ is in Ann £'(£) for sufficiently large h. Furthermore, this
implies that 0->Tc'(£/ ax E)^TC, + 1(E) is exact, where cx= c(Ej<xxE). Thus
TC, + 1(E) j± 0 and so we may conclude that c(E) = cx + 1 = depth (I;EI<xxE) + 1
= depth (/;£). This proves our first statement.

Now the functors Ext'(R/A *) and Ext'(R/rad(f), *) both satisfy the conditions
of our proposition. Thus what we have just proved above yields the fact that
depth (/;£) = depth (rad /;£).

Let us prove the second statement in the proposition, and thus assume that
T°(*) = Hom(M, *) for some fixed R-module M. From the fact that
Supp Hom(M, R/p) = Supp T°(R/p) c Supp R/I, we see that Mp = 0 for all p not in
Supp R/f, i.e., Supp M is contained in Supp R/I. Thus both T'(*) and Ext'(M, *)
are exact connected sequences of functors satisfying the conditions of our prop-
osition.

Now if (*!,••-.a,,is a proper £-sequence contained in the annihilator of Td(E),
and d = depth(7;E) then it is easy to see (since T'(E) is an exact connected
sequence of functors) that T°(E¡((Xy,---,otd)E) is isomorphic to Td(E). If, more-
over, a.y, ■■■,otd are also contained in   the  annihilator  of M,  then  we  have
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Ext°(M,E!(/xx,---,ot.d)E) xExtd(M,E). Thus, if we can find a proper E-sequence
«i,---,ccd with a¡ in Ann(Td(E)) n Ann(M), we will have

T"(E) x T°(EI(oti,---,otd)E) = Ext°(M,£/(<*!, •••,<*,,)£) « Extd(M,£),

and our assertion will be proved.
To this end, let J = Ann(M) n Ann(Td(E))C\ I. Since Supp Rjl contains both

Supp M and Supp Td(E), we have that rad(J) = rad(/) and hence depth(J;£)
= depth(/;E) = d. Therefore we see that we can find 0Lx,---,<xd as we wanted,
and this completes the proof of our proposition.

What we want to do now is to apply this proposition to considerations of
H*(Ap/,£) and H*(A''f, E), and for this purpose, we need to compute the
homology group of highest dimension. To do this, let us first fix some notation.

Given a map/:Rm -* R", we consider the map

kq<v : Aq+lRn® Sv_ !(Coker /) -> A"R" ® 5v(Coker /)

(where S(M) = Zva0 SV(M) denotes the symmetric algebra generated by M overR)
given by kq¡v(xxA — A xq+i ®a)= Z (-i)'x1 A — A x¡ A ■•• A x„+1 ® x¡a,
and we define r,jV(/) = Coker kq>v. The operation of R"on S(Coker /) is that
obtained through the algebra map S(R") -* S(Coker/), observing that
R" = SJR").

Lemma 2.2. Supp Tqv(f) = Supp Coker / for all v 2: 1, and all q such that
i^q^n.

Proof. Let q, v be as above. It suffices to show that if Coker / # 0, then r,jV(/) ^0,
i.e., kq„ is not onto. For this, we may localize at a prime ideal in Supp Coker/,
and thus may assume that R is a local ring. Going one step further, we may replace
R by its residue field. Thus we are now in the position where R is a field, and
M = Coker/is a nonzero vector space over R. Let x,,---,x„ be a free basis of
R" such that Xj mod/(R") is a nonzero element of M. Then

kt-lfV + x(xxA •■■Ax,®a)= Z (-l)ix1A"-AxiA-"Axí®x¡a#0

for any a in SV(M) which is not equal to zero, since x2A ••• Ax4®X!tx # 0.
Therefore xxA ■■■ Axq®tx is not in Ker kq_x v+1. But kq_x¡v+xkqy = 0 implies
that Im kqv <= Ker /c,_lv+1 and hence xx A ■• ■ Axq®a £Im kqv, i.e., kqv is
not onto.

Remark. One may observe that rlv(/) = Sv+1 (Coker /) and r„v(/)
- Sv (Coker /).

Proposition 2.3. Given a mapf:Rm-*R", we have

ÍHom(CokerAm"Y,£)        ifm = norn + í,
m""+ll/W'   J "" lHom(rn+1_p,m_n_1(/),£)i/m>n + l,
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where 1 ^ p ^ n. In particular, for 1 ^ p i% n, J/m_n+1( Ap/,£) = 0 i/and on/y
i/ Supp Coker /n ^s(£) = 0.

Proof. The case where m = n or m = n + \ is very easy to verify, and thus
we assume that m > n + 1. Then the problem boils down to showing that

Ker(d: A*«"*®- ®R"* ® A'" Rm® £^ A R"*®-®AR"* ® ARm® £)
v v

= Hom(r,,v(/),E)

where

d(X0 ®Xx®---®Xv®n®a)
V

= Z (-iyX0 ®-" ® ^A Ai+1 ®--- ®;.v. ® n® a + A0® ••• ® Av_t ®a>Av(rç)®a
¡=o

withA0e A*R"*,A¡6R"*for i = l,-,v,ne AmRm, and ae£.
Let Xi,-",x,, and yi,---, vm be free bases of R" and Rm, respectively, and let

f !,•••,£,, be the dual basis of x¡, •••,*„. Then each element a in
AiR"*®R"*®---®R"*® AmRm®P

v
is uniquely written as

a = Z &, A ••• A 6, ® É/, ® ••• ® £;v® »; ® fc(X|, A"— A xh,xu,—,x}^
where n = yt A •■■ A .vmand h(xtl A ••• A xig,xyi,---,xJv)isin£.Then

d(a) =   2 |ilA---AÎi,A^1®^2®--®^-v®»î®/î(xilA"-Axi_,x7-l,"-,xJv)

+   I    Zi-l^A-A^,®^,®-®^^^,®-®^®»»
k = \

® Kx^A — Axiq,xh,—,Xj)

+ (-1)vZíí1A-A^®^1®-®^-,®cüÍJv(«)

®fc(x11A-"Ax¡5,x,.1,---,xJv).

Therefore d(a) = 0 if and only if h in Hom(A4R" ® R" ® ••• ® R",E) satisfies the
following three conditions:

(1) for each i1<---<i,+1,It(-l)*n(x;iA---AxlkA---Axi(! + 1,xik,x;2,"-,xJv)=0,

(2) h(xiiA--Axiq,xJi,--,Xjl,Xjl+i,--,xJv) =

h(xi% A •■• A xiq,Xjt,•■•,xJI+ itXj,t"'tXjjt

(3) 2,, co^ 0/)® n(xfl A ••• A xi<t,x]lt -,xjv) = 0, i.e.,

Z <»{J(>'i)'» (*«, A •■• Axuxh,—,Xj...,,xiv) = 0.
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Condition (2) says that h is in Hom(A"R"® SV(R"),E). Then the conditions
(1) and (3) mean that h = 0 on Im(fe,)V: A,+1R"®Sv_i(R")^ A"R"®Sv(Rn))
and also on AqR"®f(Rm)-Sy^x(R':). Therefore conditions (1),(2), and (3) simply
mean that h is in Hom( A'R"® Sv(Coker/),£) and ft = 0 on

Im(fc,,,: Ai+1R"®Sv_,(Coker/)-> A"R" ® Sv(Coker/)),

in other words, h is in Hom(r? v(/),£). This proves our first assertion. The
second statement then follows immediately from 2.2, namely that
SuppTn+i-Ptm-„-i(f) = Supp Coker Ap/= Supp Coker/ for all p such that
1 ÚVÚn.

Given a map/:Rm->R", we denote by /(/) the ideal generated by all the n x n
minors of/, i.e., 1(f) = Ann(Coker A"/)- We observe that Supp Coker/= set
of all prime ideals in R containing /(/). Therefore to say Supp Coker/ # 0 is the
same thing as to say that /(/) ^ R or that/is not onto.

Theorem 2.4. Given a mapf:Rm->R"(m ^ n) and an R-module £ such that
E\I (f)E^O, we have for each p with i^p^n, the following statements:

(1) depth (1(f);E) = the smallest integer q for which Hq(Apf,E)^0, and
furthermore Hd(Apf,E) = Ext"(Coker Ap/£) where d= depth (1(f);E).

(2) m — n + 1 — depth (1(f); E) = the largest integer q for which
Hq(Apf,E)¿0. Furthermore

( Extd(Coker Am_p/E)       ifm = norn+l,
ffm_„+1_d(A /£) - ( Ext«(rn+i_p m_n_i(A E)ifm>n + 1.

Proof. (1) The first statement follows immediately from 2.1 since for each p
such that 1 i£ p ^ n, the functors H'(Apf,E)(i^0) satisfy the conditions of 2.1
(as can be seen by applying 1.5), with respect to the ideal /(/). Furthermore,
H°(Ap/,£) = Hom(Coker Ap/, E) and hence the second part of statement (1)
also follows from 2.1.

(2) Set T\E) = Hm_„+,_;(A"/",£) where lgp^n. Then it follows from
1.5 and 2.3 that T*(i 2: 0) satisfy the conditions of 2.1 with respect to the ideal
/(/). Therefore depth (/(/): £)= the smallest integer q for which

0#T,(£) = HB.»+1.,(AW,

and hence m — n + 1 — d is the largest integer q for which /L/A^E) + 0. The
second statement follows from 2.1 and 2.3.

Corollary 2.5. sup£ depth (/(/);£) ^ m — n + 1 where E runs through all
R-modules such that E/I(f)E # 0.

Remark. The fact that depth (1(f);R)^m — n +1 was proven by J. Eagon
[6], the case when R is a regular local ring being previously proven by Cohen [5].
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However, we shall prove a stronger result in the next section, namely that
supp dim Rps; m - n + 1 where p runs through all minimal primes containing
7(/)(see also [6]).

Corollary 2.6. Given a mapf: R",->Rn(m 2: n) and an R-module E with
£//(/)£ j= 0, the following statements are equivalent:

(1) for some p,l^p^n, Hq(Apf,E) = Ofor all qj=0,
(2)forsomep,l^p^n,Hq(Apf,E) = 0forallq ¿m-n+\,
(3) for all pAÚPÚn, Hq(A"f,E) = 0 for all q^O and Hq(A"f,E) = 0 for

all q # m — n + 1,
(4) depth (1(f);£) = m -»+1.

In particular, if Coker/ # 0, K(Apf) is an acyclic free resolution of Coker Ap/
for some p, 1 ̂  p ^ n (or for all p, 1 ̂  p ^ n) if and only if depth(/(/) ; R)
= m — n + 1.

Corollary 2.7. Given a mapf :Rm->Rn with Coker /^0, ¡/ depth(I(f);R)
= m — n + 1, ift^/i ftd Coker Ap/= m — n+ \ for all p, 1 ̂  p ^ n.

Proof. If depth (1(f);R) = m - n + 1, then K(A"f) is a free resolution of
Coker A"/ and hence /id Coker Apf Ú m-n + 1 (l^p^n). But
depth(/(/);R) = m- n + 1 implies that Hm~n + 1(A"f,E) ¥= 0, and hence m-n + 1
^ «d Coker A"/

Another consequence of 2.4 is the generalized Cohen-Macaulay unmixedness
theorem due to Eagon [6]. Indeed, we obtain the unmixedness theorem of
Coker A'/ for all p, 1 5¡ p ^ n. An ß-module M is called Cohen-Macaulay if
depth M = dim M. A ring R which is Cohen-Macaulay as an R-module is called
a Cohen-Macaulay ring [2]. We observe that if Mis a Cohen-Macaulay module,
then M is equidimensional,i.e., dim R/p is a constant (and equal to dim M) for
all p in As(M). We also observe that, over a Cohen-Macaulay ring, the equi-
dimensionality is the same as the unmixedness since dim Rp + dim R/p = dim R
for all prime ideals p [2].

Lemma 2.8. If E is a Cohen-Macaulay R-module, then ExtB(M,E)
is equidimensional for any module M such that M®E^0, where d
= depth(Ann(M);E).

Proof. From the fact (which can be easily seen by localization) that
As Hom(M, N) = Supp M n As N it is clear that if N is equidimensional, then
so is Hom(M, N) for any M. Now let I = Ann(M). Then M® £ + 0 implies that
E//£^0 and hence d = depth(/;£) < co. By 2.1,

Ext^(M,£) = Hom(M,E/(a1, - ,<xd)E)

where <xx, ■■■ ,ctd is some proper £-sequence contained in I. If £ is Cohen-Macaulay,
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then so is £/(a1,--- ,otd)E. Therefore E/(a1,---,ai))£ is equidimensional and so is
Ext"(M,E) = Hom(M, £/(«!, ••-,«„)£).

Theorem 2.9. let f :Rm-► R" (m ^ n) be a  map such that depth (1(f); R)
= m — n + 1. Tnen, (/ R is a Cohen-Macau!ay rine;, Coker Ap/ is unmixed

for all p, 1 ;S p <; «.

Proof. If depth (1(f);R) = m- n + 1, then K(A"f) is a free resolution of
Coker A7,andK(A7)* = Hom(K(Ap/)vR) is a free resolution ofHm~n+l(A"f,R)
by 2.6. Therefore,

i--»+»,av™ ^ - í° ¡fi<m-n + l,
Coker Ap/ if i = m - n + 1.Ext'(/Î"+,<A'/,A),*) = ,

Consequently, depth (J;R) = m - n + 1 where J= Ann(Hm~n + l(A"f,R)) by 2.1.
Thus by 2.8, Coker A"/= Extm"n+1(/im~"+1(Ap/,R),R) is equidimensional and
hence unmixed if R is a Cohen-Macaulay ring.

3. Hilbert characteristic function associated with a matrix. Before we go any
further, let us fix our notation. If A is a graded ring (or graded module), Av will
denote the vth homogeneous component of A. For each R-module M,
S(M) = £ve0Sv(M) will denote the symmetric algebra generated by M over R.
The natural identification M — S(M)X gives us the canonical S(M)-homomorphism
xM : S(M) ® M -* S(M). In the case when M = Rm, we shall simply write xm instead
of xR„, and thus K(xm) is the (usual) Koszul complex associated with the map
xm:S(Rm)m^S(Rm).

Given a map / : Rm-» R", we get the algebra map S(f) :S(Rm)^> S(R") and,
for each R-module £,S(R")®£ becomes a module over S(Rm), thus H(xm, S(Rn)®E)
may be considered. We observe that H(xm, S(R1) ® £) is a graded module over the
graded algebra S(R").

Now suppose that /(Coker/®£)< oo (where /(*) means the length of the
R-module *). Then it follows from Supp Coker/= Supp Coker SV(J) (v > 0)
that / (Coker Sv(f) ® E) < oo for all v > 0. Therefore, we can define the function
Pr(v,£)= I (Coker Sv(f) ® E) from the set of positive integers into itself. One of
the main purposes of this section is to show that Pf(v,E) is a polynomial function,
and thereby to obtain a more general notion of multiplicity.

Theorem 3.1. Let /:R'"->R''1 be a map, and E an R-module such that
I (Coker f® E) < oo. Then Pf(v,E) is a polynomial function for sufficiently
large v. Furthermore, AmPf(v,E)= lq(-í)m'9l(Hm_q(xm,S(Rn)®E\+q) for all
sufficiently large v, where AP(v) is defined to be P(v + 1) — P(v) and A'P(v)
= A(A'-1P(v)).

Proof. Consider the exact sequence of S(Rm)-modules :

0 -► S(Rm) ■ E -► S(R") ® £ -► Coker S(f) ® E -► 0
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where S(Rm)E = Im(S(/) ® £ : S(Rm) ® E -> S(R") ® E). One may notice that
Coker S(f) ® £ is in general net finitely generated over S(Rm). However, S(Rm)E
is finitely generated over S(Rm) and hence H^(xm, S(Rm)E) is a finitely generated
S(Rm)-moduIe annihilated by the ideal Im xm. Therefore, H^(xm, S(Rm)E) is finitely
generated over S(Rm) / Im rm = R and hence H^x™, S(Rm)E)v = 0 for all sufficiently
large v. On the other hand, since the differentiation map on the Koszul complex
K(xm) raises the homogeneous degree by one, we see that each homogeneous
part of the chain complex K(tm) ® (S(Rm)) Coker S(f) ® E stable under the
differentiation is of the form :

AmRm®CokerSv(f)®E - Am"'Rm®CokerSv+1(/)®£->•••

- -+  Am_,iRm®CokerSv+,(/)®£->-

- -  A°Rm®CokerSv+m(/)®£.

Since the Euler-Poincaré characteristic is preserved by passage to homology, we get
m

AmPf(v,E) =   I(-l)m-*Q/(CokerSv+,(/)®£)

m

=   I (-\)m-ql(Hm-q(xm, Coker S(f)®E)v+q)
9 = 0

m
=   Z (-l)m-"l(Hm_,(rm,S(Rn) ® E)v+q).

q~0

This establishes our second assertion.
Now consider the double complex X = K(t") ® S(Rn)(K(tm)® SiRm)S(R")®E).

Then H(X) is a finitely generated S(R")-module annihilated by the ideal Im x"
and hence is a finitely generated module over S(R") / Im x" = R. Consequently
H(X)V = 0 for all sufficiently large v. On the other hand, it is clear that the Ex term
of the spectral sequence of this double complex X is simply given by
£?■« = A "R" ® Hq(xn,S(R") ® £). Since the Euler-Poincaré characteristic is
preserved throughout the spectral sequence, we obtain (using the fact that H(X)V = 0
for all sufficiently large v) that

o = Z(-ir+"-'/(ff»+.-i(^),+i)= iZ(-vr+n-p-qi((E\-p'm-\+p+q)
I P. 4

=   £ (-1)»+»-'-« (" W_9(Tm,S(R»)®£)v+p+,)
P.q \P /

=   l(-l)-p (np}[l(-ir-ql(Hm_q(xm,S(R")®E)y+pU)]

=   I(-l)"-p (^A-P/v + p,E) = Am+"Pf(v,E),
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when v is sufficiently large. This proves that Pf(v,E) is a polynomial function
for sufficiently large v.

We now consider the degree and the leading coefficient of this polynomial
function Pf(v,E).

For each polynomial function <f>, we set u(<¡>) = (deg </>) ! (the leading coef-
ficient of (p). Thus we observe that if <f>(v) is a positive integer for all sufficiently
large integers v, then u(<¡>) is a positive integer.

Lemma 3.2. If (¡)y,(j)2 are polynomial functions, then the function <py*(j)2
defined by <f>y*(p2(v) = 2Zll+q = v(l>y(p)<p2(q) is also a polynomial function and
we have that deg (¡)y *(¡>2 = deg(f>y + deg</>24-l. Wealsohaveu((j>y *(j}2) = u(4>y)u((f)2).

Proof.   For each integer n ^ 0, we set

Then x        '

P   *P (v) =      S   í^ M (q + "2\ = (V +ni + r¡2 + í)
"     "Á)       P+7=Á   »i   M   »2   )       \   nl+n2 + í   )

i.e., Pni*P„2 = P„i+ni+y. We prove our lemma by induction on degi^ + deg(j)2,
the case deg<px 4- deg$> = 0 being trivial.

We can always write (¡>¡ = u((f>¡)Pd. + <¡>¡ where deg<¡>í<d¡ = deg^¡.
Then <py*<i>2 = u(<py)u(<p2)Pdl+d2>y + [u(<py)Pdl*4>2 +u(<p2)<l>í*Pd2 + <p'y*<pí]
and inside the bracket is a polynomial function of degree less than dy + d2 4-1,
by induction. Hence <py*<p2 is a polynomial function of degree dy + d2 + 1
and u(4>y*<p2) = u(4>x)u((t>2).

Theorem 3.3. Let/:Rm->R'1 be a map, and E an R-module such that
/(Coker/® £) < oo. Then u(Pf(\,E)) and degP/(v,E) -n + 1 depend only on
the R-modules E and Coker/.

Proof. It suffices to show that if R"" *-X RB'-»M-»0 (¿ = 1,2) are exact
sequences, and /(M®£)< oo, then P„2-y *Pfl = PIll_1*P/2 where

P»(V)=C n")'   P'<(V) = P'<(V'E)-
Consider the exact sequences

0 -> fy(Rmi) ̂  RB1 n-X M - 0

g.        it7    II
0 - /,(Rm2) " R"2 -ÍM-»fl

where g¡ are inclusion maps. We observe that Coker Sv(/¡) = Coker Sv(g¡) for all v
since Im/i = Im^ (i = 1,2). If we set K = {(xy,x2)eRn,®Rni\ity(xy) = it2(x2)},
then we get the exact sequence
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O -» K^ Rnt®R"2-> M -> O       (g is inclusion map)

and the commutative diagram

/i(Ä"') © R"2  * K £ RHi © f2(Rmi)

g, + id g id + g2

R"1 © R"2 ^ R'" © R"2 -+R"'   © R"2.

Therefore we have
Coker Sv(g) ®£ = Coker Sv(gx +id)®E =     I   SP(R"2) ® Coker Sq(gx) ® £

=     I   SP(R"2) ® Coker S,(./,)®£;
p+<(=v

Coker Sy(g) ® £ = CokerS,(/</ + g2) ® E =    I   Sp(Rni) ® Coker S^g2) ® £
p + ¡(=v

=     I   SP(R"') ® Coker S,(/2) ® £.
p + q = v

Hence

i (\+ni 7'K^ - z C^i'W^«"».
p+«=v\      "1 — l       I p + q = v\      n2—L       /

i.e., P„,_1*P/2 = Pn2_1*P/i.

Theorem 3.4. Lei R be a local ring,f:R"'-+R'' a map, and E an R-module
such that Z(Coker/®£) < oo. Then degPf(v,E) = n-i + dim£.

Proof. Since degPf(v,E) — n + 1 depends only on Coker / (for a fixed £),
we may assume that Im/crnR", where m is the maximal ideal of R. Let
gx : Rm' -y R" and g2:Rm2-+Rn be maps such that Im g¡ = q,R " where qx = m,
q2 = /(/). Then we have Im g2 <= Im/ <z Im g¡ and hence / (Coker Sv (g?) ® £)
^ / (CokerSv(/) ®£) è /(Coker S^) ®E), i.e., Pg2(v,E) ^ P/v,£) ^ P?1(v,£)
for all v. Thus deg Pg2 ̂  deg Pf ^ deg Pg,. However, Coker Sv(g,) = SV(R") /q,vSv(R")
and therefore

P, ,(v, £) = / (Coker Sv(gi) ®E) = l (Sy(Rn) ® £ /q*E) = (V * " j *) / (E /q,v£).

Therefore degPg.(v,£) = n —1 + dim£ for i = 1,2 and consequently degPr(v,£)
= n -1 + dim £.

The following theorem is a generalization of the Krull principal ideal theorem.

Theorem 3.5. Let R be an arbitrary noetherian ring. Then for each map
/:R'"->R" (m ^ n), we have dimRp ^ m — n + 1 for all minimal primes p in
Supp Coker/ In particular, m — n + l¿i ht Coker/(4).

(4) htMis here used to denote what we have previously called rank M, i.e., infp dim Rp
where p runs through the primes in Supp M.
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Proof. Localizing at each minimal prime p in Supp Coker/, it suffices to
show that dimR ^ m — n + 1 if /(Coker/) < oo. Furthermore we may assume
that R is an integral domain, for otherwise we may replace R by R/p where p
is a prime ideal such that dimR/p = dimR.

If dimR = 0, there is nothing to prove, so we may assume dimR > 0. R being
an integral domain of positive dimension, we know there is a nonzero element a
in the maximal ideal of R. Then the exact sequence 0->R^R->R/a->Ogives
the exact sequence 0 -»■ S(R") *+ S(R") -* S(R") ® R /a -» 0, and it follows from
the exact sequence •• • -> Hp(xm, S(R "))^Hp(xm, S(R")®R/a) -tfp_ 1(t",,S(R"))-^• • •
that Zp(-l)m"p/(f/m_p(Tm, S(R")®R/a)„+i,)=0 for all v. This means, by 3.1
that AmPf(v,Rla) = 0, and hence m > deg P/v,R/a). But by 3.4,
degP/(v,R/a) = n—l + dim R/a, and dimR/a = dimR — 1. Hencem-lSin — 2
+ dimR or m - n + 1 ̂  dimR.

Corollary 3.6. Let R be a local ring,f:Rm-+R" (m^.n) a map, and £ an
R-module such that /(Coker/®£) < oo. Then m — n + l^dimE and hence
m ^ degPy(v,£).

Proof. Let i? = R/Ann(E) and f=f®R:Rm^R". Then /(Coker/) < oo
and hence m — n +1 ^ dim^ = dim £. Thus m^ n — \ + dim £ = degP^v.E).

For each module M over a local ring R, define n¡(M) = [Tor¡(M, R/m) : R Im],
where m is the maximal ideal of R.

Corollary 3.7. Let R be a local ring, and M a torsion module over R. Then
nx(M) — n0(M) + 1 ̂  htM, and the equality holds if and only if there exists
an exact sequence Rm->Rr->M->0 such that m — n + \ — htM. Moreover, if
htM> 1 and the equality holds, then M is indecomposable.

Proof. First observe that if Rm -> R" -> M -» 0 is exact, then m^.n since M
is a torsion module. Let 0 -» Kx -* F -» M -» 0 be an exact sequence with £ a
free R-module, and R^czrrtE. Then Torx(M,R¡m) = Kx ® R/m. Now for any
exact sequence Rm ±> R" -► M -» 0, we get Kx 0R" »£0/(Rm) and thus
nx(M) + n = n0(M) + [f(Rm) ® R/m : R /m] ^ n0(M) + m. Therefore m - n + 1
^ n^M) - n0(M)-f-l ^ niM(by3.5). Iffor some exact sequence, m — n+ 1 =htM,
then also n^M) — n0(M) + 1 = /iiM. Since one may always choose m = nx(M)
and n = n0(jvi)> it is clear that the converse also holds.

Now assume that ny(M) - n0(M) + 1 = htM, and that M = Mt ©M2. Then
AíM = n1(M1)-n0(M1) + l-l-n1(M2)-n0(M2)4-l-l^/itM1+/iíM2-le2níM-
1 or htM g 1. Thus if htM > 1, M is indecomposable if n1(M) — n0(M) + 1 = htM.

Our theorems naturally lead us to the following definitions.
Given a module M of finite length over a local ring R, choose an exact sequence

Rm4R"-> M->0. Then for each R-module E, the product (dimR4-n-l)!
(the coefficient of the term of degree n — 1 + dim R in the polynomial Pf(v, £))
is a non-negative integer which depends only on M and £. We call it the multi-
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plicity of M with respect to E and denote it by e£(M). In the case when M = R,
we simply write e(M). Thus when M = R/q, our notation e(R/q) means the
multiplicity of q in the usual sense.

In view of 3.6, we call a map f:Rm^>R" a parameter matrix for E if
/(Coker/® £) < co and m — n + i =dimE. When n = 1, a parameter matrix
for £ is nothing but a system of parameters for £. Our construction of a para-
meter matrix below shows that for each £, and each n > 0, there exists a para-
meter matrix/:Rm->R" for £.

This next proposition is an immediate consequence of our definitions and the
theorems already established above.

Proposition 3.8. Let f:Rm-*Rn be a parameter matrix for R, and let
M = Coker/ Then

(1) eE(M) = Zp(-\)m-pl(Hm_p(xm,S(R")® EU p) where vis sufficiently large.
(2) eE(M) ̂  0 and e¿M) = 0 if and only if dimE < dimR.
(3) 7/0 -*■ £' -* E -* £" -» 0 is an exact sequence, then eE(M) = eE.(M) + eE,(M).

We shall conclude this section with a fairly general construction of parameter
matrices.

Let (p = {a,,-••,ad] be any sequence of d elements in a commutative ring R,
and let n be any positive integer. From <p, we construct an (n + d — 1) x n-matrix
which we will denote by <p(BJ. <p<n) is defined as follows: cj}(n)(i,j) = a¡.j where
l^i^n +d- 1, 0^j^n-l, and

10      if i-j ^ 0 or if i-j>d,
a'~J " (fl,_j if 1 gf-j^d.

Put a little more picturesquely, the matrix (p(n) looks like this:

at    0 0 •■•    0

a2   ai       0 •••    0

ad a¿_! uj_2 "• ad-«+i

0 ad ad-x ■■■ ad-n+2

0     0 ad       ■■■   ad.„+3

0     0 0
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Choosing canonical bases for Rd+"~1 and for R", the matrix (¡>(n) defines a map
(which we will continue to call <p(n)) from Rd+"~1 to R\ Corresponding to this
map, we have the ideal I(<¡>w) = Ann Coker A"^(n)- The reason for considering
the map <¡)(n) becomes clear when we state the following lemma (without proof).

Lemma 3.9. Let (¡> = {ax,---,ad} be a sequence of elements of R, and <p{n)
the corresponding map, <p{n) :R d+n_1 ->R". Then 7(</»<n)) = J" where J is the
ideal generated by ax,---,ad. Thus, if R is a local ring, E an R-module of
dimension d, and ax,---,ad a system of parameters for £, then <j)(n> is a para-
meter matrix for E for every positive integer n.

In the next section we shall compute the multiplicity of some parameter
matrices. Let us simply remark here that the existence of parameter matrices of
arbitrary size proves (by 3.7) that if R is a local ring of dimension greater than
one, and if n is any positive integer, then there exists an indecomposable module
M of finite length which is minimally generated over R by n elements.

4. Euler-Poincaré characteristic and multiplicity. The main purpose of this
section is to establish the fact that if/:R'"->R" is a map, and £ an R-module
such that / (Coker/® £) < co, then the Euler-Poincaré characteristic of //*( Ap/, E)
is equal to .

(; :>-'/<'•«•

We obtain this result from a double complex, which will also be used in a sub-
sequent paper.

Let us begin then with the construction of the double complex. Consider two
maps A*-*B^C of R-modules. Then /:/!-> B induces a map on bilinear
forms (y(gf),A,C*)-+(y(g),B,C*) and hence the chain map:

AC* AC*®  AC*
I

f\A ld® A{ A c*® AC* ® AC*® AB

AC* ® AC* ®    A Aid® A/» A C*® AC* ® AB

i
A/1/d_®A_/ A c

A A At I
-» A B
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where AC* =   ZP>0APC* and the vertical maps are defined, as in §1, by
p-i

d'(X0® — ®Xp®oi) =   Z (-l)^o® •••®AiA¿i+i®-"®¿p®a
1=0

+   (-1)%®-"®^®^).

In addition to this chain map between &(y(gj), A A) and (£(y(,?), AB), we also
have the complex G(y(/), A A). The double complex that we will ultimately
construct will involve all of these complexes, so let us introduce some more
notation to simplify our writing.

For each p ^ 0, let us define :

L'p =    AC* ®  AC*

Lp =    AC* ® L'p,

N'p =   AB* ®  AB*

Np =    AB* ® N'p.

AC*    p copies,

®  AB*     p copies,

In terms of this notation, let us observe that Qq+X(y(f), AA) = JV4® A^4, and
that £p+1(g*, AB*) = Lp ® AB*,  where  g*:C* -► B* is the transpose of
g:B^C.

Consider now the diagram:

I I
Lp® Nq® AA-+    LP®Nq-y® AA- LP®N0®AA-+LP®AA

I I
Lp-y®N,® AA^ Lp_! ® JV„_!® A^->----^Lp-i®N0®A^^£„-i®A^

I
1

L0®Nq®AA-+   L0® Nq_y®AA
1

Na® AA Nq-y® AA-

L0®N0®AA-*L0®AA

N0® AA^        AA

where the maps remain to be defined.
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Since each row of the diagram is simply Lp® £()>(/), A A) (with the conven-
tion that L_x = R), the horizontal maps are those induced by the differentiation
in d(y(/), A4)- Similarly, since each column of the diagram (except the one
on the extreme right) is D(g*, AB*)®(N'q<& A A), we define the vertical maps
to be those induced by the differentiation in T>(g*, AB*), and the extreme right
column, being (£(y(g/), A A), has the obvious differentiation defined on it.

That the diagram thus defined is a double complex is confirmed by the follow-
ing lemma.

Lemma 4.1. dd' = d'd, where d stands for the horizontal, and d' for the
vertical maps.

Proof.   When p = q = 0, we have

dd'(c0 ® b0 ® a) = d(c0Ab0®a) = a>coAi>0(a) = coco<ûbo(a);

d'd(c0®b0®a) = d'(c0®(obo(a)) = <oco<obo(a).

If g = 0, and p > 0, we have (using the recursive forms of d and d' as described
in §1)

dd'(c0® •■■ ®cp®b0®a)

= d(c0Act ® c2® ••• ®cp® b0® a — c0®d'(Ci ®---®cp®b0®a)

= c0A Ci ® c2® ■•• ® cp®cobo(a) - c0® dd'(Ci® ■•• ® cp® b0® a);

d'd(c0®---®cp®b0®a)

= d'(c0® ■■■ ® c„®(abo(a))

= c0ACi®c2®---®cp®cobo(a) - c0® d'(Ci® ••• ® cp® cobo(a))

= c0Aci®c2®---®cp®cobo(a) - c0® d'd(ci® ■•• ® cp® b0® a).

By applying induction to the case q = 0 and arbitrary p, we see that we have
equality.

If p = 0 and q > 0, we have

dd'(c0® b0® ■■■ ® bq® a) = d(c0 A b0® bt ® ■■■ ® bq® a)

= c0Ab0Abi®b2®---®bq®a-c0A b0® d(bt ® ■■■ ® bq® a);

d'd(c0®b0®---®bq®a) = d'(c0® d(bQ® ■•■ ® bq®a))

= d'(cQ ® [b0Abx ®b2®--®bq®a-b0® d(bx ® ••• ®bq® a)])

= c0 A b0 Abx ® b2 ® • • • ® bq ® a - c0 A b0 ® d(bx ® •• • ® bq ® a),

and thus we have equality.
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We now take care of the remaining cases by induction on p, and we may assume
that p is positive.  Then

dd'(c0 ®-®c„®bb0®---®bq®a)

= d(c0ACy®c2®---®cp®b0®---®bq®a

- c0®d'(cy®---®cp®b0®---®bq®a))

= c0Acy®c2® ■■■®cp®d(b0® ■■■ ® bq® a)

- c0®dd'(cy®---®cp®b0®--®bq®a);

d'd(c0®---®cp®bQ®---®bq®a)

= d'(c0® — ®cp®d(b0® -®bq®a))

= c0Acy®c2®---®cp®d(b0®---®bq®a)

- c0®d'(cy ® ■•■ ®cp®d(b0® ••■ ® bq® a))

= c0Acy®c2®---®cp®d(b0®---®bq®a)

- c0® d'd(cy ® ••• ® cp® b0® ■■■ ® bq® a)

and our inductive argument is complete.
What we are ultimately interested in doing is looking at some subcomplexes

of this double complex, and then augmenting them. Actually, what we have in
mind is the following. We consider maps Rm-+ R" h Rr, and we want to ob-
tain a double complex which relates K(Apf), K(AP g) and K(AP gf) for various p's.
We have the chain map of K(Apgf) into K(Apg), and we "imbed" this chain
mapping in a double complex, the general form of which is the double complex
described above. Of course we are already familiar with the fact that the Koszul
complex is obtained from a complex of the form (£(y, A A) by restricting certain
indices of summation, and by augmentation. These restrictions on indices pose
a rather nasty problem of notation, and to make the reading a little more intel-
ligible, we introduce some simplifying notation.

We return then to the situation A -* B ^ C, and consider
Hy(gf), AM, ii), <Z(y(g), Av B, u) and £(y(/), K A, p). We let X = v + u and a= v+p,
and we agree to hold these numbers fixed throughout. We have the chain map
of (£(j(g/), Av A,u) into (£(y(g), AvB,u), and we want to imbed this chain
map into a double complex involving (E(j(/), AvA,p).

Using the previously defined double complex as our guide, we first observe
that

%+Áy(gf), AM,u) =   I AS0+UC*® AS2C*®-® AspC*® Ax+1SiA.

This last term may then be written as S,£p(i)® Ax+t A where
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1.(0= Z A50+UC*® ASlC*i AS"C*,

the summation running over all s0 ^ 0, s¡ ^ 1 for i > 0, and  Z/L0s¡= '•
We now consider the following diagram :

I,Ll,(t)®(i,+1(yif),Ax+'A,<7-X-t)-

IMO ® e,+1«/), A,+'¿, *-¿ - 0-

-S,hM/),AM,p)

I
I L,(0®<£i(7CO. Ai+%<7-A-()-* lLp(()® A*+'^
í r

1
i

— I i.oOOaŒiM/M^.ff-A-o- lL0(t) ® Ai+'¿

I
-> Ci(y(/),A"^,p) KA.

Each row of this diagram is a subcomplex of the corresponding row of the
double complex defined before, i.e., it is clear that each module in this diagram
is a submodule of the corresponding module in the double complex previously
defined, and is stable under the horizontal differentiation there defined. Thus
our horizontal maps in this diagram above are simply the restriction of the hori-
zontal differentiation maps defined before. If we now show that the columns
of this diagram are stable under the vertical maps of our old double complex,
we will have shown that the above diagram is indeed a double complex.

Consider an element in Z Lp(t)®iiq+X(y(f), A*+tA,o-X-t). We may fix
an integer t and simply look at an element in Lp(t) ® £q + x(y(f), Ax+'A,a—X — t).
To make it a little easier, let us recall that £„ + i(y(/), A*+tA,o — X— t)
= Z Aua+a~x~'B*® A"'B*®---® A"'B*® Aa*XuiA where the summation

runs over m0 = 0, w¡ = 1 for i ^ 1. Thus we may finally take our element a to
be of the form

a = c0® cx ® ■■■ ®cp®b0® bx ® ••• ® bq® a

where c0e AS0+"C*, cte A"'C*, b0e A"0+ff~;l~'B*,/>ie A" B*, ae Aff+ *"'A,  and
Zsf = t. Then

i-p-i
d'(«)=    I(-l)lc0®---®ciAci+1®---®cp®Z>o+(-l)PCo®

L;=o
®bx®---®bq®a,

and we want to show that this is an element of

)c   x®cpAb•]

ZLp-x(t)®<Zq+x(y(f),tf+tA,a- X- t)
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if p > 0, otherwise that d'(oi)e(£q+y(y(f), AvA,p).
If p = 0, we have d'(a) = c0 A b0 ® by ® ••■ ® bq ® a. But we also have that

So = i,soc0Afc0e AU0+''~X+UB* = AUo+pB*.Thusd'(ot)e A"0+PB* ® AU'B*®---
® A"'B*® A'+^'A and hence is in dq+y(y(f), AvA,p).

If p>0, it is clear that each of the terms c0® •■• ® c,Ac;+1 ® ••• ® cp® ¿>0® •••
® bq ® a is in the right place, and hence it remains only to check c0 ® •••
®cp_x ® cpA b0® ••• ® bq® a. But we claim that this element is in
Lp-y(t-sp)®<iq+y(y(f), Ax+,~SpA,a-X-t + sp) as can be easily checked.

Another   way  to   see  that  the  columns  are   stable   is   to   observe  that
ltLP(t)®(iq+y(y(f), Ax+'A,a-X-t) is isomorphic to It£p+1 Or*, Ap+tB*,u)
®Nq(x) where Nq(x) = I A" B* ® ••• ® A"q B* ® A"+ lui + lA with u¡ ̂  1.   This
fact will shortly be used, but may be verified fairly straightforwardly.

Now that we have our double complex, we are in a position to augment it.
Consider the case, then, when A = Rm, B = R", and C = Rr, i.e., Rm ̂  R" ^ Rr.
We then take v to be any positive integer less than or equal to r, we choose
X = r + 1, and a = n + 1. These are the choices of X and a which lead to the
appropriate Koszul complexes.

As mentioned before, we have the chain map &(y(gf), AvRm, r 4-1 — v)
-♦ ¡$Xy(g), AVR", r 4-1 — v). Thus the double complex defined above may be aug-
mented by the addition of an extra column on the extreme right, i.e., by adding on
&(y(g)> AVR", r + l — v). By doing this, each row of the complex becomes
'L,Lp(t)®K(Ax*tf)- We can also augment this double complex by adjoining

the extra row:
..._>0->0->- -♦0-» AvRr" AvRr,

with the map of Av Rm -» AVRr being Av gf, and that of Av R" -* AvRr being A* g-
Our newly obtained augmented double complex, which we will call X(f,g,v),

has the property that its two right-hand columns are K(Avgf) and K(A*g),
its rows (except the bottom one) are T,Lp(t)®K(Ax+tf) (X = r + l), and its
columns are   ZtD(g*, /\n+1-"+I£"*, r + i _ v)®Nq(x).

Having defined the double complex X(f, g, v), we return to the main objective
of this section.

Theorem 4.2. Let R be a local ring, let f:Rm->Rn be a map, and E an
R-module such that /(Coker/®£)< oo.   Then we have

("2 p) A-P/v.E) = Xiî*(Ap/,£)

where xH*(Apf,E) =  lq(-iyi(Hq(Apf,E)).
Proof. From the given map /: Rm->R", we get the S(R")-map

S(R")®/:S(R',)®R'n-*S(R")®Rn. We also always have the canonical map
t" : S(R") ® R" -> S(Rn). Therefore, from the two maps S(R") ®Rm-* S(Rn) ® R"
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-* S(R"), we get the double complex X = X(S(R") ®f, x", 1), and we consider
X®£.

We know that the double complex X ® E is of the form

• • • -> K(A 3h) ® E -+ K(A 2h) ® E -► K(h) ® £ -► K(id) ® E
where h = S(R") ®f (we are using the fact that the double complex becomes
quite simple when r = v = 1). Breaking the terms down still further, we see
that the complex is of the form

• • -» K(A3f) ® S(R") ® E -+ K(A2f) ® S(R") ® £ -> K(f) ® S(R" ® E)
-► K(id)®S(R")®E

with respect to the horizontal differentiation d, and is of the form

• •• Z £(t"*, As+nR"*®S(R"),l)®N2(s)®E
sao

-»   Z £(t"*, as+"R"* ® S(R"), 1) ® Nx(s) ® E ̂  K(xnh) ® £
sao

-» K(x")®E

with respect to the vertical differentiation d'.
We observe here that K(x„h) = K(xm) ® S(Rm)S(R") as chain complexes,

and hence H^K^-h) ® £) = H^(xm, S(R") ® E). On the other hand,
T>(x"*,As+"R"*®S(Rn),í)x(£(y(xn), A'SR" ® S(R"),]) by 1.6, and since
H(D(x"*, As+nR"* ® S(R"),l)® E) and H(X(t")®E) are annihilated by Im (t")
(being ordinary Koszul complexes) we see that these homology groups must
be finitely generated P-mcdules. Therefore their gth homogeneous parts must
vanish for all sufficiently large q, i.e., the gth homogeneous part of the complexes
/>(t"*,As+"P"*®S(R")J)®£   and   K(T«)0E are acyclic for all sufficiently
large q.

Now the map h = S(R")®/is of homogeneous degree zerc whereas the map
Tm is of homogeneous degree one, and thus the gth homogeneous part X(q) ® £
of the complex X ® £ takes the form:

K(Amf)®Sq(R")®E - K(Am"1/)®S9+1(Rn)®£^---^K(Am"i/)®Ss+i(RB)®£

- - - K(f) ® S,+m_ ,(Rn) ® E - Sq + m(R") ® E

with respect to the horizontal differentiation. Therefore the Euler-Poincaré
characteristic of X(q) ® £ computed with respect to the horizontal differentia-
tion is

Z (-l)i+1x(Ht(Àf,Sq+m-x(Rn)®E))
¡ = i

= Z(-l)'+1(9+mn+_n-i-1)^A'(/,£).
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On the other hand, each column complex of X(q) ® E is, with respect to teh
vertical differentiation, acyclic (for sufficiently large q) except the second one from
the right, namely, the qth homogeneous part of K(x"h)® E = K(xm)®S(Rn)®E.
Therefore the Euler-Poincaré characteristic of X(q) ® E computed with respect
to the vertical differentiation is Z (-l)pl(Hp(xm,S(R") ® £),+m_p) which is equal
to AmPf(q,E) by 3.1. Therefore we get

A"Pf(q,E) = Z(-l)i+1^+m/i+_"-I'-1)^(Ai/£)

■l(,r1)j/-n,^H-^r1)
where

aj =   £(-D,+1(„ "7*   f)x^(A7,E)=Z(-l)*("~1"/;)^*(A*+1/,£)
¡ = i \n-l-j/ k = 0 \n-l-jj

=   Í(-l)f-\-k)xH*(Ak+íf,E).
k=o \n-l-JJ

However, the left-hand side, AmPf(q,E), must be a constant independent of
q (by 3.6), and hence we get AmPf(q,E) = a0 = xH*(f,E), and a¡ = 0 for all
j > 0. Thus there remains to be shown that

XH*(AJf,E)= (nn2%H*(f,E).

We proceed by induction on / the case j — \ being trivial.
Assume that

XH,(Akf,E) = (" 7 *)xf7*(/,£)       for k = 1,2,-/
Then we have

0 = aj =   Í(-l)f-\-%H*(Ak+1f,E)
k = o \« — i — j/

= ï[(-l)*({) (nJí)xH*(f,E)+(-l)JxH*(Aj+1f,E)

=    (-iy'+1 (" 7 ^xH^E) +(-iyxH*(AJ + 1f,E),
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and hence

XH,(Ai+lf,E) =    (" ~ 1)^*(/,£)= (n "~l ^xH*(f,E).

This completes the proof.

Corollary 4.3. Let R be a local ring, f : Rm -► R" a parameter matrix for R,
and M = Coker/. Then

XH¿A>f,E)= ("~*)e£(M)
for all R-modules E.

Corollary 4.4. Let R be a local ring,f:Rm-*R"a map, and £ an R-module
such that I (Coker f® E) <co. Then xH^(Apf,E) is a non-negative integer and
xH*(Apf,E) = 0 if and only if m - n + Í > dimE (1 ̂  p ^ n).

Corollary 4.5. For a local ring R (dimR>0), the following statements
are equivalent:

(1) R is a Cohen-Macaulay ring.
(2) e(M) = l(M) for all R-modules M which are given by a parameter

matrix for R.
(3) e(R/q) = /(R/q) for an ideal of definition q generated by a system of

parameters.

We close this section with some remarks involving a few informal computa-
tions.

Let R be a local ring, and q an ideal of definition of R, whose multiplicity is
equal to e. If Pq(x) is the characteristic polynomial for q, then Pp(x) = (e/d\)xd + ■■■
where d = dimR. Thus we see that the multiplicity of q* for some integer k
is simply kde.

Now if R is moreover a Cohen-Macaulay local ring, and q is generated by
a system of parameters, then

/(qv/qv+1)=(V^71)i(R/q)

(since the associated graded ring of g is a polynomial ring in d variables over
R/q), and hence

What we are getting at is the following observation. Let R be a Cohen-Macaulay
local ring, and ax,---,ad a system of parameters for R. Letting </> = {ay,---,ad},
we may construct 4>(n) :Rd+n~1 ->R" as described in §3, and <¡>w is a parameter
matrix for R. Let M = Coker (p(n). Then since R is Cohen-Macaulay, and (p(n) is
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a parameter-matrix, we have e(M) = l(M) = l(RII((p(n))). But /(0(n)) = q" where q
is the ideal generated by a,,---,ad. Thus we see that

«*>-(■ ;*)«»-City
(since e = l(Rjq)), and e(M) is not the multiplicity of l((j>in)).
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