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Simulation of the mechanical behavior of soft tissues is critical for
many physiological and medical device applications. Accurate
mechanical test data is crucial for both obtaining the form and
robust parameter determination of the constitutive model. For
incompressible soft tissues that are either membranes or thin
sections, planar biaxial mechanical testing configurations can
provide much information about the anisotropic stress–strain
behavior. However, the analysis of soft biological tissue planar
biaxial mechanical test data can be complicated by in-plane
shear, tissue heterogeneities, and inelastic changes in specimen
geometry that commonly occur during testing. These inelastic
effects, without appropriate corrections, alter the stress-traction

mapping and violates equilibrium so that the stress tensor is
incorrectly determined. To overcome these problems, we pre-
sented an analytical method to determine the Cauchy stress tensor
from the experimentally derived tractions for tethered testing con-
figurations. We accounted for the measured testing geometry and
compensate for run-time inelastic effects by enforcing equilibrium
using small rigid body rotations. To evaluate the effectiveness of
our method, we simulated complete planar biaxial test configura-
tions that incorporated actual device mechanisms, specimen ge-
ometry, and heterogeneous tissue fibrous structure using a finite
element (FE) model. We determined that our method corrected
the errors in the equilibrium of momentum and correctly esti-
mated the Cauchy stress tensor. We also noted that since stress is
applied primarily over a subregion bounded by the tethers, an
adjustment to the effective specimen dimensions is required to
correct the magnitude of the stresses. Simulations of various
tether placements demonstrated that typical tether placements
used in the current experimental setups will produce accurate
stress tensor estimates. Overall, our method provides an improved
and relatively straightforward method of calculating the resulting
stresses for planar biaxial experiments for tethered configura-
tions, which is especially useful for specimens that undergo large
shear and exhibit substantial inelastic effects. [DOI: 10.1115/
1.4029266]

Keywords: soft tissue mechanics, biaxial mechanical data,
constitutive model

1 Introduction

A central need in the application of continuum mechanics to
biological tissues is the development of the constitutive models.
Such models are critical for insights into the development of accu-
rate computational simulations of the heart and its valves, arteries,
cartilaginous structures, and engineered tissue equivalents. While
the formulation of the theoretical framework is always the first
step, rigorous experimentation must be performed in parallel to
explore all relevant deformations to both obtain the necessary
constitutive model parameters and evaluate its predictive capabil-
ities [1]. Thus, there is an increasing need for multi-axial mechan-
ical data to fully explore and understand the complex structures of
biological tissues. For incompressible planar membrane or thin
soft tissue sections, a planar biaxial mechanical testing configura-
tion can provide much information about the stress–strain behav-
ior [1]. Planar biaxial tests can be performed with either
extensional deformations only, or in combination with in-plane
shear [2].

However, an ongoing problem in soft tissue mechanics is that
they are not truly elastic. Soft tissues have been shown to exhibit
elastic behavior under physiological conditions, yet also exhibit
permanent setlike changes in configuration from preconditioning
[1,3]. In addition, due to their very low stiffness in the zero stress
state, even mounting and handling can alter the shape of the test
specimen. This may result in a drastic change in the stress-free
reference state of the specimen from the one measured prior to
mounting. The situation becomes more complex when shear
strains are involved. In our first studies [4], a simplified method
was used to determine the components of the first Piola–Kirchhoff
stress tensor P from the initial dimensions and experimentally
measured axial forces, with the second Piola–Kirchhoff stress ten-
sor S determined using S ¼ F�1P. We later noted that this map-
ping did not produce fully accurate results in cases where the
shear strain was substantial. An initial alternative method was
developed [5], but was not a generalized solution. Specifically, the
method did not accounted for changes in geometry of the
unloaded state as a result of preconditioning and other related
inelastic dimensional effects. As a result, the run-time specimen
configuration will be a quadrilateral due to both shear and exten-
sional strains that occurred during preconditioning. While others
have developed various methods of deriving the stress under biax-
ial testing (e.g. Ref. [6]), no method to date addresses the actual
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testing geometry or compensates for changes in specimen geome-
try during the experiment. Moreover, inherent heterogeneities in
tissue structure will always affect the accuracy of the resultant
stress analysis. No systematic study to date has incorporated these
effects nor determined their influence on the accuracy of stress
tensor components from planar biaxial tests.

In approaching a solution to this problem, we first recognized
certain key considerations and limitations inherent in interpreting
any biaxial mechanical data. As noted in Sun et al. [7], no biaxial
experimental configuration can produce an ideal homogeneous
strain and stress state. This will result in subsequent errors in the
computation of stress tensor components, which will propagate
into the estimates of the material parameters, ultimately limiting
our ability to accurately simulate soft tissues. Moreover, we
believe one should first determine the constitutive model form and
material parameters before undertaking the complex task of simu-
lating complete organ systems. Thus, there remains a need for an
improved method to derive the stress–strain relation directly from
biaxial mechanical test data, with the assumption of homogeneous
strain and stress fields.

The current work presents a straightforward, generalized
approach for computing the effective Cauchy stress tensor for pla-
nar biaxial mechanical experiments that utilize a tethered mount-
ing configuration. This method utilizes only the (1) the initial
specimen dimensions, (2) the measured fiducial markers positions,
and (3) the measured axial forces. It works under the assumption
of homogeneous strain and stress fields within the specimen and
compensates for the following attributes:

(1) changes from the unloaded, initially measured specimen
geometry to the postmounted, preconditioning state

(2) the effects of structural heterogeneities in tissues, which
can result in rigid body rotations

(3) actual specimen geometry and tether attachment configura-
tions during run time

To assist with validation and provide additional insights, we
also present a comprehensive simulation of the entire biaxial test-
ing geometry using simulated tissue properties, anisotropy, and
structural heterogeneities.

2 Methods

2.1 Kinematics of a Planar Biaxial Test. Assuming a ho-
mogenous deformation, the kinematical description of the planar
biaxial test is

x1 ¼ k1X1 þ c1X2; x2 ¼ k2X2 þ c2X1; x3 ¼ k3X3 (1)

where Xk and xk are coordinates for material particles in the refer-
ence and current configurations, respectively, kk are the stretches
and ck are the shears. The shear relative to the third axis is 0, with
resulting deformation gradient tensor F
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Note that F33¼ k3¼ (k1k2� c1c2)
�1 is computed by the incom-

pressibility constraint det(F)¼ 1. All specimen deformations are
assumed to be completely quantified from the interior of the speci-
men (approximately the inner third by linear dimension or area)
using fiducial markers or texture mapping techniques [1,8].

2.2 Analysis of Stress

2.2.1 Planar Biaxial Testing Experimental Configuration.
Planar biaxial devices follow a typical design overall, but vary in
the specific boundary conditions utilized. We start with a rectan-
gular specimen with known side lengths L1 and L2, and an initial
thickness L3, and then mounted with resultant forces f(1) and f(2)

(Fig. 1). Previously, we determined the stresses using

P11 ¼
f
ð1Þ
1

Að1Þ ; P22 ¼
f
ð2Þ
2

Að2Þ ; P12 ¼ P21 ¼ 0; P ¼ P11 P12

P21 P22

� �

(3)

where f(i) and A(i) are the axial forces and initial cross-sectional
areas, respectively, with i¼ 1,2 [4]. The Cauchy stress t and

Fig. 1 (a) Typical biaxial mechanical test configuration and (b) schematic of the forces
and dimensions. Note that f(1) acts on an area of A(1)

5L23L3 and f(2) on A
(2)

5L13L3.
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second Piola–Kirchhof stress tensor S are computed using stand-
ard formulations t ¼ P � FT and S ¼ F�1P.

It should be noted that the methods of attachment are generally
separated into tethered [1,9–12] and clamped boundaries [13–17].
In the present work, we focus on tethered boundary configura-
tions. We do not intend to convey that any particular method is
optimal for any application, but rather to show that a tethered
attachment system, with its ability to allow free lateral displace-
ments and to apply relatively uniform distribution of boundary
forces, can be used to accurately obtain the stress–strain relation
directly from the experimentally obtained data. We feel this is im-
portant as the first step in any tissue mechanical analysis in order
to establish the form of the strain energy function, which is best
done using directly determined S and F whenever possible. As
such, this method will only require direct measurement of (1) ini-
tial specimen dimensions, (2) fiducial marker positions, and (3)
the measured axial forces. Due to the intrinsic differences in the
stress state induced, this method will not be directly applicable to
clamped boundaries. Additionally, the following assumptions are
made throughout the present work:

(1) The tissue is at all times in quasi-static equilibrium.
(2) The deformations are homogeneous, and consequentially:

(a) The specimen is located at the center of the apparatus
and does not translate.

(b) The testing system is symmetric.

(3) The applied tractions are evenly distributed per side, given
by the average applied by the four attached tethers.

2.2.2 Mounting and Preconditioning Effects. Distortions will
occur to some extent during mounting and testing due to the high
compliance of soft tissue specimen in the low stress range.
Although the mechanisms for preconditioning effects remain
unknown, it is known that the effect is not strictly viscoelastic
[1,18,19]. Instead, it is similar to permanent-setlike effects, but is
reversible over time [1]. For example, it has been shown that the
process itself reverts over the course of 24 h in chemically treated
pericardium tissue [1]. Thus, the effect only lasts for the current
test and is utilized to induce a stable, repeatable response
[1,18,19]. The new unloaded configuration can be quite different
from the initial rectangular state.

To compensate for these effects, we first establish the following
configurations (Fig. 2). The initial free floating state X0 is defined
to be the initial state of the specimen immediately after being cut
to size, and is well defined and rectangular. After mounting, pre-
conditioning, and other inelastic run-time effects, the specimen is
then fully unloaded and the new unloaded geometry is defined as
X1. We define a deformation 1

0F which maps X0 to X1. X1 is the
reference configuration used for all stress and strain calculations,
with the associated deformation t

0F.
Direct dimensional measurements of X1 requires removing the

specimen from the device, which must be done carefully to avoid
damaging the tissue and inducing additional distortions. An alter-
native is to image the specimen in situ, which poses its own sets
of challenges. Moreover, stress is only induced in the region
bounded by the tethers [13,16,17], with the surrounding tissue
deforming minimally. Therefore, the tether bounded area is best
used for the specimen geometry. As a result, the preconditioning
effects are accrued in the region of interest (ROI, region bounded
by the markers) may not be represented by the visible edges of the
specimen. However, X1 can be easily estimated from the deforma-
tion in the inner region of the specimen via the fiducial markers,
assuming the overall specimen deformation is approximately ho-
mogenous. This simplifies the approach and also provides an easy
way of determining the thickness, all without physically removing
the specimen from the device. We will thus assume that X0 is
known precisely and that the specimen undergoes a homogenous
deformation quantified by the strain measurement. Note that the
magnitude of preconditioning effects can vary considerably in dif-
ferent tissues. For example, it can be modest for a heart valve leaf-
let (Fig. 3(a)) or very significant for a murine right ventricle (RV)
free wall tissue specimen (Fig. 3(b)).

2.2.3 Equilibrium. In direct analysis of biaxial experimental
data, we have observed that the shear components of t derived
from the previous methods [5] will not be equal, violating equilib-
rium. In addition to preconditioning and inelastic effects, the over-
all geometry and orientation of the specimen are not exactly
predicted by the deformation at the center region of the specimen
due to real tissue heterogeneities. These will induce the specimen
to rotate slightly (i.e., undergo rigid body rotation) with respect
to the applied forces, leading to no net moment on the specimen
as a whole. This difference between the rigid body angle

Fig. 2 Different specimen configurations used during biax testing. X0 is the original
stress-free and undeformed free floating state. X1 is an intermediate configuration due
to mounting, preconditioning and other inelastic run-time effects, which can be
described by the deformation 1

0F. Xt is the current deformed state. The overall change in
configuration is given by t

0F, where the deformation due to stress is given by t

1F.
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calculated with respect to the center of the specimen and the real
rigid body angle produces a small angular moment in the derived
stress.

To account for this, we assume the body forces are negligible,
and the rigid body momentM is given by

M ¼
ð

S

r� TdS (4)

where r is the position vector and T is the boundary traction vec-
tor (Appendix). We parameterize r as r(s,h)¼ s x2þ (1� s) x1,
s� [0,1], where x1 ¼ t

0F hð Þ � X1 and x2 ¼ t
0F hð Þ � X2 are the cor-

ner points bounding the sides in the current state, h is the rigid
body angle of the deformation gradient, and l3 is the current thick-
ness. Thus, we are left with the sum of the following integral for
all four sides:

M3 hð Þ ¼ l3

ð1

0

rðh; sÞ � Tð Þ r0ðh; sÞj jds (5)

We note that in the present system (Fig. 1(a)) the orientation of
the traction T changes as the specimen deforms, and we thus
employ the following approach to enforce momentum balance by
adjusting h (Fig. 4). The initial estimate of the rigid body angle, h,
is derived from the deformation gradient t1F. Based on h, the quan-
tities describing the current geometry (e.g., tether orientations, the
Appendix) are derived. The first moment can be calculated
according to Eq. (5) and can serve as a tolerance check. If the
moment does not converge to zero, a new rigid body angle h is
proposed and the process is repeated until equilibrium is satisfied.
Once the best h is found, the current geometry of the specimen
can be determined from the deformation gradient t

0F. This, when
paired with the known tractions T, allows us to determine the

Fig. 3 The configurations X0, X1, and Xt for a glutaraldehyde treated aortic valve leaflet
(a) and the RV myocardium (b) are shown. These represent the typical change in the reference
configuration for a typical biaxial experiment due to preconditioning and other inelastic run-
time effects. Note that the RV data, tissue is sheared in the negative direction during
preconditioning. It is then sheared back in the positive direction during loading.

Fig. 4 Flowchart of for the geometric rigid body moment minimization and the
simulation of the biaxial geometry and stresses

064501-4 / Vol. 137, JUNE 2015 Transactions of the ASME



Cauchy stress from T¼ t �n. In practice, the rigid body rotation is
well within the experimentally measured rigid body rotations, typ-
ically <3 deg. Note that all calculations were implemented in a
custom written Mathematica 10 program.

2.2.4 Final Stress Analysis. As stated above, we assume that
the initial specimen geometry is known and that the specimen
undergoes a homogenous deformation quantified by the interior
strain measurements. We can thus calculate the current geometry
using the deformation gradient. Let dl be a vector representing the
side of the tissue in the current configuration and dL representing
the side of the tissue in the initial free floating configuration, then
we can calculate the current side lengths and thickness (l1, l2, l3)
according to

dl ¼ F � dL; l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

dl � dl
p

; l3 ¼ k3L3a (6)

where L is the initially measured side lengths. The current surface
area are a(1)¼ l2l3 and a(2)¼ l1l3. The outward surface normal, n,
can be calculated by taking the cross product of the line parallel to
the surface and a unit vector pointing along X3

n ¼ dl� e3
dl� e3j j (7)

The total axial force for each side is f¼ f1e1þ f2e2, where f1 is
the component along the X1 axis and f2 is the component along
the X2 axis. Often the axial forces are assumed to be aligned to the
experimental axes. This is not true under shear and can produce
significant differences and even reverse the sign of the shear
stress. In the case when the load cells are unidirectional, only the
forces along the axes f1

(1) and f2
(2) are measured. Given the direc-

tion of the traction (Appendix), v, the off axis forces can be
obtained by multiplying the on-axis force by the ratio of its com-
ponents, i.e., f2¼ f1 v

avg
2 /v

avg
1 . The net traction vector T is thus

Tð1Þ ¼ �Tð3Þ ¼ f
ð1Þ
1

að1Þ
;
f
ð1Þ
1

að1Þ
v
avg;ð1Þ
2

v
avg;ð1Þ
1

" #

;

Tð2Þ ¼ �Tð4Þ ¼ f
ð2Þ
2

að2Þ
v
avg;ð2Þ
1

v
avg;ð2Þ
2

;
f
ð2Þ
2

að2Þ

" # (8)

We can now re-express Cauchy’s theorem, T¼ t � n, using the
normal and traction vectors from all four sides as
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; t ¼ t11 t12
t12 t22

� �

(9)

This allows us to solve for the Cauchy stress tensor t using least
square regression. Based on incompressibility J¼ det(F)¼ 1, the
first and second Piola–Kirchhoff stress tensors, P and S, can be
determined from t as

P ¼ t � F�T; S ¼ F�1 � t � F�T (10)

2.3 FE Simulations of the Biaxial Test and Specimen
Heterogeneity

2.3.1 Structural Model. An incompressible structural model
[1,20–23] under the framework of hyperelasticity was used for FE
simulation to describe the underlying mechanisms of soft biologi-
cal tissues, with the commercial FE simulation software ABAQUS

(6.12, Simulia, RI). The full structural model corresponding to
Eq. (12) in Fan and Sacks [20] was used, with the parameters
listed in Table 2 as follows: /f (volume fraction of fibers), gf (fiber
elastic modulus), Vm (volume fraction of matrix), and lm (elastic
modulus of the matrix), l (mean direction of the fiber splay), and
r (standard deviation of the fiber splay).

2.3.2 Biaxial Test Simulations. To simulate an experimentally
realistic biaxial test, tether lines and pulleys were included in the
FE model. Initial position of each pulley and tether line prior to
applying biaxial forces was calculated using the proposed analyti-
cal method (Figs. 5(b) and 5(c)). The pulley was simplified by a
steel bar with a circular cross section. The bar was connected to
the tether lines and connection bars (Fig. 5(a)). The bars were set
to planar motion in the x1-x2 plane. The center of the bar was con-
straint to linear movements along the corresponding X1 or X2 axis.
No other constraints were applied to the model; all other elements
were allowed to move freely within the framework. ABAQUS ele-
ment B31H was used for meshing both the tether lines and pulley

Fig. 5. (a) The main components of the biaxial system are constructed and simulated in
FE. The (b) free floating and (c) preconditioned states are shown.

Journal of Biomechanical Engineering JUNE 2015, Vol. 137 / 064501-5



bars. The size of a typical initial free floating sample was used.
The sample was meshed by 1225 ABAQUS M3D4 type elements
(Figs. 5(b) and 5(c)). Detailed sample geometry is shown in Table
1. The preconditioned geometry was acquired by applying a de-
formation gradient to the square shaped sample. The deformation
gradient was experimentally acquired from an ovine RV wall sam-
ple. The structural model was used for sample material. Standard
steel material was used for the tether lines and pulley bars. All
material parameters used are summarized in Table 2.

To evaluate the analytical method, samples with four different
fiber distributions were considered in this study. The fiber distri-
bution parameters were chosen in a similar way as presented by
Lee et al. [24]. The mean value of preferred fiber direction (l)
was chosen to be either 0 or 45 deg with respect to the X1 axis.
The mean value of fiber splay (r) was chosen as 15 and 30 deg, to
represent typical cases of the aortic valve [25,26] and pericardium
[27], respectively. The standard deviation of the fiber preferred
direction and splay was chosen as 15 and 5 deg (Table 3). An
illustration of fiber distribution for both square shaped and precon-
ditioned samples is shown in Fig. 6.

Four different tether placement configurations for biaxial test-
ing were constructed to investigate the effects of tether placement.
To test the maximum coverage of the effective region of the sam-
ple, an ideal case with tether attachment points placed with a gap
of 9mm at the edge of the sample was constructed (A) (Fig. 7(a)).
To test for slight misplacement of the tethers in practical experi-
ments, another sample with the same tether attachment gap but
with a 0.6mm offset to the edge of the sample was also con-
structed (B) (Fig. 8(a)). To test the effect of a narrowly placed
tether attachment points, a case with attachment gap of 5mm
placed at the edge of the sample (C) (Fig. 9(a)). Finally, an experi-
mentally realistic case with tether points 1mm offset to the sam-
ple edge (D) (Fig. 10(a)) were also simulated (closest to the
experimental case). For samples with fiber splay of 15 deg, equi-
biaxial forces up to 420 mN were applied to the center point of
each side of the pulley bars; for samples with fiber splay of
30 deg, equibiaxial forces up to 840 mN were applied. The posi-
tions of the four markers were exported at each force increment
step for analysis using both the previous and new methods. Mean
Cauchy stress within the ROI was calculated and compared with
results from analytical methods.

2.3.3 Methods Comparison. The FE simulation results pro-
vided detailed stresses at the element level, thus the results from
the other two analytical methods were compared with the results
of FE simulation to evaluate the goodness of the estimation. A
normalized root mean square error (NRMSE) with respect to the

maximum value was used to quantify the performance of the two
analytical methods, with

NRMSE ¼ 1

tamax � tamin

�

�

�

�

1

n

X

n

tai � tFEi
� �2

 !1=2

(11)

where ta is the Cauchy stress from the analytical methods, tFE is
the Cauchy stress from the FE simulation, and n is the number of
total force increment steps.

3 Results

3.1 Effects of Tether Placement. The distribution of Cauchy
stress tensor components t11 and t22 of four tether configurations
from both square shaped sample and preconditioned sample
(Figs. 7–10) shows the effects of different tether placements. In
both cases, the samples with preferred fiber directions all along
the X1 axis with fiber splay of 15 deg were chosen for illustration.
The sample with relatively closely placed tether attachment points
(Fig. 8(b)) has a relatively more heterogeneous stress distribution,
and the corresponding stress magnitude is lower. In analyzing
square shaped samples, both the old and new methods provide the
best estimate in configurations (A) and (D), while the estimate of
stress has a relatively large error in configuration (C), as illus-
trated for the material model I (Fig. 9). A summary of NRMSE of
both methods for square shaped sample is shown in Table 4. Con-
figuration (A) has the least mean NRMSE in estimating t11 while
(D) has the least mean NRMSE in estimating t22. The mean
NRMSE of both configurations (A) and (D) is within 5%.

3.2 Analyzing Biaxial Test Data From a Preconditioned
Specimen. When the preconditioned configuration was used, the
shear component of the Cauchy stress became substantial (Fig. 8).
The NRMSE of tensile stresses estimation of the old method is
larger than the new method for all tether configuration cases (Ta-
ble 4). In comparison, the new method provides a better estimate
of both tensile and shears stress components. In tether configura-
tion (D), the estimate of shear stress components is the best with a
mean NRMSE of 3.6%. Configuration (B) provides the best esti-
mate of t11 component while configuration (A) provides the best
estimate of t22. The mean NRMSEs for both configurations (A)
and (D) are within 10% for all stress components.

3.3 Key Results. For ideal cases, without shear, heterogene-
ities and preconditioning effects, both the previous and current
methods preform optimally with no errors as expected. When

Table 1 Geometric parameters of a sample

Sample size (mm2) Thickness (mm) Element number Element size (mm2) ROI (marker) size (mm2)

7� 7 0.768 35� 35 0.2� 0.2 2.2� 2.2

Table 2 Material parameters of the sample, tether line, and
pulley bar

Structural material of the sample

a b gf (MPa) eub dc /c lm(MPa)

6.43 1.5 100 0.8 1 0.3 0.02

Tether lines and pulley bars

E (GPa) �

200 0.3

Table 3 Parameters of fiber distribution for tested samples.
lPD is the mean value of the preferred fiber direction, rPD is the
standard deviation of the preferred fiber direction, lr is the
mean value of the preferred fiber direction standard deviation,
rr is the standard deviation of the preferred fiber direction
standard deviation.

Fiber distribution lPD (deg) rPD(deg) lr(deg) rr(deg)

Material model I 0 15 15 5
Material model II 45 15 15 5
Material model III 0 15 30 5
Material model IV 45 15 30 5

064501-6 / Vol. 137, JUNE 2015 Transactions of the ASME



Fig. 6 The four material models used in the heterogeneous specimens. They are for
percardium tissue (a) and (b) and valvular tissues (c) and (d). The specimen is rotated for
normal loading (a) and (c) and shear loading (b) and (d).

Fig. 7 The results for the preconditioned pericardium specimen with (a) tether arrangement (A). The (b)
t22 stress distribution, (c) normal stresses, and (d) shear stresses are shown.

Journal of Biomechanical Engineering JUNE 2015, Vol. 137 / 064501-7



Fig. 8 The results for the preconditioned pericardium specimen with (a) tether arrangement
(B). The (b) t22 stress distribution, (c) normal stresses, and (d) shear stresses are shown.

Fig. 9 The results for the preconditioned pericardium specimen with (a) tether arrangement (C). The
(b) t22 stress distribution, (c) normal stresses, and (d) shear stresses are shown.

064501-8 / Vol. 137, JUNE 2015 Transactions of the ASME



these effects are introduced, we found that the presented method
offers a significant improvement in the estimates for the shear stress
and minor improvements in the normal components (Table 4). The
more significant effect, previously unaccounted for, was in regard
to the tether placements. The region of the specimen lying outside
of the tether bounded region was found to be under insignificant
amount of stress, resulting in the stress of the ROI being higher
than previously expected. Correcting the specimen dimensions
based on the tether position also corrects the associated stress esti-
mates. In the ideal tether layout (Fig. 7), we can obtain the most
accurate stress estimates (Table 4). Minor differences in the tether
positions and introducing a border to surround the tether (Fig. 10)
produce only small error in the stress, while more significant devia-
tions in the layout can produce larger errors (Table 4).

4 Discussion

4.1 Accuracy of the Method. Our aim was to devise a
method to accurately obtain the stress–strain behaviors directly

from the measured data from planar biaxial tests. It is important
for the method itself to be independent of the particulars of the
specimen’s mechanical properties and any constitutive model for-
mulation, so that it may serve as a starting point for establishing
the form of the strain energy function. We found that this is
achieved using a system of tethers to apply forces with no restric-
tion on the lateral displacement. As an extension to the previous
simulation of biaxial experiments [13,16,17,28], we included the
real tissue heterogeneities, anisotropy, and preconditioning, as
well as the carriage and attachment geometries, to simulate as
close to the real conditions of planar biaxial experimental configu-
rations as possible.

The primary findings were that the main source of error is the
shear induced due to tissue anisotropy and preconditioning, and
heterogeneous deformations. These effects are most easily
observed as a violation of equilibrium [5]. We found that our
method corrects these effects and produces accurate estimates of
the mean stresses within the ROI (Table 4), although its effect on
accuracy depends on the specifics of the tissue used (Tables 4

Fig. 10 The results for the preconditioned pericardium specimen with (a) tether arrangement (D). The (b) t22 stress
distribution, (c) normal stresses, and (d) shear stresses are shown.

Table 4 NRMSE of the estimated Cauchy stress components for both square shaped and preconditioned pericardial specimens
using both new and old methods. The tether placement used is shown (Fig. 5).

NRMSE Tethered configuration t11 t22 t12 t11 t22 t12

Eq. (9) Eq. (3)
square (A) 0.946 0.51% 4.406 3.88% — 0.946 0.52% 4.346 3.89% —

(B) 6.266 1.58% 3.896 2.16% — 6.276 1.59% 3.906 2.18% —
(C) 13.756 7.62% 9.986 11.13% — 13.876 7.80% 9.746 10.74% —
(D) 2.926 2.20% 3.316 2.46% — 2.976 2.28% 3.216 2.32% —

preconditioned (A) 6.276 3.65% 3.676 1.69% 6.336 8.33% 17.396 5.79% 13.396 3.74% 1116.526 1632.75%
(B) 4.186 1.47% 5.856 3.30% 10.596 4.52% 4.886 2.02% 7.406 2.80% 905.056 1372.93%
(C) 27.276 10.74% 2.446 1.57% 26.306 3.95% 43.336 16.14% 12.466 4.93% 641.576 566.48%
(D) 8.546 4.01% 6.676 1.60% 3.606 1.91% 20.356 6.47% 6.506 11.81% 609.926 678.60%
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and 5). There was also some expected loss of accuracy in the
preconditioned state due to the homogeneous assumption, where
the true preconditioned state differs slightly from the affine
mapping. However, the error produced is very small. It is also
important to note that the previous method (Eq. (3)) does not pro-
duce significantly worse estimates of the true axial components of
the stress (Figs. 7–10). This lends confidence in the results of the
previous works. One major improvement of the previous method
is in estimating the shear stress, where Eq. (9) can cause sign
errors (Figs. 7(e)–10(e)).

4.2 Preconditioning Effects. Since the time of Fung [29], the
soft tissue biomechanics community has adopted a pseudohypere-
lastic framework to describe tissue elasticity. However, the inelas-
tic effects exhibited during experiments still need to be accounted
for. The method described herein does not require a full under-
standing of these effects; only the initial dimensions, the fiducial
marker positions, and the forces along each axis are needed. Any
changes in the configuration can be accounted for by keeping
track of the relevant reference states. Under no shear and negligi-
ble changes in the reference configuration due to preconditioning
or other inelastic run-time effects, there is generally no need for
the present corrections. However, small misalignments of the ma-
terial axes of an anisotropic sample with the experimental axes
will result in shear that can produce errors in the computed stress
components necessitating the method described. Typically when
there is shear there will be a net moment generated. Using the
experimentally measured deformation gradient, the net moment is
on the order of 1N �mm. This effect is small and can be accounted
for by changing the rigid body angle by 0 deg–5 deg. For homoge-
neous rectangular specimens, where we expect the least difference
between the deformation of the ROI and the whole specimen, this
change in angle is negligible. For heterogeneous preconditioned
specimens, where there should be the greatest difference between
the ROI and the whole specimen, the change of the rigid body
angle is up to 0.81 deg. We note that this has been seen to be high
in real experimental results that are subjected to additional com-
plications. While this change is typically small, it is necessary to
compensate for the rotation induced by the heterogeneity of the
tissue, which would otherwise be ignored in the reduction of data
to enforce the assumption of homogeneity. It also ensures the
correct stress to traction mapping and equilibrium (t12¼ t21).

4.3 Effect of Tethered Configuration. Perhaps the most
important factors that were not explored in the previous literature
are the position of the tethers, heterogeneity in tissue structure,
and the effective specimen geometry [13,16,17,28]. In the present
work, we explored four different arrangements of tethers
(Figs. 7–10) and found the region bounded by tethers to be the
most reliable estimate for the effective specimen dimensions. This
is the result of the forces being applied not to the edge of the spec-
imen but rather to some inner region. Take for instance Fig. 4(e)

from Ref. [13] and Figs. 7(b), 7(c),10(b), and 10(c) in the present
work, in all cases nonzero stresses occur only in the region
bounded by the tethers. This essentially results in an “effective
specimen size” that is smaller than the actual dimensions of the
specimen. This is purely a magnitude error, but can be quite
significant. The ideal position to place the tethers is rather intui-
tive: Tethers should divide a side equally and this consistently
produced the best results (Fig. 7).

4.4 Effect of Material Model and Heterogeneities. Any
reliable method used to evaluate the mechanical properties, partic-
ularly biological tissues, should not depend on knowing the
mechanical properties a priori. For this purpose, we chose two
material models based on typical aortic valve [25,26] and pericar-
dium [27] tissue (Table 4), and introduced heterogeneities based
on Lee et al. [24] to evaluate the associated error and validity of
the homogeneous assumption. We noticed no difference in our
ability to estimate the stresses based on the material model, and
the estimated stress is comparable to the mean stress of the ROI
for the FE simulation (Figs. 7–10). Furthermore, the stresses, t11
and t22, are equal up to machine precision when the rigid body
minimization is done with sufficient accuracy as compared to the
previous results [5]. Overall, this method is sufficient to compen-
sate for any rigid body effect due to the heterogeneities in the
central region and for the assumption of homogeneity to hold for
typical valvular tissues.

4.5 Alternative Boundary Conditions. There are a variety of
boundary conditions possible for biaxial testing. Among some
recent publications, they can be roughly separated into clamped
[13–17], cruciform [13,16,17,30–33], and tethered boundary condi-
tion [1,9–12]. Clamping, as previously mentioned, produces a dras-
tically different and highly heterogeneous stress field. Moreover,
the restriction to the lateral displacement of the edge essentially cre-
ates a stress shield for the ROI [13]. This effect increases in
response to larger deformations, preventing direct estimation of the
stress based on the forces applied to the boundary. Thus, inverse
methods are necessary to estimate the stresses. In cruciform geome-
tries, no matter whether the sample is tethered or clamped, this
effect is reduced. However, in order to apply the proposed method,
the effective sample dimension needs to be established due to its
significance in the accuracy of the methods. It is not clear how the
choice of cruciform geometry [13,16,17,30–33] impacts the effec-
tive specimen dimensions. Additionally, it is also not clear how the
material will respond to shear. Shearing can be induced in a similar
fashion to Sun et al. [2]. It is difficult to control and not straightfor-
ward to analyze for the cruciform geometry, as the transmission of
forces along the extrusions will depend on the properties of the ma-
terial. The forces applied to the central region may not be evenly
distributed or even point in the same direction as the actuator. As
such, cruciform geometries also require inverse methods to obtain
accurate results.

Table 5 NRMSE of the estimated Cauchy stress components for both square shaped and preconditioned valvular specimens
using both new and old methods

NRMSE Tethered configuration t11 t22 t12 t11 t22 t12

Eq. (9) Eq. (3)
square (A) 1.19% 4.84% 1.19% 4.84%

(B) 7.46% 1.16% 7.46% 1.16%
(C) 14.93% 5.56% 14.93% 5.56%
(D) 2.54% 6.96% 2.54% 6.96%

preconditioned (A) 1.98% 2.41% 1.69% 13.04% 12.47% 279.07%
(B) 7.81% 3.23% 8.22% 1.7% 6.4% 239.79%
(C) 17.87% 4.81% 6.09% 31.23% 4.48% 331.64%
(D) 2.96% 7.78% 3.58% 13.85% 0.83% 232.32%
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Tethered setups do not restrict the deformation of the specimen,
and can be made to distribute the forces evenly, avoiding similar
problems with the other boundary conditions. For devices such as
BioTester (cell scale), where one end of the tethers is fixed, the
positions and thus the orientation of the tethers are easily defined
based on the displacement of the actuators. Caution must be taken
when there is no mechanism to ensure that the forces are evenly
distributed; each tether will be loaded differently resulting in the
tension being unevenly distributed. Moreover, when the tethers
are rigidly attached and made of stiff materials (metal rods) such
that they provide some resistance to bending, the large deforma-
tions and shear will also generate a bending moment that is diffi-
cult to account for in the stress analysis. This can impact both the
stresses in the ROI and our ability to obtain accurate estimates of
the stress. For systems with an equilibrating mechanism, a deriva-
tion is given in the Appendix. One might also note that, com-
monly, when the shear is minimal and the strain is not comparable
to the length of the tethers, the symmetry of the system will mean
that any of such errors are small to begin with. In the end, the
most favorable setup is up to the investigator based on their
specific intent and application.

4.6 Implementation and Limitations. This method can be
easily implemented using readily available software package such
as MATHEMATICA (Wolfram Research Corp.) or MATLAB (Math-
works, Inc.). Using MATHEMATICA with Gaussian quadrature for
integration of moments, and conjugate gradient for optimization,
and a solution is obtainable for a single protocol (�1500 points)
within 3–10 s.

In the present approach, an assumption of homogeneous defor-
mation is still necessary for calculating the tractions and specimen
geometry. This simplifies the problem into one that is solvable in
an analytical manner. As stated earlier, we feel that this is a rea-
sonable approach to obtain the mechanical data for identifying the
form and performing parameter estimation for any constitutive
model. Additionally, the errors produced by this assumption are
small and can be ignored. Once in place, such models and initial
parameter estimates can be utilized in inverse modeling
approaches for more complicated problems in functional tissues.
Only a limited range of heterogeneities are considered in the
model, but based on the accuracy of the results we believe that
this is sufficient and should not be a significant factor. While non-
square initial geometries are not considered in this paper, both
preconditioning effects and anisotropy of the material model
already produce a drastically different geometry than the idealized
square and should be a much more significant factor.

4.7 Summary. We have developed a generalized method to
determine stresses from the experimentally derived traction and
testing geometry, as well as compensate for run-time inelastic
effects by enforcing equilibrium using small rigid body rotations.
Using FE simulations of the planar biaxial tests, we demonstrated
that our method provides an improved method of calculating the
resulting stresses under large shear and preconditioning effects.
The effects of preconditioning and heterogeneities are properly
accounted for in this model to produce a more accurate stress esti-
mate, particularly for the shear stress. Larger errors are due to
tether placement and specimen dimensions. We found that stress
is mostly induced over the subregion bounded by the tethers,
necessitating an adjustment to the specimen dimensions, and the
tethers should be placed reasonably so that the forces are applied
evenly along the whole edge. Overall, using the present correc-
tions, more accurate models can be subsequently developed for
soft tissue/biomaterial applications.
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Nomenclature

a ¼ area in the current state
A ¼ area in the reference state
dl ¼ a line in the current state, used to represent the side of the

specimen
dL ¼ a line in the reference state, used to represent the side of

the specimen
E ¼ Green–Lagrange strain tensor
f ¼ force vector at each side
F ¼ deformation gradient
l ¼ the length of the specimen in the current configuration
L ¼ the length of the specimen in the initial referential

configuration
M ¼ first moment
n ¼ normal to the side of the specimen in the current state
oY ¼ coordinate of the pivot between the two shafts of the lever

system used by the actuators
P ¼ first Piola Kirchhoff stress
r ¼ position vector of point on the surface of the tissue
R ¼ rotation tensor
S ¼ second Piola Kirchhoff stress

Bold ¼ a vector or tensor quantity
t ¼ Cauchy stress
T ¼ traction vectors at each side
U ¼ right stretch tensor
vi ¼ vectors representing the tethers used to exert force on the

tissue
Xi ¼ coordinates of the attachment point of the tethers on the

tissue
Yi ¼ coordinate of the tangent points of the tether on the pulley

shaft referenced to the pivot of the shafts o
c ¼ shear
d ¼ the distance the shafts transverse during the experiment
h ¼ the rigid body angle
k ¼ stretch
u ¼ the orientation angle of the shafts about their pivot oY
Xt ¼ the configuration of the specimen at the tth time point

Subscript

i ¼ the component or a vector or tensor

Superscripts

i ¼ the ith coordinate or the ith vector, and is in fact not a
component

(i) ¼ that the scalar or vector quantity pertains to the side i

Appendix: Derivation of Traction Vectors for
Self-Equilibrating Tethered Systems

Device Geometry. The traction vector should be determined
based on the testing system. For devices such as BioTester (Cell
Scale), where one end of the tethers is fixed, the orientation of
the tethers is easier to determine. Self-equilibrating systems can
be more complicated. Typical self-equilibrating tether systems
involve wrapping tethers around a pulley with the ends attached
to the specimen. For two-point attachment, only one pulley is
involved. For four-point attachment, two pulleys are joined by a
bar that can rotate about its midpoint [1]. The number of pulleys
can be doubled for eight-point attachment, 16-point attachment,
etc. In the case of two tethers, the system is constrained by the
total length of the tether around the pulley which can be used to
determine the displacement of the actuator. For every additional
pulley added, a degree of freedom must be added representing
the orientation of the bar joining it to the rest of the system. In
all cases, the number of the constraints is equal to the number of
degrees of freedom. We shall use the four-point attachment as an
example, as it is the most commonly used number of tethers. We
will assume the tethers are evenly spread (Fig. 1).
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Traction Orientation Vectors. The general process for deter-
mining the orientation of the traction vectors is in three steps. (1)
Determine the locations of orientation of the tethers in the initial
unloaded state; this can be measured directly. (2) Determine the
locations of the end of the tethers on the tissue using the deforma-
tion gradient. (3) Determine the remaining end of the tethers based
on the constraints and mechanisms unique to that system. For
devices such as BioTester (Cell Scale), step 3 is simple as the
ends are fixed. The midpoint of the tethers on the specimen can be
produced by the deformation gradient. The midpoint of the tether
at the actuator only displaces with the actuator. The displacement
of the actuator d can be measured directly, or determined using
optimization by assuming the distance from the actuator and spec-
imen remains constant, rather like how d is determined below. For
our self-equilibrating example, we will denote the four tethers
attached to the tissue using the vectors v1, v2, v3, and v4. The
tether vectors vi are given by the difference between the tangent
points on the shafts and the attachment points on the tissue. Let
oY be the pivot point of the lever system, which is moved along
the experimental axis by the linear actuators. The position of oY is
indeterminate during the experiment. Yi are the position of tan-
gent points on the shafts of the lever system relative to oY in the
initial free floating configuration. It is clear that the
current coordinates of the tangent points on the shafts is simply
R(/)Yiþ oY, where R(/) is a rotation matrix about oY and / is
the angle rotated to equilibrate the tension for all four tethers
(Fig. 11). Furthermore, let Xi be the four tether attachment points
on the tissue in the initial free floating configuration, The current
coordinates of the attachment points are simply determined using
the overall deformation gradient t

0F ¼ t
1F

1
0F, x ¼ t

0F � X. Thus the
tether vectors, vi, are given by the difference

vi ¼ Rð/ÞYi þ oY
� �

� t
0F � Xi (A1)

The current pivot of the pulleys oY(t) is not known during the
experiment, and must be determined post hoc. However, note that
the initial oY(0) prior to any preconditioning and biaxial loading
can always be measured. The current pivot oY(t) at any time t is
given by an additional distance moved by the actuators d

oYðtÞ ¼ oYð0Þ þ de1 (A2)

where e1 be the unit vector in X1 direction. Thus we only need to
find / and d to determine the complete experimental geometry of
the system.

Note that v1 and v2 are part of the same tether and v3 and v4 are
part of the same tether. Physically, for any loading condition, the
tethers must remain taut and cannot stretch, so that |v1|þ |v2| and
|v3|þ |v4| remain constant. Thus, for the current tether vectors
vi(t), given any t

0F and the initial free floating state tether vectors
vi(0), we can solve for / and d by requiring the sum of squares
error (Eq. (A3)) to be minimized.

SSEð/; dÞ ¼ v1ðtÞj j þ v2ðtÞj jð Þ � v1ð0Þj j þ v2ð0Þj jð Þð Þ2

þ v3ðtÞj j þ v4ðtÞj jð Þ � v3ð0Þj j þ v4ð0Þj jð Þð Þ2 (A3)

Once the vi are known, the average tether vector vavg can be com-
puted. In some cases, where the tethers are long enough such that
they are essentially parallel with the test axes and do not rotate more
than 5 deg during the test, vavg can simply be approximated to be a
unit vector pointing along the axes without any loss of accuracy.

Local Traction. The total axial forces for each side is
f¼ f1e1þ f2e2, where f1 is the component along the X1 axis and f2
is component along the X2 axis. Often the axial forces are assumed
to be aligned to the experimental axes. This is not true under shear
and can produce significant differences and even reverse the
sign of the shear stress. In the case, when the load cells are
unidirectional, only the force along the axis f

ð1Þ
1 and f

ð2Þ
2 is meas-

ured. The off axis forces can be obtained by multiplying the on-
axis force by the ratio of the components of the directional vector
v, i.e., f2¼ f1 v

avg
2 /v

avg
1 . The net traction vector T is thus given by

Eq. (8). The traction vectors for all other sides can be derived
similarly.
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