
26 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 57, NO. 1, JANUARY 2010

A Generalized Mixed-Radix Algorithm for
Memory-Based FFT Processors

Chen-Fong Hsiao, Yuan Chen, Member, IEEE, and Chen-Yi Lee, Member, IEEE

Abstract—In this brief, a generalized mixed-radix (GMR) al-
gorithm is proposed for memory-based fast Fourier transform
(FFT) processors to support prime-sized and traditional 2n -point
FFTs simultaneously. It transforms the index to a multidimen-
sional vector for efficient computation. By controlling the index
vector to satisfy the “vector reverse” behavior, the GMR algorithm
can support not only in-place policy for both computation and
I/O data for continuous data flow to minimize the memory size
but also multibank memory structures to increase the maximum
throughput without memory conflict. Finally, a low-complexity
implementation of an index vector generator is also proposed for
our algorithm.

Index Terms—Continuous data flow, fast Fourier transform
(FFT), generalized mixed radix (GMR), in-place, vector reverse.

I. INTRODUCTION

THE orthogonal frequency-division multiplex (OFDM)
modulation technique has been widely exploited in com-

munication systems, such as 802.11, terrestrial digital video
broadcasting (DVB-T), and terrestrial digital multimedia broad-
casting (DMB-T). However, OFDM modulation involves the
discrete Fourier transform (DFT) that needs substantial com-
putation. Today, various FFT processors, such as pipelined or
memory-based architectures, have been proposed for different
applications. However, for long-size FFT processors, such as the
2048-point FFT, the pipelined architecture would cost more area
and power than the memory-based design. Hence, memory-
based approach has gained more and more attention recently
in FFT processor designs for long-size DFT applications.

For the memory-based processor design, minimizing the
necessary memory size is effective for area reduction since
the memory costs a significant part of the processor. On the
other hand, the FFT processor usually adopts on-chip static
random access memory (SRAM) instead of external memory.
The reason is the high-voltage I/O and the large capacitance
in the printer-circuit-board (PCB) trace would increase power
consumption for external memory. Besides the power issue, us-
ing external memory also increases the PCB-level verification
cost for end-product manufacturers. Therefore, it is a trend to
use the on-chip SRAM for FFT processors and to conduct FFT
optimization for better system-level integration.

To minimize the necessary memory size, an in-place ap-
proach [1] is taken for both butterflies output and I/O data. That
is, the output data of butterflies are written back to their original

Manuscript received January 4, 2009; revised April 5, 2009, June 27, 2009,
and September 9, 2009; accepted October 17, 2009. First published January 8,
2010; current version published January 15, 2010. This work was supported by
the National Science Council of Taiwan under Grant NSC97-2221-E-009-166-
MY3. This paper was recommended by Associate Editor M. M. Mansour.

The authors are with the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu 30010, Taiwan (e-mail: holder@si2lab.org;
ychen@si2lab.org; cylee@si2lab.org).

Digital Object Identifier 10.1109/TCSII.2009.2037262

location during the computation time. Moreover, for the I/O
data, the new input data x[n] would be put in the location of
the output data X[n] of the previous FFT symbol. On the other
hand, for the memory-based processor, the high-radix structure
would be taken to increase the throughput to meet real-time
requirements. However, when both in-place policy and high-
radix structure are adopted simultaneously, it would result in
memory conflict problem if the data have not been addressed
properly. Until now, there have been several publications on this
issue, the in-place approach for multibank memory structure,
to optimize the processor design [1]–[3]. However, the ap-
proaches mentioned in [1] and [2] only work for fixed radix-r.
The approach in [3] only works for radix-2/4. Hence, all of
them could not be used for prime-number memory-based DFT
processor design, and this still remains a challenge today. Note
that a prime-number FFT has been proposed in recent commu-
nication standards, e.g., the 3780-point DFT in Chinese direct
TV (DMB-T) [4] and the 1536-point DFT in Third Generation
Partnership Project Long-Term Evolution [5]. Although, for the
prime-number FFT computation, the zero-padding method can
be taken to approximate it by computing some 2n-point FFT,
it has poor signal-to-quantization-noise-ratio performance than
a prime-radix FFT. Therefore, to develop an approach for a
multibank in-place addressing algorithm for general size, an
FFT is necessary.

In this brief, a generalized mixed-radix (GMR) algorithm
is proposed to optimize the memory-based FFT processor
design. It supports not only in-place policy to minimize the
necessary memory size for both butterflies output and I/O data
but also multibank memory structure to increase its maximum
throughput to satisfy more system applications without memory
conflict. After the algorithm is introduced, we take the 3780-
point FFT as an illustrative example. Finally, a low-complexity
hardware implementation of an index vector generator is also
proposed for our algorithm.

II. PROPOSED GMR ALGORITHM

A. Index Mapping

The definition of a DFT is X[k] =
∑N−1

n=0 x[n]Wnk
N . The

method to decompose a large-size DFT into several small-size
DFTs has been proposed in [6]. Here, we take the following
decomposition equation for the size N = N1N2:{

n=(N2n1+A2n2) mod N, n1, k1 =0, 1, . . . , N1−1
k=(B1k1+N1k2) mod N, n2, k2 =0, 1, . . . , N2−1.

(1)

Equation (1) maps the indexes n and k to the index vectors
(n1, n2) and (k1, k2) from one dimension [0, N − 1] into two
dimensions [0, N1 − 1] × [0, N2 − 1]. The selection of coeffi-
cients A2 and B1 depends on the relation between N1 and

1549-7747/$26.00 © 2010 IEEE

HSIAO et al.: GENERALIZED MIXED-RADIX ALGORITHM FOR MEMORY-BASED FFT PROCESSORS 27

N2. In our approach, the coefficients for (1) are employed as
follows.

Case 1) If N1 and N2 are relatively prime, we take that A2

and B1 satisfy

A2 = p1N1 and A2 = q1N2 + 1
B1 = p2N2 and B1 = q2N1 + 1.

Here, p1, q1, p2, and q2 are all positive integers. Then,
the definition of the DFT could be rewritten as

X[k1, k2] =
∑
n2

∑
n1

x[n1, n2]Wn1k1
N1

Wn2k2
N2

=
∑
n2

{∑
n1

x[n1, n2]Wn1k1
N1

}
Wn2k2

N2

=
∑
n2

y[k1, n2]Wn2k2
N2

. (2)

Case 2) If N1 and N2 are not relatively prime, we take
that A2 = B1 = 1. Then, the definition of the DFT
could be rewritten as

X[k1, k2] =
∑
n2

∑
n1

x[n1, n2]Wn1k1
N1

Wn2k2
N2

Wn2k1
N

=
∑
n2

{
Wn2k1

N

∑
n1

x[n1, n2]Wn1k1
N1

}
Wn2k2

N2

=
∑
n2

Wn2k1
N y[k1, n2]Wn2k2

N2
. (3)

Equations (2) and (3) imply that a larger size N -point FFT
could be computed by two smaller sized N1-point and N2-point
FFTs in the first and second stages, respectively. For the fixed
n2, the input data of the N1-point FFT in the first stage are
x[n1, n2], n1 = 0, 1, . . . , N1 − 1. Furthermore, the output data
are y[k1, n2], k1 = 0, 1, . . . , N1 − 1. For the fixed k1, the input
data of the N2-point FFT in the second stage are y[k1, n2], n2 =
0, 1, . . . , N2 − 1. Moreover, the output data are X[k1, k2], k2 =
0, 1, . . . , N2 − 1.

B. Bank Selection for Conflict-Free Processing

To minimize the memory size, the in-place policy [1] should
be taken as described earlier. Here, we illustrate how to achieve
conflict-free memory accesses when the in-place policy is
adopted during the FFT computation. We distribute the input
data into different memory banks.

Assume that the FFT size N = N1N2N3, N3 � N1, N3 �
N2, and the memory bank number is chosen to be N3 here.
The bank number could also be chosen as N1 or N2, and which
one would be more suitable depends on the system requirement.
Note that if the bank number is chosen as N1 (or N2), the
following procedure can guarantee to access m data for m-point
FFT in �m/N1� clock cycles for m = N1, N2, and N3.

Now, we compute the N1-point FFT in the first stage, the
N2-point FFT in the second stage, and the N3-point FFT
in the third stage according to the following decomposition
equations:{
n=(N2N3n1+A1ñ2)modN, n1,k1 =0, 1, . . . ,N1−1
k=(B1k1+N1k̃2) modN, ñ2,k̃2 =0, 1, . . . ,N2N3−1 (4){̃
n2 =(N3n2+A2n3)modN2N3, n2,k2 =0, 1, . . . ,N2−1
k̃2 =(B2k2+N2k3)modN2N3, n3,k3 =0, 1, . . . ,N3−1.

(5)

The computation order here is taken for illustration, and the
other order can also be adopted. The coefficients A1, B1, A2,
and B2 are employed as described in Section II-A.

The input data x[n1, ñ2], n1 = 0, 1, . . . , N1 − 1, of each N1-
point FFT in the first stage correspond to the same ñ2. Since n1

is 0, 1, . . . , N1 − 1 and N3 � N1, (6) would map different n1

to a different bank for each N1-point FFT [1], i.e.,

bank = (N1 + x) mod N3. (6)

Therefore, conflict-free memory access in the first stage could
be achieved by (6). Here, x in (6) is an arbitrary constant
number.

After the first stage, the N -point FFT has been divided into
N1 smaller size N2N3-point FFTs with index (k1, ñ2), k1 =
0, 1, . . . , N1 − 1. Note that, for each N2N3-point FFT, they
have the same index k1.

Similarly, by (5), we could also decompose the N2N3-point
FFT into N2-point and N3-point FFTs and map the index
from (k1, ñ2) into (k1, n2, n3). Since the data of each N2N3-
point FFT have the same index k1, similar to the discussion of
(6), conflict-free memory access could also be achieved when
we compute the N2-point and N3-point FFTs by (7) and (8),
respectively, i.e.,

bank = (n2 + x) mod N3 (7)
bank = (n3 + x) mod N3. (8)

Combining (6)–(8), we get

bank = (n1 + n2 + n3) mod N3. (9)

From the above discussion, the memory access conflict prob-
lem, which results from in-place policy during FFT compu-
tation, could be solved by distributing the input data into N3

memory banks by (9).
Once the memory bank is selected, data need to be addressed.

Any two data in the same memory bank should be mapped to
a different address within the range from 0 to N1N2 − 1. For
simplicity, we choose the following for data addressing:

address = N2n1 + n2. (10)

C. Concurrent I/O and Conflict-Free Processing

Since the in-place policy is adopted for I/O data, the new
input data x[i] should be put in the location of the output data
X[i] of the previously computed FFT symbol. However, in
Section II-B, we have illustrated that our approach would put
the new input data by (9) and (10). Hence, in the following,
we will show how to satisfy (9) and (10) under the constraint
that the new input data x[i] should be put in the location of the
output data X[i] of the previously computed FFT symbol.

Suppose that N = N1N2N3 and N1, N2, and N3 are rela-
tively prime. Then, there would have positive integers pi and qi

for i = 1, 2, 3 such that{
p1N1 = q1N2N3 + 1
p2N2 = q2N1N3 + 1
p3N3 = q3N1N2 + 1.

We observe the relation of the index mapping equation between
the reverse decomposition orders.

Case 1) If we decompose N in the order N1, N2, and N3.
The decomposed equations for this decomposition

28 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 57, NO. 1, JANUARY 2010

order N1, N2, and N3 could be obtained as follows:{
n = (N2N3n1 + p1N1ñ2) mod N
k = (p2p3N2N3k1 + N1k̃2) mod N

(11){
ñ2 = (N3n2 + p2N2n3) mod N2N3

k̃2 = (p3N3k2 + N2k3) mod N2N3.
(12)

From (11) and (12), we get the index mapping
equations for input and output data as follows for
the decomposition order N1, N2, and N3:

n = (N2N3n1 + p1N1N3n2 + p1p2N1N2n3) mod N (13)
k = (p2p3N2N3k1 + p3N1N3k2 + N1N2k3) mod N. (14)

Case 2) If we decompose N in the order N3, N2, and
N1. Similar to case I, the index mapping equations
for input and output data are as follows for this
decomposition order:

n = (N1N2n1 + p3N1N3n2 + p2p3N2N3n3) mod N (15)
k = (p1p2N1N2k1 + p1N1N3k2 + N2N3k3) mod N. (16)

Comparing (13)–(16), we find that input equation (13) and
output equation (16) are the same. Furthermore, input equation
(15) and output equation (14) are also the same. This means
that the in-place policy could be supported for both butterflies
output and I/O data without memory access conflict if the
FFT is computed with the reverse decomposition order of the
previous FFT symbol.

Fig. 1 shows the data flow of the 60-point FFT by our algo-
rithm. The columns bank and addr represent the corresponding
memory bank and address, respectively. The columns n and
k represent the index of the input and output data, respec-
tively. Since 60 = 3 × 4 × 5, we could compute it by exploiting
3-point, 4-point, and 5-point FFTs. The figure shows that the
memory data access is conflict-free during the FFT computa-
tion. Moreover, by comparing the output index of the second
FFT symbol with the input index of the first FFT symbol, we
find that the data flow of the third FFT symbol will return to
the state of the first FFT symbol, implying that (13)–(16) are
perfectly matched.

III. EXAMPLE OF THE 3780-POINT FFT DESIGN

Since 3780 = 4 × 3 × 3 × 3 × 5 × 7, we could compute it by
computing the three-point, four-point, five-point, and seven-point
FFTs. Here, the data are distributed into seven memory banks.

First, we take the decomposition order 4, 3, 3, 3, 5, and then
7. For the first stage (4-point FFT), the following decomposition
equation is taken:{

n = (945n1 + 2836ñ2) mod 3780, n1, k1 = 0, 1, 2, 3
k = (945k1 + 4k̃2) mod 3780, ñ2, k̃2 = 0, . . . , 944.

(17)

It maps the index n to the vector (n1, ñ2) from [0, 3779] to
[0, 3] × [0, 944], as shown in Table I. The data in each row of
Table I are the input data of each 4-point FFT. The input order
is decided by the index n1, as shown in Fig. 2.

After the first stage, the original data have been divided into
four independent groups for four 945-point FFTs corresponding
to k1 = 0, 1, 2, and 3, respectively.

Similarly, for the 945-point FFT, we could also decompose
it in the order 945 = 3 × 3 × 3 × 5 × 7 and map the index

Fig. 1. Example of a 60-point FFT.

TABLE I
INDEX MAPPING FOR THE FIRST STAGE

Fig. 2. Input and output data of a 4-point FFT.

ñ2 to the vector (n2, n3, n4, n5, n6) from [0, 944] to [0, 2] ×
[0, 2] × [0, 2] × [0, 4] × [0, 6]. By combining all the decomposi-
tion equations for each stage, the full index mapping equations
for the 3780-point FFT in this decomposition order are shown
as follows:

n = (945n1 + 1260n2 + 2940n3

+ 980n4 + 1512n5 + 540n6) mod 3780 (18)
k = (945k1 + 2380k2 + 3360k3

+ 2520k4 + 2268k5 + 540k6) mod 3780. (19)

Similar to (9) and (10), we could also get the following full
bank selection addressing equations:

bank = (n1 + n2 + n3 + n4 + n5 + n6) mod 7 (20)
address = 135n1 + 45n2 + 15n3 + 5n4 + n5. (21)

During computation, we need to access r data from seven
banks for r-point FFT computation simultaneously in each
stage. From (20) and Fig. 2, when the bank of the first input data

HSIAO et al.: GENERALIZED MIXED-RADIX ALGORITHM FOR MEMORY-BASED FFT PROCESSORS 29

Fig. 3. Permutation of accessed data for bank(0) = 2.

in(0), called bank(0), is determined, the bank of other input
data can also be determined as bank(0) + 1 mod 7, bank(0) +
2 mod 7, Fig. 3 shows the permutation of accessed data for
bank(0) = 2. The relation between the addresses of accessed r
data is similar.

After the first FFT symbol, i.e., the odd FFT symbol, has
been computed, all the indexes ni will be transformed to ki in
(20) and (21). For the second input FFT symbol (i.e., the even
FFT symbol), its mapping index, memory bank, and address
can be determined by (19)–(21), respectively. This is because
the even FFT input data xeven[n] can be placed in the location
of the odd FFT output data Xodd[k] with n = k.

For the computation of the even FFT symbol, we take
the reverse decomposition order of the odd FFT symbol,
i.e., 3780 = 7 × 5 × 3 × 3 × 3 × 4. By similar approach, we
map the input index n and the output index k to vectors
(a1, a2, a3, a4, a5, a6) and (b1, b2, b3, b4, b5, b6), respectively,
from [0, 3779] to [0, 6] × [0, 4] × [0, 2] × [0, 2] × [0, 2] × [0, 3]
for the even FFT symbols. By Section II-C, the relations
between ni, ki, ai, and bi are as follows. Note that the index
vectors are reversely matched (vector reverse), i.e.,

(a1, a2, a3, a4, a5, a6) = (k6, k5, k4, k3, k2, k1)
(n1, n2, n3, n4, n5, n6) = (b6, b5, b4, b3, b2, b1).

Then, the bank selection and the memory addressing for the
even FFT symbol are as follows:

bank = (a1 + a2 + a3 + a4 + a5 + a6) mod 7
address = 135a6 + 45a5 + 15a4 + 5a3 + a2.

From Section II-B, the memory access would keep conflict-
free for the even FFT symbol. Furthermore, from Section II-C,
the data distribution of the third FFT symbol would return to
the state of the odd FFT symbol. Then, a conflict-free general
mixed-radix FFT processor can be achieved by reversing the
decomposition order of the previous FFT symbol.

In this example, we compute the 3780-point FFT with
six-stage small-size FFTs. Since the FFT sizes in different
computation stages are different, making all memory banks
keep full loading (being accessed simultaneously) during
FFT computation is difficult. On the other hand, this compu-
tation needs 3780(data) × 6(stages) × 2(read/write) memory
accesses. Since the memory bank number is 7, the mini-
mum necessary clock rate for this processor is 3780 × 6 ×
2/(3780 × 7) = 1.72. That is, it is impossible to finish the FFT
computation with only a 1× clock rate, and we need at least 2×
system clock to finish it.

IV. IMPLEMENTATION OF THE INDEX VECTOR GENERATOR

The block diagram of the proposed memory-based DFT
processor is shown in Fig. 4. It contains two N -word memory

Fig. 4. Block diagram of the proposed FFT processor.

Fig. 5. Signal flow graph of a 3-point FFT.

modules, i.e., MEM_1 and MEM_2, to support both I/O data
transfer and FFT computation via switch1 and switch2. Hence,
we only need 2N words memory for real-time application.

The FFT_CORE is used to compute the decomposed small-
size DFTs. Some algorithms to implement the butterfly engine
within the FFT_CORE for 2n-sized and prime-sized DFTs
can be found in [3], [7], and [8]. Fig. 5 shows one method
to implement the 3-point FFT [8]. This 3-point FFT can be
finished by three 2-point FFTs. Similarly, other prime-radix
FFT can also be achieved with the similar method. Hence, it is
possible to compute the prime-radix FFT based on the 2-point
FFT with low-complexity control logic to schedule the butterfly
engine.

Generally, for a long-size DFT processor, the memory would
almost dominate a full processor area [9]. For example, in the
4096-point FFT processor [9], memory and butterfly engine
cost about 82% and 2% of the total area, respectively.

The control unit in Fig. 4 contains two index vector gen-
erators to generate the necessary index vectors for I/O data,
respectively. These two generators are the same.

In the following, we introduce our proposed index vector
generator used for I/O data. The FFT size N = N1N2N3,
which is discussed in Section II-B, is taken as an example. We
let the coefficient A1 = qN2N3 + 1 in (4). If N1 and N2N3 are
not relatively prime, then q = 0. Otherwise, q is some positive
integer. Hence, the input equation in (4) can be rewritten as

n = (N2N3n
′
1 + ñ2) mod N. (22)

Here, we define

n′
1 = (n1 + qñ2) mod N1 (23)

n1 = (n′
1 + q′ñ2) mod N1. (24)

Similarly, the input equation in (5) can also be rewritten as

ñ2 = (N3n
′
2 + n3) mod N2N3 (25)

n2 = (n′
2 + r′n3) mod N2. (26)

From (22) and (25), we have

n = (N2N3n
′
1 + N3n

′
2 + n3) mod N. (27)

Equation (27) indicates that the transform from n to
(n′

1, n
′
2, n3) could be realized by three accumulators. Hence,

by combining (24), (26), and (27), the proposed index vector
generator for I/O data could be designed as shown in Fig. 6. The
ACC in Fig. 6 is an accumulator. The ACC n′

1, ACC n′
2, and

30 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 57, NO. 1, JANUARY 2010

Fig. 6. Proposed index vector generator.

TABLE II
COMPARISON OF DIFFERENT ADDRESSING SCHEMES

ACC n3 make the counter that we have described above. Each
of the modulo operation can be implemented by one comparator
and one adder. Since the factor q′ = N1 − q comes from the
decompose equation of the first stage, the operation ACC ñ2

should be set to zero when n′
2 = N2 − 1 and n3 = N3 − 1.

Similarly, r′ = N2 − r and the operation ACC n4 should be
set to zero when n3 = N3 − 1.

V. COMPARISON

The comparison among different addressing schemes is
shown in Table II. Compared with the in-place policy, our work
only costs half the memory size of the Jaguar II processor [10].
Our work can provide higher throughput and can be used in
more system applications than [11] does. Moreover, since [1]–
[3] only support fixed radix or radix-2/4, they could only work
for the FFT size with the form N = rn. Only our work could
support several different radixes simultaneously such as the
3780-point FFT.

For the conventional 2n-point FFT, Table III(a) shows the
available minimum FFT computation cycles and the corre-
sponding adopted algorithm for different addressing schemes
[1]–[3]. Note that only our work can finish all the mentioned
computation tasks within 2N clock cycles for the N -point
FFT. For example, for the DVB-T/H system application, the
2048/4096/8192-point FFTs are needed, and our work is more
suitable for this system than those of [1]–[3]. Table III(b)
shows the area overhead that divides the memory from 1
block into 2/4/8 smaller memory banks. It is normalized to
two-bank memory cost. From the table, the area overhead of
the multibank would decrease as the FFT size increases. For
the 8192/4096-point FFT application, the memory area of the
eight-bank architecture only costs about 30% more than the
two-bank structure and 20% more than the four-bank structure.
Thus, for the applications with FFT size more than 4096,
e.g., DVB-T/H, our work would be a good option since it
can provide only about 20% area overhead than the four-bank
structure with a 2× minimum necessary clock rate instead of a
4× minimum necessary clock rate for the four-bank structure.

TABLE III
(a) COMPUTATION CYCLES AND ADOPTED ALGORITHM FOR DIFFERENT

ADDRESSING SCHEMES. (b) AREA COST OF MULTIBANK MEMORY

VI. CONCLUSION

In this brief, a GMR algorithm has been proposed to op-
timize the general-size memory-based FFT processor design.
It supports the in-place policy for both butterflies output and
I/O data to minimize the necessary memory size. Hence,
only 2N words memory is required for any size FFT com-
putation for real-time requirements. Furthermore, our pro-
posal also supports the multibank addressing for a high-radix
structure without memory conflict by reversing the decom-
position order of the previous FFT symbol. Finally, a low-
complexity index vector generator has been proposed for our
algorithm. It only costs a few accumulators, making our pro-
posal very suitable for multistandard and multimode OFDM-
based applications.

REFERENCES

[1] L. G. Johnson, “Conflict free memory addressing for dedicated FFT
hardware,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 39, no. 5, pp. 312–316, May 1992.

[2] J. A. Hidalgo, J. Lopez, F. Arguello, and E. L. Zapata, “Area-efficient
architecture for fast Fourier transform,” IEEE Trans. Circuits Syst. II,
Analog Digit. Signal Process., vol. 46, no. 2, pp. 187–193, Feb. 1999.

[3] B. G. Jo and M. H. Sunwoo, “New continuous-flow mixed-radix (CFMR)
FFT processor using novel in-place strategy,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 52, no. 5, pp. 911–919, May 2005.

[4] Z.-X. Yang, Y.-P. Hu, C.-Y. Pan, and L. Yang, “Design of a 3780-point
IFFT processor for TDS-OFDM,” IEEE Trans. Broadcast., vol. 48, no. 1,
pp. 57–61, Mar. 2002.

[5] 3GPP TS 36.201 V8.3.0 LTE Physical Layer—General Description,
E-UTRA, Mar. 2009.

[6] C. Burrus, “Index mappings for multidimensional formulation of the
DFT and convolution,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-25, no. 3, pp. 239–242, Jun. 1977.

[7] D. P. Kolba and T. W. Parks, “A prime factor FFT algorithm using
high-speed convolution,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-25, no. 4, pp. 281–294, Aug. 1977.

[8] A. M. Despain, “Very fast Fourier transform algorithms hardware for
implementation,” IEEE Trans. Comput., vol. C-28, no. 5, pp. 333–341,
May 1979.

[9] C. L. Wey, S.-Y. Lin, and W. C. Tang, “Efficient memory-based FFT
processors for OFDM applications,” in Proc. IEEE Electro/Inf. Technol.,
May 17–20, 2007, pp. 345–350.

[10] Jaguar II Variable-Point (8-1024) FFT/IFFT, Drey Enterprise Inc.,
Crosslake, MN, 1998.

[11] R. Radhouane, P. Liu, and C. Modlin, “Minimizing the memory re-
quirement for continuous flow FFT implementation: Continuous flow
mixed mode FFT (CFMM-FFT),” in Proc. IEEE Int. Symp. Circuits Syst.,
May 2000, vol. 1, pp. 116–119.

[12] Y. Ma, “An effective memory addressing scheme for FFT processors,”
IEEE Trans. Signal Process., vol. 47, no. 3, pp. 907–911, May 1999.

[13] D. Reisis and N. Vlassopoulos, “Address generation techniques for con-
flict free parallel memory addressing in FFT architectures,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3438–3447, Dec. 2008.

