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Abstract

We develop a novel probabilistic ensemble framework for multi-label classification that is based 

on the mixtures-of-experts architecture. In this framework, we combine multi-label classification 

models in the classifier chains family that decompose the class posterior distribution P(Y1, …, Yd|

X) using a product of posterior distributions over components of the output space. Our approach 

captures different input–output and output–output relations that tend to change across data. As a 

result, we can recover a rich set of dependency relations among inputs and outputs that a single 

multi-label classification model cannot capture due to its modeling simplifications. We develop 

and present algorithms for learning the mixtures-of-experts models from data and for performing 

multi-label predictions on unseen data instances. Experiments on multiple benchmark datasets 

demonstrate that our approach achieves highly competitive results and outperforms the existing 

state-of-the-art multi-label classification methods.
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1 Introduction

Multi-Label Classification (MLC) refers to a classification problem where the data instances 

are associated with multiple class variables that reflect different views, functions or 

components describing the data. MLC naturally arises in many real-world problems, such as 

text categorization [19, 36] where a document can be associated with multiple topics 

reflecting its content; semantic image/video tagging [5, 24] where each image/video can 

have multiple tags based on its subjects; and genomics where an individual gene may have 

multiple functions [6, 36]. MLC formulates such situations by assuming each data instance 

is associated with d class variables. Formally speaking, the problem is specified by learning 

a function h : ℝm → Y = {0, 1}d that maps each data instance, represented by a feature 

vector x = (x1, …, xm), to class assignments, represented by a vector of d binary values y = 

(y1, …, yd) indicate the absence or presence of the corresponding classes.

The problem of learning multi-label classifiers from data has been studied extensively by the 

machine learning community in recent years. A key challenge in solving the problem is how 
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to efficiently model and learn the dependencies among class variables given the fact that the 

space of possible dependency relations is exponentially large. Early methods assumed that 

all class variables (Y1, …, Yd) are conditionally independent of each other and learned d 

independent functions to predict each class [6, 5]. However, this ignores the conditional 

dependencies among class variables which often contain crucial modeling information. To 

overcome this limitation, more advanced machine learning methods that model class 

relations have been proposed, such as conditional tree-structured Bayesian networks [2], 

classifier chains [27, 7], multi-dimensional Bayesian network classifiers [30, 4, 1] and 

output coding methods [16, 29, 37].

However, the methods of learning multi-label classifiers are still rather limited especially 

when the relations among features and class variables become more complex. For example, 

in semantic image tagging, an object can be tagged as {cat, pet} or {cat, wild animal} 

according to its context; similarly, in medical informatics, patients who are suffering from 

the same disease may receive different sets of medications due to their medical history or 

allergic reactions. As in the examples, if the relations tend to change across a dataset, 

existing methods may fail to respond with correct classification since they are designed to 

capture only one kind of dependency structure from data. One approach to address this issue 

is to employ various ensemble methods that combine multiple MLC classifiers to obtain an 

improved model. Unfortunately, ensemble methods that were adopted to the MLC settings 

[27, 7, 1] are rather limited in that: (1) they rely on simple averaging of multiple MLC 

models, (2) the MLC models averaged were not specifically optimized but restricted to 

randomized MLC structures (by choosing a random permutation for ordering the classes in 

the chain). As a result, the improvements we could obtain from such ensembles were often 

not very significant.

In this paper, we propose a new ensemble approach that aims to remedy the limitations of 

the MLC models by employing the mixtures-of-experts (ME) framework [18, 35]. Our 

ensemble approach incorporates the MLC models that belong to the classifier chains family 

(CCF) [27, 7, 2]. Briefly, the CCF models define the multivariate class posterior probability 

P(Y1, …, Yd|X) where the dependencies among class variables for different inputs are 

modeled by a collection of univariate probabilistic classifiers, one classifier for each output, 

that are organized in a chain, where a specific output variable is conditioned on all input 

variables and on output variables that precede it in the chain. The univariate classifiers in 

CCF can be implemented in many different ways, for example, as logistic regression 

models.

One limitation of the MLC models in CCF is that when they are learned from data, the 

dependencies among class variables are typically approximated by a specific classification 

model used (e.g. logistic regression) and hence may not be perfect. Moreover, in some 

applications, the dependencies among output variables may vary depending on the input 

context. Our new ME architecture lets us remedy these limitations by learning and 

combining multiple MLC models, where each model covers a different region of the input 

space. The intuition is that while a single MLC model may represent well the relations for 

some part of the input space, it may not be sufficient to model the relations globally (full 

input space), and hence multiple models may be needed to assure a good and accurate 
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coverage. We develop and present an EM algorithm for learning the ME model for multiple 

MLC models from data.

The rest of the paper is organized as follows. Section 2 formally defines the problem of 

MLC. Section 3 provides the fundamentals of ME and CCF, which are necessary to 

understand our approach. Section 4 describes our proposed MLC solution. Section 5 

presents the experiment results and evaluations. Lastly, section 6 concludes the paper.

2 Problem Definition1

Multi-Label Classification (MLC) is a classification problem in which each data instance is 

associated with a subset of labels from a labelset L. Denoting d = |L|, we define d binary 

class variables Y1, …, Yd, whose value indicates whether the corresponding label in L is 

associated with an instance x. We are given labeled training data , where 

 is the m-dimensional feature variable of the n-th instance (the input) 

and  is its d-dimensional class variable (the output). We want to learn a 

function h that fits D and assigns to each instance a class vector (h : ℝm → {0, 1}d).

One approach to this task is to model and learn the conditional joint distribution P(Y|X) 

from D. Assuming the 0–1 loss function, the optimal classifier h* assigns to each instance x 
the maximum a posteriori (MAP) assignment of class variables:

(2.1)

The key challenge in modeling, learning and MAP inferences is that the number of 

configurations defining P(Y|X) is exponential in d. Overcoming this bottleneck is critical for 

obtaining efficient MLC solutions.

3 Preliminary

The MLC solution we propose in this work combines multiple MLC classifiers using the 

mixtures-of-experts (ME) [18] architecture. While in general the ME architecture may 

combine many different types of probabilistic MLC models, this work focuses on the 

models that belong to the classifier chains family (CCF). In the following we briefly review 

the basics of ME and CCF.

The ME architecture is a mixture model that consists of a set of experts combined by a 

gating function (or gate). The model represents the conditional distribution P(y|x) by the 

following decomposition:

1Notation: For notational convenience, we will omit the index superscript (n) when it is not necessary. We may also abbreviate the 
expressions by omitting variable names; e.g., P(Y1=y1, …, Yd=yd|X=x) = P(y1, …, yd|x).
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(3.2)

where P(y|x, Ek) is the output distribution defined by the k-th expert Ek; and P(Ek|x) is the 

context-sensitive prior of the k-th expert, which is implemented by the gating function gk(x). 

Generally speaking, depending on the choice of the expert model, ME can be used for either 

regression or classification [35].

Note that the gating function in ME defines a soft-partitioning of the input space, on which 

the K experts represent different input-output relations. The ability to switch among the 

experts in different input regions allows to compensate for the limitation of individual 

experts and improve the overall model accuracy. As a result, ME is especially useful when 

individual expert models are good in representing local input-output relations but may fail to 

accurately capture the relations on the complete input space.

ME has been successfully adopted in a wide range of applications, including handwriting 

recognition [9], text classification [11] and bioinformatics [25]. In addition, ME has been 

used in time series analysis, such as speech recognition [23], financial forecasting [33] and 

dynamic control systems [17, 32]. Recently, ME was used in social network analysis, in 

which various social behavior patterns are modeled through a mixture [12].

In this work, we apply the ME architecture to solve the MLC problem. In particular, we 

explore how to combine ME with the MLC models that belong to the classifier chains 

family (CCF). The CCF models decompose the multivariate class posterior distribution P(Y|

X) using a product of the posteriors over individual class variables as:

(3.3)

where Yπ(i,M) denotes the parent classes of class variable Yi defined by model M. An 

important advantage of the CCF models over other MLC approaches is that they give us a 

well-defined model of posterior class probabilities. That is, the models let us calculate P(Y = 

y|X = x) for any (x, y) input-output pair. This is extremely useful not only for prediction, but 

also for decision making [26, 3], conditional outlier analysis [13, 14], or performing any 

inference over subsets of output class variables. In contrast, the majority of existing MLC 

methods aim to only identify the best output configuration for the given x.

The original classifier chains (CC) model was introduced by Read et al. [27]. Due to the 

efficiency and effectiveness of the model, CC has quickly gained large popularity in the 

multi-label learning community. Briefly, it defines the class posterior distribution P(Y|X) 

using a collection of classifiers that are tied together in a chain structure. To capture the 

dependency relations among features and class variables, CC allows each class variable to 

have only classes that precede it along the chain as parents (Yπ(i,M) in (3.3)). Figure 1(a) 
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shows an example CC, whose chain order is Y3 → Y2 → Y1 → Y4. Hence, the example 

defines the conditional joint distribution of class assignment (y1, y2, y3, y4) given x as:

Likewise, CCF is defined by a collection of classifiers, P(Yi|X, Yπ(i,M)) : i = 1, …, d, one 

classifier for each output variable Yi in the chain (3.3). Theoretically, the CCF 

decomposition lets us accurately represent the complete conditional distribution P(Y|X) 

using a fully connected graph structure of Y (see Figure 1(a)). However, this property does 

not hold in practice [7]. First, the choice of the univariate classifier model in CC (such as 

logistic regression), or other structural restrictions placed on the model, limit the types of 

multivariate output relations one can accurately represent. Second, the model is learned from 

data, and the data we have available for learning may be limited, which in turn may 

influence the model quality in some parts of the input space. As a result, a specific CC 

model is best viewed as an approximation of P(Y|X). In such a case, a more accurate 

approximation of P(Y|X) may be obtained by combining multiple CCs, each optimized for a 

different input subspace.

Conditional tree-structured Bayesian networks (CTBN) [2] is another model in CCF. The 

model is defined by an additional structural restriction: the number of parents is set to at 

most one (using the notation in (3.3), Yπ(i,M) :=Yπ(i,M)) and the dependency relations among 

classes form a tree:

where yπ(i,M) denotes the parent class of class Yi in M. Figure 1(b) shows an example CTBN 

that defines:

The advantage of the tree-structured restriction is that the model allows efficient structure 

learning and exact MAP inference [2].

The binary relevance (BR) [6, 5] model is a special case of CC that assumes all class 

variables are conditionally independent of each other (Yπ(i,M) = {} : i = 1, …, d)2. Figure 

1(c) illustrates BR when d = 4.

Finally, we would like to note that besides building simple ensembles for MLC in the 

literature [27, 7, 1], the mixture approach for a restricted chain model was studied recently 

by Hong et al. [15], which uses CTBNs [2] and extends the mixtures-of-trees framework 

2By convention, Yπ(i,M) = {} if Yi in M does not have a parent class.
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[22, 31] for multi-label prediction tasks. In this work, we further generalize the approach 

using ME and CCF.

4 Proposed Solution

In this section, we develop a Multi-Label Mixtures-of-Experts (ML-ME) framework, that 

combines multiple MLC models that belong to classifier chains family (CCF). Our key 

motivation is to exploit the divide and conquer principle: a large, more complex problem can 

be decomposed and effectively solved using simpler sub-problems. That is, we want to 

accurately model the relations among inputs X and outputs Y by learning multiple CCF 

models better fitted to the different parts of the inout space and hence improve their 

predictive ability over the complete space. In section 4.1, we describe the mixture defined by 

the ML-ME framework. In section 4.2–4.4, we present the algorithms for its learning from 

data and for prediction of its outputs.

4.1 Representation

By following the definition of ME (3.2), ML-ME defines the multivariate posterior 

distribution of class vector y = (y1, …, yd) by employing K CCF models described in the 

previous section.

(4.4)

(4.5)

where  is the joint conditional distribution defined by 

the k-th CCF model Mk and gk(x) = P(Mk|x) is the gate reflecting how much Mk should 

contribute towards predicting classes for input x. We model the gate using the Softmax 

function, also known as normalized exponential:

(4.6)

where  is the set of Softmax parameters. Figure 2 illustrates an example ML-

ME model, which consists of K CCFs whose outputs are probabilistically combined by the 

gating function.

Algorithm 1

learn-mixture-parameters

Input: Training data D; base CCF experts M1, …, MK
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Output: Model parameters {ΘG, ΘT}

1: repeat

2:  E-step:

3:  for k = 1 to K, n = 1 to N do

4:

  Compute using Equation (4.9)

5:  end for

6:  M-step:

7:  ΘG = arg maxΘG fG(D; ΘG) − R(ΘG)

8:  for k = 1 to K do

9:

   

10:  end for

11: until convergence

Parameters: Let Θ = {ΘG, ΘM} denote the set of parameters for an ML-ME model, where 

 are the gate parameters and  are the parameters of the CCF 

models defining individual experts. We define a gate output for each expert by a linear 

combination of inputs, which requires |θGk| = (m + 1) = O(m) parameters. On the other hand, 

we parameterize each CCF expert by learning a set of classifiers. This in turn requires |θMk| 

= d(m + O(d) + 1) = O(dm + d2) parameters.

In summary, the total number of parameters for our ML-ME model is |ΘG|+|ΘM| = O(Kmd

+Kd2). Table 1 summarizes the parameters and notations.

4.2 Learning parameters of CCF

In this section, we describe how to learn the parameters of ML-ME when the structures of 

individual CCF models are known and fixed. We return to the structure learning problem in 

Section 4.3. Our objective here is to find the parameters Θ = {ΘG, ΘM} that optimize the 

log-likelihood of the training data:

(4.7)

We refer to (4.7) as the observed log-likelihood. However, direct optimization of this 

function is very difficult because the summation inside the log results in a non-convex 

function. To avoid this, we instead optimize the complete log-likelihood, which is defined by 

associating each instance (x(n), y(n)) with a hidden variable z(n) ∈ {1, …, K} indicating to 

which expert it belongs:
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(4.8)

where [z(n) = k] is the indicator function that evaluates to one if the n-th instance belongs to 

the k-th expert and to zero otherwise. We use the EM framework that iteratively optimizes 

the expected complete log-likelihood (E[lc(D; Θ)]), which is always a lower bound of the 

observed log-likelihood [8]. In the following, we derive an EM algorithm for ML-ME.

Each EM iteration consists of E-step and M-step. In the E-step, we compute the expectation 

of the complete log-likelihood. This reduces to computing the expectation of the hidden 

variable z(n), which is equivalent to the posterior of the k-th expert given the observation and 

the current set of parameters.

(4.9)

In the M-step, we learn the model parameters {ΘG, ΘM} that maximize the expected 

complete log-likelihood. Let  denote E[ [z(n)= k]]. Then we can rewrite the expectation 

of (4.8) using  and by switching the order of summations:

As  is fixed in the M-step, we can decompose this into two parts, which respectively 

involves the gate parameters ΘG and the CCF model parameters ΘM:

By taking advantage of this modular structure, we optimize fG(D; ΘG) and fM(D; ΘM) 

individually to learn ΘG and ΘM, respectively. We first optimize fG(D; ΘG), which we 

rewrite as (using (4.6)):

Since fG(D; ΘG) is concave in ΘG, we can find the optimal solution using a gradient-based 

method. The derivative of the log-likelihood with respect to θGj is:
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(4.10)

Note that this equation has an intuitive interpretation as the derivative becomes zero when 

gj(x(n)) = P(Mk|x(n)) and  are equal.

In our experiments, we solve this optimization using the L-BFGS algorithm [21], which is a 

quasi-Newton method that uses a sparse approximation to the inverse Hessian matrix to 

achieve a faster convergence rate even with a large number of variables. To prevent 

overfitting in high-dimensional space, we regularize with the L2-norm of the parameters 

.

Now we optimize fM(D; ΘM), which can be further broken down into learning K individual 

CCF models. Note that fM forms the weighted log-likelihood where  serves as the 

instance weight. In our experiments, we optimize this by applying L2-regularized instance-

weighted logistic regression models.

4.2.1 Complexity—Algorithm 1 summarizes our parameter learning algorithm. The E-step 

computes  for each instance on each expert. This requires O(md) multiplications. Hence, 

the complexity of a single E-step is O(KNmd). The M-step optimizes the parameters ΘG and 

ΘM. Optimizing ΘG computes the derivative (4.10) which requires O(mN) multiplications. 

Denoting the number of L-BFGS steps by l, this requires O(mNl) operations. Optimizing ΘM 

learns K CCF models. We do this by learning O(Kd) instance-weight logistic regression 

models.

4.3 Structure Learning

We previously described the parameter learning of ML-ME by assuming we have fixed the 

individual structures. In this section, we present how to obtain useful structures for learning 

a mixture from data. We first show how to obtain CCF structures from weighted data. Then, 

we present our sequential boosting-like heuristic that, on each iteration, learns a structure by 

focusing on “hard” instances that previous mixture tends to misclassify.

4.3.1 Learning a Single CCF Structure on Weighted Data—To learn the structure 

that best approximates weighted data, we find the structure that maximizes the weighted 

conditional log-likelihood (WCLL) on {D, Ω}, where  is the instance weight. 

Note that we further split D into training data Dtr and hold-out data Dh for internal 

validation.

Given a CCF structure M, we train its parameters using Dtr, which corresponds to learning 

instance-weighted logistic regression using Dtr and their weights. On the other hand, we use 

WCLL of Dh to define the score that measures the quality of M.
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(4.11)

The original CC [27] generates the underlying dependency structure (chain order) by a 

random permutation. In theory, this would not affect the model accuracy as CC still 

considers the complete relations among class variables. However, in practice, using a 

randomly generated structure may degrade the model performance due to the modeling and 

algorithmic simplifications (see section 3). In order to alleviate the issue, Read et al. [27] 

suggested to use ensembles of CC (ECC) that averages the predictions of multiple randomly 

ordered CCs trained on random subsets of the data. However, this is not a viable option 

because simply averaging the multidimensional output predictions may result in inconsistent 

estimates (does not correctly solve (2.1)).

Instead, we use a structure learning algorithm that learns a chain order greedily by 

maximizing WCLL. That is, starting from an empty ordered set ρ, we iteratively add a class 

index j to ρ by optimizing:

(4.12)

where  denotes the classes previously selected in ρ. We formalize our method in 

Algorithm 2. Note that this algorithm can be seen as a special case of [20] that optimizes the 

chain order using the beam search.

We would like to note that by incorporating additional restriction on the CC model, the 

optimal (restricted) CC structure may be efficiently computable. An example of such a 

model is the Conditional Tree-structured Bayesian Network (CTBN) [2]. Briefly, the 

optimal CTBN structure may be found using the maximum branch (weighted maximum 

spanning tree) [10] out of a weighted complete digraph, whose vertices represent class 

variables and the edges between them represent pairwise dependencies between classes.

4.3.2 Learning Multiple CCF Structures—To obtain multiple, effective CCF structures 

for ML-ME, we apply the above described algorithms multiple times with different sets of 

instance weights. This section explains how we assign the weights such that poorly 

predicted instances have higher weights; and well-predicted instances have lower weights.

Algorithm 2

learn-chain-structure

Input: Training data D

Output: Chain order ρ

1: Split D into Dtr and Dh

2: Initialize an ordered set ρ = {}

3: for i = 1 to d and j ∉ ρ do
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4:  for j = 1 to d do

5:

   

6:  end for

7:

  

8: end for

To start with, we assign all instances uniform weights (ω(n) = 1/N : n = 1, …, N; i.e., all 

instances are equally important a priori). Using this initial set of weights, we first obtain a 

CCF structure ρ1 (i.e., either a CC or CTBN structure) and train a model M1 that follows ρ1. 

Then, by setting the current mixture  to be M1, we compute the new instance weights to 

be the normalized prediction error:

With the updated weights {ω(n)}, we obtain another structure ρ2, and train  with M1 and 

M2 that follow ρ1 and ρ2, respectively (Algorithm 1).

We incrementally inject new models to the mixture by repeating this process. To stop the 

process, we use internal validation approach. Specifically, the data used for learning are split 

to internal train and test sets. The structure of the trees and parameters are always learned on 

the internal train set. The quality of the current mixture is evaluated on the internal test set. 

The mixture growth stops when the log-likelihood on the internal test set for the new 

mixture does not improve any more. The structures included in the previous mixture are then 

fixed, and the parameters of the mixture are re-learned on the full training data.

4.3.3 Complexity—Learning a single CCF structure requires to estimate P(Yi|X, Yj) for 

O(d2) pairs of classes. Since we learn K CCF structures for a mixture, the overall complexity 

is O(Kd2) times the complexity of learning logistic regression.

4.4 Prediction

In order to make a prediction for a new instance x, we want to find the MAP assignment of 

the class variables (see (2.1)). Our ML-ME model consists of multiple CCF models and the 

MAP solution may, at the end, require enumeration of exponentially many class 

assignments. To address this problem, we rely on approximate MAP inference. The two 

commonly applied MAP approximation approaches in the literature are: convex 

programming relaxation via dual decomposition [28], and simulated annealing using a 

Markov chain [34]. In this work, we use the latter approach. Briefly, we search the space of 

all assignments by defining a Markov chain that is induced by local changes to individual 

class labels. The annealed version of the exploration procedure [34] is then used to speed up 

the search. We initialize our MAP algorithm using the following heuristic: first, we identify 

the MAP assignments for each CCF model in the mixture individually [7, 2, 5]. After that, 
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we pick the best assignment among these candidates. We have found this (efficient) 

heuristic to work very well and often results in the true MAP assignment.

5 Experiments

5.1 Data

We use seven publicly available MLC datasets obtained from different domains. Table 2 

summarizes the characteristics of the datasets, including dataset size, label cardinality (the 

average number of labels per instance), distinct label set (the number of distinct class 

configurations that appear in the data) and data domain.

5.2 Methods

To demonstrate the benefits of our mixture framework, we compare the performance of the 

following eight methods: binary relevance (BR) [6, 5], conditional tree-structured Bayesian 

networks (CTBN) [2], classifier chains (CC) and their ensembles (ECC) [27], probabilistic 

classifier chains (PCC) and their ensembles (EPCC) [7], ML-ME with CTBN (MCTBN) and 

ML-ME with CC (MCC).

BR is the simplest method that learns each class independently. CTBN and CC are our base 

method that fall in the classifier chains family. By testing them individually, we want to 

demonstrate the benefits of our method. PCC is an algorithmic extension of CC that 

exhaustively searches over its entire label space to perform exact MAP inference. ECC and 

EPCC are simple ensemble methods that rely on randomization to obtain multiple 

dependency relations (by choosing a random permutation for the class order in the chain) 

and use simple averaging to make ensemble predictions. MCTBN and MCC are our 

proposed methods that properly optimize the log-likelihood and produce context-sensitive 

mixture outputs.

For a fair comparison of the methods, we fix the following parameters throughout all 

experiments:

• We use L2-penalized logistic regression for all of the methods and choose their 

regularization parameters by cross validation.

• We set the maximum number of experts to 10 for MCTBN/MCC. We use our 

heuristic (section 4.3.2) to stop early if possible; ECC/EPCC use 10 fixed number 

of base models in an ensemble.

• We use our structure learning algorithm (Algorithm 2) for CC/PCC; we use random 

chain orders for ECC/EPCC.

• For predictions on MCTBN/MCC, we use 150 iterations of simulated annealing.

5.3 Evaluation Metrics

To compare different MLC methods, we use the following two evaluation metrics.

• Exact match accuracy (EMA): EMA computes the percentage of instances whose 

predicted output vectors are exactly the same as their true class vectors (i.e., all 
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classes are predicted correctly). EMA is proper for MLC as it evaluates the success 

of the method in finding the mode of P(X|Y). However, it could be too harsh 

especially when the output dimensionality is high.

• Conditional log-likelihood loss (CLL-loss): CLL-loss computes the negative 

conditional log-likelihood of the test instances.

(5.13)

It measures the model fitness by evaluating how much probability mass is given to 

the true label vectors (the higher the probability, the smaller the loss). Note that 

CLL-loss is only defined for probabilistic methods.

5.4 Results

Tables 3 and 4 show the performance of all methods in terms of EMA and CLL-loss, 

respectively. All results are obtained using ten-fold cross validation. In parentheses, we 

indicate the relative ranking of the methods on each dataset. We do not report the results of 

PCC/EPCC on Medical and Enron because evaluating all O(2d) class assignments is clearly 

infeasible. Also, we do not report CLL-loss for ECC and EPCC because they do not produce 

probabilistic output.

Based on the results, our ML-ME framework clearly improves the performance of the base 

models. In terms of EMA (Table 3), the prediction accuracy of MCC is not only the highest 

but also the most stable. Although not as good as MCC, MCTBN also shows a large 

improvement compared with CTBN. These demonstrate that ML-ME compensates for the 

restrictions that the base MLC models have using their combinations. In addition, this is in 

contrast to simple averaging, which often leads to inconsistent estimation (ECC and EPCC). 

The model fitness of MCC measured by CLL-loss (Table 4) also indicates that MCC is 

competitive, followed by MCTBN, CTBN, BR and CC. Although PCC is recording the 

highest average ranking, it is computationally very expensive and does not scale up to large 

data.

In summary, the experimental results show that our ML-ME method with the CCF experts is 

able to outperform or match the existing state-of-the-art methods across a broad range of 

benchmark MLC datasets. We attribute this improvement to the ability of the CCF mixture 

that simultaneously compensates for the restricted dependencies modeled by an individual 

CCF, and to its ability that better fits the different regions of the input space with new expert 

models.

6 Conclusion

We presented a novel probabilistic ensemble framework for multi-label classification. Our 

approach attempts to capture different input-output and output-output relations that tend to 

change across data. We integrated the mixtures-of-experts architecture and the multi-label 

classification models in the classifier chains family, that decompose the class posterior 
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distribution P(Y1, …, Yd|X) using a product of posterior distributions over components of the 

output space. We developed the learning and prediction algorithms for our mixture 

framework, and showed that our approach recovers a rich set of dependency relations among 

inputs and outputs that a single multi-label classification model cannot capture due to its 

modeling simplifications. Through the experiments on multiple benchmark datasets, we 

demonstrated that our approach achieves highly competitive results and outperforms the 

existing state-of-the-art multi-label classification methods.
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Figure 1. 
Example models of the classifier chains family.
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Figure 2. 
An example of ML-ME.
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Table 1

Notations

NOTATION DESCRIPTION

m Input (feature) dimensionality

d Output (class) dimensionality

N Number of data instances

K Number of experts in a mixture

Mk An MLC expert with index k

ΘM = {θM1, …, θMK} The parameters for MLC experts

ΘG = {θG1, …, θGK} The parameters for a gate
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