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A GENERALIZED MODEL FOR OPTIMAL TRANSPORT OF IMAGES

INCLUDING DISSIPATION AND DENSITY MODULATION

Jan Maas1, Martin Rumpf2, Carola Schönlieb3 and Stefan Simon2

Abstract. In this paper the optimal transport and the metamorphosis perspectives are combined.
For a pair of given input images geodesic paths in the space of images are defined as minimizers of a
resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport
cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly
varying image contrast and explicitly allows for sources and sinks in the transport equations which
are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the
non-viscous case with source term existence of geodesic paths is proven in the space of measures.
The proposed model is explored on the range from merely optimal transport to strongly dissipative
dynamics. For this model a robust and effective variational time discretization of geodesic paths is
proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image
matching functionals. These functionals are defined on corresponding pairs of intensity functions and
on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated.
Furthermore, a finite element implementation is proposed and applied to instructive test cases and
to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and
Brenier including a discretization of the source term. Finally, the model is generalized to define discrete
weighted barycentres with applications to textures and objects.
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1. Introduction

In the past two decades concepts from finite dimensional classical geometry have been successfully transferred
to infinite-dimensional spaces, where shapes are contour curves of geometric objects, surfaces, image intensity
maps, or probability densities. These concepts have a continuously increasing impact on the development of
novel computational tools in computer vision and imaging, ranging from shape morphing and modeling [33],
and shape statistics, e.g. [25], to texture analysis [52] and computational anatomy [8]. Three particularly in-
fluential approaches on the space of image maps are linked to optimal transportation [10, 41, 47, 65], the flow

Keywords and phrases. Optimal transport, flow of diffeomorphism, metamorphosis, variational time discretization.

1 Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
2 Institute for Numerical Simulation, University of Bonn, 53115 Bonn, Germany. s6stsimo@uni-bonn.de
3 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 0WA, United Kingdom.

Article published by EDP Sciences c© EDP Sciences, SMAI 2015

http://dx.doi.org/10.1051/m2an/2015043
http://www.esaim-m2an.org
http://www.edpsciences.org


1746 J. MAAS ET AL.

of diffeomorphism [6, 21] and metamorphosis [39, 60]. Here, we combine these three approaches and explore
properties of the resulting image manifold. Thus, in what follows we briefly review the underlying concepts.

1.1. Optimal transport and its application in imaging

The problem of optimal transport is introduced in the seminal work of Monge [41] in 1781. In [31, 32]
Kantorovich proposes a relaxed formulation of Monge’s problem which gives rise to the Wasserstein’s distance
considered in this paper. Let (D, d) constitute a metric space. The 2-Wasserstein’s distance between two prob-
ability measures μA, μB ∈ P(D) is defined by

W(μA, μB)2 := min
π∈Γ (µA,µB)

∫

D×D

d(x, y)2 dπ(x, y). (1.1)

Here Γ (μA, μB) denotes the set of all probability measures on D × D with marginals μA and μB with respect
to x and y, respectively. For an introduction to optimal transport and the Wasserstein’s distance we refer the
reader to the reviews [1, 4, 23, 61, 62].

Being a distance function applicable to very general measures (continuous and discrete measures) the
Wasserstein’s distance has an increasing impact on robust distance measures in imaging [13, 14, 49, 53]. As
the Wasserstein metric is defined for arbitrary probability measures with finite second moment it allows to
measure distances between absolutely continuous measures with respect to the Lebesgue measure as well as
concentrated measures. With the increase of the complexity of applications efficient numerical computation
of (1.3) became increasingly important. In that respect Benamou and Brenier propose an alternative formu-
lation of the quadratic Wasserstein’s distance using the perspective of the underlying flow of a density θ with
Eulerian velocity v and expressing the transport in terms of a constrained flow [10]. That is, one asks for a
minimizer of the path energy

E [θ, v] =

∫ 1

0

∫

D

θ|v|2 dt (1.2)

for a density function θ : [0, 1]×D → R and a velocity field v : [0, 1]×D → R
d subject to the transport equation

∂tθ + div(θv) = 0 and the constraints θ(0) = θA and θ(1) = θB. Then the minimal energy is indeed the squared
Wasserstein’s distance between measures μA and μB with corresponding densities θA and θB respectively.
Their algorithm has been immensely influential in the numerical computation of the Wasserstein’s distance and
gradient flows related to it, see e.g. [12,22,47]. In [47], for instance, a proximal point algorithm for the solution
of Benamou−Brenier’s formulation (1.2) is derived and applied for the computation of Wasserstein geodesics
between two image densities. Alternatively, if D ⊆ R

d is a strictly convex domain, d is the Euclidean distance,
and μA and μB are absolutely continuous measures with densities θA and θB, respectively, then one has

W(μA, μB)2 = min
φ#µA=µB

∫

D

|φ(x) − x|2θA(x) dx, (1.3)

where φ#μA denotes the push forward of the measure μA under the mapping φ and for a diffeomorphism φ
the constraint can be expressed as (det Dφ) θB ◦ φ = θA. In [5] an initial mass preserving transport map [42] is
created and then an explicit time stepping scheme is employed to compute the optimal map from a modified
formulation of (1.3) where the constraint is linearized. In [28] the authors pick up formulation (1.3) as well and
use a sequential quadratic programming method for its optimisation. Moreover, in [16] the authors propose a
gradient descent for the dual formulation of (1.3) and show its use for image registration and warping. In [36,55] a
damped Newton method is used to compute a solution Ψ of the Monge−Ampère’s equation (which is the equality
constraint on φ = ∇Ψ) and subsequently the optimal transport map φ. Finally, let us mention that in [56] the
authors propose another interesting numerical algorithm for the efficient computation of the Wasserstein’s
distance that is based on an extension of the auction algorithm. The latter optimizes the cost functional in the
Wasserstein’s distance only on a sparse subset of possible assignment pairs still guaranteeing global optimality.
Various alternative computational approaches for the Wasserstein’s distance exist, e.g. [18, 45, 47].
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In terms of imaging application the Wasserstein’s distance has been employed in the context of image and
shape classification, segmentation, registration and warping, and image smoothing. In [53] the Wasserstein’s dis-
tance is used as a distance on the images directly, interpreting images as discrete measures. In other approaches
the Wasserstein’s distance is used on image histograms or points clouds (which could be feature vectors of
images), see e.g. [26, 34]. In the context of image segmentation and classification similar approaches are used,
see, e.g. [15,44,46,49]. In [52] a discrete Wasserstein’s distance is employed for the computation of barycentres
of discrete probability distributions with applications to texture synthesis and mixing. Thereby the original
Wasserstein metric is replaced by a sliced version over one-dimensional distributions. In [51] the same approach
is used on clouds of geodesic shape descriptors as a similarity measure to discriminate between different shapes
in 2D and 3D shape retrieval. The Wasserstein’s distance is also used in the context of contrast and colour
modification in, e.g. [24, 50]. In [29, 64] the quadratic Wasserstein’s distance is considered to define a rigorous
distance between images, applied to non-rigid image registration and warping. As a distance function for shapes
the Gromov−Wasserstein’s distance is introduced in a series of works by Memoli [37, 38]. Here, shapes are
modelled as compact metric spaces and the Gromov−Wasserstein’s distance is computed on isometry classes
of each space. The Gromov−Wasserstein differs from the Wasserstein’s distance (1.1) as it assigns a cost to
pairs of transport assignments. In the context of surface dissimilarity measurement the Wasserstein’s distance
is applied to metric densities on the hyperbolic disc representing conformal mappings of different surfaces [35].
In [57] the authors create a convex shape-prior from a modified Gromov−Wasserstein’s distance. Their approach
can be used for image segmentation problems in which prior shape knowledge on the objects that should be
segmented can be provided in terms of a template shape. This approach is modified in [58] using the quadratic
Wasserstein’s distance as a regularizer between learned reference shapes and the segmentation. In [13] the
Wasserstein’s distance is used as a data fidelity term in a generic regularization approach and applied for image
density estimation and cartoon-texture decomposition. Moreover, a review of the use of geodesic methods and
in particular optimal transportation in computer vision can be found in [48].

1.2. Flow of diffeomorphism

The physical modeling of viscous flow involves dissipation as an integrated measure of local friction.
Arnold [6, 7] proposes to study viscous flows from the perspective of a family of diffeomorphisms (φ(t))t∈[0,1] :
D̄ → D which describe the transport of densities, e.g. image intensities, along particle paths (φ(t, x))t∈[0,1] for
x ∈ D. This concept is picked up in vision by Grenander and coworkers [20,27]. As a Riemannian metric Gdiff [·, ·]
one considers the rate of viscous dissipation induced by the Eulerian flow velocity v(t) = φ̇(t)◦φ−1(t) in a multi-
polar fluid model (cf. Nečas and Šilhavý [43]). Here, the Eulerian motion field v is considered as a tangent vector
on the manifold of diffeomorphisms. The resulting Riemannian metric one obtains G̃diff [v, v] :=

∫

D L[v, v] dx,

where L[v, v] = Cε[v] : ε[v] with ε[v] = (∇v + (∇v)T )/2, and a deduced path energy Ẽdiff [φ] =
∫ 1

0
G̃diff [v, v] dt

as an action functional on flows encodes the total accumulated dissipation on the domain D and on the time
interval [0, 1]. To study the warping of two image intensity functions θA, θB : D → R for which there exists a
diffeomorphism φ with θB = θA ◦ φ a flow minimizing the energy Ediff subject to the constraints φ(0) = 1I and
θB = θA ◦ φ(1) defines a geodesic path (θ(t))t∈[0,1] with θ(t) = θA ◦ φ−1(t) in the spaces of images connecting
θA and θB. If we aim at deriving a Riemannian distance directly between images via the flow of diffeomorphism
approach, then a motion field v can be viewed as a representation of an image variation. Obviously, different mo-
tion fields might represent the same image variation. Hence, the corresponding equivalence class v is considered
as a tangent vector on the image manifold and the associate metric is now given by

Gdiff [v, v] := min
v∈v

∫

D

L[v, v] dx. (1.4)

Consequently, the path energy on a path (θ(t))t∈[0,1] reads as

Ediff [θ] =

∫ 1

0

Gdiff [v, v] dt, (1.5)
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which one minimizes over all image paths with θ(0) = θA, θ(1) = θB. Here, we assume that there is at least one
path of finite path energy connecting θA and θB. In medical applications [8] each diffeomorphisms represents a
particular anatomic configuration of an anatomic reference structures. For more details we refer to [9,21,30,40].

1.3. Metamorphosis

A one-to-one correspondence of image grey values in warping applications is frequently not realistic. The
metamorphosis approach offers a suitable generalization of the flow of diffeomorphism concept. It is first pre-
sented by Miller and Younes [39]. A rigorous analytical treatment is due to Trouvé and Younes [60]. In addition
to the transport of image intensities along motion paths the variation of an intensity value along a motion path
is allowed and reflected by an additional term in the energy. This term measures the integrated squared material
derivative z = ∂tθ + ∇θ · v. From a geometric perspective a pair of material derivative z and motion velocity v
represent a variation of an image θ. Hence, an equivalence class (z, v) of all pairs which generate the same image
variation is considered as a tangent vector on the image manifold. A Riemannian metric Gmeta[(z, v), (z, v)] acts
on these tangent vectors and the associated path energy along an image path (θ(t))t∈[0,1] is given by

Emeta[θ] =

∫ 1

0

Gmeta[(z, v), (z, v)] dt. (1.6)

As an example for the underlying Riemannian metric we obtain

Gmeta[(z, v), (z, v)] = min
(z,v)∈(z,v)

∫

D

L[v, v] +
1

δ
z2 dx, (1.7)

where the first three terms in the integrant retrieve the metric from the flow of diffeomorphism approach and
encode the induced viscous dissipation, whereas the last term penalizes temporal changes of intensities along
motion paths.

In this paper, we combine the optimal transportation approach with the metamorphosis approach. Thereby,
in addition to the transportation cost we take into account a density variation of the transported measure and
viscous dissipation. The paper is organized as follows: first we present our generalized image transport model in
Section 2. In Section 3 we prove existence of geodesics in the non-viscous case. Then we propose a variational
time discretization of the full model in Section 4, prove existence of time discrete geodesics in Section 5 and
describe a fully discrete solution scheme in Section 6. Furthermore, we consider in Section 7 the algorithm used
in [10] to compute for comparison reasons geodesics in the purely non-viscous case. Finally, we generalize in
Section 8 our model to discrete weighted barycentres and apply it to textures and objects.

2. The generalized image transport model

In this section we will discuss the generalization of the optimal transport model in image warping and
blending. These generalizations are motivated by two observations in applications:

• Frequently, objects or structures in images, which are in correspondence and are expected to be matched via
the transport, have different masses. From a global perspective the assumptions that images are considered as
probability distributions is too restrictive. Indeed, the latter requires in advance contrast modulation, which
is somewhat artificial. In the classical optimal transport model local mass differences lead to artifacts, where
a local mass surplus has to be deposited elsewhere without any structural correspondence. We will no longer
enforce the source free transport equation and explicitly incorporate a source term in the path energy which
measures density modulation.

• Different from the flow of diffeomorphism approach the optimal transport maps are not necessarily homeo-
morphisms. On the other hand in many applications one is interested in topological consistency and at the
same time the physical background of the application might suggest to incorporate a dissipative term in the
path energy. Hence, we combine the classical transport cost model with a weighted viscous dissipation model.
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To this end we first recall the formulation (1.2) of the Wasserstein’s distance proposed by Benamou and
Brenier [10]. In what follows we restrict to a bounded domain D ⊂ R

d (d = 2, 3) with Lipschitz boundary.
Now, we allow for a source term z : [0, 1] × D → R in the transport equation defined for given image intensity
θ : [0, 1]× D → R and transport field v : [0, 1]× D → R

d as

z := ∂tθ + div(θv). (2.1)

Furthermore, we pick up the model for the viscous dissipation in (1.5) and obtain as a new path energy

Eδ,γ[θ] =

∫ 1

0

Gδ,γ [(z, v), (z, v)] dt. (2.2)

with

Gδ,γ [(z, v), (z, v)] = min
(z,v)∈(z,v)

∫

D

θ|v|2 +
1

δ
z2 + γL[v, v] dx, (2.3)

which we minimize subject to (2.1) and the constraints θ(0) = θA and θ(1) = θB. Here, θA and θB are the given
input images and the (z, v) is the equivalence class of pairs of a source term and a transport field, which are
consistent with the transport equation (2.1) for given image intensity θ.

The involved local rate of viscous dissipation is given by L[v, v] = λ
2 (trε[v])2 + μtr(ε[v]2) + ǫ|Dmv|2, where

ε[v] = 1
2 (∇v + ∇vT ), m > 1 + d

2 and λ, μ, η > 0. (The first two terms represent the viscous dissipation of a
Newtonian fluid and the higher order terms reflect a multipolar viscosity).

As in [60] and similar to [4] the condition ∂tθ + div(θv) = z has to be understood in weak form

∫ 1

0

∫

D

ηz dxdt = −
∫ 1

0

∫

D

(∂tη + v · ∇η)θ dxdt

for all η ∈ C∞
c ((0, 1) × D).

The first term in the metric is the classical transport cost rate, the second terms reflects the source term
which measures the density modulation of the image intensity and the last term is the dissipation rate based on
a multipolar viscous fluid model. Let us emphasize that for general non divergence free motion fields z does not
coincide with the material derivative as in the metamorphosis model [60]. We suppose that γ ≥ 0 measuring the
impact of viscosity and δ > 0 is a penalty parameter weighting the impact of density modulation on the metric
and the path energy. In the formal limit δ → ∞ and for γ = 0 we retrieve the standard transport cost. Given
the path energy, we can define a Riemannian (generalized Wasserstein) distance Wδ,γ [θA, θB] of two images θA

and θB as
Wδ,γ [θA, θB]2 = min

(θ(t))t∈[0,1]
θ(0)=θA, θ(1)=θB

Eδ,γ [θ]. (2.4)

3. Existence of geodesics for the non-viscous model (γ = 0)

In this section we study existence of minimizers θ of (2.2) in the non-viscous case, that is for γ = 0. In
order to give a rigorous proof, it will be necessary to reformulate the formal problem (2.2) as a problem for
measures rather than for densities. In particular, it will be crucial to treat the singular parts of the measures in
an appropriate way.

Following [10], it will be useful to replace the velocity variable v by the momentum variable w = θv. Therefore,
the function θ|v|2 appearing in the path energy (2.3) will be replaced by |w|2/θ. The joint convexity of this
function will play a crucial role in the sequel.

The argument presented here is a modification of the argument in [19] and our presentation follows this latter
work very closely. Some additional arguments are needed to deal with the possibly varying total mass. On the
other hand, some simplifications can be made, since we work on a bounded spatial domain instead of the whole
space R

d.
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First we reformulate the action functional (2.3). Let Ω be a bounded domain in Euclidean space and fix a
reference measure L ∈ M +(Ω). In our application, the domain Ω will either be the spatial domain D or the
space-time domain [0, 1]× D, and L will be the corresponding Lebesgue measure.

Let μ ∈ M +(Ω), ν ∈ M (Ω; Rd), and ζ ∈ M (Ω). The Lebesgue decomposition of these measures with respect
to L is given by

μ = θL + μ⊥ , ν = wL + ν⊥ , ζ = zL + ζ⊥ .

Let now L ⊥ ∈ M +(Ω) be such that μ⊥, ν⊥ and ζ⊥ are absolutely continuous with respect to L ⊥ (take for
instance L ⊥ = μ⊥ + |ν⊥| + |ζ⊥|). Then we may write

μ⊥ = θ⊥L
⊥ , ν⊥ = w⊥

L
⊥ , ζ⊥ = z⊥L

⊥ .

As in the Benamou−Brenier’s formulation of the 2-Wasserstein’s distance we consider the function φ : [0,∞)×
R

d → [0,∞] defined by

φ(θ, w) =

⎧

⎨

⎩

0 θ = 0 and w = 0 ,
|w|2

θ θ > 0 ,
+∞ θ = 0 and w 
= 0 .

Note that φ is lower-semicontinuous, convex and 1-homogeneous. The action functional D : M +(Ω) ×
M (Ω; Rd) × M (Ω) → [0, +∞] that we are interested in is given by

D(μ, ν, ζ) := DBB(μ, ν) +
1

δ
DZ(ζ) , DBB(μ, ν) :=

∫

Ω

φ(θ, w)dL +

∫

Ω

φ(θ⊥, w⊥)dL
⊥ ,

DZ(ζ) :=

{∫

Ω z2 dL ζ⊥ = 0 ,
+∞ ζ⊥ 
= 0 .

Since φ is jointly 1-homogeneous, the definition of DBB does not depend on the choice of L ⊥. The same is true
for DZ , since we may write DZ(ζ) =

∫

Ω
z2 dL +

∫

Ω
ψ(z⊥)dL ⊥, where ψ : R → [0, +∞] is the 1-homogeneous

function defined by ψ(0) = 0 and ψ(r) = +∞ for r 
= 0. Sometimes it will be useful to write DΩ instead of D
in order to emphasize the domain Ω.

The following result is an immediate consequence of general lower-semicontinuity results for integral func-
tionals on measures [2, 3].

Proposition 3.1 (lower semicontinuity of the functional D). Consider weak∗-convergent sequences of measures

μn ⇀∗ μ ∈ M
+(Ω) , νn ⇀∗ ν ∈ M (Ω; Rd) , ζn ⇀∗ ζ ∈ M (Ω) .

Then we have D(μ, ν, ζ) ≤ lim infn→∞ D(μn, νn, ζn) .

Proof. The result follows, since both DBB and DZ satisfy the assumptions of ([19], Thm. 2.1). �

The following crucial lemma is a special case of ([19], Prop. 3.6).

Lemma 3.2 (Integrability estimate). Let μ ∈ M +(Ω) and ν ∈ M (Ω; Rd). For any Borel function η : Ω → R+

we have

∫

Ω

η(x)d|ν|(x) ≤
(

DBB(μ, ν)
)

1
2

(
∫

Ω

η2 dμ

)
1
2

.
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Proof. Set S := {x ∈ Ω : η(x) > 0}. Using the scalar inequality
√

ab +
√

cd ≤
√

a + c
√

b + d which holds for
a, b, c, d ≥ 0, we obtain

∫

S

η(x)d|ν|(x) =

∫

S

η|w|dL +

∫

S

η|w⊥|dL
⊥

≤
(

∫

S

φ(θ, w)dL

)
1
2
(

∫

S

η2θdL

)
1
2

+

(
∫

S

φ(θ⊥, w⊥)dL
⊥

)
1
2
(

∫

S

η2θ⊥ dL
⊥

)
1
2

≤
(

∫

S

φ(θ, w)dL +

∫

S

φ(θ⊥, w⊥)dL
⊥

)
1
2
(

∫

S

η2θdL +

∫

S

η2θ⊥dL
⊥

)
1
2

≤
(

DBB(μ, ν)
)

1
2

(
∫

S

η2 dμ

)
1
2

. �

Let us now introduce the modified continuity equation.

Definition 3.3 (A continuity equation without conservation of mass). Let t → μt be weak∗-continuous in
M +(D), let t → νt be Borel measurable in M (D; Rd), and let t → ζt be Borel measurable in M (D). We say
that the triple (μt, νt, ζt)t∈[0,1] satisfies the continuity equation (and write (μt, νt, ζt)t∈[0,1] ∈ CE [0, 1]) if

(1) the following integrability conditions hold:

∫ 1

0

|νt|(D)dt < ∞ ,

∫ 1

0

|ζt|(D)dt < ∞ ;

(2) the modified continuity equation ∂tμ + div(ν) = ζ holds in the sense of distributions, i.e., for all space-time
test functions η ∈ C1

0 ((0, 1) × D) we have

∫ 1

0

∫

D

∂tη(t, x)dμt(x)dt +

∫ 1

0

∫

D

∇η(t, x) · dνt(x)dt +

∫ 1

0

∫

D

η(t, x)dζt(x)dt = 0 .

A standard approximation argument (see [19], Lem. 4.1) shows that solutions to CE [0, 1] satisfy, for all
0 ≤ t0 ≤ t1 ≤ 1,

∫

D

η(t1, x)dμt1 (x) −
∫

D

η(t0, x)dμt0 (x) =

∫ t1

t0

∫

D

∂tη(t, x)dμt(x)dt +

∫ t1

t0

∫

D

∇η(t, x) · dνt(x)dt

+

∫ t1

t0

∫

D

η(t, x)dζt(x)dt

(3.1)

for all space-time test functions η ∈ C1([0, 1]×D). In particular, taking η(t, x) ≡ 1, it follows that the increase
of mass is given by

μt1(D) − μt0(D) =

∫ t1

t0

ζt(D)dt . (3.2)

We are now in a position to rigorously define the extended distance Wδ that was formally introduced in (2.4).

Definition 3.4. For μA, μB ∈ M +(D) we define Wδ(μA, μB) ∈ [0, +∞] by

Wδ(μA, μB) := inf
µ,ν,ζ

{(
∫ 1

0

D(μt, νt, ζt)dt

)1/2

: (μt, νt, ζt)t∈[0,1] ∈ CE [0, 1] , μ0 = μA , μ1 = μB

}

. (3.3)

The following theorem is the main result of this section.
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Theorem 3.5 (Existence of geodesics). Let δ ∈ (0,∞) and take μA, μB ∈ M +(D) with Wδ(μA, μB) < ∞.

Then there exists a minimizer (μt, νt, ζt)t∈[0,1] that realizes the infimum in (3.3). Moreover, the associated

curve (μt)t∈[0,1] is a constant speed geodesic for Wδ, i.e.,

Wδ(μs, μt) = |s − t|Wδ(μA, μB)

for all s, t ∈ [0, 1]. Furthermore, we have the alternative characterisation

Wδ(μA, μB) := inf
µ,ν,ζ

{
∫ 1

0

√

D(μt, νt, ζt)dt : (μt, νt, ζt)t∈[0,1] ∈ CE[0, 1] , μ0 = μA , μ1 = μB

}

.

Proof. The existence of a minimizer is an immediate consequence of Proposition 3.6 below. The remaining
statements follow by standard arguments, see ([19], Thm. 5.4) for details. �

Let us now state and prove the main ingredient for the proof of Theorem 3.5. We write
∫ 1

0 δt⊗μt dt to denote
the measure μ on [0, 1]× D satisfying

∫

[0,1]×D

η(t, x)dμ(t, x) =

∫ 1

0

∫

D

η(t, x)dμt(x)dt

for all η ∈ C([0, 1] × D).

Proposition 3.6 (Compactness for solutions to the continuity equation with bounded action). Suppose that

(μn
t , νn

t , ζn
t )t∈(0,1) ∈ CE [0, 1] satisfy

(A1) M1 := supn μn
0 (D) < ∞;

(A2) M2 := supn

∫ 1

0
D(μn

t , νn
t , ζn

t )dt < ∞.

Set νn :=
∫ 1

0
δt ⊗ νn

t dt ∈ M ([0, 1] × D; Rd) and ζn :=
∫ 1

0
δt ⊗ ζn

t dt ∈ M ([0, 1] × D). Then, there exists a

subsequence (again indexed by n) and a triple (μt, νt, ζt)t∈(0,1) ∈ CE[0, 1] such that

(1) μn
t ⇀∗ μt in M +(D) for all t ∈ [0, 1];

(2) νn ⇀∗ ν in M ([0, 1]× D; Rd);
(3) ζn ⇀∗ ζ in M ([0, 1] × D).

Moreover, for the above subsequence
∫ 1

0

D(μt, νt, ζt)dt ≤ lim inf
n→∞

∫ 1

0

D(μn
t , νn

t , ζn
t )dt . (3.4)

Proof. In view of (A2), we first observe that

M3 := sup
n

∫ 1

0

|ζn
t |(D)dt = sup

n

∫ 1

0

∫

D

|zn
t (x)|dxdt < ∞ .

Therefore, (3.2) yields the uniform bound

μn
t (D) ≤ μn

0 (D) +

∫ t

0

|ζn
s |(D)ds ≤ M1 + M3

for all n. Moreover, Lemma 3.2 implies that

|νn
t |(D) ≤

√

μn
t (D)DBB(μn

t , νn
t ) ,

hence by the Hölder’s inequality we obtain
∫ 1

0

|νn
t |(D)2 dt ≤

∫ 1

0

μn
t (D)D(μn

t , νn
t , ζn

t )dt ≤ M2(M1 + M3) ,

which shows that the maps {t → |νn
t |(D)}n are uniformly bounded in L2(0, 1), hence uniformly integrable.
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Since |νn|([0, 1] × D) ≤ (
∫ 1

0 |νn
t |(D)2 dt)

1
2 , the measures {νn}n ∈ M ([0, 1] × D; Rd) have uniformly bounded

total variation on [0, 1] × D, hence we can extract a subsequence that converges weakly∗ to some measure
ν ∈ M ([0, 1] × D; Rd). The uniform integrability of {t → |νn

t |(D)}n implies that the image measure of ν under
the mapping (t, x) → t is absolutely continuous with respect to the Lebesgue measure on [0, 1]. Therefore, the

disintegration theorem (see, e.g. , [4], Thm. 5.3.1) allows us to write ν =
∫ 1

0
δt⊗νt dt for some family of measures

{νt}t∈[0,1] ∈ M (D; Rd).
Fix 0 ≤ τ ≤ 1, take η ∈ C1(D), and set ξ̄(t, x) := ∇η(x)χ[0,τ ](t). Although ξ̄ is discontinuous, general

approximation results (see [4], Prop. 5.1.10) imply that

∫ τ

0

∫

D

∇η(x)dνn
t (x)dt =

∫

[0,1]×D

ξ̄(t, x)dνn(t, x) →
∫

[0,1]×D

ξ̄(t, x)dν(t, x) =

∫ τ

0

∫

D

∇η(x)dνt(x)dt . (3.5)

Let us now consider the term involving ζn
t , which is treated similarly. For all n and a.e. t ∈ [0, 1] we use (A2)

to conclude that ζn
t = zn

t L . Therefore we obtain

∫ 1

0

|ζn
t |(D)2 dt =

∫ 1

0

(
∫

D

|zn
t (x)|dx

)2

dt < ∞ .

As above, we infer that the mappings {t → |ζn
t |(D)}n are uniformly integrable, and that there exists a subse-

quence of {ζn}n that convergence weakly∗ to some measure ζ ∈ M ([0, 1] × D). By the disintegration theorem

we may write ζ =
∫ 1

0
δt ⊗ ζt dt for a family of measures {ζt}t∈[0,1] ∈ M (D). Set ξ̃(t, x) := η(x)χ[0,τ ](t). Arguing

as above, we obtain
∫ τ

0

∫

D

η(x)dζn
t (x)dt =

∫

[0,1]×D

ξ̃(t, x)dζn(t, x) →
∫

[0,1]×D

ξ̃(t, x)dζ(t, x) =

∫ τ

0

∫

D

η(x)dζt(x)dt . (3.6)

We are now in a position to obtain subsequential convergence of {μn
t }n. Indeed, it follows from (3.1) that

∫

D

η(x)dμn
τ (x) =

∫

D

η(x)dμn
0 (x) +

∫ τ

0

∫

D

∇η(x) · dνn
t (x)dt +

∫ τ

0

∫

D

η(x)dζn
t (x)dt .

Moreover, (A1) implies that there exists a measure μ0 ∈ M +(D) such that μn
0 ⇀∗ μ0 (after passing to a

subsequence). In view of (3.5) and (3.6) the latter equation implies weak∗-convergence of {μn
τ }n to some measure

μτ for every τ ∈ [0, 1]. It is readily checked that (μt, νt, ζt)t ∈ CE [0, 1].

It remains to prove (3.4). For this purpose we write μ =
∫ 1

0 δt ⊗ μt dt and μn =
∫ 1

0 δt ⊗ μn
t dt. It is straight-

forward to check that μn converges weakly∗ to μ in M+([0, 1]× D). Now the result follows by observing that

∫ 1

0

DD(μt, νt, ζt)dt = D[0,1]×D(μ, ν, ζ) ,

and applying Proposition 3.1 to D[0,1]×D. �

4. A variational time discretization

In what follows, we derive a time discrete approximation of the energy (2.2) and thereby a variational
approach for the definition of geodesic paths. We refer to [63] for the general concept and to [54] for the
numerical analysis in the context of shape spaces which are Hilbert manifolds and in [11] a variational time
discretization of geodesics in the metamorphosis model is discussed.

As a motivation let us briefly present a toy model in finite dimensions. On a smooth m-dimensional manifold
M embedded in R

d (m ≤ d) we consider the simple energy F[y, ỹ] = |ỹ − y|2 which reflects the stored elastic
energy in a spring spanned between points y and ỹ through the ambient space of M in R

d. The smoothness of
M implies that F[y, ỹ] = distM(y, ỹ)2 + O(distM(y, ỹ)3), where distM(y, ỹ) denotes the Riemannian distance
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between y and ỹ. Hence, we can approximate the path length of a smooth path (y(t))t∈[0,1] via sampling

yk = y( k
K ) and then evaluate the discrete path energy

EK [y0, . . . , yK ] = K

K
∑

k=1

|yk − yk−1|2,

such that EK [y0, . . . , yK ] converges to E [(y(t))t∈[0,1]] =
∫ 1

0 |ẏ(t)|2 dt for K → ∞. Here, we use that
yk−yk−1

τ

is an approximation of the velocity ẏ(k/K) where τ = 1
K is the time step size of our discretization on the

time interval [0, 1]. In fact, based on the approximation F of the squared distance distM, which is easy to
implement, we obtain an effective approximation of the Riemannian path energy E . Correspondingly, we call a
minimizer (y0, . . . , yK) of the discrete path energy for fixed y0 and yK a discrete geodesic. We refer to [11, 54]
for a detailed discussion, why the discrete path energy instead of the discrete path length is the right concept
to compute discrete geodesics. In particular, Γ -convergence of the discrete path energy is proven in case of the
metamorphosis model in [11] and under suitable assumptions in the context of Hilbert manifolds in [54].

Now, we ask for a similar time discrete approximation of the continuous path energy Eδ,γ defined in (2.2). To
this end, we consider a discrete path (θ0, . . . , θK) in the space of image intensities with θk ∈ I for k = 1, . . . , K
with I := L2(D, R≥0) and ask for a matching functional F on consecutive pairs θ, θ̃ of image intensities. In
fact, this matching functional should reflect time discrete counterparts of all three ingredients of the metric
Gδ,γ and the induced continuous path energy Eδ,γ , namely the transport cost, the viscous dissipation and the
source term. Like in the original Monge problem we take into account deformations φ in a suitable space A of
admissible deformations, to be defined later, and optimize for given θ, θ̃ a suitable functional FD[θ, θ̃, ·] over all
admissible deformations to define the value of the matching functional F[θ, θ̃], i.e.

F[θ, θ̃] = inf
φ∈A

FD[θ, θ̃, φ].

With the matching functional at hand we then define the discrete path energy summing over applications of the
matching functional to consecutive pairs of image intensities θk−1 and θk of a discrete path (θ0, . . . , θK) and get

EK
δ,γ [θ0, . . . , θK ] = K

K
∑

k=1

F[θk−1, θk]. (4.1)

Thus, the resulting time discrete approximation of the squared Riemannian distance is given by

WK
δ,γ [θA, θB]2 = min

θ0,...,θK∈I
θ0=θA, θK=θB

EK
δ,γ [θ0, . . . , θK ]. (4.2)

Here, we assume θA, θB ∈ I. In what follows we list now the appropriate components of F reflecting the different
ingredients of the continuous path energy.

4.1. Approximation of the transport cost

To approximate the first term in the metric (2.3) we make use of the equivalence of the original Monge
problem and the Benamou–Brenier’s formulation [10] of optimal transport and define

FD
transport[θ, φ] =

∫

D

|φ − 1I|2θ dx. (4.3)

Here, φ−1I
τ is an approximation of the transport velocity with 1I being the identity deformation.

4.2. Approximation of the density modulation cost

For a diffeomorphism φ the push forward condition φ#(θL ) = θ̃L can be expressed as

θ = det(Dφ)θ̃ ◦ φ.
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As an approximation of the source term z = ∂tθ + div(vθ) we take into account

FD
source

[θ, θ̃, φ] =

∫

D

1

δ
| det(Dφ)θ̃ ◦ φ − θ|2 dx.

4.3. Approximation of the dissipation cost

By Rayleigh’s paradigm [59] one derives models for viscous dissipation from elastic energies replacing elastic
strains by strain rates. We proceed as in [11], where a time discretization of the metamorphosis model was
investigated and define

FD
viscous

[φ] = γ

∫

D

W (Dφ) + ǫ|Dmφ|2 dx.

Here, W is a hyper elastic energy density and the higher order term |Dmφ|2 acts as a regularizing term for some
small ǫ > 0 and enforces the deformations to be in the space Wm,2. We make the following assumptions on W
(cf. also [11]):

(W1) W is non-negative and polyconvex,
(W2) W (A) ≥ α0| log detA| − α1 for α0, α1 > 0, and every invertible matrix A with det A > 0, W (A) = ∞ for

det A ≤ 0, and
(W3) W is sufficiently smooth and the following consistency assumptions with respect to the differential op-

erator L hold true: W (1I) = 0, DW (1I) = 0 and 1
2D2W (1I)(B, B) = λ

2 (trB)2 + μtr((B+BT

2 )2) for all
B ∈ R

d,d.

Due to the incorporation of this dissipation energy we finally define the space of admissible deformations over
which we minimize in the definition of F[θ, θ̃] as

A =
{

φ ∈ Wm,2(D, D) : det(Dφ) > 0 a.e. in D, φ = 1I on ∂D
}

,

We assume that m > 1 + d
2 , which implies by Sobolev embedding that the admissible deformations are diffeo-

morphisms. Given these energy contributions we can define the compound energy

FD[θ, θ̃, φ] = FD
transport[θ, φ] + FD

source[θ, θ̃, φ] + FD
viscous[φ].

The following interpolation results justifies our choice of the time discrete path energy.

Theorem 4.1 (Consistency of the discrete path energy). For a convex domain D and a sufficiently smooth

path of image intensities (θ(t))t∈[0,1] with θ ≥ 0 a.e. in [0, 1] × D and a sufficiently smooth family of velocities

(v(t))t∈[0,1] we consider interpolated images θK
k = θ( k

K ) and motion fields vK
k = v( k

K ). Then the resulting

extended path energy

E
K,D
δ,γ [θK

0 , . . . , θK
K , φK

1 , . . . , φK
K ] :=

K
∑

k=1

FD[θK
k−1, θ

K
k , φK

k ] (4.4)

with φK
k = 1

K vK
k + 1I converges to the corresponding continuous path energy

ED
δ,γ [θ, v] :=

∫ 1

0

∫

D

θ|v|2 +
1

δ
z2 + γL[v, v] dxdt.

Proof. We define the step size τ = 1
K . First, for the transport cost we easily get

K

K
∑

k=1

∫

D

|φK
k − 1I|2θK

k−1 dx =

K
∑

k=1

τ

∫

D

|vK
k |2θK

k−1 dx
K→∞−−−−→

∫ 1

0

∫

D

|v|2θ dxdt.
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Following [63] the convergence of the dissipation cost follows from a Taylor expansion of the hyperelastic density
function W by using the consistency assumptions:

K

K
∑

k=1

∫

D

W (DφK
k ) + ǫ|DmφK

k |2 dx

=
1

τ

K
∑

k=1

∫

D

W (1I) + τDW (1I)(DvK
k ) +

τ2

2
D2W (1I)(DvK

k , DvK
k ) + O(τ3) + ǫτ2|DmvK

k |2 dx

=
K

∑

k=1

τ

∫

D

(

λ

2

(

trDvK
k

)2
+ μtr

(

DvK
k + (DvK

k )T

2

)2
)

+ O(τ) + ǫ|DmvK
k |2 dx

K→∞−−−−→
∫ 1

0

∫

D

L[v, v] dxdt.

Finally, for the density modulation cost we use the Taylor expansions

detDφK
k = 1I + τtr

(

DφK
k − 1I

τ

)

+ O(τ2) = 1I + τdiv(vK
k ) + O(τ2)

θK
k ◦ φK

k = θK
k + τ∇θK

k · vK
k + O(τ2)

and obtain

K

K
∑

k=1

∫

D

| det(DφK
k )θK

k ◦ φK
k − θK

k−1|2 dx

=
K

∑

k=1

τ

∫

D

∣

∣

∣

∣

∣

θK
k − θK

k−1

τ
+ div(vK

k )θK
k + ∇θK

k · vK
k + O(τ)

∣

∣

∣

∣

∣

2

dx
K→∞−−−−→

∫ 1

0

∫

D

|∂tθ + div(θv)|2 dxdt. �

5. Existence of time discrete geodesics

In this section we assume that the assumptions of Section 4 are fulfilled and that δ, γ > 0. As before we
assume that m > 1 + d

2 . We will show that for given images θA, θB ∈ I = L2(D, R≥0) a time discrete geodesic
exists. First we prove that F is well-posed in the sense that there is an optimal deformation between two images.

Proposition 5.1 (Existence of minimizing deformations). Let θ, θ̃ ∈ I. Then FD[θ, θ̃, φ] attains its minimum

over all deformation φ ∈ A. Moreover, φ is a diffeomorphism and φ−1 ∈ C1,α(D) for α ∈ (0, m − 1 − d
2 ).

Proof.

Step 1. First, we observe that FD is bounded from below, since θ is non-negative by definition of I, W is
non-negative by assumption (W1) and the source term is non-negative anyway. Because of (W2) and φ = 1I ∈ A
there exists an upper bound for the energy FD on a minimizing sequence (φj)j∈N. Following [11] one observes
that a subsequence, again denoted by (φj), converges weakly in Wm,2(D, D) to some φ ∈ Wm,2(D, D) and for
the limit deformation we get φ−1 ∈ C1,α(D).
Step 2. We prove that φ → FD[θ, θ̃, φ] is lower semicontinuous w.r.t. weak convergence in L2. It is sufficient to
show that det(Dφj)θ̃ ◦ φj ⇀ det(Dφ)θ̃ ◦ φ in L2. Then the result follows from the weak lower semicontinuity of
the L2-norm, the compact embedding of Wm,2(D, D) into C1,α(D, D) for 0 < α < m − d

2 , and results on the

weak lower semicontinuity of polyconvex functionals [17]. By the assumption θ̃ ∈ L2(D) and by Step 1 we have
a uniform L2-bound on det(Dφj)θ̃ ◦ φj , so it is enough to prove that the expression converges in the sense of
distributions. For η ∈ C∞

c (D) we have
∫

D

det(Dφj)(x)θ̃ ◦ φj(x)η(x) dx =

∫

D

θ̃(x)η ◦ (φj)−1(x) dx
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and ∫

D

det(Dφ)(x)θ̃ ◦ φ(x)η(x) dx =

∫

D

θ̃(x)η ◦ φ−1(x) dx.

Since (φj)−1 → φ−1 in C1,α, the result follows by the dominated convergence theorem. �

Now, for a given discrete path (θ0, . . . , θK) ∈ IK+1 we consider E
K,D
δ,γ defined in (4.4). By Proposition 5.1

there exists Φ = (φ1, . . . , φK) ∈ AK such that E
K,D
δ,γ [(θ0, . . . , θK), (φ1, . . . , φK)] = EK

δ,γ [(θ0, . . . , θK)]. Now we

study E
K,D
δ,γ for a fixed vector of deformations.

Proposition 5.2. Let θA, θB ∈ I, K ≥ 2. Then for a fixed vector of deformations Φ = (φ1, . . . , φK) ∈ AK

there exists a unique discrete path (θ0, . . . , θK) ∈ IK+1 with θ0 = θA and θK = θB, i.e.

E
K,D
δ,γ [(θ0, . . . , θK), Φ] = inf

(θ1,...,θK−1)∈IK−1
E

K,D
δ,γ [(θA, θ1, . . . , θK−1, θB), Φ].

Proof. First we see that the functional is bounded from above on a minimizing sequence by computing the
energy of (θB , . . . , θB) ∈ IK−1:

E
K,D
δ,γ [(θA, θB, . . . , θB, θB), (φ1, . . . , φK)] ≤ C(φ1, . . . , φk)(1 + ‖θA‖2 + ‖θA‖2

2 + ‖θB‖2 + ‖θB‖2
2) < ∞.

Next we observe that for fixed (φ1, . . . , φK) ∈ AK the time discrete path energy is quadratically growing, i.e.

E
K,D
δ,γ [(θA, θ1 . . . , θK−1, θB), (φ1, . . . , φK)] ≥ c1

∑

i=1,...,K−1

‖θk‖2
L2(D) − c2

for constants c1, c2 > 0 depending on (φk)k. Therefore we can take a minimizing sequence (θj
1, . . . , θ

j
K−1)j∈N ⊂

IK−1, which has because of the upper bound a weakly converging subsequence in L2 with limit (θ1, . . . , θK−1) ∈
IK−1. Now, the energy is strictly convex in θk for all k = 1, . . . , K − 1, hence there is a unique minimizer
in IK−1. �

Next, we can use these two propositions to prove existence of minimizers of the discrete path energy EK
δ,γ .

Theorem 5.3 (existence of discrete geodesics). Let θA, θB ∈ I, K ≥ 2 be given. Then there exists

(θ1, . . . , θK−1) ∈ IK−1 s.t.

EK
δ,γ [(θA, θ1, . . . , θK−1, θB)] = inf

(θ̃1,...,θ̃K−1)∈IK−1
EK

δ,γ[(θA, θ̃1, . . . , θ̃K−1, θB)].

Proof. Taking θj
k = θB and φk = 1I to test the energy EK

δ,γ we observe that the EK
δ,γ is bounded from above

on a minimizing sequence (θj
1, . . . , θ

j
K−1)j∈N. Take a minimizing sequence (θj

1, . . . , θ
j
K−1)j∈N of the discrete path

energy EK
δ,γ [(θA, ·, θB)]. Due to Proposition 5.1, for every (θj

1, . . . , θ
j
K−1) there exists a family of optimal defor-

mations (φj
1, . . . , φ

j
K) ∈ AK with E

K,D
δ,γ [(θA, θj

1, . . . , θ
j
K−1, θB), (φj

1, . . . , φ
j
K)] ≤ E

K,D
δ,γ [(θA, θj

1, . . . , θ
j
K−1, θB), Ψ ]

for all Ψ ∈ AK . As in the proof of Proposition 5.1 there exists a subsequence again denoted (φj
k)j∈N with

φj
k ⇀ φk in Wm,2 for all k = 1, . . . , K, s.t. φ−1

k ∈ C1,α. By Proposition 5.2 we can assume (possible replac-

ing (θj
1, . . . , θ

j
K−1) and thereby further reducing the energy) that (θj

1, . . . , θ
j
K−1) already minimizes the energy

E
K,D
δ,γ [(θA, ·, θB), (φj

1, . . . , φ
j
K)] in IK−1. Then θj

k is uniformly bounded in L2 by a constant C depending only

on θA and θB for k = 1, . . . , K. This constant C is independent of the φj
k due to the uniform bound of φj

k in

Wm,2. Hence we can pass to a further subsequence satisfying (θj
1, . . . , θ

j
K−1) ⇀ (θ1, . . . , θK−1) in L2. To prove

weak lower semicontinuity in L2 of the functional, it is sufficient to pass to the limit in the identities
∫

D

det(Dφj
k)(x)θj

k ◦ φj
k(x)η(x) dx =

∫

D

θj
k(x)η ◦ (φj

k)−1(x) dx, (5.1)

∫

D

det(Dφk)(x)θk ◦ φk(x)η(x) dx =

∫

D

θk(x)η ◦ φ−1
k (x) dx, (5.2)
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for an arbitrary C∞-function η, which follows from the C1,α-convergence of (φj
k)−1 and the weak L2-convergence

of θj
k. For the demonstration of lower semicontinuity in the remaining terms we refer to analogous discussion in

Proposition 5.1. �

Finally, let us study in more detail the optimality conditions for (θ1, . . . , θK−1) ∈ IK−1 in preparation of
the later derivation of a numerical algorithm. At first we consider the simplified model without the constraint
θk ≥ 0 for k = 1, . . . , K − 1. Since for fixed deformations the energy is strictly convex, there exists a unique
minimizer. For each k = 1, . . . , K − 1 there are two terms in the energy where θk appears:

FD[θk, θk+1, φk+1] =

∫

D

|φk+1 − 1I|2θk +
1

δ
| det(Dφk+1)θk+1 ◦ φk+1 − θk|2 dx + γFD

viscous[φk+1],

FD[θk−1, θk, φk] =

∫

D

|φk − 1I|2θk−1 +
1

δ
| det(Dφk)θk ◦ φk − θk−1|2 dx + γFD

viscous[φk]

=

∫

D

|φk − 1I|2θk−1 +
1

δ
|θk − (det(Dφk)−1θk−1) ◦ φ−1

k |2 det(Dφk) ◦ φ−1
k dx + γFD

viscous[φk].

Hence, the Euler–Lagrange equation for θk is

0 = |φk+1 − 1I|2 − 2

δ
(det(Dφk+1)θk+1 ◦ φk+1 − θk) +

2

δ
(θk − (det(Dφk)−1θk−1) ◦ φ−1

k ) det(Dφk) ◦ φ−1
k

for all k = 1, . . . , K − 1 and a.e. x ∈ D. Now we define the discrete transport path X(x) =
(X1(x), X2(x), . . . , XK−1(x)) with X1(x) = φ1(x) and Xk(x) = φk(Xk−1(x)) and the vector

θ̄(x) = (θ1(X1(x)), θ2(X2(x)), . . . , θK−1(XK−1(x))) .

Then we can write the optimality conditions as

θk =
det(Dφk+1)θk+1 ◦ φk+1 + θk−1 ◦ φ−1

k − δ
2 |φk+1 − 1I|2

1 + det(Dφk) ◦ φ−1
k

·

From Xk ∈ C1,α we deduce that

θk ◦ Xk =
(det(Dφk+1) ◦ Xk)(θk+1 ◦ Xk+1) + θk−1 ◦ Xk−1 − δ

2 |Xk+1 − Xk|2
1 + det(Dφk) ◦ Xk−1

(5.3)

for a.e. x ∈ D and for all k = 1, . . . , K − 1. This can be rewritten as a linear system A(x)θ̄(x) = R(x), where
A(x) is a tridiagonal matrix given by

A(x)k,k+1 = − det(Dφk+1) ◦ Xk(x)

1 + det(Dφk) ◦ Xk−1(x)
, A(x)k,k = 1, A(x)k,k−1 = − 1

1 + det(Dφk) ◦ Xk−1(x)

and R(x) = B(x) + T(x) with B(x),T(x) ∈ R
K−1 given by

B(x) =

(

θA(x)

1 + det(Dφ1)(x)
, 0, . . . , 0,

det(DφK) ◦ XK−1(x)θB ◦ XK(x)

1 + det(DφK−1) ◦ XK−2(x)

)T

T(x)k = − δ

2

|Xk+1(x) − Xk(x)|2
1 + det(Dφk) ◦ Xk−1(x)

∀k = 1, . . . , K − 1.

Now, the unique minimizer (θ1, . . . , θK−1) ⊂ IK−1 satisfies for a.e. x ∈ D the derived linear system of equations
and gives the only solution of this system. Thus A(x) is invertible for a.e. x ∈ D and by solving the system
we can recover the minimizer. In the constraint case θ ≥ 0 a.e. the minimization with respect to (θ1, . . . , θK−1)
no longer decomposes into a linear system of equations with unknowns (θ1(X1(x)), . . . , θK−1(XK−1(x))) for
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a.e. x ∈ D. But the decomposition along the discrete paths (X0(x), . . . , XK(x)) is still applicable. Indeed, one
observes that for a.e. x ∈ D the vector (θ1(X1(x)), . . . , θK−1(XK−1(x))) minimizes the quadratic functional

Q(θ̃1, . . . , θ̃K−1) =
K

∑

k=1

det(DXk−1)(x)

(

|Xk(x) − Xk−1(x)|2θ̃k−1 +
1

δ
| det(Dφk)(Xk−1(x))θ̃k − θ̃k−1|2

)

with θ̃0 = θA(x) and θ̃K = θB(x) over all (θ̃1, . . . , θ̃K−1) ∈ R
K−1 subject to the constraint θ̃k ≥ 0 for all

k = 1, . . . , K − 1. This is a simple quadratic optimization problem in R
K−1 with inequality constraints.

6. Spatial discretization

With respect to the spatial discretization we follow the procedure already proposed in [11]. We restrict to
two dimensional images (d = 2) and consider a regular quadrilateral grid on the two-dimensional image domain
D = [0, 1]2 consisting of rectangular cells {Cm}m∈IC

with IC being the associated index set. Let Vh be the

space of piecewise bilinear continuous functions and denote by
{

ξi
}

i∈IN
the set of nodal basis functions with

IN being the index set of all grid nodes xi.
We investigate spatially discrete deformations Φk : D → D with Φk ∈ V2

h = Vh × Vh and spatially discrete
image maps Θk : D → R with Θk ∈ Vh. Given any finite element function U ∈ Vh we denote by Ū = (U(xi))i∈IN

the corresponding vector of nodal values. Now, we define a fully discrete counterpart EK
δ,γ,h of the so far solely

time discrete path energy EK
δ,γ defined in (4.1) as follows

EK
δ,γ,h[(Θ0, . . . , ΘK)] = min

Φk∈V2
h

Φk|∂D=1I

E
K,D
δ,γ,h[(Θ0, . . . , ΘK), (Φ1, . . . , ΦK)]

and obtain the resulting fully discrete approximation of the squared Riemannian distance

WK
δ,γ,h[ΘA, ΘB ]2 = min

Θ0,...,ΘK∈I

Θ0=ΘA, ΘK=ΘB

EK
δ,γ,h[Θ0, . . . , ΘK ].

Here, E
K,D
δ,γ,h[(Θ0, . . . , ΘK), (Φ1, . . . , ΦK)] is the discrete counterpart of E

K,D
δ,γ in (4.4) obtained by the evaluation

of all the integrals in E
K,D
δ,γ using third order Simpson quadrature with 9 quadrature points. Then, the resulting

entries of the weighted mass matrix Mh[ω, Φ, Ψ ]ij = (Mh[ω, Φ, Ψ ]ij)i,j∈IN
with weight ω and transformed via

deformations Φ, Ψ are given by

Mh[ω, Φ, Ψ ]ij =
∑

l∈IC

8
∑

q=0

wl
q ω(xl

q) (ξi ◦ Φ)(xl
q) (ξj ◦ Ψ)(xl

q).

Here, the xl
q are the quadrature points and the wl

q are corresponding quadrature weights. In the case ω = 1 we
write Mh[1, Φ, Ψ ] = Mh[Φ, Ψ ].

To compute a minimizer of the fully discrete energy EK
δ,γ,h we proceed as in the existence proof of time discrete

geodesics in Section 5 and alternate the optimisation of the set of deformations for fixed image intensities and the
optimization of the image intensities for fixed deformations. The optimization of deformations decouples in time.
To calculate an optimal, discrete matching deformation for two consecutive images we use a conjugate gradient
method for the fully discrete energy E

K,D
δ,γ,h. In practice we use the following hyperelastic energy W (Dφ) =

µ
2 ‖Dφ‖2

F + λ
4 (detDφ)

2 − (μ + λ
2 ) log(detDφ) − μ − λ

4 for det(Dφ) > 0 with fixed λ = 10 and μ = 1 and
differing from the assumptions in Section 4 we skip the higher order term |Dmφ|2. Indeed, the associated
regularization experimentally turned out not to be necessary, possibly due to the regularization by the spatial
discretization. For a fixed vector of discrete deformations Φ = (Φ1, . . . , ΦK) the minimization of E

K,D
δ,γ,h with
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respect to Θ = (Θ1, . . . , ΘK−1) leads, as in the spatially continuous case, to a linear system of equations. Indeed,
we obtain as the discrete counterpart of

∫

D |φk − 1I|2θk−1 dx

K
∑

k=1

∑

l∈IC

8
∑

q=0

wl
q

(

|Φk − 1I|2Θk−1

)

(xl
q) =

K
∑

k=1

Mh[|Φk − 1I|2, 1I, 1I]Θ̄k−11̄,

with 1̄ = (1, . . . , 1) ∈ R
IN and as the discrete counterpart of

∫

D | det(Dφk)θk ◦ φk − θk−1|2 dx

K
∑

k=1

∑

l∈IC

8
∑

q=0

wl
q

(

| det(DΦk)(Θk ◦ Φk) − Θk−1|2
)

(xl
q)

=

K
∑

k=1

(

Mh[(det DΦk)2, Φk, Φk]Θ̄k · Θ̄k − 2Mh[det(DΦk), Φk, 1I]Θ̄k · Θ̄k−1 + Mh[1I, 1I]Θ̄k−1 · Θ̄k−1

)

.

Hence, the resulting discretized part of E
K,D
δ,γ,h depending on Θ̄k is given by

Mh[|Φk+1 − 1I|2, 1I, 1I]Θ̄k1̄ +
1

δ
(Mh[(detDΦk)2, Φk, Φk] + Mh[1I, 1I])Θ̄k · Θ̄k

−2

δ

(

Mh[det(DΦk), Φk, 1I]Θ̄k · Θ̄k−1 + Mh[det(DΦk+1), Φk+1, 1I]Θ̄k+1 · Θ̄k

)

.

In what follows, we restrict to the non constraint case minimizing over intensities, which are not necessarily
non negative. In fact, in our numerical experiments for ΘA, ΘB ≥ 0 and with all deformations being initialized
with the identity we did not observe negative density values in the vectors Θ̄k for k = 1, . . . , K − 1. The
implementation of a constraint, quadratic optimization method is work in progress.

For the variation of E
K,D
δ,γ,h with respect to the kth image Θ̄k one obtains

∂Θ̄k
E

K,D
δ,γ,h = Mh[|Φk+1 − 1I|2, 1I, 1I]1̄ +

2

δ
(Mh[(detDΦk)2, Φk, Φk] + Mh[1I, 1I])Θ̄k

−2

δ

(

Mh[detDΦk, Φk, 1I]T Θ̄k−1 + Mh[detDΦk+1, Φk+1, 1I]Θ̄k+1

)

.

As a consequence the necessary condition for Θ := (Θ1, . . . , ΘK−1) to be a minimizer of E
K,D
δ,γ,h is a block

tridiagonal system of linear equations A[Φ]Θ̄ = R[Φ], where A[Φ] is formed by (K−1)× (K−1) matrix blocks
Ak,k′ ∈ R

IN×IN with

Ak,k−1 = −Mh[det DΦk, Φk, 1I]T , Ak,k = Mh[(detDΦk)2, Φk, Φk] + Mh[1I, 1I],

Ak,k+1 = −Mh[det DΦk+1, Φk+1, 1I]

and R[Φ] = B[Φ]+T[Φ] consists of K−1 vector blocks Rk = Bk+Tk ∈ R
IN with B1 = Mh[det DΦ1, Φ1, 1I]

T Θ̄0,
B2 = . . . = BK−2 = 0, BK−1 = Mh[detDΦK , ΦK , 1I]Θ̄K , and Tk = − δ

2Mh[|Φk+1 − 1I|2, 1I, 1I]T 1̄ for all
k = 1, . . . , K − 1.

The energy
∑

l∈IC

∑8
q=0 wl

q

(

|Φk − 1I|2Θk−1 + 1
δ | detDΦkΘk ◦ Φk − Θk−1|2

)

(xl
q) is convex in Θk and strictly

convex in Θk−1. Hence, E
K,D
δ,γ,h is strictly convex in Θ and there is a unique minimizer Θ = Θ[Φ] for fixed Φ.

This implies that A is invertible and therefore the resulting solution Θ coincides with the unique minimizer of
E

K,D
δ,γ,h. Numerically, the corresponding system of linear equations is solved with a conjugate gradient method

with diagonal preconditioning. In addition, as an outer iteration of the numerical energy descent scheme we
apply a cascadic approach starting on coarse grids and successively refining the grid.

In what follows, we will discuss numerical results obtained by the proposed scheme. We start with two
simple transport examples of image densities with identical mass. In Figure 1 the optimal transport geodesics
connecting a bump map f(x) = exp((1 − σ−2|x − x0|2)−1)χBσ(x0) with centre x0 ∈ D and radius σ > 0 and
its translate as well as a characteristic function of a square and its translate are considered for small δ and γ.
Indeed, the computed optimal transport constitutes of a translation. Next, we illustrate the role of the source
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Figure 1. Optimal transport via translation for two different pairs of images, each of them
with identical mass. Left: discrete geodesic between a pair of scaled bump maps with K = 4,
δ = 10−1, γ = 10−1 is shown, right: discrete geodesic between a square and a translated square
with K = 4, δ = 10−1, γ = 10−2.

Figure 2. Discrete geodesic are computed for different viscosity parameter γ between two bump
maps placed on a square and periodically extended to R

2. Top: γ = 5×10−4, δ = 10−1, bottom:
γ = 5 (δ = 10−1). The images are extracted from a discrete geodesic with K = 9. The different
contributions to the resulting discrete path energy are: transport cost = 0.0278363, density
modulation cost = 0.00107356, dissipation cost = 0.0128489 (top row) and transport cost =
0.155598, density modulation cost = 0.00274782, dissipation cost = 0.00139578 (bottom row).

Figure 3. Discrete geodesics (K = 9) between two bump maps of different mass for different
values of δ (from the first to the third row δ = 1, 10, 100 with γ = 5× 10−4). In the fourth row
the discrete geodesic for γ = 1, δ = 10−1 is displayed.

term allowing for density modulation in case of θA and θB given in Figure 3 as two bump maps of different size
at different centre points and in Figure 4 as the characteristic functions of two rectangles of different size still for
small γ. In Figure 2 we show the influence of the viscous dissipation. Picking up a test case from [10] we consider
image intensities on a square periodically extended to R

2 with a bump map once placed in the vertices of the
square and once at the centre. We consider periodic boundary conditions both for the image intensities and for
the motion field. The Wasserstein geodesic was already computed in [10] and we obtain approximately the same
result for small γ. Indeed, the bump map at the vertices split up into four pieces, which are then transported
separately into the centre. From the perspective of optimal transport this path is energetically preferable due
to the shorter transport distance compared to a simple translation from the vertices into the centre. Obviously,
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Figure 4. Discrete geodesics between two rectangles of different mass for different values of δ.
Top: δ = 10−2, middle: δ = 10−1, bottom: δ = 1 (K = 9, γ = 10−2).

Figure 5. Comparison of the combined model with viscosity parameter γ = 1 (top) and the
metamorphosis model (bottom) for δ = 10−2.

Figure 6. A discrete geodesic between images of Monge and Kantorovich with δ = 10−2,
γ = 10−2 (image provided by G. Peyré).

this splitting of mass is expensive from the viscous dissipation perspective. Hence, for larger γ we observe the
simple translation.

Next, we illustrate the role of the source term allowing for density modulation in case of θA and θB as in
Figure 3 but now with different mass in the two bump maps. Still we impose periodic boundary conditions. For
small values of δ we observe a splitting of the bump maps in the corners with the outer one being blended out
and the inner one being mainly transported into the middle, whereas for larger values of δ we observe a blending
process without significant transport. Furthermore, increasing the viscous dissipation parameter γ leads as in
Figure 2 to a translation of the whole bump, while the mass overhead is continuously faded-out. In Figure 4
the input images consists of characteristic functions of two rectangles of different size. Now, we impose natural
boundary on ∂D. For small δ and strong penalization of sources the surplus of mass is pushed outwards, whereas
for large δ one observes a simple blending and almost no transport.

Furthermore, Figure 5 compares our model with the metamorphosis model on the discrete geodesic between
two images consisting of a light and a dark square and the flipped configuration. For very small density mod-
ulation parameter (δ = 0.01) we observe a transport of a “light block” from the bottom to the top square,
especially mass is approximately preserved. In case of the metamorphism model with purely viscous flow, we
see a transport of the lighter square combined with a fading in and out of the darker phase.

As a first imaging application we pick up in Figure 6 an example from [47]. For small δ and small γ we obtain
a very similar result. Finally, in Figure 7 the geodesic between two different slices of the same human brain
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θ0 θ1 θ2 θ31 θ4 θ5 θ6 θ7 θ8

θ9 θ10 θ11 θ12 θ13 θ14 θ15 θ16

z1 z2 z3 z4 z5 z6 z7 z8

z9 z10 z11 z12 z13 z14 z15 z16

Figure 7. Two slices of the same 3D MRI data set of a human brain are connected with a
discrete geodesic (data courtesy of H. Urbach, Neuroradiology, University Hospital Bonn). Top:
discrete geodesic with δ = 10−2, γ = 10−1, bottom: corresponding values of zk = det(Dφk)θk ◦
φk − θk−1 (blue: positive, red: negative). (Color online).
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Figure 8. The convergence of the alternating descent method is shown for the application in
Figure 7. For the different levels of the cascadic descent scheme (K = 2, 4, 8, 16) the l2 norm of
the difference of consequitive space time densities θj is visualized using log-log plots.

recorder via MRI is shown. The corresponding image intensities are characterized by substantially different
masses. In fact, it is the incorporation of both the source term and the viscous dissipation term which enables a
reasonable morph between the two slices. Thereby, the source terms allows for local image intensity modulation,
whereas the viscous dissipation ensures regularity of the resulting transport path.

There is no guarantee that the alternating algorithm converges. To demonstrate the experimental convergence
behaviour we choose the application shown in Figure 7 and show the evolution of the l2 norm of the difference
between consequitive intensities in Figure 5.

7. The Benamou−Brenier discretization for the non viscous model

In this section we numerically compare the proposed approach (2.4) with the numerical scheme for optimal
transport proposed by Benamou and Brenier [10], where the mass constraint is relaxed. After the change of
variables (θ, v) → (θ, m = θv) the minimization problem of the discrete path energy is rewritten as

sup
z

min
φ

(

F (Bφ) + G(φ) +

∫ 1

0

∫

D

φ · z − 1

δ
|z|2 dxdt

)

,
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Figure 9. The Benamou−Brenier discretization applied to optimal transport with relaxed mass
constraint for input images with bump maps of different mass. The rows show equidistributed
time steps for a time step size τ = 1

60 and different δ (top: δ = 1, middle: δ = 10, bottom:
δ = 100).

where φ is a Lagrange multiplier introduced to satisfy the condition on z, F is the indicator function of the

convex set K = {(a, b) ∈ R×R
d : a + |b|2

2 ≤ 0}, G(φ) =
∫

D
φ(0, ·)θ0 −φ(1, ·)θ1 dx, and B : φ → (∂tφ,∇xφ). For

the outer maximization in z one gets the optimality condition z = δ
2φ. The augmented Lagrangian is given by

Lr[φ, q, μ] = F (q) + G(φ) +

∫ 1

0

∫

D

φ · z − 1

δ
|z|2 + μ · (∇t,xφ − q) +

r

2
|∇t,xφ − q|2 dxdt,

with variables q = (a, b), μ = (θ, m) and Benamou and Brenier propose an alternating gradient descent to
compute the saddle point. Using the fact that z = δ

2φ, one updates z and φ simultaneously solving −r△t,xφn +
δ
2φn = divt,x(μn−rqn−1) with Neumann boundary conditions in time, i.e.r∂tφ

n(0, ·) = θ0−θn(0, ·)+ran−1(0, ·),
r∂tφ

n(1, ·) = θ1−θn(1, ·)+ran−1(1, ·). Let us emphasize that in [10] the second term on the left hand side which
reflects the source term already appeared in the original scheme by Benamou and Brenier as a regularization
term.

To study the impact of the parameter δ we pick up the problem already presented in Figure 2. Now, we
choose two input bump maps of different mass. Figure 9 shows discrete geodesics for different δ. For large δ we
basically observe pure blending and almost no transport, whereas for smaller δ mass is first reduced for each
bump map leading to a concentration in 4 bumps which are then transported. The differences to Figure 3 seem
to be due to the presence of still some viscous dissipation.

8. Application of the variational time discretization to Riemannian
barycentres

As a further application of our time discrete geodesics in the space of images we consider the computation
of (weighted) discrete barycentres. We call θλ the barycentre of M input images θ1, . . . , θM for given weights

λ1, . . . , λM with λm ≥ 0 and
∑M

m=1 λm = 1, if θλ minimizes

Bδ,γ[θ] =

M
∑

m=1

λmWδ,γ [θ, θm]2
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Next, replacing the time continuous path energy Wδ,γ by the time discrete energy WK
δ,γ (4.2) we ask for a

minimizer of the energy

Bδ,γ[θ] = min
(θm

k )k=0,...,K⊂I
(φm

k )k=1,...,K⊂A
θ=θm

0

M
∑

m=1

λmEK
δ,γ [θm

0 , . . . , θm
K , φm

1 , . . . , φm
K ]

over M discrete image paths (θm
k )k=0,...,K (m = 1, . . . , M) and M discrete families (φm

k )k=1,...,K (m = 1, . . . , M)
with the last image of the m discrete image paths being the mth input image (θm

K = θm) and the additional
constraint that the set of first images being all equal to θ (θ = θm

0 for all m = 1, . . . , M).
The necessary conditions for the images θm

k and the deformations φm
k (k = 1, . . . , M , m = 1, . . . , M) are

identical to those for simple discrete geodesics connecting the corresponding pair of images (θ, θm). Solely the
condition for the barycentre image itself changes to

θλ(x) = max

(

0,

M
∑

m=1

λm

(

det(Dφm
1 )θm

1 (φm
1 (x)) − δ

2
|φm

1 (x) − 1I|2
)

)

.

Finally, we take into account the spatial discretization introduced in Section 6 and define Θλ as the fully discrete,
weighted barycentre of the input images Θ1, . . . , ΘM , if Θλ minimizes the energy

BK
δ,γ,h[θ] =

M
∑

m=1

λmWK
δ,γ,h[Θ, Θm]2 (8.1)

= min
(Θm

k )k=0,...,K⊂I
(Φm

k )k=1,...,K⊂A
Θ=Θm

0

M
∑

m=1

λmEK
δ,γ,h[Θm

0 , . . . , Θm
K , Φm

1 , . . . , Φm
K ].

Again for fixed deformations (Φ̄m
k )k=1,...,K,

m=1,...,M
and skipping the non negativity constraint for the densities one

obtains a system of linear equations to be solved for (Θ̄m
k )k=0,...,K−1,

m=1,...,M
with Θ̄1

0 = . . . = Θ̄M
0 = Θ̄λ. This linear

system consists of M copies of the equations for (Θ̄1, . . . , Θ̄K−1) in the system, where we replace Θ̄k by Θ̄m
k

and Φk by Φm
k , and an additional set of equations for Θ̄λ, i.e.

Mh[1I, 1I]Θ̄λ =

M
∑

m=1

λm

(

Mh[det(DΦm
1 ), Φm

1 , 1I]Θ̄m
1 − δ

2
Mh[|Φm

1 − 1I|2, 1I, 1I]1̄
)

.

Still, a slightly modified strict convexity argument proves that the energy EK
δ,γ,h is strictly convex in the images

Θm
k for k = 1, . . . , K, m = 1, . . . , M and in the additional image Θλ. In particular, there exists a unique solution

of the linear system. Let us remark that this is no longer clear if we replace WK
δ,γ,h[Θm, Θ] by WK

δ,γ,h[Θ, Θm]
in the definition of the fully discrete barycenter in (8.1). In the implementation, we apply an analogous al-
ternating descent scheme as described in Section 6 to compute fully discrete approximations of the weighted
Riemannian barycenter. Furthermore, we use a cascadic approach, starting with coarse time discretizations and
then successively refining the discretization in time. Figure 10 shows barycenters (with equal weights λ = 1

M )
for three different sets of sugar beet slices extracted from noninvasive 3D MRI images at different days after
plantation for different viscous dissipation parameters γ. Furthermore, we show the variability of the different
contributions to the path energy between the barycenter and the input images for all input sugar beets. Finally,
we display in Figure 11 weighted barycenters of three different wood textures with all admissible combinations
of λm ∈ {0, 1

3 , 2
3 , 1}.
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Figure 10. Barycentres of different sets of sugar beet slices (left) for δ = 10−1 and for γ =

10−2, 10−1, 1, 10 (from left to right with θj
b corresponding to γ = 10j). On the right the

transport cost (T), density modulation cost (Z), and viscous dissipation cost (V) are plotted
for all input slices in the case γ = 1 (cost values for the second beet at day69 are excluded as
outliers). (data provided by research network CROP.SENSe.net).
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Figure 11. Weighted barycentres of three different wood textures (http://de.wikipedia.
org/wiki/Holz) are shown for δ = 10−1, γ = 1 (left: barycentric triangle where (λ0, λ1, λ2) are
overlaid each texture, right: discrete geodesics for K = 4 between the three input textures and
the barycentre are depicted).

9. Conclusion and Outlook

In this paper we have developed a combined optimal transport and metamorphosis model and propose an
effective time discretization of the path energy in the space of density maps. The method allows us to approx-
imate the original Wasserstein’s distance and for larger viscosity parameter interesting additional effects can
be observed. In particular in applications to images the incorporated source term turns out to be an appro-
priate way to deal with mass variability. Let us briefly comment on limitations and possible future extensions
of the model. So far, in the non-viscous case the source term has to be absolutely continuous with respect to
the Lebesque measure (cf. Sect. 3), because the measure L ⊥ in the decomposition of the source measures is
not unique. Therefore, a singular part in L2 would depend on the decomposition. An alternative model with a
source term in L1 including singular parts is work in progress. In addition, in the time discrete model discussed

http://de.wikipedia.org/wiki/Holz
http://de.wikipedia.org/wiki/Holz
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in Section 4 the treatment of the source term in L2 required special care, since we aim at measuring the change
of densities, which is an L1-concept. Furthermore, for our generalized model including dissipation existence of
geodesics in the time continuous case is unclear. In the non-viscous case we made use of a change of variables by
considering the momentum instead of the velocity, but for the viscous dissipation term this does not appear to
be the appropriate concept. This also renders the verification of Γ -convergence more difficult than in the case
of the metamorphosis model in [11].
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[9] M.F. Beg, M.I. Miller, A. Trouvé and L. Younes, Computing large deformation metric mappings via geodesic flows of diffeo-
morphisms. Int. J. Comput. Vision 61 (2005) 139–157.

[10] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge−Kantorovich mass transfer problem.
Numer. Math. 84 (2000) 375–393.

[11] B. Berkels, Al. Effland and M. Rumpf, Time discrete geodesic paths in the space of images. SIAM J. Imag. Sci. 8 (2015)
1457–1488.

[12] M. Burger, J.A. Carrillo and M.-T. Wolfram, A mixed finite element method for nonlinear diffusion equations. Kinet. Relat.
Models 3 (2010) 59–83.

[13] M. Burger, M. Franek and C.-B. Schönlieb, Regularized regression and density estimation based on optimal transport. Appl.
Math. Res. Express 2012 (2012) 209–253.

[14] G. Buttazzo and F. Santambrogio, A model for the optimal planning of an urban area. SIAM J. Math. Anal. 37 (2005)
514–530.

[15] T. Chan, S. Esedoglu and K. Ni, Histogram Based Segmentation Using Wasserstein Distances. Scale Space and Variational
Methods in Computer Vision. Springer (2007) 697–708.

[16] R. Chartrand, B. Wohlberg, K. Vixie, and E. Bollt, A gradient descent solution to the Monge−Kantorovich problem. Appl.
Math. Sci. 3 (2009) 1071–1080.

[17] Ph.G. Ciarlet, Mathematical Elasticity, I: Three-dimensional elasticity. Vol. 20 of Stud. Math. Appl. Elsevier (1988).

[18] E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type. Comput.
Methods Appl. Mech. Eng. 195 (2006) 1344–1386.
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[57] B. Schmitzer and Ch. Schnörr, Modelling convex shape priors and matching based on the Gromov-Wasserstein distance. J.
Math. Imaging and Vision 46 (2013) 143–159.
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