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Abstract—Model predictive control (MPC) has been
widely advocated as a design strategy for many aspects of
industrial electronics. The methodology has been strongly
promoted by some researchers but has also attracted criti-
cism from others. In this context, the purpose of this paper
is twofold. First, we show that many existing and popular
control strategies, including finite set MPC and linear con-
trollers [proportional integral, proportional resonant (PR)],
can be viewed as special cases of MPC. Second, we show
that the predictive control framework allows one to embel-
lish these classical control architectures with novel features
and to design new and advanced control architectures to
address various challenges posed by power electronics ap-
plications. The findings of the paper are supported by a
practical example of designing of a novel form of PR con-
troller with superior tracking performance and delay com-
pensation, confirmed via simulation and experiments.

Index Terms—Control design, current control, dc–
ac power converters, model predictive control (MPC),
pulsewidth modulation inverters.

I. INTRODUCTION

M
ODEL predictive control (MPC) has attracted attention

from the power electronics research community. Its in-

tuitive approach and simple implementation have made it an

attractive alternative for control of various power electronic de-

vices. While its early implementations focused on current [1],

[2] and torque control [3] of inverters, more recently MPC has

been applied to a variety of converter topologies and power elec-

tronic devices, including three phase, multiphase and matrix

converters, multilevel inverters, ac/dc converters, etc. [4]–[7].

Some advantages of MPC approach include the ability to han-

dle complex and nonlinear situations [8], [9] and to seamlessly

deal with multiple design objectives [10], [11].

On the other hand, MPC has also attracted criticism from

some who point to its inherent disadvantages. The disadvantages

of MPC include exponential growth of associated computational
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Fig. 1. VSI with PWM under closed-loop current control.

burden, reported steady-state error and stability problems [12],

[13]. Another issue is the apparent disconnection between MPC

and more traditional approaches, which makes it difficult to

compare the performance of a vast and growing number of

proposed MPC-based schemes. Some of these issues have been

addressed by using more powerful microcontrollers [4], stability

studies [14]–[16], and comparison studies [17], [18]. Despite a

significant progress has been made, there remain open avenues

for further research.

The current paper is intended to contribute to the on-going

discussion relating to the application of MPC to power electron-

ics by showing the following.

1) Many existing and popular control strategies, such as

proportional integral (PI) and proportional resonant (PR),

control can be given a simple and intuitive interpretation

as special forms of MPC.

2) The interpretation of these controllers in the MPC frame-

work leads to new and improved architectures for imple-

menting these schemes.

3) Once these schemes are embedded in the MPC frame-

work, then it becomes clear how they can be fur-

ther embellished and modified to deliver enhanced

properties aimed at specific design issues (e.g., delay

compensation).

The ideas are general in nature and can be applied to many

problems. In this study, we will consider a typical current reg-

ulation example, comprising of a three-phase voltage-source

inverter (VSI) feeding a load with a back electromotive force

(emf) source through a series RL filter network as shown in

Fig. 1. The discrete time load model for this system can be

defined according to the following [19]:
(

1 − az−1
)

i(z) = bz−1v(z) (1)
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Fig. 2. Classical feedback control architecture.

where a = e
− ∆

τ p ; b = 1
R (1 − e

− ∆
τ p ); τp = L/R, and ∆ is the

sampling interval. A commonly used Euler model approxi-

mation [5] results if one only keeps the linear term of the

Taylor series expansion for e−x , namely, a ≈ 1 − ∆/τp and

b ≈ ∆/(Rτp) = ∆/L.

This three-phase system can be represented as a pair of de-

coupled feedback control systems as shown in Fig. 2 where

C(z) is an arbitrary controller of designer’s choice. In this pa-

per, MPC horizon one approach will be applied to the design

of the current controller C(z) and will not be associated with a

particular choice of the modulator. This choice includes pulse

width modulation (PWM) or a finite set modulator.

The remainder of the paper is organized as follows. Section II

revisits the antiwindup implementation of controllers with

marginally stable poles. Section III presents a generalized MPC

horizon one framework for optimal control design. Section IV

reinterprets the existing control schemes, such as finite set MPC,

and linear PI and PR controllers in an overarching MPC frame-

work. In Section V, using the proposed framework, advanced

control structures are developed, which address known stabil-

ity and delay issues of the existing controllers. The advantages

of the proposed advanced control structures are confirmed by

simulation and experimental results in Section VI. Section VII

presents conclusion and contributions.

II. ANTIWINDUP IMPLEMENTATION

It is well known that the implementation shown in Fig. 2 has

many drawbacks. Foremost among these is the fact that, if C(z)
contains unstable or marginally stable poles, then the demanded

voltage can “windup” due to the fact that the switching device

cannot deliver at its output, vk , the demanded voltage v∗
k . Ac-

tually, most popular controllers, including PI and PR, include

marginally stable poles, and thus the phenomenon of windup is

extremely common.

Much has been written about the problem of windup in the

control literature and various solutions have been proposed [20],

some of which are equivalent. A simple way of dealing with

antiwindup is as described below.

Step 1. Write the reciprocal of the controller transfer func-

tion in the form C−1(z) = g0 + C̄(z) where g0 is the

biproper part of C−1(z) while C̄(z) contains the dynamic

section of C−1(z).
Step 2. Implement the controller transfer function using

g0 and C̄(z) within the inner feedback loop of the control

system architecture as shown in Fig. 3.

It is readily seen that, if one ignores the saturation, then the

transfer function from tracking error ek to plant input vk is

v(z)

e(z)
=

1/g0

1 + (1/g0)C̄(z)
=

1

g0 + C̄(z)
= C(z). (2)

Fig. 3. Classical control architecture in antiwindup form.

Thus, in the absence of the switching device, the circuit of

Fig. 3 delivers the same control as in Fig. 2. However, there

is a major advantage of the implementation of Fig. 3 over that

of Fig. 2, namely, all of the memory storage in the controller

is captured in C̄(z). Moreover, in the presence of switching,

saturation, etc. these memory devices are driven by the true

voltage vk rather than the desired voltage v∗
k . Thus, this simple

rearrangement avoids the problems of windup.

In the view of the above discussion, we will henceforth view

Fig. 3 as the preferred implementation of standard classical

control laws in the context of power electronics.

III. OPTIMAL CONTROL DESIGN BASED ON MPC

HORIZON 1 (H1)

A. General Model

A general comprehensive formulation of MPC H1 is adopted.

Let uk be the input of a system and yk the measured output (in

power electronics uk would, for example, be the inverter voltage

and yk the measured output current).

We assume that the system output is corrupted by noise and

periodic disturbances. We also assume that we have available a

model linking uk to yk . The most general form of such a model

(in the linear case) can be expressed in state-space form as

xo
k+1 = Aox

o
k + Bouk + no

k (3)

dk+1 = Addk + nd
k (4)

yk = Cox
o
k + Cddk + mk (5)

where xo
k , uk , and yk are state, input, and output vectors, re-

spectively; no
k , nd

k , and mk are Gaussian white noise sequences;

dk is periodic disturbance; Ao , Ad , Co , Cd , and Bo are matrices

of appropriate dimensions.

To describe periodic disturbances, Ad will have eigenvalues

on the unit circle. For example, a constant disturbance can be

modeled by choosing Ad = 1. A sinusoidal disturbance of fre-

quency ω0 can be modeled by choosing

Ad =

[

0 1

−1 2 cos ω0

]

. (6)

The models (3)–(5) can be written in a compact form as

xk+1 = Āxk + B̄uk + wk (7)

yk = C̄xk + mk (8)
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where

xk =

[

xo
k

dk

]

; Ā =

[

Ao 0

0 Ad

]

; B̄ =

[

Bo

0

]

;wk =

[

no
k

nd
k

]

;

C̄ =
[

Co Cd

]

.

B. Innovation Form of the Model

We next utilize the Kalman filter to express the models (7)

and (8) in the innovation form [21]. This leads to

x̂k+1 = Āx̂k + B̄uk + J
(

yk − C̄x̂k

)

(9)

yk = C̄x̂k + εk (10)

where x̂k is state estimate; εk is the innovation sequence pro-

vided by the Kalman observer; and the matrix J defines the

Kalman filter gains.

Some algebra can now be utilized to write the innovation

model (9) and (10) in the transfer function form. Here and in the

sequel, we use z to denote a forward shift operator. This yields

A(z)D(z)yk = B(z)D(z)uk + E(z)εk (11)

where A(z) = det(zI − Ao); D(z) = det(zI − Ad);
B (z )
A(z ) =

Co(zI − Ao)
−1Bo ; and E(z) is a function of the matrix J .

Note that (11) is a known result in optimal control theory

[21]. We interpret this result in the context of power electronics

applications as follows: Polynomials B(z) and A(z) correspond

to the system model without disturbance. For example, for a

linear RL load given by (1), A(z) = 1 − az−1 and B(z) = bz−1 .

Polynomial D(z) is a nulling operator for the disturbance d, i.e.,

D(z)d = 0. For example, for any constant disturbance, D(z) =
1 − z−1 , since d(k) − d(k − 1) = 0. Polynomial E(z) depends

on the choice of J [21].

Let each of the polynomials in (11) be defined in the form

A(z) = a0 + a1z
−1 + · · · + anz−n , etc. Then we can require

that a0 = 1; c0 = 1, and d0 = 1 without loss of generality. We

also assume that the plant has p units delay

B(z) = z−pB′(z) (12)

where b′0 �= 0 and B′(z) is biproper. For example, with the load

model given by (1), B(z) = z−1b.

C. p-Step Ahead Prediction

Using the division algorithm of polynomial algebra yields

E(z)

A(z)D(z)
= F (z) +

z−pG(z)

A(z)D(z)
(13)

where F (z) = 1+f1z
−1 + · · ·+fp−1z

1−p ; G(z) = g0+g1z
−1

+ · · · . Then, (11) transforms into

E(z) (yk+p − F (z)εk+p) = G(z)yk + B′(z)F (z)D(z)uk .
(14)

We notice that F (z)εk+p denotes future noise, which is un-

predictable at time k. Hence, the optimal p step ahead prediction

of the measured output can be written as

ŷk+p =
α(z)

E(z)
yk + b

′

0uk +
γ(z)

E(z)
uk (15)

Fig. 4. MPC control architecture.

where α(z) = G(z); and b
′

0 + γ (z )
E (z ) = B ′(z )F (z )D (z )

E (z ) .

Due to the p units delay in the plant (12), the output val-

ues yk+i where i < p will be affected only by the past control

values uk+i−p and hence, cannot be changed by any control

applied at time k. Therefore, even though ŷk+p is p-step ahead

prediction, it is only one-step ahead prediction with respect to

the new control input uk . Therefore, the presented approach still

corresponds to MPC H1.

D. Unconstrained Predictive Control Law

We now use a standard H1 cost function

Jk = ‖y∗
k − ŷk+p‖

2
(16)

where y∗
k is the desired value of y; and ‖.‖ is Euclidean norm.

In the absence of constraints, optimizing (15) leads to the

feedback control law uk = uopt
k where

uopt
k =

1

b0

{

y∗
k −

α(z)

E(z)
yk −

γ(z)

E(z)
uk

}

(17)

which delivers the minimum cost function value of Jk = 0.

E. Constrained Predictive Control Law

Say that we are restricted to choose uk from some set U . For

example, if the switching electronics only allows a finite set of

voltages, then U will contain only the allowable voltages (e.g.,

the VSI space vector states).

In any case, it is easily seen that the optimal p-step ahead

control policy with constraints in U is ucon
k where

ucon
k =

[

Nearest uk ∈ U to uopt
k

]

. (18)

This MPC control law can be represented schematically as

in Fig. 4. Comparing the optimal MPC control law shown in

Fig. 4 with the classical control law in antiwindup form shown

in Fig. 3, one can see that the two control laws are identi-

cal with the correspondences: g0 = b
′

0 ; C̄(z) = −γ(z)/E(z);
α(z)/E(z) = 1. Indeed, the MPC control architecture is ac-

tually slightly more general due to the fact that we can use a

transfer function in the feedback path. This may have benefits in

practice, since the filter α(z)/E(z) allows us to filter out certain

types of measurement noise.

Therefore, the proposed generalized MPC approach makes it

possible to analytically compare classical control schemes with

MPC-based schemes, which previously could be only compared

by simulation and experiment [17]. In the proposed framework,

they can be all seen as different special cases of the generalized

MPC scheme.

In the sequel, to illustrate the described MPC H1 approach,

we use it to design of current controllers for VSI such as to
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TABLE I
OPTIMAL CONTROL LAWS RESULTING FROM APPLICATION OF MPC H1 TO DIFFERENT DISTURBANCE MODELS

Disturbance Optimal (unconstrained) control law to minimize the tracking error

A) None vo p t =
1

b
(i∗ − ai)

B) Const vo p t =
1

b
(i∗ − i) +

(1 − a)z−1

1 − az−1
v

C) Harmonic at ω0 vo p t =
1

b

(

i∗ −
a

(

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2
)

+ ε
(

1 − z−1
)

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 + εz−1 (1 − z−1 )

)

+
εz−1

(

1 − z−1
)

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 + εz−1 (1 − z−1 )
v

TABLE II
CHARACTERISTICS OF THE OPTIMAL CONTROL LAWS FOR DIFFERENT DISTURBANCE MODELS

Disturbance Controller C (z ) Noise sensitivity S (z ) Complementary

sensitivity T (z )

A) None
1

b
1 − az−1 z−1

B) Constant
1

b

1 − az−1

1 − z−1
1 − z−1 z−1

C) Harmonic at ω0
1

b

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 + εz−1 (1 − z−1 )

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2

(

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2
) (

1 − az−1
)

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 + εz−1 (1 − z−1 )
z−1

minimize the tracking error corresponding to the cost function

(16). Such controllers will be “optimal” in MPC H1 sense.

IV. REINTERPRETATION OF THE EXISTING CONTROL

SCHEMES IN MPC FRAMEWORK

We apply the above methodology to the RL model given by

(1) with disturbance, i.e.,

A(z)i(z) = B(z)v(z) + d(z) (19)

where A(z) = 1 − az−1 ; B(z) = bz−1 ; and the choices for d(z)
include: 1) no disturbance; 2) constant disturbance; and 3) har-

monic disturbance at the fundamental frequency ω0 .

The resulting unconstrained optimal control laws are given in

Table I. Each of the optimal control laws in Table I was further

translated into: 1) a traditional controller form C(z); 2) noise

sensitivity S(z) which characterizes disturbance rejection; and

3) complementary sensitivity T (z) which determines reference

tracking and robustness to modeling errors. These characteris-

tics are shown in Table II.

One interesting observation from Table I is that the gain of all

the optimal controllers is equal to 1
b ≈ L

∆ . This value and the fact

that it is equal for each of the different controllers agrees with

the maximum gains of PI and PR controllers found in practice

by using classical methods [22].

Another observation from Table II is that, in all cases, refer-

ence is being tracked with gain 1 but with a one-step delay. This

is an expected result, since in (16) we minimize the quadratic

error between y∗
k and ŷk+p . To avoid the delay, we may use

a predicted future current reference y∗
k+p instead of y∗

k . Alter-

natively, we can use a modification of the described approach,

which is discussed later in Section V.

A. No Disturbance: Traditional Finite Set MPC

In the simplest case, we may ignore the disturbance by setting

dk = 0 in (19). It is then easy to show that the only solution for

Fig. 5. Optimal controller schemes for different disturbances. (a) No
disturbance: FS-MPC. (b) Constant disturbance: PI controller. (c) Har-
monic disturbance: PR controller.

this case corresponds to: α(z) = a; β(z) = b; γ(z) = 0; and

E(z) = 1. The structures of the resulting optimal controller

appear in Fig. 5(a).

If the Constraint block in Fig. 5(a) corresponds to a finite set

(e.g., eight space vectors for a two-level inverter) then this case

is recognizable as traditional finite set (FS) MPC H1 current

control [4].

It has been shown by different researchers (see, for example,

[19] and [23]) that two identical forms of FS-MPC H1 exist.

Namely, one can use the prediction model (1) to evaluate the

predicted current î for different voltages from the finite set, and

then use the cost function J = ||i∗ − î||2 .
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Alternatively, one can use the prediction model (1) to trans-

late the reference current i∗ into the unconstrained optimal

voltage v̂opt , and then find the constrained optimal voltage as

v̄opt = [Nearest v̄ ∈ U to v̂opt ] in a sense of the cost function

J = ‖v̂∗ − v‖2 . The latter form corresponds precisely to the

optimal control solution shown in Fig. 5(a).

Such an interpretation is valid for any control scheme with

a linear first-order plant. When applied to the traditional FS-

MPC, this interpretation explains the known drawbacks, such

as parameter sensitivity and steady-state error in the presence of

disturbances [12], [13]. The fundamental reason for this behav-

ior is that the controller is optimized around the model, which

does not include any disturbance.

B. Constant Disturbance: PI Controller

Typical control intervals for a VSI are in the order of 10 kHz.

Over such a short interval, both reference and disturbances at the

fundamental frequency can be viewed as practically constants.

Therefore, by taking dk = d0 in (19) we will account not only

for constant disturbances but also realistically approximate the

disturbances at fundamental frequency (such as errors due to

parameter mismatch, back emf, etc.).

It is easy to check that the nulling operator for a constant

disturbance is D(z) = 1 − z−1 . There exist some freedom in

the choice of E(z). In practice, one would give preference to

a structure with transfer function 1 in the current feedback, as

shown in Fig. 5(b). This corresponds to α(z) = E(z) = 1 −
az−1 ; β(z) = b(1 − z1) and γ(z) = −b(1 − a)z−1 .

The resulting optimal control structure appears in Fig. 5(b). To

identify this controller, we transform it into a non-anti-windup

form C(z) (see Table II) and then into the corresponding con-

tinuous time representation, which is given by the following:

C(s) =
1

b

s − 1
∆ ln a

s
=

1

b

(

1 +
1

sτp

)

. (20)

It can be readily seen that the optimal controller for the case of

constant disturbance is the PI controller with Kp = 1
b and time

constant τi matching the plant time constant τp . Such a controller

provides zero-pole cancellation for fast dynamics and integral

action for steady-state error elimination at zero frequency. Some

authors intuitively arrived at the idea of including an integrator

in the FS-MPC structure [13]. The presented generalized MPC

approach proves that a PI controller is indeed the optimal solu-

tion for the given scenario and suggests its optimal parameters.

Also note that, in Fig. 5(b), the Constraint and Switched

VSI blocks may represent, respectively, finite set constraint and

zero-order hold, in which case Fig. 5(b) depicts the FS-MPC

with integral action. Alternatively, these blocks may as well

represent hexagonal constraint and PWM, respectively, in which

case Fig. 5(b) corresponds to a linear PI controller with PWM.

Thus, we have proven that the well-known linear PI control

scheme is a special case of MPC with PWM and is a “close

relative” of the FS-MPC with integral action.

Optimal controllers based on the constant disturbance model,

although they perform better than the traditional FS-MPC, still

have a limited capacity to reject the back emf disturbance, which

may be desirable in drive applications [22].

C. Harmonic Disturbance: PR Controller

An even more realistic representation of the real inverter ap-

plications is achieved, if the disturbance and the reference are

modeled as sinusoids at fundamental frequency ω0 .

Using the nulling operator D(z) = 1 − 2ξ cos(ω0∆)z−1 +
ξ2z−2 for the harmonic disturbance, and following the same

logic as in the previous section, we obtain the optimal control

structure shown in Fig. 5(c). Detailed design for this case can

be found in [24]. Note three special features of this design.

First, by using ξ < 1 we move the marginally stable system

poles slightly inside the unit circle, which improves the robust-

ness of the design with respect to digital implementation errors.

Typical values of ξ are 0.9–0.99. Second, in this case we can

explore the existing degree of freedom denoted by ε in Tables I

and II and Fig. 5(c). From Table II it is clear that zero track-

ing error is achieved for a range of ε values, however, noise

sensitivity S(z) can vary significantly with ε. Therefore, the

appropriate ε value can be selected from design objectives other

than reference tracking. One possible value is ε = ∆
τp

.

Third, it was not possible in this case to obtain a structure

with transfer function 1 in the current feedback. The current

feedback in Fig. 5(c) includes a nontrivial filter. Observe that

this filter contains the same denominator function as is used

for the inverter voltage feedback branch, which allows for a

relatively compact practical realization.

To identify the controller in Fig. 5(c), we transform it into

a non-anti-windup form C(z) (see Table II) and then into the

corresponding continuous time representation, is given by the

following:

C(s) =
1

b

s(ε/∆)

(s + ς)2 + ω2
0

(21)

where ς = − 1
∆ ln ξ. It is clear that C(s) from (21) is a damped

PR controller where τi = ε/∆. Such a controller has proven its

advantage in rejection of fundamental frequency disturbances

(such as back emfs in drive applications) and is the typical choice

of a linear controller when such disturbances are an issue [25].

However, the nontrivial feedback filter is a new addition to the

previously known control structure.

V. DESIGN OF ADVANCED OPTIMAL CONTROL STRUCTURES

IN THE GENERALIZED MPC FRAMEWORK

Having confirmed the power of the generalized MPC frame-

work on the known control architectures, we can now apply

MPC H1 optimal design principles to the design of advanced

control structures with various desirable properties.

A. Accounting for Transport Delays

One key issue in VSI control arises due to a transport delay.

Computation in a digital inverter control is typically organized as

follows. At the beginning of each cycle, currents are measured;

then, the voltage state or voltage sequence calculated in the
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TABLE III
OPTIMAL CONTROL LAWS WITH MPC H1; TRANSPORT DELAY IS ACCOUNTED FOR

Disturbance Optimal (unconstrained) control law to minimize the tracking error

A) None vo p t =
1

b
(i∗ − a2 i) − az−1 v

B) Const vo p t =
1

b
(i∗ −

a2 (1 − z−1 ) + ε

1 − z−1 + εz−2
i) +

−az−1 (1 − z−1 ) + εz−2

1 − z−1 + εz−2
v

C) Harmonic at ω0 vo p t =
1

b

(

i∗ −
a2

(

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2
)

+ ε
(

1 − z−1
)

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 + εz−2 (1 − z−1 )
i

)

+
−a

(

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2
)

+ εz−2
(

1 − z−1
)

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 + εz−2 (1 − z−1 )
v

TABLE IV
CHARACTERISTICS OF THE OPTIMAL CONTROL LAWS; TRANSPORT DELAY IS ACCOUNTED FOR

Disturbance Controller C (z ) Noise sensitivity S (z ) Complementary

sensitivity T (z )

A) None
1

b

1

1 + az−1
1 − a2 z−2 z−2

B) Constant
1

b

1 − z−1 + εz−2

(1 − z−1 ) (1 + az−1 )

(1 − z−1 )(1 − a2 z−2 )

1 − z−1 + εz−2
z−2

C) Harmonic at ω0
1

b

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 + εz−2
(

1 − z−1
)

(1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 ) (1 + az−1 )

(

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2
) (

1 − a2 z−2
)

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 + εz−2 (1 − z−1 )
z−2

previous cycle is applied; finally, the voltage state or sequence

to be applied in the next cycle is calculated.

When a new voltage is applied, its effect will be seen in

the output current in a minimum of two steps: one step due to

the model (19) being first order; and another step due to the

transport delay. The presence of this delay is reported to cause

stability problems in both traditional FS-MPC scheme [12] and

high-gain linear current controllers [25]. Various stabilization

strategies have been suggested in [14], [15], and [25].

In the proposed generalized MPC framework, the solution for

the transport delay problem is automatic. In the first step, we

account for the transport delay by including an extra delay in

the actuator/plant model as
(

1 − az−1
)

i(z) = bz−2v(z) + d(z). (22)

Next, exactly the same MPC-based procedure as that de-

scribed in Section III is applied, with p = 2 and d(z) being

the disturbance of interest. The optimal control expressions, ac-

counting for the transport delay and rejecting the three common

disturbances are summarized in Table III and their character-

istics in Table IV. It is then straightforward to implement the

optimal controllers from the given antiwindup forms. Note that

all the controllers in Table III have nontrivial feedback filters

and the complementary sensitivity T (z) = z−2 .

Consequently, they have a consistent two-cycle tracking de-

lay between the reference and the measured output. Such a

delay is usually not a problem if control is implemented at a

high frequency. For low frequency and high-performance cur-

rent controllers it may be desirable to avoid this delay [25].

Some researchers [12] propose to avoid the tracking delay by

driving the MPC control scheme by a predicted future reference

y∗
k+2 instead of y∗

k . In dynamic applications, it is not possible

to predict the future reference. Another way is to compensate

for the tracking delay using the MPC framework, as described

below.

Fig. 6. Modified MPC control architecture.

Fig. 7. MPC architecture with tracking delay compensation.

B. Compensation of Tracking Delays

Here, we propose a simple and elegant modification of the

generalized MPC approach to compensate for linear tracking

delays. Similar logic applies as in Section III. In addition to the

model given by (3)–(5) we introduce the reference model

y∗
k+1 = Ayy∗

k + ny
k (23)

where Ay will have eigenvalues on the unit circle to describe

periodic references; and ny
k is Gaussian white noise sequence.

We extend the state vector xk to include vector y∗
k , and adjust

the relevant matrices A, B, C, and w.

In Section III-B, we express yk = y∗
k + ek where ek the is

tracking error. Application of the Kalman observer yields

A(z)D(z)ek = B(z)D(z)uk + E(z)εk (24)

where D(z) can be interpreted as nulling operator for both

disturbance and reference. In Section III-D we minimize the cost
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TABLE V
OPTIMAL CONTROL LAWS WITH MPC H1 WITH TRACKING DELAY COMPENSATION

Disturbance Optimal (unconstrained) control law to minimize the tracking error

A) None vo p t =
a2

b
(i∗ − i) − az−1 v

B) Const v o p t =
1

b

a2 (1 − z−1 ) + ε

1 − z−1 + εz−2
(i∗ − i) −

az−1 (1 − z−1 ) − εz−2

1 − z−1 + εz−2
v (z )

C) Harmonic at ω0 v o p t =
1

b
(i∗(z ) − i(z ))

a2
(

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2
)

+ ε
(

1 − z−1
)

1 − 2ξ cos(ω0 ∆)z−1 + (ξ 2 + ε) z−2 − εz−3
−

az−1 − (2aξ cos(ω0 ∆)1 + ε) z−2 +
(

ξ 2 a + ε
)

z−3

1 − 2ξ cos(ω0 ∆)z−1 + (ξ 2 + ε)z−2 − εz−3
v (z )

TABLE VI
CHARACTERISTICS OF THE OPTIMAL CONTROL LAWS WITH TRACKING DELAY COMPENSATION

Controller C (z ) Noise sensitivity S (z ) Complementary sensitivity T (z )

A)
1

b1

1

1 + az−1
1 − a2 z−2 a2 z−2

B)
1

b

a2
(

1 − z−1
)

+ ε

(1 + az−1 ) (1 − z−1 )

(

1 − a2 z−2
)

(1 − z−1 )

1 − z−1 + εz−2

z−2
[

a2 (1 − z−1
)

+ ε]

1 − z−1 + εz−2

C)
a2

(

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2
)

+ ε
(

1 − z−1
)

b (1 + az−1 ) (1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 )

(

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2
) (

1 − a2 z−2
)

1 − 2ξ cos(ω0 ∆)z−1 + ξ 2 z−2 + εz−2 (1 − z−1 )

z−2
[

a2
(

1 − 2β cos(ω0 ∆)z−1 + β 2 z−2
)

+ ε
(

1 − z−1
)]

1 − 2β cos(ω0 ∆)z−1 + β 2 z−2 + εz−2 (1 − z−1 )

Fig. 8. MPC PR controller with tracking delay compensation.

function Jk = ê2
k+p , resulting in unconstrained control law:

uopt
k =

1

b0

{

−
α(z)

E(z)
ek −

γ(z)

E(z)
uk

}

(25)

which delivers the minimum cost function value of Jk = 0.

The optimal control policy with constraints is given by ucon
k =

[Nearest uk ∈ U to uopt
k ].

The new optimal control architecture is shown in Fig. 6. Note

that the main difference with the previously obtained control

architecture from Fig. 4 is that the reference y∗
k is subtracted at

a different point. We can further rotate the diagram of Fig. 6

clockwise and invert the sign of e, so that the final diagram of

Fig. 7 results. The feedback on measured current will always

have transfer function 1, hence no steady-state tracking delay

will occur.

The expressions for the optimal controllers with respect to

rejection of the three common disturbances, with the added

feature of compensation for the tracking delay, are given in

Table V and their characteristics in Table VI.

Based on the expressions given in Table V, we have devel-

oped an advanced control architecture with optimized reference

tracking and disturbance rejection at the fundamental frequency,

combined with compensation of the model and transport delays.

This architecture is shown in Fig. 8.

Simulation results of Fig. 9 illustrate the transport delay com-

pensation property of the proposed architecture in comparison

with the control architecture of Fig. 5(c). A consistent two-step

Fig. 9. Illustration of transport delay compensation. (a) Control scheme
of Fig. 5(c): No delay compensation. (b) Control scheme of Fig. 8: With
delay compensation.

delay between reference i∗a and actual ia currents, evident from

Fig. 9(a), is not present in Fig. 9(b) under steady state. A further

study of the proposed architecture of Fig. 8, by simulation and

experiment, is presented in Section VI.

C. Other Improvements

1) Harmonic Cancellation: Say that, in addition to

tracking the fundamental frequency ω0 , one wishes to eliminate

harmonics (say, 5th, 7th, 11th). Then, all we need to do is add

these frequencies to the model Ad or, equivalently, to the polyno-

mial D(z). Preliminary results on this functionality can be found

in [26].

2) Compensation for Nonlinear Switching Delays:
In addition to transport delays addressed in Section V-B, there

also exist switching delays which are a function of current di-

rection. These can be readily captured in the MPC framework
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Fig. 10. PSIM C© simulation results for conventional and optimal PR controllers. (a) Conventional PR: No back emf. (b) Conventional PR: With back
emf. (c) Optimal PR: No back emf. (d) Optimal PR: With back emf.

by replacing the linear model (3)–(5) by a nonlinear model that

accurately describes the impact of nonlinear switching delays.

This is straightforward in MPC framework but impossible in the

classical control (i.e., transfer function based) framework. Some

results addressing the issues of nonlinear switching delays have

been described in [8].

3) Alterations to the Constraint Set U : It has become

traditional in the contemporary MPC literature to interpret the

control set U as the allowable switched voltage states. However,

this is by no means necessary. For example, authors of Romero

et al. [27] and Vazquez et al. [28] replace the set U by a finite

set of switching patterns. This gives a direct link between MPC

and PWM switching mechanisms.

In the case of using PWM, the average voltage can be designed

to take any value within the hexagonal control set. In the context

of this paper, the switching electronics block can take the form of

PWM with hexagonal constraints. Two key conclusions for this

embellishment are: (a) the constraint set U is now convex giving

vastly better computational options for optimization than FS-

MPC; (b) PWM can now be interpreted as a special switching

mechanism in the MPC framework. This allows one to view

PWM and MPC on equal footing.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In the view of the previous remark, we have chosen to illus-

trate the theoretical concepts developed in this paper on an ex-

ample of a current controlled VSI with a sine-triangular PWM.

Such a choice sets a very high benchmark.

Current controllers for PWM VSI have been extensively re-

searched and tuned (see [22] and [25]) leaving little room for

improvement. In this paper, we intend to demonstrate that a cur-

rent regulator based on the presented MPC H1 optimal structure

outperforms even the best example of a current regulator of a

standard structure. The use of the same sine-triangular PWM in

both standard and proposed schemes will make the comparison

fair and will also leave the harmonic performance outside the

comparison scope.

For a standard current regulator structure we can choose either

a PI controller in rotating frame or PR controller in stationary

frame. Both offer very similar performance. In fact, it has been

shown in [29] that a PR controller is equivalent to a PI controller

transformed into a synchronously rotating frame. Therefore,

the choice between PI and PR controllers is driven mostly by

implementation considerations. In this paper, the authors use

the PR controller scheme implemented in stationary frame for

its algorithmic benefits.

Simulation models were developed in PSIM C© software pack-

age from Powersim Inc. Simulation models and the matching

experimental setup included a three-phase inverter and load with

the following parameters VDC = 300 V, L = 15 mH, R = 0.1 Ω,

fc = 5 kHz, fo = 50 Hz, and ∆ = 100 µs. The inverter was

controlled using a TMS320F2810 fixed point DSP that was

programmed to implement all inverter modulation, current reg-

ulation, protection and supervisory functions.

The advanced control architecture illustrated by Fig. 8 was

simulated in PSIM alongside a conventional PR current con-

troller. Each current controller was operated with the gains
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Fig. 11. Experimental results for conventional and optimal PR controllers. (a) Conventional PR: No back emf. (b) Conventional PR: With back emf.
(c) Optimal PR: No back emf. (d) Optimal PR: With back emf.

determined either through the MPC formulation detailed in this

paper, or for the classical control strategies based on the prin-

ciples established in [22]. The steady-state and dynamic per-

formance of the two control structures were tested first without

back emf disturbance.

The simulation results corresponding to this case are com-

pared in Fig. 10(a) and (c). The corresponding experimental

implementation when driving an L-filter without a back emf is

illustrated in Fig. 11(a) and (c). The simulation and experimental

results show very good agreement. Both schemes demonstrate

excellent tracking performance in steady state. The transient

behavior of the proposed optimal PR controller is superior to

the conventional PR controller in that the transient is performed

both faster and with less overshoot.

To test the rejection of the back emf disturbance, the inverter

under both the classical PR and proposed MPC formulation de-

tailed in this paper was connected to a California Instruments

MX30 grid emulator, set to produce a phase voltage of 80 Vrms

at 50 Hz. The inverter was synchronized to the MX30 us-

ing a standard second-order-generalized-integrator phase locked

loop. Under these conditions the inverter is expected to clamp

in an overmodulated state during transient step-change events,

as the volt-drop across the filter inductance is substantially

reduced.

Simulation results for both controllers under these conditions

are shown in Fig. 10(b) and (d), where the longer transient

compared to the case without a back emf disturbance is clearly

evident. The PWM commands also clearly show the prolonged

period of overmodulation for two out of the three phases. How-

ever, the response of the proposed optimal controller settles

faster compared to the classical PR controller once the mea-

sured currents reach the target references. This result is also

observed experimentally, see Fig. 11(b) and (d).

It is clear from these results that reference tracking of the

optimal controller at least matches the classical PR controller,

while transient performance is superior with less overshoot.

VII. CONCLUSION AND CONTRIBUTIONS

This paper has presented a generalized MPC framework for

designing VSI current controllers. It has shown that many ex-

isting controllers can be viewed as special cases of MPC. Es-

tablishing such a connection is the main contribution of this

paper.

By establishing the underlying models behind the existing

control schemes, this paper has given new insights into their

advantages and limitations. It has shown that some performance

limitations can be overcome by altering the models.

As a demonstration of the presented approach, the paper has

proposed a new advanced control architecture, which combines

the following features important in real world applications:

1) improved steady-state and transient reference tracking

and disturbance rejection at the fundamental frequency;

2) avoiding instability issues associated with transport de-

lay;

3) compensation of the tracking delays of both model and

implementation nature.

Moreover, the concepts presented in this paper has opened

the door for future embellishments including: cancellation of

harmonics; compensation of nonlinear switching delays; more

general modulation schemes, etc.
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