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A generalized multivariate analysis of variance model useful
especially for growth curve problems*
BY RICHARD F. POTTHOFF AND S. N. ROYf

University of North Carolina

SUMMARY

The usual MANOVA (multivariate analysis of variance) model (see equation (1)) may be
generalized (equation (3)) by allowing for the appending of a post-matrix in the expectation
equation. As explained in § 1, this generalized model (3) is applicable particularly to many
kinds of growth curve problems, as well as to other problems. Section 2 is theoretical, and
develops techniques of analysis under the generalized model. A numerical example involving
growth curves is worked out in § 3.

1. NATURE OF THE PROBLEM

1 • 1. Motivation of the problem: growth curve analysis
As a simple example of the general type of growth curve problem to which the techniques

ofthis paper may be particularly suited, consider the data of Table 1. A certain measurement
in a dental study was made on each of 11 girls and 16 boys at ages 8, 10, 12 and 14. We will
assume that the (4x4) variance matrix of the 4 correlated observations is the same for all
27 individuals. Such matters as the following might be of interest:

(a) Should the growth curves be represented by second degree equations in time (t), or
are linear equations adequate?

(b) Should two separate curves be used for boys and girls, or do both have the same
growth curve ?

(c) Can we obtain confidence band(s) for the expected growth curve(s) ?
We will return to these questions in § 3, where the data of Table 1 will be used in a

numerical example illustrating the techniques to be presented in § 2.
Growth curve situations similar to the one just described have been considered from various

angles by some previous writers, including Wishart (1938), Box (1950), Rao (1958), Leech &
Healy (1959), Rao (1959), Healy (1961), Elston & Grizzle (1962) and Bock (1963). All of
these growth curve situations involve successive, and therefore in general correlated,
measurements on the same individuals, usually animals; except in the simpler situations, the
individuals are divided into two or more groups, where the different groups may represent,
e.g. different treatments which are to be compared. The different previous approaches to
the growth curve problem deal mainly with rather specialized aspects of it, and so a major
purpose of the present paper is to furnish new tools for growth curve analysis which are of
sufficiently general applicability. These tools, which are derived from the theory of multi-
variate normal analysis of variance and which are based on polynomial models for the
growth curves, provide both confidence bands for the growth curves and over-all tests of
significance for various kinds of compound hypotheses, even under the more complex types
of experimental designs.

* This research was supported by the Mathematics Division of the Air Force Office of Scientific
Research.

t The Editors have heard with deep regret of Professor Roy's sudden death on 23 July 1964.
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Table 1. Measurements* on\l girls and 16 boys, at 4 different ages

Girls Boys

Individual

1
2
3
4
5
6
7
8
9
10
11

I

8

21
21
20-5
23-5
21-5
20
21-5
23
20
16-5
24-5

Age in

10

20
21-5
24
24-5
23
21
22-5
23
21
19
25

years

12

21-5
24
24-5
25
22-5
21
23
23-5
22
19
28

14

23
25-5
26
26-5
23-5
22-5
25
24
21-5
19-5
28

Individual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

8

26
21-5
23
25-5
20
24-5
22
24
23
27-5
23
21-5
17
22-5
23
22

Age

10

25
22-5
22-5
27-5
23-5
25-5
22
21-5
20-5
28
23
23-5
24-5
25-5
24-5
21-5

in years
A

12

29
23
24
26-5
22-5
27
24-5
24-5
31
31
23-5
24
26
25-5
26
23-5

14

31
26-5
27-5
27
26
28-5
26-5
25-5
26
31-5
25
28
29-5
26
30
25

Mean 21-18 22-23 23-09 24-09 Mean 22-87 23-81 25-72 27-47

* These data were collected by investigators at the University of North Carolina Dental School.
Each measurement is the distance, in millimeters, from the centre of the pituitary to the pteryo-
maxillary fissure. The reason why there is an occasional instance where this distance decreases with
age is that the distance represents the relative position of two points.

1-2. Theoretical statement of the problem

The basic theoretical problem which we will consider is actually more general than that
of growth curve analysis. At present, however, it appears that the principal application of
our theoretical results is to growth curves.

The usual MANOVA model (see, e.g. Roy, 1957, Chapter 12) is

E[X(n x p)] = A(n x m) \(m x p), (1)

where the different rows of X are distributed mutually independently and the p elements in
any row follow a multivariate normal distribution with unknown variance matrix 2(p x p,
and positive definite) and mean vector as specified by (1), A being a matrix of known
constants and \ being a matrix of unknown parameters. A hypothesis of the form

C(s x m) \{m x p) V(p x u) = 0(s x u) (2)

(where C and V are matrices of known constants and 0 is the null matrix) can be tested under
the model (1), and confidence bounds (as well as estimates) are also available (see §2-1 below).

The model (1) can be generalized by appending to it a post-matrix: we consider a more

general model E[X0(n x q)] = A(» x TO) \{m x p) P(p xq), (3)

in which the different rows of Xo are distributed mutually independently and the q elements
in any row follow a multivariate normal distribution with unknown variance matrix
H0(q x q, and positive definite) and mean vector as specified by (3), A and P being matrices
of known constants and \ being a matrix of unknown parameters. The theoretical problem
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A generalized MANOVA model 315

of this paper is to find a technique for testing a hypothesis of the form (2) under the
generalized expectation model (3), and to obtain related confidence bounds; estimators also
will be obtained. This problem is dealt with in §2-2.

1-3. Examples of growth curve applications
The generalized MANOVA model (3) is especially applicable to growth curve situations.

We now present some examples showing how the model (3) and hypothesis of the form (2)
fit in with growth curve applications.

(i) We start with the simplest situation. We have a group of n animals, all subject to the
same conditions, which are each observed at q points in time, tv 12,..., tq. The q observations
on a given animal are not independent, but rather are assumed to be multivariate normal
with unknown variance matrix So. The growth curve is assumed to be a polynomial in time
of degree p — 1, so that the expected value of the measurement of any animal at time t will
be £0 + £i t + £21

2 + ... + iv_x P'1. The matrix A is n x 1 and contains all l's; the matrix \ is
Ixp and consists of £0, £v £2, ...,£J)_1; the element in the kth row and Zth column of the
matrix P is tf~1. We may wish to test hypotheses concerning the g's, or obtain a confidence
band for the growth curve.

(ii) Now let us generalize the model (i) and suppose that, instead of one group of animals,
we have TO groups of animals, with w3- animals in the j th group, and with each group being
subjected to a different treatment. Animals in all groups are measured at the same q points
in time and are assumed to have the same variance matrix So. The growth curve associated
with the jth. group is g30 + E,n t + £3-21

2 + ... + g3- p_1P'1 . The matrix A this time will contain
TO columns, and will consist of nx rows (1,0,..., 0), n2 rows (0,1,0,..., 0),..., and nm rows
(0,..., 0,1). The (j, k) element of 5; will be ^,i>lt-\\ P will be the same matrix as in (i) above.

If (2) is to be the hypothesis that all TO growth curves are equal, we set u = p, V = I,
s = TO — 1, and we take C to be a matrix whose last column contains all minus ones and whose
first (TO — 1) columns constitute the identity matrix. If (2) is to be the hypothesis that all TO
growth curves are equal except possibly for the additive constant £3-0, then we take C to be
the same (m— 1) xm matrix as before, and V to be a p x (p — 1) matrix whose first row
contains all 0's and whose last (p — 1) rows constitute the identity matrix. If (2) is to be the
hypothesis that all TO growth curves are actually of degree (p — 2) or less, we set s = m, C = I,
u = 1, and take V to be a p x 1 vector with all 0's except for a 1 as the last element. Many
other possible hypotheses besides these three can also be tested.

(iii) We consider next a generalization of the model (ii) to a situation where there are two
sets of treatment effects instead of just one. As an example, suppose we have a set of 3 diets
and a set of 2 temperatures which we wish to test simultaneously. Let us assume that there
is no interaction between diet and temperature, and that the growth curve for an animal
subjected to the ath diet and the /?th temperature can be represented by an equation of the
f o r m (Lo+Lit+
Let there be naj3 animals subjected to the combination of the ath diet and the /?th tempera-
ture (a = 1,2,3; /? = 1,2). We assume that every animal, no matter which of the 6 groups he
is in, is measured at the same q points in time and has the same unknown variance matrix So.
\ will be a 5 xp matrix whose (j, k) element is £,->fc_i if j = 1,2, or 3, and is /ij-z^-x ^3 — *
or 5. A will contain na/s rows consisting of l's in the ath and (/? + 3)th positions and 0's in the
other three positions, for a = 1,2,3 and /? = 1,2. P will be the same matrix as in (i) and (ii).

Hypotheses analogous to those indicated under (ii) can be tested. For example, if (3) is
2i Biom. 51
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316 RICHARD F. POTTHOFF AND S. N. ROY

to be the hypothesis that there is no difference in the effects of the 2 temperatures, then we
set V = I and take C to be the row vector (0,0,0,1, — 1).

Actually, the set-up which has just been described can be generalized still further. Not
only can we make the obvious generalization which would enable us to use general numbers
of diets and temperatures (rather than the specific numbers 3 and 2, respectively), but we
can consider entirely different types of designs, including, in particular, various kinds of
incomplete block designs and factorial designs. Just about any of the usual designs can be
accommodated if a growth curve model based on the sum of several different polynomials of
like degree, each representing a particular effect as in (4), is appropriate.

(iv) We consider finally a second generalization of the model (ii) which is in a different
direction from the generalization (ill). Suppose, as in (ii), that we have m groups of animals
with every animal being measured at (say) q' points in time, but suppose that, instead of our
measuring only a single characteristic associated with growth, we measure more than one
such characteristic. In other words, we now have a multi-response instead of a single-
response situation. As a simple illustration, suppose that we are measuring both height and
weight of every animal at every point in time rather than just measuring weight. Let us
assume that the height growth curve for the jth group of animals is

and that the weight growth curve for the jth. group is yj0 + y}11 + yj21
2 + ...

We will have q = 2q' observations on every animal—q' observations on height and q'
observations on weight. These q = 2q' observations have variance matrix 20 ; not only do we
expect the q' height observations to be correlated among themselves and the q' weight
observations to be correlated among themselves, but we also expect the height observations
to be correlated with the weight observations.

The A matrix will be the same as in (ii). \ will bemxp, where p = px +p2, and the (j, k)
element of % will be £3_ k_x if h < px and yit u-px-\ if & > Pi- We assume that Xo is arranged so
that the first q' columns contain the height measurements and the last q' columns the weight
measurements. Then P[(px + p2) x 2q'] will have a submatrix Px(px x q') in its upper left-
hand corner, a submatrix P2(p 2

 x i)m i^s lower right-hand corner, and 0's elsewhere, where
Px and P2 are matrices like the P matrix that was associated with models (i), (ii) and
(iii).

If (2) is to be the hypothesis that the height growth curves are the same for all m groups,
we set s = m — 1 and u = pv take C to be a matrix whose last column contains all minus
ones and whose first (m— 1) columns constitute the identity matrix, and take V to be a
matrix whose first px rows constitute the identity matrix and whose last p2 rows contain all
0's. If (2) is to be the hypothesis that both the height growth curves and the weight growth
curves are the same for all m groups, we take C as before and set u = p, V = I. Other
hypotheses can also be tested.

The set-up we have presented can easily be generalized to handle a situation where height
measurements are made on each animal at points tlv t12,..., tlqi, and weight measurements
are made at points t21,t22, ...,t2w the two sets of points not necessarily being the same.
More importantly, the model can also be generalized in an obvious manner to handle
measurements on an arbitrary number of different characteristics instead of on just two as
considered in our illustration.

If it is desired to generalize in directions (iii) and (iv) at the same time, this is also possible.

 at U
niversity of M

assachusetts on F
ebruary 3, 2011

biom
et.oxfordjournals.org

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


A generalized MAN OVA model 317

1-4. Other applications

The model (3) may have uses outside of growth curves. For example, if each row of Xo

represents a group of measurements taken at neighbouring points in space rather than in
time, then the theory developed for the model (3) might be put to use in certain practical
situations, e.g. measurements of the intensity of light or sound at various distances from
the source. One could assume a response equation of a certain degree in the co-or-
dinate^) of space. The space in question could be one-, two-, or three-dimensional (unlike
time, which can only be one-dimensional).

I t may be helpful to point out that perhaps the simplest possible application of the
generalized MANOVA model (3) is for the case where m = p = 1, <? = 2, and both A and P
consist of all l's. Such a model means that we have n pairs of observations from a bivariate
normal population with unknown variance matrix So(2 x 2) and with the two variates
having a common but unknown mean £.

2. SOLUTION OF THE PROBLEM

This section attacks the problem of analysis under the generalized MANOVA model (3).
Our method of approach will be to reduce this problem to a simpler one—that of analysis
under the model (1)—which has already been treated in the literature. Since we will be
making use of the standard results for this model (1), we start off by briefly summarizing
them (for more details see, e.g. Roy (1957), Chapter 12).

2-1. Analysis under the usual MANO VA model

We may test the hypothesis (2) under the model (1). (Incidentally, hypotheses in other
forms may also be tested; see Appendix A.) I t is assumed in (2) that C has rank s (^ TO) and
V has rank u (<,p). Let r (where r < TO, r < n, s ^ r) be the rank of A in (1), and let the
matrix A1(n x r) be the first r columns of A; we assume that the columns of A are arranged
in such a way that Ax is of rank r. Define A2(w x TO — r) to be the last (TO — r) columns of A.
Also define the matrix C1(s x r) to be the first r columns of C, and define C2(s x m — r) to be
the last (TO — r) columns of C. For the hypothesis (2) to be testable in the strong sense (Roy &
Roy, 1958-59), we must have C2 = C1(AjA1)~

1 A^ A2; hence rank of Cx = rank of C = s.
We define the matrices Sh(u x u) and Se(u x u) by

Sh = V'X'AX( Ai AJ - 1 CitCy Ai Ax)-i C^]-1 Cx( Ai AJ-* Ai XV (5 a)

and Se = V'X'[I - AX(A; AJ"1 AJ] XV. (5 b)

Three tests of the hypothesis (2) under the model (1) have been proposed: Roy's test uses
the largest characteristic root of (S^S^1) as its test statistic; a concept developed by
Hotelling (1951) can be extended to yield a test (called the sum-of-the-roots test) based on
the trace of (SftSj1); and a concept (the A-criterion) developed by Wilks (1932) can be
generalized to obtain a test which uses essentially the statistic |Se | / |SA+Se | = 1/|SA S"1 + 1 | -
Very little is known as to the relative power of these three tests, except that no one of the
three tests is uniformly better than either one of the others, j* However, Roy's test has the

t Empirical verification of this statement has been obtained in a computer investigation, carried
out by R. Gnanadesikan and colleagues at Bell Telephone Laboratories, for the case where s* of equation
(7 a) is 2. Theoretical verifications of the admissibility of the largest-root test and the sum-of-the-roots
test were obtained respectively by Mikhail (1960) and Ghosh (1963).
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318 ElCHABD F . POTTHOFF AND S. N. ROY

advantage that the distribution of the test statistic under the null hypothesis is known
exactly, and has been tabulated (see Heck, 1960); also, as of now, associated confidence
bounds are available only for Roy's test.

Simultaneous 100(1 — a) % confidence bounds on the functions b'C^Vf for all b(s x 1) and
all f(u x 1) are given (see Roy, 1957, p. 101, formula (14.6.3)) by

b'C^Ai Ax)-i A; XVf ± {[hj{ 1 - ha)] [b'Cx(Ai A,)-i C; b] [f'Sef]}4, (6)

where ha stands for the (1 — a) fractile of the distribution tabulated by Heck (1960) with the
three parameters (denoted by s, m, and n in Heck's notation, but to be denoted respectively
by s*, m* and n* in our notation) equal to

s* = min(s,«), (7 a)

m* = %{\s-u\-l), (76)

and n* = ̂ (n-r-u-1). (7c)

In the special case where s* (7 a) is 1, the expression [hj(l — ha)] in (6) may be replaced by
[(2m* + 2)FJ(2n* + 2)], where Fa stands for the (1-a) fractile of the F distribution with
(2m* + 2) and (2n* + 2) degrees of freedom.

The estimator of b'C^Vf is of course the first term of (6).

2-2. Analysis under the generalized MANOVA model

2-2-1. Reduction of the problem to the previous case

We consider now the problem of the generalized MANOVA model (3). With respect to the
matrix P in (3), we shall assume that p ^ q, and that P is of the full rank p. If P were not
a matrix of the full rank, it would always be possible to re-write the model by re-defining IJ
and P in such a way th^t the new P would be of the full rank.

The original observations Xo obtained under the model (3) may be subjected to a trans-
formation of the form x = ^ G _ i p , ( p G _ i p r i ( 8 )

where we allow G(q x q) to be any symmetric positive definite matrix, or any other non-
singular matrix such that P G ^ P ' is of the full rank. The matrix X(n xp) defined by (8) will
then be such that the different rows of X will be distributed mutually independently and
the p elements in any row will follow a multivariate normal distribution with (unknown)
positive definite variance matrix

X(pxp) = [P(G')-1P']-1P(G')-1S0G-1P'(PG-1P')-1

and with mean vector as specified according to the equation E(X) = A!-.
Thus we see that X (8) observes all the conditions of the model (1), no matter what choice

is made for G, subject to the limitations noted. Hence, a valid test of the hypothesis (2)
under the model (3) may be obtained by substituting X (8) into equations (5) and then using
the resulting matrices Sft and Se to calculate whichever of the three test statistics (see § 2-1)
is desired. Also, simultaneous confidence bounds under the model (3) can clearly be obtained
via the transformation (8) and the formula (6). Similarly, estimators are available.

The approach just described provides the only presently existing technique of analysis
under the model (3) for the general case. However, Rao (1959) did develop a method of
analysis just for the special case of (3) where m = 1 and A(nx 1) consists of all l's (see
Appendix C for further discussion).
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2-2-2. Choice of the matrix G

A curious feature of the technique of analysis just described is that it is valid for any
choice of the matrix G, so long as G is non-singular and so long as PG -1P' is non-singular.
We now consider the problem of how to choose G.

In the first place, let us note that, for the case p = q, (8) becomes X = Xo P
-1; hence for

this particular case there is no need even to choose G. Thus, whenp = q, analysis under the
model (3) amounts to virtually the same thing as analysis under the usual model (1).

When p < q, however, the choice of G affects the power of tests, the width of confidence
intervals, and the variance of estimators. There are then several possible approaches to the
problem of choosing G.

(i) A very simple way of choosing G is to set G = \{q x q). Such a choice of G has the
advantage that it will simplify the calculations to an extent; in fact, for growth curve models,
the computational benefits of using orthogonal polynomials in the P matrix will exist only
if we take G = I. We shall see shortly, however, that if some information about So is available,
then it may not be best to choose G = I.

On the other hand, though, the choice G = I has also a second advantage, on top of the
computational advantage. All alternative approaches to the problem of choosing G (see
below) involve some element of arbitrariness, to greater or lesser degree; but no such
arbitrary factor enters in if we just take G = I. Some experimenters would regard the
arbitrariness as something seriously to be avoided even though one has to pay a high price
for avoiding it (as one very well may), whereas other experimenters would not object to it at
all. Experimenters in the former category can just disregard (ii)-(v) below, and can fully
utilize the results of this paper simply by setting G = I always.

Wishart (1938), among others, essentially starts out by employing the transformation (8)
with G = I and then treating the resulting n rows of X as estimates of polynomial growth
curve coefficients based respectively on the n animals; but from here he proceeds in a direction
different from ours.

(ii) Among all estimators of the form d'( I X B ) Xo(» x q) w(q x 1),

b'C^AiAJ-iAiXoZo-iP'tPZo-ipriVf (9)

is the minimum variance unbiased estimator of b'Cl-Vf under the model (3) (see Appendix B
for proof). In (6) as well as in (5 a), we are in effect using

C^AiA^AiXV = C^AiA^AlXoG^P' fPG- 1 ? ' ) -^ (10)

to estimate C|V under the model (3). In comparing (10) with (9), one would immediately
be tempted to conclude that G = So represents the optimal choice of G (based on a criterion
of minimum variance unbiased estimation).

Unfortunately, however, we of course cannot make the choice G = So due to the fact
that So is unknown. But if we have available, before the experiment is run, a fairly good
guess of So, then we might normally prefer to set G equal to this guess of So rather than to
choose G = I.

Observe that the analysis we make will still be valid even though G differs radically from
So. However, sensitivity would be affected: we would tend to suspect that, speaking very
roughly, the more G differs from So, the worse the power of the test will be and the wider the
confidence intervals will be; estimators remain unbiased but increase in variance as G gets
'farther'from 2n.
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Note also, though, that the value of X (8) is not affected if G is multiplied by a scalar
constant; in other words, using the matrix kG in (8) will produce exactly the same result
as using G.

(iii) The G we choose does not necessarily have to be non-stochastic. We may use a
stochastic G so long as it is stochastically independent of Xo for, since the pertinent distri-
butions relating to tests and confidence bounds are mathematically independent of G, it
follows that stochastically independent variation of G is irrelevant.

So far as we know, however, it is generally not legitimate to use a stochastic G which is not
stochastically independent of Xo. Thus, for example, one could not use for G an estimate of
So which is derived from Xo.

(iv) If, however, experimental information is available outside of the one experiment
which produced Xo, then a stochastic G obtained from such information would be inde-
pendent of Xo. For instance, let E denote the experiment which yields the observations Xo

under the model (3), with the variance matrix So, and suppose there is available a different,
and independent, experiment E' whose results can somehow be utilized to get an estimate
of So. Then this estimate of So can be used for G. E' does not have to have the same model (3)
as E, nor in fact does E' even have to be based on a model of the general form (3).

(v) In certain situations something else can be done. Let Xo(^1) and X0(E2) be the
respective observations from two similar (independent) experiments Ex and E2. For
simplicity, we consider the case where Ex and E2 are performed under exactly the same
model (3), with the same unknown variance matrix So. Let G(Ej) (j = 1,2) denote an estimate
of 20 derived from Ej\ one could, for example, use the obvious estimate

fb — T

which is unbiased. Now if i/r[X0, G] denotes the test statistic to be employed for testing the
hypothesis (2) under the model (3), and if Ra denotes the critical region, so chosen that
P{i/reRa} = a if (2) is true, then we clearly could utilize either of the critical regions

ifr\X0(E2), GiEjfieB. (11 o)

or ^[Xo^.G^^e^ (116)

for testing (2). However, consider as an alternative the test (likewise of level a) which
rejects the hypothesis (2) if

fiX^E^GiE^R^ and/or ^[X0(l!y, G ^ j e i ^ (12)

and accepts otherwise. It is conjectured that this rather peculiar test (12) will generally be
more powerful than either of the tests (lla) or (116).

Confidence bounds related to (12) are also available. We compute an interval (6) using
X0(l?2) and G(^), and then again using X0(i/1) and G(E2), both with h^a substituted for ha.
Then a final interval is obtained by taking the intersection of (i.e. the points common to)
these two initial intervals. The set of such final intervals has simultaneous confidence
coefficient ^ 1 — a.

3. NUMERICAL EXAMPLE

We return finally to the problem of analysing the data of Table 1. In effect, Table 1 is the
matrix X0(n x q, or 27 x 4).

Before we can subject Xo to the transformation (8), we must first choose G(4 x 4). This
G we will base on an informed guess of So (see (ii), (iii) and (iv) under the subdivision 2-2*2).
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We actually know very little about 20, but it can be presumed that the q = 4 observations
on an individual are serially correlated. Perhaps the simplest serial correlation model is the
one (see, e.g. Koopmans, 1942, §2) in which the correlation coefficient between any two
observations d periods of time apart is equal to pd, and in which the variance is constant with
respect to time; under such a model, So would be this constant times (1 — p2), times

1 p p*
p 1 p
P2 p 1

-pz p2 p

(13)

Thus it seems appropriate to use (13) for G. I t remains only to select p. Unfortunately,
the results of the experiment which produced Xo may not legitimately be used to estimate
this p. However, we may look at a different experiment. In another dental study, the height
of the ramus bone of 20 boys was measured at ages 8, 8-|, 9 and 91 (see Elston & Grizzle,
1962, p. 155); assuming that observations d periods of time apart have correlation coefficient
Pi, and assuming an arbitrary growth curve (i.e. we avoid here the restrictive assumption of
a first- or second-degreepolynomial), we can obtain from these data the maximum-likelihood
estimate of px by solving a certain cubic equation analogous to equation (11) of Koopmans
(1942), the coefficients of this cubic equation being calculated from the diagonal and next-
to-diagonal elements of the 4x4 residual variance matrix. This estimate turns out to be
px = 0-953. Since the unit of time associated with p is four times as long as that associated
with p1 (2 years versus £ year), we expect roughly that p — p\, whence our estimate of p is
p = pt= (0-953)4 = 0-824. Admittedly, this means of getting p might be questioned, but it
appears that a G (13) based on some such p would be more sensible than a G equal to I (since
the latter is the same thing as a G (13) with p estimated to be 0). We have to remember
that all our procedures will still be valid even if G is not 'close' to So. If we use (13), with
p = 0-824, for G, then

0 0 •

-p 0
1+p* -p
-P 1 .

We consider now the questions (a)-(c) raised in § 1-1:
(a) In the model we assume quadratic equations in t for the growth curves, and then we

test whether the coefficients of the second-order terms are 0. Thus in (3) we take m = 2,
p = 3, A(27 x 2) to be a matrix composed of 11 (1,0) rows followed by 16 (0,1) rows,

1
-p
0
0

-p
1+/02

-P
0

withp = 0-824. (14)

5 - in i: and P =
1 1 1 1

- 3 - 1 1 3
9 1 1 9

This is the set-up described in (ii) of § 1-3; in (2) we take s = 2, u = 1, C = 1(2 x 2), and
V = (0,0,1)', so that (2) specifies that £12 = £22 = 0. Now

r = m = 2, Ax = A and Cx = C = I.

We must compute Sh and Se (5) with X as given by the transformation (8). Incidentally,
we might remark that equation (8) is formally identical with the formula for the weighted
estimates of multiple regression coefficients (see, e.g. Scheffe, 1959, § 1-5), so that any
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computer program which has already been devised for the latter could clearly be used for
computing (8). In our calculations here, we note that

_ [233-0 244-5 254-0 265-0]
A l A ° ~ [366-0 381-0 411-5 439-5J ( 1 5 )

and

13,443-00 13,962-25 14,891-00 15,734-50
14,611-75 15,517-75 16,438-75

16,609-75 17,525-75
18,581-25_

(16)

and from (14) we get

G - ip ' (P G - i p <) - iV = (0-0625, -0-0625, -0-0625,0-0625)'. (17)

Hence, combining (5), (8), (15), (16) and (17), we have

S^l x 1) = 0-04135 and Se(l x 1) = 0-4069.

Also, (7) gives us s* = 1, m* = 0 and n* = 11-J. In general, Roy's test rejects the hypothesis
(2) if cmax(SAS<T1) exceeds hj(l — ha), where ha is found from Heck's (1960) tables with
parameters (7) and cmax denotes the maximum characteristic root. However, when s* (7a)
is 1, Roy's test is identical with the other two tests based respectively on Hotelling's and
Wilks' techniques: all three then reduce to an .F-test, which rejects (2) if

exceeds the (1 -a ) fractile of the F distribution [D.F. = (2m*+ 2), (2»* + 2)]. Thus we
calculate 25Shl(2Se) = 1-27, which is far below the F0.05(2,25) value of 3-39.

(b) Since we failed to reject the hypothesis £12 = £22 = 0 m (a)> w e wiU u s e a model based
on linear, rather than quadratic, growth curves in attacking questions (b) and (c). Thus in
(3) we take A exactly as before, but now we have p = 2 rather than 3,

To answer question (b) as to whether the girls' curve and boys' curve are the same, we set
s = 1, u = 2, C = (— 1,1), and V = 1(2 x 2) in (2), so that we are testing g10 = £2o> £u = £21-
Since G~\ A^X0 and XQX0 are naturally the same as before ((14), (15), (16)) we calculate

-i = T ° 4 2 5 1 7 0 0074830 0074830 0425170]
[0-165880 0-002360 0-002360 0-165880J ( '

° ' 4 2 5 1 7 0 0-074830 0-074830 0-425170]
-0-165880 -0-002360 0-002360 0-165880J

and then use (56), (8), (15), (16), and (18) to obtain

s _ r 96-2009 -0-4426] t _ T0-010401 0-001346]
' - [-0-4426 3-4195J ' e "" [o-OO1346 0-292614J '

an, CUAJA^AJXV-C-I. l] £ £ £ £ ] - p*71. 0,S19].

Now the non-zero characteristic roots of (SftS^1) (&uxu matrix) are always equal to the
non-zero roots of the sxs matrix

V'X'Ajf Ai Aa)-i Ci[Gx(Ai AJ-* C'JrK (19)
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In the present case, (19) is a scalar, whose value we find to be 0-5779. From (7) we get
s* = 1, TO* = 0 and n* = 11. Hence

* + 2)]cmax(S,.Se-
1) = [24/2] x 0-5779 = 6-93

is referred to the F tables (D.F. = 2,24); since .F0.005 = 6-66, we reject the null hypothesis and
conclude that two separate curves are required.

(c) To get confidence bounds, including bands for the expected curves, we use (6) with
s = 2, u = 2, C = Cx = 1(2 x 2), and V = 1(2 x 2), and with (Ai AJ"1, (Ai A ^ A ; X and Se

the same as in (6) above. From (7) we have s* = 2, TO* = — \ and n* = 11; thus we refer to
Chart III of Heck (1960, p. 630) to obtain ho.O5 = 0-297 + , using a = 0-05. For the bands,
we take f = (1, *)', remembering that * = age minus 11. We set b ' = (1,0), (0,1) and ( — 1,1)
for getting bands around the girls'curve [£10 + £u*], the boys' curve [£20 + £2i*], a n ( i the
difference between the two curves [(£20 — g10) + (g21 — £n) t] respectively. The confidence
band for the girls' curve is then given by (22-640 + 0-4846*) ± {[0-423] [1/11] [f'Sef]}*, i.e.

(22-640 + 0-4846«)± 0-1961(96-201 - 0-885*+3-420*2)*; (20a)

for the boys' curve it is

(25-lll + 0-7665*)±0-1626(96-201-0-885* + 3-420<2)*; (206)

and for the difference between the two curves it is

(2-471 + 0-2819<) + 0-2547(96-201 - 0-885* + 3-420*2)*. (20 c)

If, in addition, we want a confidence interval, simultaneously with (20a)-(20c), for, say, the
difference in growth rate between girls and boys (£21 — £n), this can be obtained by using (6)
with b ' = ( - 1,1), f = (0,1)', and everything else the same as before, so that the resulting
interval is 0-2819 + {[0-423] [(1/11) + (1/16)] [3-4195]}*, i.e.

0-2819 + 0-4711. (20d)

It should be remembered that, since this interval (20 d) is a member of a set of simultaneous
intervals, it is wider than a simple confidence interval on (£21 — £n) would be. The 95 %
confidence coefficient applies simultaneously for all four of the relations (20) and simul-
taneously for all *.

If the bounds represented by (20 c) and (20d) are not needed, then bands for the girls' and
boys' curves which are better than (20 a) and (206) can be obtained via a combination of
Roy's formula (6) with a general technique described by Dunn (1961). First, we compute (6)
just as before, except with 3 = 1 , b'(l x 1) = 1, C = Cx = (1,0) and a = 0-025. This gives
us the band (22-640 + 0-4846*) ±{[0-360] [1/11] [f'Sef]}*, i.e.

(22-640 + 0-4846*) + 0-1809(96-201 - 0-885* + 3-420*2)*, (21a)

for the girls' curve. Note that now s* = 1, TO* = 0 and n* — 11, so that hj(l-ha) in (6) is
taken to be (2/24) ̂ .025(2,24) = (2/24) x 4-32 = 0-360. Next we compute (6) exactly as we
did for (21 a), except with C = Cx = (0,1) instead of (1,0). This gives us the band

(25-111 + 0-7665*) ± 0-1500(96-201 - 0-885* + 3-420*2)* (216)

for the boys' curve. Since (21 a) is a 97-5 % confidence band for the girls' curve and (216)
is a 97-5 % confidence band for the boys' curve, it follows (see, e.g. Dunn, 1961) that the two
bands (21) hold with confidence coefficient ^ 95 % simultaneously for both curves and all *.
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Thus, by comparing (21 a) with (20 a) and (21 6) with (206) or, more simply, by just com-
paring 0-360 with 0-423, we see that (21 a) and (21 6) are preferable to (20 a) and (206) if no
bounds like (20 c) and (20 d) are desired.

Discussion

One might (as the referee has done) question our particular choice of G and p, and ask
what the effect of using some other p, instead of 0-824, in (14) would have been.* Therefore,
we have re-calculated most of the results in (a)—(c) with p = 0(i.e. G = I),andwith/o = 0-615.
This latter value is the root of the cubic maximum-likelihood equation whose coefficients
are determined from the residual variance matrix XQ[I —A1(A^A1)~

:t A^]X0. Strictly
speaking, it is not legitimate to allow the data (i.e. Xo) to influence the choice of G (or p);
however, it is nonetheless instructive, for comparison purposes, to find out what happens
when p = 0-615. Incidentally, we suspect that many experimenters would be inclined to
estimate p from the data, even though this is not strictly proper; such a practice would
presumably be defended by propounding that any resulting inaccuracies would, for
practical purposes, be negligible.

In (a), it turns out that the expression (17) has the same value whatever p is, so that the
test statistic in (a) is invariant under choice of p. In (6), we obtain .F-values of 6-31 and 6-72
with/? — 0 and 0-615 respectively (compared with 6-93 for/3 = 0-824). In (c), the confidence
bands for the girls' curve and boys' curve which compare respectively with (21 a) and (216)

(22-648 + 0-4795*)+ 0-1809(94-479 + 3-407* + 2-958*2)*

and (24-969 + 0-7844*) ± 0-1500(94-479 + 3-407* + 2-958*2)*,

respectively, with p = 0, and are

(22-643+0-4838*) ±0-1809(94-828 +0-193* +3-301*2)*

and (25-059 + 0-7694*) ± 0-1500(94-828 + 0-193* + 3-301*2)*,

respectively, with/) = 0-615; over the 6-year period from age 8 (* = — 3) to age 14 (* = 3),
the average width of the confidence band, exclusive of the factor 2 x 0-1809 or 2 x 0-1500, is
10-15 forp = 0, 10-22 for p = 0-615, and 10-31 for/9 = 0-824.

Now we must recognize that no firm conclusions about how to choose G or p can possibly
be drawn just from the results of a single experiment. Bearing this in mind, we may note
that, in (6), p = 0-824 gives the best result andp = 0 the poorest, whereas in (c) the situation
is exactly reversed. Thus, in both (6) and (c), p = 0-615 (supposedly an optimal value of p)
gives a result intermediate between the other two results.

Far more striking than the differences among the results obtained via these three disparate
p-values, however, are their similarities. The results are so close together as to suggest that,
for this particular example, it may make little practical difference what value of p is used.

Arbitrary choice of G or p cannot really be avoided, since, in a certain sense, even the
simple choice G = I is itself arbitrary. However, when the choice of p has as little effect on
the results as in our example here, then the arbitrariness can hardly cause extreme concern.

The authors are indebted to Dr James E. Grizzle of the Department of Biostatistics,
University of North Carolina, for some helpful comments.

* Incidentally, the referee has pointed out that, on the basis of a certain significance test, neither of
the values p = 0-824 and 0 happen to be compatible with the data.
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The authors also wish to thank Dr Robert Mellinger Nelson of the Department of
Orthodontics of the University of North Carolina Dental School for permission to use the
data which appear in Table 1.
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APPENDIX A

Hypotheses in a form other than (2) can be tested under the model (1), and hence also under the
model (3). Roy & Roy (1959) show how to test the hypothesis

!• (m x p) = B(m. x I) r]{l x p),

where B is a matrix of specified constants and ») is a matrix of unknown parameters. A hypothesis more
general than this, of the form

M) = B(m x I) TJ(Z x u)

(where V and B contain constants and i\ contains parameters), is considered by Roy & Roy (1958-59).

APPENDIX B

We prove that the estimator (9) has the property claimed for it.
Necessary and sufficient conditions for d'Xo w to be an unbiased estimator of b'C£Vf are

Jfed'A = b'C and (1/ifc) Pw = Vf,
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where k is any scalar; there is no loss of generality if we assume k = 1. We have also

) = d'[var(Xow)]d = d'[(w'20w)I]d = (d'd)(w'Sow).

Thus, in order for d'X,, w to be the unbiased estimator of b'C^Vf with the smallest variance, we must
(a) choose d so as to minimize d'd subject to d'A = b'C, and (6) choose w so as to minimize w'Zow
subject to Pw = Vf. The problem (a) is encountered under the usual model (1), and the solution is of
course d = At(Aj A1)~

1Cjb, which verifies the terms in front of Xo in (9). To solve (6), welet A(p x 1) be
a vector of Lagrangian multipliers, and differentiate w'S0 w — X'( Pw — Vf) with respect to w, obtaining
the equation system 2w'2o — A'P = 0'; we end up finally with the solution

X = 2(PS-JP')~1Vf and w = Z-JP'(PZ-JP')-1Vf.

This verifies the remaining terms in (9).
Incidentally, for the simple bivariate normal common-mean model described in § 1-4, it can easily be

proved that the substitution G = So, in addition to resulting in minimum variance unbiased estimates,
also leads to a test of the hypothesis % = 0 whose power is maximal with respect to G.

APPENDIX C

For a special case of the model (3), Rao (1959) developed techniques of analysis, and also mentioned
growth curve applications; he also mentioned the simple set-up we described in (i) of § 1 • 3. Our techniques
(see § 2) for this special case of (3) are different from Rao's; hence our approach in this paper is not a
generalization of Rao's (1959) approach. However, a generalization of this approach, if it were ever
to be done, would no doubt be an important result.*

Rao's techniques can be used in the special case of (3) where m = X and the n elements of A are all
equal; also we must have n > u + q — p. For this case, our test of the hypothesis (2) is based on an F with
u and (n — u) D.F., whereas Rao's test is based on an F with u and (n — u — q+p)v.v. In the degenerate
situation p = q, our FUi „_„ statistic will be identical with Rao's Fu n_u statistic. But when p < q, the
two tests are of course different. To compare the power of the two tests will require further investigation,
but at present we have reason to believe that one test will be better in some situations and the other
test in other situations.

Observe that, if u < n < u + q—p, then Rao's test cannot be used at all, whereas our test is still
available.

* After this had been written, such a generalization was worked out at the University of North
Carolina by C. G. Khatri.
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