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A generalized non-local optical response
theory for plasmonic nanostructures
N.A. Mortensen1,2, S. Raza1,3, M. Wubs1,2, T. Søndergaard4 & S.I. Bozhevolnyi5

Metallic nanostructures exhibit a multitude of optical resonances associated with localized

surface plasmon excitations. Recent observations of plasmonic phenomena at the

sub-nanometre to atomic scale have stimulated the development of various sophisticated

theoretical approaches for their description. Here instead we present a comparatively simple

semiclassical generalized non-local optical response theory that unifies quantum

pressure convection effects and induced charge diffusion kinetics, with a concomitant

complex-valued generalized non-local optical response parameter. Our theory explains

surprisingly well both the frequency shifts and size-dependent damping in individual metallic

nanoparticles as well as the observed broadening of the crossover regime from bonding-

dipole plasmons to charge-transfer plasmons in metal nanoparticle dimers, thus unravelling a

classical broadening mechanism that even dominates the widely anticipated short circuiting

by quantum tunnelling. We anticipate that our theory can be successfully applied

in plasmonics to a wide class of conducting media, including doped semiconductors and

low-dimensional materials such as graphene.
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S
tudies of transport and wave dynamics in complex and
confined geometries1 are now bridging several fields
ranging from nanoplasmonics2–4 and metamaterials5 to

molecular electronics6 and mesocopic quantum transport7,8, with,
for example, charge carriers responding to externally perturbing
fields as well as exhibiting stochastic kinetics and entropic effects
such as diffusion9. When considering ultrafast responses of
optically driven collective plasma oscillations in nanoscale
geometries, it is expected that the optical response should
exhibit both quantum properties of the electron gas as well as
classical diffusion dynamics of the optically induced charge. The
coexistence and interplay of quantum and classical effects have
profound implications for our understanding of light–matter
interactions at the nanoscale, with direct relevance to the
emerging field of quantum plasmonics10.

The behaviour of plasmon resonances of individual silver
metallic nanoparticles (MNPs)11,12 and gold MNP dimers13

seems to be possible to understand only by invoking quantum-
mechanical effects, that is, quantum electron transitions and
quantum tunnelling, respectively. At the same time, one might
question the necessity of considering numerous quantum-level
transitions in nm-sized NPs (that is, consisting of thousands of
atoms and with a size much exceeding the Fermi wavelength) in
the case of monomers and the very possible existence of ultrafast
tunnelling phenomena (that is, tunnelling currents oscillating at
optical frequencies) in the case of dimers. While classical
electrodynamics in a Drude local response approximation
(LRA) unambiguously fails to explain the observed phenomena,
we show that the possibility for semiclassical accounts has not
been exhausted.

Linear response theory is inherent to our understanding of
situations where matter is subject to externally perturbing fields.
Common strategies assume a temporally instantaneous and
spatially local response, while nature is rich in examples where
underlying degrees of freedom are responsible for a much more
complex response. Materials exhibiting frequency dispersion are
well known for having complex-valued response functions due to
Kramers–Kronig relations that originate from the ubiquitous
principle of causality. By contrast, spatial dispersion can usually
be neglected and most materials are well treated within LRA.
Insulators represent a prime example since the polarization of one
particular atom in the crystal is only weakly affected by coupling
to neighbouring atoms. Conducting media constitute a clear
exception to this picture14,15 and despite the widespread use of
LRA approaches, the free carriers may mediate a response over
finite distances that cannot necessarily be neglected in a
nanoplasmonic context.

In terms of the Maxwell equations, the electrical field in a
medium with non-local response is formally governed by

r�r�EðrÞ ¼ o
c

� �2Z
dr0eðr; r0ÞEðr0Þ ð1Þ

where e(r, r0) is the non-local response function. This general
concept of non-local response of conducting media originates
from the competing mechanisms of pressure-driven convective
flow of charge as well as disorder- or entropy-driven diffusion of
charge14. Quite surprisingly, while the literature is rich on
discussions of the former effect within hydrodynamic models, the
importance of the latter in nanoplasmonic systems remains
unexplored, and, according to our knowledge, there is no unifying
real-space description applicable to realistic plasmonic
nanostructures. Pioneering works focused on pressure-driven
convective flow of charge in ideal geometries16–19, while the
exploration of non-local response in arbitrarily shaped metal
nanostructures has only recently been initiated20, emphasizing
real-space rigorous formulations of semiclassical hydrodynamic

equations21 and different solution strategies22–26. Thus, large
blueshifts in nanoscale noble metal plasmonic structures11,27,28

have been interpreted in the context of the quantum pressure-
related non-local response27,28, while quantum confinement11

and surface-screening29 explanations have also been proposed.
Here we develop a semiclassical generalized non-local optical

response (GNOR) theory that incorporates both quantum
pressure effects and induced charge diffusion kinetics. We
show that the GNOR approach can account for the main features
observed in recent optical experiments with plasmonic nano-
structures11,13,28,30 without accounts for quantized-energy
transitions and without invoking quantum tunnelling that
should not, as we argue later on, be important at optical
frequencies.

Results
Isotropic and short-range non-local response. We take
equation (1) as our starting point, while assuming a generic short-
range isotropic response. Irrespective of the detailed microscopic
mechanism behind the non-local response, the wave equation in
the metal can then be reframed as31

r�r�EðrÞ ¼ o
c

� �2 eD þ x2r2
� �

EðrÞ; ð2Þ

where eD is the Drude dielectric function usually associated with
Ohmic local response of the electron gas (possibly generalized to
also include interband effects), while the GNOR parameter x
represents a phenomenological length scale associated with the
short-range non-local correction to the local response Drude part.
Importantly, the GNOR parameter accounts for mechanisms of
very different origins that may compete or play in concert, while
causing the same Laplacian-type correction to the LRA. For
example, both convection and diffusion can lead to spatial
dispersion in conducting media14. Within LRA, the induced
charge density Dn is a delta function at the surface of the metal
and diffusion will naturally smear this charge density with the
short-time dynamics characteristic for pure diffusion (Fig. 1c).
Also, convection tends to spread the charge density and within
the common hydrodynamic Drude model, convection maps
directly to the form of equation (2), that is, with a Laplacian
correction to the local response Drude part24. In the following, we
treat both dynamical effects on an equal footing by considering
both propagating longitudinal pressure waves (in a hydrodynamic
model) and diffusion (in convection-diffusion model). The main
result of our analysis is the following expression for the GNOR
parameter:

x2 ’ b2

o2
� i

D
o

ð3Þ

where bpuF is a characteristic velocity associated with pressure
waves in the electron gas (uF being the Fermi velocity) while
D is the diffusion constant for the charge-carrier diffusion.
The former is already known to cause frequency shifts
(blueshifts)17,21,22, while the latter turns out to cause line
broadening, that is the GNOR parameter x is in general a
complex-valued quantity. As also anticipated from more general
discussions14, our rigorous semiclassical treatment shows that
non-local effects may manifest themselves over distances greatly
exceeding atomic dimensions and become comparable to
characteristic structure dimensions, such as the radius R of a
nanoparticle (Fig. 1a) or the gap distance g in a dimer (Fig. 1b).
As a main result, we show that the GNOR even dominates
more pure quantum-mechanical effects in the electromagnetic
response at optical frequencies, such as the anticipated effect
of quantum-mechanical tunnelling currents in dimers with
sub-nanometre gaps (Fig. 1b).
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Semiclassical response models. We consider the standard
equation-of-motion for an electron in an external electrical field
subject to the continuity equation. The common LRA simply
neglects effects of quantum pressure as well as the diffusion
contributions to the induced currents. We address these two
aspects in turn and finally discuss how they play in concert to
result in a complex-valued GNOR parameter.

Within the hydrodynamic model (including quantum pressure,
but neglecting diffusion), the response is governed by a general-
ized constitutive equation21,22

b2

oðoþ igÞ= = � Jconvð Þþ Jconv ¼ sDE ð4Þ

where sD is the usual Drude conductivity. Within Thomas–Fermi
theory, b2 ¼ ð3=5Þu2F and g¼ 1/t is the damping rate also present
in the Drude theory.

Taking the opposite standpoint (including diffusion, while
neglecting quantum pressure), linearization of the problem gives
(Supplementary Note 1)

D
io

= = � Jdifð Þþ Jdif ¼ sDE ð5Þ

as also derived recently in the context of metamaterial wire
media32. Our key observation is that this result is mathematically
similar to equation (4), while the different physical origins cause
different prefactors for the non-local correction to Ohm’s law.

Turning to the Maxwell wave equation, the above non-local
=(= � J) corrections to Ohm’s law can be rewritten as a Laplacian
correction to the Drude dielectric function24,31, as anticipated in
equation (2). The convection and diffusion components of
the current are of the same mathematical form and subject to
the same boundary conditions. Thus, in the linear response the
considered non-local contributions add up (as in semiconductor
drift-diffusion theory), as confirmed by linearizing the full
hydrodynamic diffusion-convection problem (Supplementary
Note 1), revealing how both quantum and classical kinetic
effects can play in concert contributing to the non-local response.
Therefore, we arrive at equation (2) with

x2 ¼ b2

oðoþ igÞ � i
D
o

¼ b2 þDðg� ioÞ
oðoþ igÞ ; ð6Þ

which becomes equation (3) when neglecting damping. Note that
for higher o, diffusion becomes relatively more important
compared with convection. Another important practical
observation is that diffusion effectively causes the following
modification of the non-local b-parameter appearing in prior
hydrodynamic work: b2-b2þD(g� io). We explicitly neglect
electron spill-out and the possible existence of associated
quantum-tunnelling phenomena (see also Supplementary Note
2). Consequently, boundary conditions remain unchanged in the
presence of diffusion (n � J¼ 0 on the metal surfaces so that no
electrons escape the metal volumes). Thus, existing numerical
schemes and methods22–26 can readily be exploited to implement
the GNOR approach for various plasmonic configurations.

The diffusion constant is generally interlinked with other
transport parameters such as the scattering time, that is,
Dpt¼ g� 1. For ocg, we thus recover equation (3) for the
GNOR parameter that now explicitly exposes the two competing
length scales that were previously discussed only qualitatively14,
that is, the convection length b/o on the one hand and the
diffusion length

ffiffiffiffiffiffiffiffiffiffi
D=o

p
on the other hand. The damping

associated with the latter is an important new finding that
turns out to be crucial when approaching the nanoscale. Diffusion
degrades plasmonic excitations, providing an additional
broadening mechanism that, mathematically, is enacted by an
imaginary contribution to x2.

Validity domain. For classical gases (such as dilute plasmas,
electrolytes and weakly doped semiconductors), the velocity
distribution is governed by Maxwell–Boltzmann statistics and
D is proportional to the temperature, as given by the Einstein
relation. For metals on the other hand, Fermi–Dirac statistics
implies a narrow transport velocity distribution14 with a
characteristic velocity uF. As a result, the diffusion constant is
simply D ’ u2Ft, corresponding to a mean-free path of c¼ uFt.
We point out that our diffusive model is valid for structural
dimensions exceeding the mean-free path that in pure single
crystals33 can be of the order of 100 nm for Ag and Au, down to
B3 nm for Na (see Supplementary Table 1). Moreover, in
realistic plasmonic nanostructures, c depends on actual material-
processing conditions, becoming shorter than in single-crystalline
bulk metals. This enlarges the validity domain of a diffusion
description to include structures with dimensions of only a few
nanometres. For even smaller dimensions, electrons will move
ballistically between the surfaces of the structure, and surface
scattering might become important. For metals, equation (6)
simplifies to x2 ¼ u2F

o2 ð35� iogÞþOðg=oÞ. This result leads to an
important insight into the interplay of different broadening
mechanisms: the lower the Ohmic loss and absorption, the more
important is the non-local response due to long-range diffusion
of the induced charge. Re-introducing the diffusion constant
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Figure 1 | Nanoplasmonic monomer and dimer structures. (a) Spherical

particle of radius R, known to experimentally exhibit size-dependent

damping37,38 and resonant shifts11,12,28. (b) Nanowires of radius R arranged

parallel to each other with a dimer gap g. Dimers are known experimentally

to exhibit gap size-dependent broadening and shifts of hybridized

plasmonic resonances13,30. (c) Diffusive temporal spreading of an initially

pure surface charge B0 into the metal volume (orange-shaded area) of a

plasmonic nanoparticle. By accounting for diffusion of charge, the GNOR

theory can explain size-dependent broadening and shifts of nanoparticle

resonances, as well as gap size-dependent broadening and shifts for

dimer resonances. Unlike other theories (including the QCM52), our GNOR

theory does not invoke quantum tunnelling to explain gap size-dependent

spectral broadening.
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and the b-parameter we arrive at equation (3) that holds if the
mean-free path significantly exceeds the convective length, that is,
c44uF/o. The existence of spatial dispersion in homogenous
media, as for example, appearing within the common
hydrodynamic Drude model, can be derived from higher-level
descriptions such as the Boltzmann equation or the random-
phase approximation (RPA). Beyond hydrodynamics, confined
structures with broken translational invariance constitute a
largely unexplored territory, with few attempts dealing with
RPA aspects of localized plasmon resonances34. In support of our
prediction of diffusive broadening, recent RPA studies reveal an
increased plasmon linewidth associated with Landau damping35,
that is, electron-hole pair excitation near the surface of
nanostructures as also observed in studies based on time-
dependent density functional theory (TD-DFT)36.

We provide in the following two key examples of the GNOR
approach, demonstrating that the interplay of quantum pressure
and diffusion has a remarkable impact on the optical response of
plasmonics nanostructures and solving long-standing open
problems.

Size-dependent damping. In general, the hydrodynamic correc-
tions give a blueshift of resonances as the characteristic dimen-
sions are reduced17,22,27,28, which is in qualitative accordance
with recent optical spectroscopy on gold-particle gap structures27

and electron-energy loss spectroscopy (EELS) studies of silver
nanoparticles11,28. With the complex-valued GNOR parameter x
at hand, we now anticipate the blueshift to occur along with
broadening of the resonant response when decreasing
characteristic structure dimensions. In the case of a spherical
particle, the blueshift has a b/R dependence28, leading us to
foresee that the line-broadening scales as 1/R as well. In the
quasi-static limit (l44R), one can straightforwardly work
out the complex-valued resonance frequency o¼o0 þ io00

by considering the polarizability pole (Supplementary Note 3).
As usual, the real part o0 gives the surface plasmon reso-
nance frequency, while the imaginary part o00 is related to the
resonance linewidth. For simplicity, we consider the case of
a particle in vacuum with no interband effects and find (to second
order in 1/R)

o0 ’ opffiffiffi
3

p þ
ffiffiffi
2

p
b

2R
; ð7Þ

o00 ’ � g
2
�

ffiffiffi
6

p

24
Dop

bR
: ð8Þ

It transpires clearly that the 1/R size-dependent non-local effects
are present in both the resonance frequency and linewidth. It
should be emphasized that, until now, line shifts have been
explained by non-local response (and competing theories),
whereas the line broadening was ‘put in by hand’. Here by
using the GNOR theory we have arrived at a unified explanation
of both experimentally observed phenomena by non-local effects.
Line broadening has been seen experimentally in the extinction
of small particles37–41 and EELS measurements on plasmons in
thin nanowires and bow-tie antennas have also revealed plasmon
losses exceeding the expectations based on bulk-damping
parameters42,43. In the literature such line broadening has often
been phenomenologically accounted for by a size-dependent
damping rate37–41, but without placing it in the context of
non-local semiclassical equations of motion.

The phenomenology introduced by Kreibig37,38 describes the
linewidth broadening by introducing a size-dependent correction
to the damping rate: g-gþAuF/R. Equipped with the GNOR
theory, one does not need to assume the 1/R dependence: it

comes immediately out as a consequence of the GNOR correction
to the dipolar sphere polarizability. By comparison with the

Kreibig model, we formally find that A ¼
ffiffiffiffi
1
24

q
Dop

buF
. For metals this

implies that ABopt/4. Use of bulk values for noble metals (see
Supplementary Table 1) would estimate a too high A parameter
compared with experiments where for spheres A is found to be of
the order unity37,38.

So far, we have assumed that the transport time is given by the
bulk relaxation time t0. However, in the experiments dealing with
plasmonic nanostructures, it has been found that one has to
increase the collision frequency44,45 or the imaginary part of
permittivity46 by several times as compared with the bulk metal
(gold) parameters for the simulations to better correspond to the
experimental observations. This size-independent correction
factor was ascribed to the influence of the surface scattering
and grain boundary effects in nanostructures44–46. In our case, we
can simply introduce the characteristic relaxation time ts
associated with these effects, which can be estimated from the
condition that AB1 as tsB4/op.

With the above refinement at hand we can demonstrate using
numerical simulations (Fig. 2) that, in agreement with equations
(7) and (8), the hydrodynamic response causes a blueshift
(Fig. 2a), whereas the diffusion causes an additional broadening
(Fig. 2b). In the latter figure, it is also shown that a similar
resonance broadening (but not the blueshift) is predicted by the
LRA with additional Kreibig damping.

Our real-space non-local wave equation (equation (2)) along
with the GNOR parameter (equation (3)), which unravels the
fundamental link between diffusive broadening and the Kreibig-
like surface scattering thereby enables one to solve a long-
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Figure 2 | Extinction cross-section for the dipole resonance in a metal

sphere. The sphere radius R is varied from 2 to 6 nm. (a) LRA (b¼D¼0)

versus hydrodynamic non-local response (ba0, D¼0), showing a blueshift

Do (indicated by blueshifting-dashed lines) with respect to the common

local response resonance at op=
ffiffiffi
3

p
(indicated by vertical-dashed lines).

(b) LRA (including 1/R Kreibig damping38 with the experimentally relevant

value of A¼ 1) versus the GNOR model (ba0, Da0), with the latter

capturing both the line shift and broadening. The metal parameters for

sodium are used49,38: op¼ 5.89 eV, g¼0.16 eV, uF¼ 1.05� 106ms� 1,

b¼0.81� 106ms� 1, D¼ 2.04� 10�4m2 s� 1, and A¼ 1.
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standing open problem: surface-related scattering can now be
computationally accounted for also in complex-shaped geome-
tries beyond that of spherical symmetry and low radius of
curvature.

Nanowire dimers. Plasmonic dimers (Fig. 1b) are rich on
hybridization phenomena as the gap distance g is reduced47 and
non-local hydrodynamic effects on both hybridization and field
enhancement have been anticipated22. To elucidate the diffusion
contribution to non-local effects, we may consider dimers of
nanowires where the nanowire radius R itself is too large to cause
either non-local hydrodynamic effects or increased damping of
the Kreibig kind. Nevertheless, we expect that the dimer would
exhibit non-local effects once the dimer gap distance g turns
comparable in magnitude to x, resulting in additional broadening
in the vicinity of the gap as uF/g increases. With our present
formalism, this can now be quantified without any need to invoke
ad hoc assumptions specifically for dimers.

Although diffusion is of a classical origin, the discussion of its
effect in dimers ties up with very recent experiments on dimers in
the quantum-tunnelling regime13. Ab initio approaches show a
crossing from the classical hybridization of localized surface
plasmon resonances to tunnelling-mediated charge-transfer
plasmons (CTPs)36,48–50. Being able to push experiments into
this intriguing regime13,30,51, commonly associated with
expectations of quantum physics, leaves an open question: Can
this regime be adequately described with semiclassical models?
While non-local response within the hydrodynamic semiclassical
model has been found unsuccessful in explaining features from
TD-DFT48–50, there have been phenomenological attempts of
classically modelling the crossover regime. The ‘quantum-
corrected model’ (QCM)52 adds an artificial conducting and
lossy material in the gap to mimic short-circuiting currents
associated with quantum tunnelling. While apparently successful
in qualitatively fitting results of ab initio simulations49,50,52, the
model raises concerns regarding its physical foundation. The
well-established understanding of mesoscopic quantum electron
transport7 is that the tunnelling through the classically forbidden
gap region is elastic (ballistic transport) while energy relaxation
takes place inside the metallic contact regions. Opposite to that,
the artificial gap material introduced in the QCM causes
dissipation within the gap, while there is no associated
relaxation occurring on the metal sides of the junction.

While ab initio works emphasize tunnelling52,49,50, recent
experiments on dimers13,30 do not offer explicit evidence that the
broadening is associated with quantum tunnelling. The formation
of a sub-nanometre gap is evident from the observed DC voltage-
driven tunnelling current13, while there is no explicit
confirmation of AC tunneling currents caused by the optical
driving. Optical rectification phenomena are possible by photon-
assisted inelastic tunnelling currents53, while earlier time-resolved
elastic-tunnelling experiments have reported tunnelling RC times
(i.e. the characteristic time scale of the equivalent resistor-
capacitor circuit) in the picosecond range54, thus suggesting a
suppression of optical frequency tunneling currents that would
take place in femtoseconds. This apparently makes quantum-
tunnelling dynamics too slow and a less likely mechanism
to explain the broadening of dimer modes at optical frequencies.
Applying the GNOR framework, we demonstrate in the
following that the diffusion offers a strong competing damping
mechanism. In fact, for fast driving of the junction55,
diffusion may completely dominate the dissipation of the dimer
junction as we illustrate by a circuit analysis (see Supplementary
Note 2).

The diffusion-driven damping occurs right inside the surface of
the metals (not in the gap), becoming progressively more

pronounced for smaller gaps and vanishing for large gaps.
To exemplify this in detail, we revisit recent non-local (hydro-
dynamic) simulations49, while making sure to account for the
diffusive broadening as well by use of the complex-valued GNOR
parameter (Fig. 3). For relatively large gaps, one observes the
bonding-dipole plasmon (BDP) along with higher-order modes
known to appear below the plasma frequency within the LRA56

(for a larger radius this becomes particularly clear, see
Supplementary Fig. 1). As the gap is reduced to the non-local
regime gtuF/o, as considered in Fig. 3 for R¼ 4.9 nm,
resonances are slightly blueshifted with respect to the LRA
result22. When the gap shrinks further, progressively stronger
hybridization47 and accordingly larger BDP redshifts are clearly
seen. At the same time, the BDP is gradually suppressed owing to
the increasing role of diffusion as the contact point, g¼ 0, is
approached. This is in strong contrast to predictions from both
the LRA56 (with even diverging field enhancement) and from
previous non-local theories that treated the b-parameter real-
valued22,49,50,57 (see Supplementary Fig. 1). As we enter the
contact regime, the BDP fades away, vanishing completely for
go0. For touching wires, the CTP appears, whose resonance
blueshifts and grows in strength for larger wire overlaps. We note
that, for gB0, the diffusive broadening is so strong that only
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sub-nanometre gap within the GNOR model. The radius of the sodium
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Progressively stronger hybridization occurs as the gap narrows, with both a

clear redshift and broadening of the BDP. As the gap closes, the CTP

develops and blueshifts as the wires start to overlap. Higher-order modes

(also indicated by dashed lines) exhibit hybridization and broadening too.

The diffusion with constant D¼ 1.36� 10�4m2 s� 1 causes GNOR

spectra in accordance with TD-DFTcalculations49 and in overall agreement

with the broadening observed experimentally13,30.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4809 ARTICLE

NATURE COMMUNICATIONS | 5:3809 |DOI: 10.1038/ncomms4809 |www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


higher-order modes persist (as the induced surface charge is
located away from the contact point), while both BDP and the
CTP are strongly suppressed. This makes a discussion on their
possible coexistence problematic51. Finally, we note that in the
anticipated tunnelling regime the extinction spectra are strongly
broadened by the complex non-local response. In fact, our
semiclassical approach is in remarkable agreement with the
TD-DFT results48–50, with the diffusion contribution being
responsible for ‘repairing’ the apparent incompatibility of
TD-DFT calculations and earlier hydrodynamic predictions49,50.
Our semiclassical GNOR theory thereby pinpoints induced
charge diffusion as the dominant broadening mechanism in
recent EELS and optical experiments on plasmonic dimers13,30,
thus challenging tunnelling-current interpretations for which the
phenomenological QCM was constructed.

Discussion
In this article we have presented a semiclassical (GNOR) approach
that is offering a long-sought unification of non-local response
mechanisms having both quantum-mechanical and classical
origins. The GNOR theory places established observations of
size-dependent damping into the context of non-local response
and offers an accurate classical explanation of spectral broadening
in MNP monomers and dimers without invoking quantum-
mechanical tunnelling, whose efficiency at optical frequencies is
questionable. We have so far considered degenerate electron
systems such as metals, where screening is strong and non-local
effects manifest themselves in the nanometre to sub-nanometre
regime. In the search for a new mesoscopic regime, where
plasmons potentially exhibit both semiclassical dynamics and
quantum effects, low-density-doped semiconductors and tunable
low-dimensional materials (including the graphene family of two-
dimensional materials) appear attractive58. Quantum light–matter
interactions59 and non-local response60 were already considered
for graphene plasmonics, and, for such non-degenerate systems,
our theory anticipates temperature-dependent non-local response
that might lead to novel non-local effects accessible via
experimental observations.

Methods
The optical response of dimers was obtained by solving the non-local wave
equation with the aid of a commercially available finite-element method. The
numerical code is an extension to the COMSOL 4.2a RF Module, which
incorporates non-local hydrodynamic effects in the optical response of arbitrarily
shaped nanoplasmonic structures, possessing one dimension with translational
symmetry. The code is freely available from http://www.nanopl.org and the
implementation, testing and performance are reported elsewhere22,24. Prior results
on dimers49 were obtained with the same code, while only utilizing a real-valued
b-parameter. All numerical results can alternatively be calculated with the aid
of a non-local boundary-element method26. Similarly, the complex-valued GNOR
parameter can be substituted in non-local transformation optics approaches
originally developed with a real-valued b-parameter in mind57.
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