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A GENERALIZED NONCOMMUTATIVE KOROVKIN THEOREM
AND .-CLOSEDNESS OF CERTAIN SETS OF CONVERGENCE

BY

B. V. LIMAYE AND M. N. N. NAMBOODIRI

Introduction

Let A be a complex C*-algebra with identity a, and for n 1,2,..., let
A A be a Schwarz map, i.e., a *linear map such that

.(a)*O.(a) _< 4,.(a’a)

for all a E A. Robertson [4] has proved that the set

C [a E A a -0, $.(a*a) a*a --0, cb.(aa*) aa*

is a C*-subalgebra of A. This is a noncommutative analogue of a classical
theorem of Korovkin which states that if A C([a, b]), the set of all contin-
uous functions on [a, b], and $. :A--A is a positive map for n 1,2,...,
then

C If A $.(f)--f, $.( fl ")- If I" uniformly on [a, b]}

is a norm-closed and conjugate closed subalgebra of A; in particular, if, 1, t
and t" belong to C, then by the Stone-Weierstrass theorem, C C([a,b]).

Let B be another C*-algebra with identity l n, A -B a *homomorphism,
and, for n 1,2,..., . A--B a Schwarz map. Note that each . is a posi-
tive map with (la) < ln. Consider the set

D [a . A tb.(a)-p(a), p.(a*a)--.p(a*a)},

where the convergence is in the norm topology or in the weak topology. In Sec-
tion 1, we show that the set D is a norm-closed (but not necessarily .-closed)
subalgebra of A (Theorem 1.2). By considering D t D*, we obtain a straight-
forward generalization of Robertson’s result (Corollary 1.4).

In case A is commutative, the set D is clearly .-closed. The purpose of this
paper is to investigate the .-closedness of the set D in case A is noncommuta-
tive. Let B A and be the identity map. Robertson has asked whether the
-closedness of the set D for all choices of Schwarz maps characterizes the

commutativity of A. We answer this question in the negative by using the
theorem proved in Section 1. We show that if A M2, the noncommutative
C*-algebra consisting of all 2 x 2 complex matrices, then the set D is .-closed
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for all choices of Schwarz maps n (Theorem 2.3). Further, we show that Ms is
the only finite dimensional noncommutative C*-algebra for which this result
holds (Theorem 2.6).
As for infinite dimensional algebras, let H be a Hilbert space of infinite di-

mension and let (H) (respectively, x (H)) denote the C*-algebra of all bound-
ed (respectively, compact) operators on H. We show that ifA (H) or ifA
is an infinite dimensional noncommutative C*-subalgebra of x(H), then there
is a Schwarz map A--A and there exists T E A such that

O(T) T, p( T*T) T’T, but dp( TT*) :/: TT*,

so that the set
D, [TEA dp(T) T, dp(T*T) T’T}

is not ,-closed. The question whether this can be done for any infinite dimen-
sional noncommutative C*-subalgebra of/(H) remains open.

1. A generalization of Robertson’s theorem

We begin with a convergence result for the C*-algebra (H) of all bounded
operators on a complex Hilbert space H.

LEMMA 1.1. Let (Rn), (S.)and (U.) be sequences in/3(H) andR, UC/3(H).

(a) For all n andfor all real numbers t, let

tR. + tS. + U. > O,

and for all n and for some positive real number a, let R. < cI, where I
denotes the identity operator in (H). Let "--’" denote either norm or weak
convergence in/3(H). Then U.-O implies Sn--O.

(b) For all n, let
RR <_ S,

and let (R),and (Sn) converge weakly to R andR *R respectively. Then, infact,
(R,) converges strongly to R. If, in addition, (Un) converges to U weakly, then
(UR) converges weakly to UR.

Proof. (a) For all natural numbers n and all real numbers t, we have

-tS. <_ t"R + Un <_ ati+ U.
Let Un II--0. For a fixed t : 0 and all large enough n, U < ut*I. Hence

-tS. <_ 2ut*I.

Changing t to -t, we have tS <_ 2at’I. Thus, for any given t > O, and all
large enough n,

-2ctI <_ S <_ 2atI.
Hence R 0.
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Next, let U.--0 weakly. Fix x E H. Then, the above procedure shows that
for any given t > 0 and all large enough n,

-2at <x,x> <_ <&(x),x> _< 2at <x,x>.

Hence &--0 weakly.

(b) Let x E H. Then

liRa(x) R(x) <R*R.(x),x> + <R*R(x),x> 2Re<R.(x),R(x) >
<_ < &(x) x> + <R *R(x) x> 2Re< R,(x) R(x) >

Since R--R and &--R*R weakly, we see that the right side of the above ine-
quality tends to zero. Since x H is arbitrary, R.--R strongly.

Let U--U weakly. For x, y H,

<(U.R.- UR)(x),y> <_ I<(U.R.- U.R)(x),y> + <(UR- UR)(x),Yl.
Now, (U*(x)) converges weakly in H and hence it is bounded. Also,

R.(x) R(x)II-0
by the above. Hence < UR.(x), y > tends to < UR(x) ,y >. Since x,y . H are
arbitrary, U,R.--UR weakly, Q.E.D.
We now prove a generalization of Robertson’s result [4]. Our proof, like

Robertson’s, uses an idea of Palmer [3].

THEOREM 1.2. Let A and B be complex C*-algebras with identities 1A and
ln, respectively. Let (4) be a sequence of $chwarz maps and a *homomor-
phism from A to B. Then the set

D [a . A dp.(a)--dp(a), dp.(a*a)--4(a*a)}

is a norm-dosed subalgebra of A, where "--" denotes either norm or weak
convergence.

Proof. It is easy to see that D is norm-closed. To see that D is a sub-
algebra, it is enough to prove that if aD and q.(b)-q(b), then
q.(ba)-q(ba). Now, for any real number t,

tl4.(b)dp.(a) + $.(a)*$.(b)*}

4.(tb* + a)*dp.(tb* + a) t4.(b).(b)* 4.(a)*.(a)

<- 4.((tb* + a)*(tb* + a))- tYp.(bb*) .(a)*.(a) + t(4.(bb *) 4.(b).(b)*)

t.(ba + a’b*) + .(a*a) .(a)*.(a) + t’(.(bb*) .(b).(b)*).

Hence, if we let . 4,.(t,b*)-

s. dp.(ba + a’b*) .(b).(a) .(a)*.(b)*,

U. .(a*a)- ,.(a)*.(a),
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we see that for all real numbers t,

t2R. + tS. + U. > O.

Since 4.(a)--4(a), where denotes either norm or weak convergence, we have
.(a)*-(a)*. If "--" denotes norm convergence, then clearly 4.(a)*q,(a)-
4(a)*(a), and if "-" denotes weak convergence, then Lemma 1.1(b) shows
that

dp.(a)*4.(a) (a)*(a).

Since 4.(a*a).-.4,(a*a) (a)*4(a), it follows that in both the cases,

U. 4.(a*a)- .(a)*q.(a)--*0.

Hence, by Lemma 1.1(a),

(1) S. 4.(ba + a’b*) .(b).(a)- .(a)*.(b)*---0.

Since 4.(b)--.4(b), we see, by using Lemma 1. l(b) in the case of weak conver-
gence, that

(2) ep.(b)dp.(a)-(b)4(a) 4(ba).

Taking adjoints in (2), we have

(3) .(a)*.(b)* (a*b *).

From (1), (2) and (3), we obtain

(4) 4.(ba + a*b*)-dp(ba + a’b*).

Replacing b by ib in (4), we have

(5) 4.(ba- a*b*)-ba a’b*).

Adding (4) and (5), we obtain dp.(ba)-dp(ba), as desired, Q.E.D.

Remark 1.3. We have not been able to settle the question of whether D is a
subalgebra when "--" denotes strong convergence. The difficulty lies in the
fact that the adjoint operation is not continuous in the strong topology. Al-
though the multiplication operation is not continuous in the weak topology,
this problem is taken care of by Lemma 1. l(b). We cannot apply the same pro-
cedure for strong convergence, as the following example shows. Let H be a
separable infinite dimensional Hilbert space and T denote a unilateral left shift
operator on H. Let R. T" for n 1,2, Then (R.) and (R*.R.) converge
to the zero operator strongly, but (R.*) does not converge to the zero operator
strongly.
However, it is interesting to note that the following corollary is just as valid

for strong convergence as it is for norm or weak convergence.

COrtOL.ARY 1.4. Under the assumptions of Theorem 1.2, the set

C [a A:dp.(a)--.dp(a), d.(a*a)--d(a*a), p.(aa*)--dp(aa*)}
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is a C*-subalgebra of A, where "-" denotes norm, weak or strong conver-
gence.

Proof. For norm or weak convergence, the result follows immediately
from Theorem 1.2 since C D f3 D*, where D* [d* d E D}. Now, con-
sider

Cw [a A b.(a)--.4(a), .(a*a)--cb(a*a), b(aa*)--(aa*) weakly],

and

C [a E A 4(a)-(a), b(a*a)--4(a*a), 4(aa*)--(aa*) strongly}.

Then C, C Cw. We show that, in fact, C, C, which establishes the desired
result.

Let a E C. Let

g. .(a), R 4(a), S k(a*a).

Since is a Schwarz map, we have R*.R. <_ S. Now, R--R and S--R*R
weakly. Hence by Lemma 1. l(b), 4.(a)--4a) strongly.

Next, by Theorem 1.2, the set

D [a A 4.(a) 4(a), 4(a*a) 4(a*a) weakly}

is an algebra. Since a, a* E D, we see that (a’a) Dw. Again, letting

R. dp.(a*a), R dp(a*a), S. .((a*a)’)

in Lemma 1.1(b), we see that 4.(a*a)--.4(a*a) strongly. Similarly, it can be
shown that 4.(aa*).-.4(aa*) strongly, so that a C.,, Q.E.D.

2. ,-closedness of the set D

Let A be a C*-algebra with identity 1A, and, for n 1,2,..., let 4.:A--A
be a Schwarz map. If A is commutative, the set

D [a A .(a) a -o, a*a

is clearly .-closed. In general, this need not be the case as the following exam-
ple shows.

Example 2.1. Let H be a separable infinite dimensional Hilbert space and
$ a unilateral right shift operator on H. For TE/3(H), the C*-algebra of all
bounded operators on H, let

Then
( T) .( T) S*TS, n 1,2,

D [T {3(H) :S*TS T, S*T*TS T’T].

Now, since S*S is the identity operator on H, we see that S D; but S* D,
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since SS* is not the identity operator on H. In fact, TE/(H) belongs to D if
and only if T commutes with S, since for all x E H,

TS(x) ST(x) <(S’T*- T*S*)(TS ST)(x),x>

It is proved in [5] that the commutant of S is the strong closure of the set of
polynomials in S. Thus, TC D if and only if T can be strongly approximated
by a sequence of polynomials in S.

Next, we show that A need not be commutative for the set D to be *-closed
for every choice of Schwarz maps n. Let Mk denote the C*-algebra of all k x k
matrices with complex entries, and I Mk denote the identity matrix.

LEMMA 1.2. Let M,.--M2 be a positive linear map with d(I) L Let
T M, be such that T*T is a one-dimensional projection and d(T) T,
T’T) T*T. Then either I) I or T is a normal matrix.

Proof. Let

so that

T*T

Suppose, first, that

lal"+ Icl * b + 2rd].a+c [bl"+ldl *

[lO]T*T
0 0

0 0 0

Then, b d 0, so that

a

If c 0, then T is a normal matrix. Now, let c 0. Since T 4)(T) and

(
0

) (T*T) T’T=
0 0

we have

0
a( )+c,(

1 0
)

a +c( ),
0 1
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Since c : O, we have

0
c( ).

0 1 0

Now, is a positive linear map on the C*-algebra M2 and (I) <_ I. Hence, by
Kadison’s Schwarz inequality [2],

(s,)(s) + (s)(s*) <_ (s,s + ss*)

for all S C M2. Putting

we have

[Ol]
I S*S + SS*

(s*)(s) + (s)(s*)
<_ (S*S + SS*)

rb(I)

<_I.

This shows that (I) I.
Thus, we have proved the lemma in the case where

T*T
0 0

In the general case, since T*T is a one-dimensional projection, let x (x,, x)
and y (y,, y2) be pairs of complex numbers such that

Ix, l/ Ix[ 1 lyl’-/ ly,l , x,y/xy o,
and

Let

T*T(x) x, T*T(y) O.

U
x, y

Then U is a unitary matrix, and

[10]T*T U U*.
0 0



274 B.V. LIMAYE AND M. N. N. NAMBOODIRI

Define , M2--M2 by R) U*O(URU*)U, R M. Then it is easy to see
that , is a positive linear map on M, and (I) I. If we let S U*T U, then

and (S) S, (S*S) S*S. Hence, by the particular case considered above,
we see that either (I) L or S is normal. This, in turn, shows that either
(I) I or Tis normal.

Tn.OR.M 2.3. For n 1,2,..., let tb, M--M be a Schwarz map. Then
the set

D IT M. 4,.(73 TI[ --0, *.(T’T) T*TII --0}

is .-closed, and hence is a C*-subalgebra ofM.
We prove the following:

(1) Let M2--M,. be a Schwarz map. Then the set

D, {TM: d(T) T, d(T*T) T’T}

is a C*-subalgebra of M.
(2) D FI D, where the intersection is taken over all cluster points d of

the sequence (d.) in

P(M, M2) {b M--M,_ ff positive linear, b }.

Proof of (1).
TM,

It follows from the Cayley-Hamilton theorem that for any

T’ tr(T)T- det(T)/,

where tr(T) is the trace of T and det(T) is the determinant of T.
Let T D,, i.e., (T) T and (T*T) T*T. Assume that TI 1.

Case (i). I D,, i.e., (I) #:/. Since D, is a subalgebra of M,_ by
Theorem 1.2, we see that T C D,. Now by (.),

T tr(T) T- det(T)/,

so that

(T’) tr(T)(T) dct(T)(I).

But (T) T and (T’) T. Hence

det(T)I det(T)(I).

Since I #: (I), it follows that dot(T) 0. Consequently,

det(T*T) Idet(T) 0.
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Then, by (,),
(T’T) tr(T’T) T*T.

Since TII 1, we have T*Tll 1 [l(T*T)[I This shows that
tr(T’T) 1. Hence (T’T) T*T. Moreover, T : 0 and det(T*T) 0.
Thus, T*T is a one-dimensional projection. Now, Lemma 2.2 shows that T is
normal, i.e., T*T TT*. Hence (TT*) ( T*T) T*T TT*. Since
(T*) T* always, we see that T* D.
Case (ii). ID, i.e., b(I) L Let T= R+iS with R* R and

S*= S. Then, by (.),

2(T’T+ TT*) R+ S tr(R)R + tr(S)S- (det(R) + det(S))/.

Since (T) T, we see that (R) R and (S) S. Also, (I) L
Hence

2(T*T+ TT*) tr(R)R + tr(S)S- (det(R) + det(S))/.

This shows that
T*T+ TT* ?p T*T+ TT*).

But since T D, we have T*T (T’T). Hence TT* (TT*) and again,
TD.
ThusD is .-closed. By Theorem 1.2, it is a norm-closed subalgebra ofM.

Hence D is a C*-subalgebra of M.

Proof of (2). Let I, denote the set of all cluster points of the sequence (.)
in P(M, M). For , clearly D C D. Let

E CI{D:q,}, and , ,l,n 1,2,

Then, by (1), E is C*-subalgebra of M; it contains D and

b P(E,M,) {b E--.M, b positive linear, II [I -< 11.
To show that E is contained in D, we argue as follows. We claim that
b.( T)-. T for all T E. Suppose this is not the case. Then, by the compactness
of P(E, M), there is b P(E,M) and a subnet (b) of (b) such that

b(T) (T) for all T E, and b(To) : To for some To E.

Let () be the corresponding subnet of (.), so that 1 b. Now,

(T) (T) b( T) for all TE.

Let be a cluster point of () in P(M,M). Then (T) b(T) for all
T E. But is also a cluster point of (,), i.., , while

(To) (To) To.
This contradicts the fact that To E. Hence b.(T) T for all T E. Now, let
T E. Since E is a *subalgebra of M, we have T*T E, so that
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.(T) k.(T)- T and .(T*T) .(T*T)-- T’T,

i.e., T D. Thus, D E as desired, Q.E.D.

Remarlc 2.4. If M,.--M is merely a positive linear map with (I) _< L
then the set D, may not be closed even under addition, as the following exam-
ple shows. Let

( )=
c d

and

R=IiO"0 0.
Then R and S belong to D,, but

R+S=

does not. Also D# is not closed under the Jordan product"
Let

[,1]
Then T and U belong to D,, but

I (TU+ UT) [ i+

2 L + (1/2)

+ (1/2)]1
does not. For this particular map , D, is closed under the squares. Examples
of positive linear maps M--M with (I) _< I for which D, is not closed
under the squares and/or D, is not ,-closedare lacking.
The following example shows thatM cannot be replaced by anyM, k _> 3,

in Theorem 2.3.

Example 2.5.

(} (k) (

Let k 3 be an integer. Define Ot M--M by

/I 0’12 /13 /lk

t/2 0’22 t/2a t/2k

’31 ]’32 /33

tlk ilk2 ilk3 tlkk

t/l t/12 0

a2 a22 0

0 0 0

0

0

0

0

Then ) is a Schwarz map on M. This can be proved as follows. Let
T (ao), i,j 1,...,n. Then
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and

’(T*T)

Hence

b"’(T’T) q*’( T*)*(T)

which is clearly a positive matrix.

Let

and

0 0 ...0

k

jffi3

k

j=3

0 0

0 0

D {TCM," 0’*’(T)= T, ’*’(T*T)= T’T},

T(k)

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

Then it can be easily seen that Tk belongs to D, but its conjugate transpose
does not. Thus, D is not ,-closed.
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We now prove a kind of converse of Theorem 2.3.

Tnou 2.6. Let ,4 be a finite dimensional noncommutative C*-algebra.
Assume that for every Schwarz map tb A--A, the set

D, [aA (a) a, ,(a*a) a*al
is .-closed. Then A is isometrically .-isomorphic to M2.

Proof. By Theorem 11.2, p. 50 of [6], A is isometrically ,-isomorphic to a
direct sum of matrix algebras. Hence we can assume that

for some non-negative integers nl,...,nm. Let d denote the vector space
dimension of A. Then d > 4, since A is noncommutative. If d 4, then
A M, and we are done. Let, now, d > 5. Again, since A is noncommuta-
tive, we consider the following mutually exclusive and exhaustive cases. For
TA, Iet T= TI T,m.

Case (i). At least one n, say, n, is at least 3. For T A, let

(T) T (R) (R) 6’’(TQ (R) (R) T,,,
where t’ Mn--Mn is the map considered in Example 2.5. Then it follows
that A--A is a $chwarz map and

T= 0.... Ttn (R) 0

belongs to D,, but T* does not.

Case (ii).
regarded as a 4 4 matrix of the following form:

Define

Then

m > 2 and all n’s equal 2. An element of M (R) M can be

az a2 0 0

as a, 0 0

0 0 bt b
0 0 b b,

T T

a a 0 0

a3 a4 0 0

0 0 a 0

0 0 0 0

(T (R) 79=

is the restriction of the Sehwarz map t4 M4..*M of Example 2.5 to the
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C*-subalgebra formed of all elements of the type T (R) T. Define
by

Then is a Schwarz map and

T--
1 0 0 0

belongs to D,, but T* does not.

[oo]
Case (iii). ,4 M2 MI M, M,,, where n3,..., n, are either

2 or 1. An element of M,_ (R) M can be regarded as a 3 x 3 matrix of the
following form:

T2 * TI

Define

Then

al a2 0

a3 a4 0

0 0 as

,-(T (R) T,)
al a 0

aa a4 0

0 0 a

is the restriction of the Schwarz map () :M3--M of Example 2.5 to the
C*-algebra formed of all elements of the type T T. Define k ,4--,4 by

q,(T Tt T. e T..,)= ,(T T,) T.
Then fi is a Schwarz map and

[01 (R) 0 (R) (R)0

belongs to D,, but T* des not, Q.E.D.

Remark 2.7. In Example 2.1, we have considered the infinite dimensional
noncommutative C*-algebra/3(H), where H is a separable Hilbert space, and
found a Schwarz map 0 on/(H) for which D, is not ,-closed.

We can use Theorem 2.6 to show that if H is a not necessarily separable
Hilbert space, then there is a Schwarz map 0 on B(H) for which D, is not
,-closed. For this purpose, let G be a subspace ofH of dimension 3, and let P
denote the orthogonal projection of H onto G. Let
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Then it is easy to see that A is a finite dimensional noncommutative C*-sub.
algebra of fl(H) and that A is not isometrically ,-isomorphic to M2. Hence by
Theorem 2.6, there is a Schwarz map b A-A and some So fl(G) such that
SoP ED but (SOP)* D.

Define (H)--fl(H) by

#p( T) b((PT)loP), T_. (H).

Then , is *linear. In fact, is a Schwarz map: Let T(E .(H). Then since is a
Schwarz map,

(T)*(T) ((PT)loP)* ((PT)loP)
< (((PT)IoP)* (PT)IoP).

Now, it can be easily seen that

((PT)I.oP)*(PT)IoP < (PT*T)IoP).
Since is positive, we see that

( T)*( T) < ((PT*T)IoP) ,( T*T).

Also, 1, , since for S (G), we have

b(SP) ((PSP)IoP)= (SP).

Hence SoP D,, but (SOP)* E D,.
Again, since the range of is contained in the C*-algebra x(H) of all com-

pact operators on H, we can consider the restriction of , to x(H) and obtain a
Schwarz map on x(H) for which the set D, is not .-closed.

Finally, if A is any infinite dimensional noncommutative C*-subalgebra of
x(H), then by Theorem 1.4.5 of [1],

A ex(H,,),

where eachH is a Hilbert space. Hence we can find a Schwarz map A--A
for which D, is not .-closed. We have not been able to answer the question
whether this can be done for any infinite dimensional noncommutative
C*-algebra A.
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