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A Generalized Optimality
Criteria Method for Optimization
of Additively Manufactured
Multimaterial Lattice Structures
Recent progress in additive manufacturing (AM) allows for printing customized products
with multiple materials and complex geometries that could form the basis of multimate-
rial designs with high performance and novel functions. Effectively designing such com-
plex products for optimal performance within the confines of AM constraints is
challenging due to the need to consider fabrication constraints while searching for opti-
mal designs with a large number of variables, which stem from new AM capabilities. In
this study, fabrication constraints are addressed through empirically characterizing mul-
tiple printed materials’ Young’s modulus and density using a multimaterial inkjet-based
3D-printer. Data curves are modeled for the empirical data describing two base printing
materials and 12 mixtures of them as inputs for a computational optimization process. An
optimality criteria (OC) method is developed to search for solutions of multimaterial lat-
tices with fixed topology and truss cross section sizes. Two representative optimization
studies are presented and demonstrate higher performance with multimaterial
approaches in comparison to using a single material. These include the optimization of a
cubic lattice structure that must adhere to a fixed displacement constraint and a compli-
ant beam lattice structure that must meet multiple fixed displacement constraints. Results
demonstrate the feasibility of the approach as a general synthesis and optimization
method for multimaterial, lightweight lattice structures that are large-scale and manufac-
turable on a commercial AM printer directly from the design optimization results.
[DOI: 10.1115/1.4030995]

1 Introduction

Current advances in AM enable the multimaterial fabrication of
three-dimensional (3D) objects that are difficult or impossible to
create with conventional manufacturing technologies [1–3]. When
AM technologies are utilized in combination with computational
optimization methods, it is possible to control the distribution of
materials within objects with a high degree of precision [4]. Such
precision in creating products has the potential to dramatically
improve structural performance and even enable new functional-
ities through careful placement of multiple materials throughout a
structure [5]. However, such precision in material distribution
leads to an increase in complexity when designing products that
are already challenging to design when only single materials are
considered, such as lattice structures [6]. Lattice structure design
is typically approached using computational optimization methods
due to the need for considering many variables in configuring
high-performance structures [7,8]. A further challenge in effective
AM design is the need for solutions found by computational opti-
mization to remain printable according to design for additive man-
ufacturing (DfAM) constraints, such as the limitations in
tolerances, printable dimensions, and quality issues incurred by
the fabrication process [9–12]. In this paper, we address these
challenges in creating AM optimized designs by developing an

optimization approach that utilizes empirical measurements of
AM materials to configure multimaterial lattices.

The design of high-performance, multimaterial lattices for com-
plex shapes has particular applications in developing customized
sport helmets with impact resistance [13,14]. Lattice structures
are growing in interest due to their improved strength-to-weight
ratio compared with stochastic foams alone. When lattices are uti-
lized in combination with stochastic foams, the combination
sometimes shows superior performance for both strength and
energy absorption, which are both necessary for effective helmet
performance [15]. Additionally, AM processes enable the con-
struction of lattices tailored for specific products that were not
achievable with past manufacturing methods. A proposed DfAM
methodology for the complete design and fabrication of a custom-
ized product [16], such as a sport helmet with multimaterial latti-
ces, includes phases for (1) characterizing AM materials,
processes, and structure, (2) developing quantitative and simula-
tion models to accurately predict behavior, (3) optimizing designs
with computational methods, and (4) fabricating and testing a
resulting multimaterial product (Fig. 1). Once fabrication is com-
pleted, findings are informative for future product design cycles
such as further characterization of AM materials, processes, and
structures or refinement of quantitative and simulation models.

Due to the large scope of the DfAM methodology (Fig. 1), this
paper primarily focuses on the computational design and optimi-
zation phase with a secondary focus on the AM characterization,
i.e., how the optimization method utilizes information of multiple
AM characterized materials and processes to configure a printable
product. Since the total volume of the helmet is constrained based
on user requirements, design decisions concerning material
changes in the lattice are beneficial because they can alter
the product’s performance capabilities without altering its
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dimensions. The use of AM for producing the helmet is particu-
larly beneficial, since it enables customized helmet shapes on a
per-consumer basis such that the helmet conforms to a particular
customer’s head shape and has performance requirements that are
tailored to particular applications [14,17,18]. Due to these consid-
erations for the helmet, multimaterial AM could greatly facilitate
its design in comparison with conventional manufacturing
approaches. These are demonstrated through two optimization
problems in the paper: a cubic lattice that is optimized for a given
displacement to maximize its performance in a fixed volume and
a beam lattice that is optimized for maximum performance for
multiple displacement constraints.

There is a need to investigate effective optimization algorithms
for multimaterial AM, since such optimization problems have
so far only been considered for a limited set of problems and
applications [5,7], typically more on the microstructure level.
New methods are particularly needed because established
evolutionary-based and other metaheuristic methods have diffi-
culty in optimizing large, complex structures, because they do not
scale well as the resolution and number of structural members in
an application increases. In the helmet example, however, the full
structural design could require optimization of hundreds to hun-
dreds of thousands of members. Other algorithms that are well-
suited for structural optimization, such as the discrete OC method
[8], are appropriate for large discrete- and lattice-based structures,
but have no current formulation for solving multimaterial prob-
lems. Most often, the problem formulation for OC methods is a
purely mass-based optimization and considers dominant displace-
ment constraints only [8]. However, more constraint rich applica-
tions exist [19,20] in addition to the possibility for extending the
method to solve multimaterial lattices.

In this paper, we focus on developing a generalized OC method
[21] for the optimization of discrete, multimaterial, mesoscale lat-
tice structures for maximum performance in a constrained vol-
ume. Through considering the formulation of the optimization
algorithm within the context of a DfAM methodology (Fig. 1), the
optimization approach is developed to integrate information about
AM characteristics of materials and processes that ensures the
optimized design can be directly fabricated with AM. Experimen-
tal testing is conducted to determine the properties of two AM
materials that the optimization algorithm may combine in differ-
ent mixtures to design lattices with varied properties. The optimi-
zation algorithm is then developed through using OC derived for
lattice structures to configure two representative examples related
to the helmet lattice functional requirements. The paper seeks to
present a generalizable synthesis and optimization method for the
design and AM fabrication of multimaterial structures that can
form the basis for a variety of customized products.

2 Background

In this section, background work is presented detailing general
lattice optimization approaches and recent endeavors in designing
products using multimaterial AM techniques. OC methods are
then reviewed to assess their feasibility for discrete lattice optimi-
zation applications.

2.1 Lattice Optimization. Although there are currently no
preferred optimization approaches for multimaterial lattices, there
are a large number of existing approaches for single material lat-
tice structure optimization, such as the size matching and scaling
method [22]. The size matching and scaling method has been
implemented to design and optimize mesoscale, cellular light-
weight structures. The method couples a library of predefined unit
cells with solid body finite element analysis that is applied over a
design domain to provide a design response to guide unit cell
selection, scaling, and placement. The size matching and scaling
method demonstrated better performance than the particle swarm
based lattice optimization [23] and the least squares fitting method
[23] when applied for a predefined topology or ground structure
optimization.

A different approach from Ning and Pellegrino [24] aims to
design and optimize lattices through consideration of the micro-
structure of lightweight sandwich beam designs within a size dis-
tribution field using multiple optimization steps. Using Delaunay
triangulation, the 2D topology search is reduced to a limited num-
ber of continuous control variables. The first step in the optimiza-
tion approach is to utilize a genetic algorithm (GA) to optimize
the topology, and then lattice truss cross section sizes are opti-
mized using the best topology found.

In generative design and optimization of macroscale lattice
structures, a different approach to the previous one is explored in
previous work by one of the authors for the generative synthesis
of transmission towers [25]. The search for the optimal topology,
member sizes, and performance is achieved through a combina-
tion of graph-grammars and a shape annealing method to create
spatially novel designs. These examples demonstrate that past
approaches developed solutions for effective topology, shape, and
cross section optimization, while new methods could contribute to
optimization with respect to material choice, specifically for con-
figuring discrete lattices for AM, as considered in this paper.

2.2 Multimaterial AM. Unlike conventional manufacturing,
AM is a fabrication process that joins materials layer by layer to
build a part based on the computer-aided design model data.
Effective design for AM requires the consideration of processes
including the time-required for the product fabrication, the materi-
als used, and the mechanical properties [26–28]. Multimaterial
applications are particularly relevant to AM because they enable a
more precise optimization of the mechanical properties of parts
and provide additional functionality [2], such as fabricated materi-
als with desired deformation behavior [29,30]. There is also the
possibility of including gradients of different materials throughout
a part using multimaterial AM. Such possibilities have been inves-
tigated with optimization methods for the manufacturing of heter-
ogeneous 3D objects considering mechanics-fabrication tradeoffs
for a single I-beam using a self-adaptive evolutionary strategy that
is well-suited for multimodal problems [31]. Multiple-material
topology optimization has also been investigated in the context of
AM for 2D material structures considering deflection in a struc-
ture using a compliant mechanism-based optimization process [5].
These studies demonstrate the potential benefits of multimaterial

Fig. 1 DfAM product design methodology
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AM applications and the need for further developing optimization
methods in solving the resulting complex and large-scale design
problems.

2.3 OC Methods. In addition to already established lattice
and multimaterial optimization approaches, there is the opportu-
nity to tailor optimization approaches from other applications in
discrete structural optimization for lattice design, with OC being a
potentially highly effective approach. In the late 1960s, OC meth-
ods were developed to tackle the large-scale structural optimiza-
tion of discrete member structures for the aerospace industry
[8,19,32,33]. Early applications of OC considered static load cases
with displacement constraints only, but the method was soon
extended to consider stress and buckling constraints in addition to
stability, and for impact and frequency responses [34,35]. To bal-
ance computational efficiency with solution quality for application
to large-scale problems, a heuristic-based fully constrained design
method was developed [36]. This method is not gradient-based
and overcomes the requirement that the OC algorithm needs for
customization of each unique problem formulation. However, the
method is only applied to displacement constraints. Another suc-
cessful application is the optimization of tall steel buildings
extending the OC method to include commercial standard sections
in the optimization [37].

The primary motivation for the development of the OC
approach was to address the inability of conventional mathemati-
cal programming methods to handle optimization problems that
exceed 200–300 design variables for a generic case of a statically
indeterminate structure with a nonlinear constraint set [8,19]. This
bears resemblance to the case considered in this paper of multima-
terial, lattice structures fabricated with AM. Before the OC
method was developed as an approach, numerous alternative
search strategies and problem simplifications were applied to han-
dle these issues, but were not highly effective. For example, vari-
able linking and problem order decrease approaches are hard to
implement due to the difficulty in assessing the implications of
these actions to the overall optimized solution. The direct conse-
quence of using OC is a reduction of cost in required iteration steps
to obtain a significant improvement in the objective function, with
respect to the size of the variable vector [19]. The OC approach
additionally requires the calculation of a pseudo-energy function
that is obtained when a finite element method is applied to calculate
a design response [38], which further motivates it as potentially
effective for multimaterial lattice optimization applications.

3 Motivation for Using OC

Findings from the literature review suggest that the develop-
ment of an efficient lattice structure optimizer that handles a large
set of different design variables and constraints requires further
research. Stochastic methods, e.g., simulated annealing and GAs,

are generally robust, i.e., different problem formulations and con-
straints can be readily included, but experience problems, e.g.,
computational time, when the number of variables becomes too
large. Least squares fitting methods, such as the design of experi-
ments based responsive surface methods, are another possible
approach that alleviates computational costs by using a surrogate
approach, but are also limited in finding high quality solutions for
large-scale structures of 10,000 or more members. With respect to
the complexity of discrete lattice structures that are producible
using AM, the application of OC for parametric optimization offers
the benefit of decoupling the variable vector size and required itera-
tion steps, which is suggestive of its potential for effectively opti-
mizing large-scale lattice structures with multiple materials.

To assess the OC method’s feasibility in comparison to other
optimization methods for complex lattice structures, it is bench-
marked against the canonical GA from our own GA framework
and interior point optimization from the MATLAB optimization tool-
box. These methods are compared using a test-case lattice with 74
members that occupies a space of 50� 50� 50 mm3 and is opti-
mized for minimum mass when taking cross-sectional area Ai as
the design variable. A recursive resizing formula that is a special
simplified case of OC is applied and referred to as the fully
stressed design (FSD) approach. FSD is easily extendible for the
lattice application, fast in convergence, but is an oversimplifica-
tion of the OC method because it limits the possibilities to express
multiple constraints, load conditions, and the application of differ-
ent materials. Therefore, FSD is a viable approach for benchmark-
ing the feasibility of OC in comparison to other methods, but is
not suitable for complex multimaterial lattice structures subject to
different constraints and loading conditions. The recursive sizing
formula for the cross-sectional area Ai of a steel lattice structure
in the test-case is [7]

A�þ1
i ¼

UiA
�
i

e2i qili

� �1=2

(1)

where � denotes the iteration step Ui, the current strain energy
stored in the ith element qi ¼ 7860 kg/m3 is the density, li is the
length of the ith element, and ei is the allowed strain per element
calculated for E ¼ 206 GPa and allowed stress rj j � 50 N/mm2.
Buckling and displacement constraints are not taken into account.
The load of F ¼ 1000 N is distributed among all nodes of the lat-
tice top face in the direction of the negative z-axis, while the bot-
tom face nodes are fully constrained. The variable range is
defined as 0:01mm2 � Ai � 10 mm2. The results for the starting
point of Ai ¼ A ¼ 10 mm2 are shown in Fig. 2 and indicate the
benefits of the OC method, as demonstrated by the FSD approach
having found the lightest structure (11.81 g) with less run-time
(less than 10 s) and iterations (20) in comparison to both other
methods.

Fig. 2 Results of benchmarking algorithms for a steel lattice test-case
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Although there are many benefits in using OC approaches with
respect to computational time-required to optimize large-scale
structures, its context oriented basis lacks generality that hinders
its efficient use [21]. The OC are most commonly expressed to
meet the specific features of a design for particular applications.
In an effort to mitigate this limitation, a generalized OC method
was developed [21] by extending the OC application to general
multidisciplinary optimization problems by offering a methodo-
logical approach in both recursive algorithm derivation as well as
in the application of compound scaling algorithm. The search
strategy is then based on a recursive sweep through the search
space while applying scaling procedures to estimate the location
of constraints boundaries [21]. This generalized formulation of
the OC is considered in this paper and extended for multimaterial
lattice structure optimization problems.

4 Characterization of AM Materials

To optimize lattice structures according to AM constraints,
empirical studies are performed to characterize AM materials that
are then input into the optimization model. These steps include test-
ing and measurement of material properties and then fitting curves
to describe the data that are then used in the optimization method.

4.1 Materials Testing Methods. To facilitate multimaterial
lattice design, Young’s modulus (E) and density (q) are measured
for different AM materials. The measurements are obtained using
a Stratasys Objet500 Connex3 due to the printer’s capabilities for
printing up to three different model materials at the same time,
thus enabling the fabrication of multimaterial lattices. The print-
er’s support material is a wet mixture of SUP705 support and a
generic model material. The liquid material is jetted onto the sur-
face and immediately cured with UV light positioned on the print
head. A pinch roll ensures a smooth and clean surface when jet-
ting the next layers.

In the printer’s digital material mode, model materials are
mixed to create combinations of properties such as a hard and a
soft material with mixed properties in between. The potential to
mix materials is highly beneficial for lattice applications, because
with just two base material choices there is a broad range of inter-
mediate mixes of materials with unique properties. In order to
have a broad range of material performance properties, materials
of low and high strength are tested that are referred to as Tango-
BlackPlus and VeroWhitePlus by the manufacturer and chosen
based on the mechanical properties provided by the manufacturer.
The manufacturer reported performance of VeroWhitePlus is
E ¼ 2000� 3000 MPa, UTS ¼ 50� 65 MPa, and q ¼ 1:17
�1:18 g/cm3, while the manufacturer only reported TangoBlack-
Plus values of UTS ¼ 0:8� 1:5 MPa and q ¼ 1:12� 1:13 g/cm3

[39]. Testing is conducted to verify these performance values, in
addition to measuring values such as the mixed material proper-
ties that are not provided by the manufacturer.

Testing samples are printed for each of the 14 possible material
gradings available for printing based on constraints from the man-
ufacturer and are inclusive of the two base materials. Testing com-
menced on an Instron ElectroPuls E3000 tensile testing machine
that enables the testing of the mechanical properties according to
the ASTM D638-10 standard. Additionally, materials are weighed
with a Metler Toledo XS205 DualRange scale. For each material
grading, one measurement is collected due to negligible variations
in measurements of parts produced on the same machine in con-
trolled conditions [40]. Based on data from the manufacturer con-
cerning minimum printable dimensions of a structure [41], strut
diameters of 1mm are used to generate samples.

4.2 Materials Testing Results. For all 14 printed materials,
the density of the material is calculated as an independent variable
and plotted against the measured Young’s modulus (Fig. 3). The

Young’s modulus, as a function of the density, can then be
directly calculated from a fitted curve.

The plot in Fig. 3 demonstrates that the densities of the 14
materials have an uneven distribution over the range of 1.09 g/cm3

to 1.175 g/cm3, with most materials being close to the extremes.
The plot also includes the manufacturer’s reported data for com-
parison, which are only available for a limited set of density val-
ues. The experimental measurements for the Young’s modulus
obtained are higher than those provided by the manufacturer [39]
(Fig. 3). Generally, materials are bimodally distributed around
Young’s modulus values of about 50MPa and 2800MPa. Due to
the limited number of material mixtures available in the printer as
a result of manufacturer software limitations, there is a lack of
testable material mixtures that may fall in the intermediate range.
The data suggest that material properties are generally below
500MPa for densities below 1.14 g/cm3 with a sharp increase to
about 3000MPa for materials with density above 1.14 g/cm3. A
curve is fit to the data, since the optimization algorithm requires
continuous functions to calculate material properties. For the opti-
mization model, a sigmoidal curve of shape

EðqÞ ¼ A1 þ
A2 � A1

1þ 10 log x0ð Þ�qð Þ � p
(2)

is fit to the values (black solid line, adjusted R-square of 0.99794)
where A1 and A2 represent the lower and upper asymptotes, p is
the hill slope, and x0 the center point. Solving the equation for q,
which is required for the model input, yields the following
equation:

qðEÞ ¼ log x0 �

log
A2 � A1

E� A1

� 1

� �

p
(3)

The material characterization demonstrates the properties and
relations that are used by the computational optimization algo-
rithm to only search for designs with properties that are possible
to fabricate with the AM technology considered here. While the
current commercial machine used in this investigation only allows
printing of the 14 discrete materials tested through a software
block, in principle the technology can print continuous mixtures
of the materials, as modeled by the curve.

5 Generalized OC Using Multimaterials

With respect to the complexity of discrete lattice structures that
are produced using AM technologies, the application of OC for

Fig. 3 Empirical AM data for Young’s modulus as a function of
density. Shown are the experimentally obtained values (rectan-
gle), the values taken from the materials’ datasheets (circle),
and the fitted curve.
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parametric optimization offers the key advantage of decoupling
the variable vector size and required iteration steps that are
required for effectively optimizing large-scale lattice structures
with multiple materials. In this context, the OC are defined by the
conditions that are satisfied at the optimum point only [8,19,21],
providing a system of n equations with m active constraints

X

m

j¼1

eijkj ¼ 1 (4)

where kj is Lagrangian multiplier corresponding to the jth con-
straint, and eij is the ratio of sensitivity derivates

eij ¼
Nij

rFi

¼

@zj
@xi
@F

@xi

(5)

defined as the ratio of the constraint gradient matrix Nij being the
derivative of the jth constraint zj with respect to the ith variable xi,
and of the objective function gradient vector rFi. The OC algo-
rithm applied here includes two intertwined loops

• scaling: moves constraints to the feasible space in such a way
that at least one constraint is active,

• resizing: concludes the previous cycle and initiates a new
scaling procedure by making a jump in the search space to
significantly reduce the objective function value, and

• these two loops are dependent on m active constraints that
need to be determined.

The overall progress of scaling versus resizing is in the direc-
tion of objective function reduction, otherwise a stopping condi-
tion should halt the optimization process [8,19,21]. The OC
pseudocode is presented here (Table 1) in brief.

The following Secs. 5.1–5.6 discuss how to formulate the objec-
tive function and calculate the ratio of the sensitivity derivatives (5)
in the context of multimaterial optimization of discrete lattice struc-
ture designs considering displacement constraints. Also, in brief,
the algorithm details including the resizing and scaling steps
together with the optimization stopping condition are described.

5.1 Optimization Problem and Objective Function
Definition. With respect to structural optimization and light-
weight design, the overall objective is formulated as a mass mini-
mization problem and stated as

minimize F xð Þ ¼
X

n

i¼1

AliqiðxiÞ (6)

where A is the cross-sectional area of a solid, round truss member,
li is the length of each of the truss members, and qi is the material

density of each member as a function of Young’s moduli xi. This
is subject to a set of m inequality displacement constraints dj

djðxÞ � �dj j ¼ 1; 2;…;m (7)

The design variable vector x is bounded from both sides with ��xi
and �xi as the upper and the lower boundaries

�x � x � ��x (8)

The dependency expressed in qi ¼ qiðxiÞ is obtained through
material testing, as provided in Eq. (3). This dependency effec-
tively enables the optimization procedure to use Young’s modu-
lus, xi, as a design variable while keeping the cross-sectional area
as a fixed parameter within the optimization.

The expressions that follow are derived considering a continu-
ous variable and linear elastic model of the discrete lattice struc-
ture behavior. Given Eqs. (2) and (3) to express the dependency
qi ¼ qiðxiÞ in terms of the design variables provides the following
formulation of the objective function F xð Þ:

F xð Þ ¼
X

n

i¼1

Ali c�

log
��xi � �xi

xi � �xi
� 1

� �

p

2

6

6

4

3

7

7

5

(9)

as well as of its gradient rFi

rFi ¼
@F

@xi
¼ Ali

@qi
@xi
¼ �

Alið�xi � ��xiÞ

p lnð10Þ �xi � xið Þ2
�xi � ��xi

�xi � xi
� 1

� � (10)

with c ¼ 1:16 and p ¼ 57:46 as the curve fitting coefficients
obtained from the material properties testing (please refer to Sec.
4.2 for details on how the coefficients are obtained).

5.2 Constraints Definition. To optimize lattice structure
designs, this work considers the application of displacement con-
straints for which a virtual load is applied to obtain the displace-
ment gradients by imposing a unit load in the direction specified
by the individual constraint. Thus, by considering the linear elas-
tic model of the lattice structure and the respective solution of the
equilibrium equation

f ¼ Ku (11)

where f is the load vector, K is the global stiffness matrix, and u
is the nodal displacement vector, then the displacement con-
straints calculation can be incorporated in the solution of Eq. (11)
with the least amount of additional computational expenses by
addition of virtual load vectors for each of the jth constraints

Table 1 The OC algorithm pseudocode

1: �  0 ;
2: x Initialize variable vector of size i;
3: while �(Stopping conditions) do
4: F xð Þ;rFi  Objective function evaluation and gradients calculation;
5: zj xð Þ  Compute and classify constraints, decision on scaling or resizing;
6: Nij  Compute constraint gradients;
7: kj  Based on eij compute Lagrangian multipliers so that m constraints are independent;
8: if “scaling” then
9: x Scaling to constraint boundary surface;
10: else
11: x Resizing based on kj and eij;
12: fi
13: �  � þ 1;
14: od
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either as a single value or a linear combination of multiple dis-
placements. Thus to express the constraints with respect to the vir-
tual energy of the system a flexibility coefficient Uij associated
with the ith member and jth constraint is defined [8] as

Uij ¼ xiu
T
i kis

j
i (12)

where uTi is a displacement vector, ki is the local truss element
stiffness matrix, and s

j
i is the displacement vector corresponding

to the imposed virtual load vector. As both A and E participate lin-
early in the stiffness of truss members, then the displacement con-
straint dj with respect to the flexibility of the system Uij,
constraint boundary �dj, and Young’s modulus xi is expressed as

dj ¼
Uij

xi
� �dj (13)

Providing Eq. (13), the gradient matrix Nij of the jth displacement
constraint dj with respect to the ith variable xi and the flexibility
Uij is given as

Nij ¼
@dj
@xi
¼ �

Uij

x2i
(14)

5.3 Constraint Activity and Lagrangian Multipliers. The
solution of Eq. (4) requires both an independent set of active m
constraints and that Eq. (4) is always solvable even if eij in Eq. (5)
is not necessarily full rank. To assure the solution of Eq. (4), first a
critical constraint is determined in the relation to the target response
ratio bj of each jth constraint dj with respect to its boundary

�dj

bj ¼
�dj

dj
(15)

Active constraints are then selected with reference to a critical
constraint whose value, according to Eq. (15), is either in a feasible
region close to or at its boundary, or in an infeasible region violat-
ing its boundary by the most with respect to the other constraints.
In this context, Eq. (15) is a mean to assert the independent con-
straint set C resulting in either one of the following sets [8,19,21]:

C ¼

1: The constraint nearest to its boundary and all contraints within a 3% margin

2: The most violated constraint and those within a 3% margin to it

3: Constraints which are at their boundaries within a 3% margin

8

>

>

>

<

>

>

>

:

(16)

Cases 1 and 3 in Eq. (16) require that all of the constraint values
are in the feasible region, whereas case 2 allows for values both in
feasible and infeasible regions. Second, according to Ref. [21],
Eq. (4) is expanded by multiplication from both sides with the
product of the ratio of the sensitivity derivatives eij calculated
according to Eq. (5) and the diagonal weighting matrix
Aii ¼ rFixi that is obtained by multiplication of the ith objective
function gradient (10) and the ith variable xi. The overall
expanded system of equations written in vector notation is given
as follows [21]:

Hk ¼W

where

H ¼ eTAe

W ¼ eTA1

(17)

According to Ref. [21], Eq. (17) will yield a set of Lagrangian
multipliers indicating an independent set of constraints if all mul-
tipliers are negative. The necessary condition is that H is nonsin-
gular and that the weighting matrix A is positive definite. If
Eq. (17) yields both positive and negative Lagrangian multipliers,
then the positive multipliers indicate constraint dependency
requiring their deletion from the active constraint set and recalcu-
lation of Eq. (17) repeating the procedure until all multipliers are
negative.

5.4 Resizing. After the Lagrangian multipliers are obtained
by solving Eq. (17), the algorithm either resizes if the independent
constraint set C is based on case 3 in Eq. (16), or applies a com-
pound scaling [21] until the condition 3 in Eq. (16) is obtained
thus completing an optimization cycle. The resizing formula
derived from the optimality condition (4) is given with respect to
cycle � and a cycle step size factor a as

x�þ1i ¼ x�i

X

m

j¼1

eijkj

" #1=a

(18)

Equation (18) takes only positive sums into consideration. If there
are no positive members then the corresponding variable is set to
its lowest possible value as defined by the boundary �xi. The initial
value for step size factor a is taken as a ¼ 2; however in later
steps, an interpolation scheme is implemented according to
Refs. [8,19,21].

5.5 Scaling. In general, scaling identifies the most critical
constraint and calculates the scaling factor K to move the con-
straint to its boundary [8]

x0i ¼ Kxi (19)

The assumption is that all of the other constraints are also moved
to the feasible space. However, this is not guaranteed for a nonlin-
ear constraint set. Compound scaling as defined in Ref. [21] on
the other hand is more robust as it scales the variables by analyz-
ing the first-order Taylor approximation in the constraint response
due to change in the variable vector. Each of the variables are
classified as active or passive contributors to the constraint
response change that enables the calculation of scaling factor vec-
tor K. For details on compound scaling, please refer to Ref. [42].

5.6 Optimization Stopping Conditions. The Kuhn–Tucker
conditions provide only the necessary conditions for a local opti-
mum and therefore do not assure that the global optimum is found.
In this context, to prevent long executions times but still to assure
good solutions, the stopping conditions are most often empirically
defined [21]. For this work, the following stopping conditions S

are specified:
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S ¼

1: The iterration exceeds 500 steps

2: The iterration exceeds 100 cycles

3: Objective value ratio of two consecutive cycles > 1:005

4: Change in objective function in two consecutive cycles < j0:002j

8

>

>

>

>

<

>

>

>

>

:

(20)

6 Results

This section presents results for two optimization studies that
are relevant in the context of multimaterial AM and form the basis
for investigating optimized multimaterial lattice design for cus-
tomized products, e.g., a sports helmet. Both of the examples
include a lattice structure that is characteristic of the optimizing
material used to achieve a lightweight design under displacement
constraints. For both optimization problems, a 10� 10� 10 mm3

cubic cell (Fig. 4) is used as the lattice building block with all
solid, round cross-sectional member diameters fixed to 1mm.

The generalized OC method for multimaterial optimization of
discrete lattice structure designs is implemented in MATLAB

together with a linear elastic finite element method (FEM) module
module for design response analysis. Both of the optimization
examples are run on a standard desktop machine with a central
processing unit (CPU) with four cores, 8 MB cache, a clock speed
of 3.30GHz, and 8 GB of RAM with no parallel programming
implementation.

6.1 Cubic Lattice Optimization Example. The first illustra-
tive example is the optimization of a cubic lattice that is built
from a 4� 4� 4 matrix of unit cells, according to Fig. 4, resulting
in the lattice shown in Fig. 5 with 64 cells and 604 truss members
in total. The purpose of this example is to show that the optimiza-
tion for mass given displacement constraints produces a solution
that is lighter, and therefore higher performing, than a structure
configured with a single material.

Boundary conditions for this example are specified according to
Figs. 5 and 6, and a load of F ¼ 50:0 N is applied in the negative
z-direction and distributed among all of the top-face nodes. Truss
elements that do not contribute to the overall response because
they have two fixed nodes are removed from the structure, reduc-
ing the overall number of elements to 548. The displacement

constraint of d � 1 mm per node is defined for each of the top-
face nodes as shown in Fig. 6, resulting in a cumulative constraint
of d � 25 mm. The bottom face nodes are fully fixed in x–y–z. All
of the displacement constraints are calculated in the direction of
the applied load.

For the optimization, two starting points are selected, one in
the upper region of the Young’s modulus variable span as
x1i ¼ 3000 MPa and the other as x1i ¼ 10 MPa. Finally, the opti-
mization problem with respect to Eq. (6) is formulated as

minimize F xð Þ ¼
X

n

i¼1

ALiqiðxiÞ

Subject to :

dðxÞ � 25:0mm

8:3 � xi � 3250MPa

(21)

6.2 Cubic Lattice Optimization Results. The results of the
optimization as specified by the optimization model in Eq. (21)
are summarized as follows:

(a) For both starting points x1i ¼ 3000 MPa and x1i ¼ 10 MPa,
the minimum mass obtained is F xð Þ ¼ 5:87 g and has a
material distribution that is illustrated in Fig. 7.

(b) According to the stopping conditions (20), Fig. 8 shows the
convergence of the optimization procedure at step 12 after
completing four cycles for both starting points. The resizing
points are denoted with � symbol, whereas the scaling pro-
cedure is denoted using the o symbol.

(c) The values of the cumulative displacement constraints are
d1 xð Þ ¼ 25 mm and are evenly distributed among the 25 top-
face points, almost equating to 1 mm per point. The highest
deviation from any of the constraint points of the 1mm
boundary equates to 0.02 mm, which is acceptable.

(d) Given the material range of 8:3 � E � 3250 MPa and a lat-
tice topology according to Fig. 5, the same displacement is
obtained when taking a single material of Young’s modulus
E ¼ 97 MPa with a total mass of m ¼ 6:11 g. A comparison
to the obtained result of F xð Þ ¼ 5:87 g shows an improve-
ment of 5% when optimizing over material properties while
keeping the cross-sectional diameter fixed to 1 mm.

(e) The running time of the cubic lattice optimization is �25 s.

Fig. 4 Cubic cell definition

Fig. 5 Cube lattice topology and boundary conditions

Fig. 6 Displacement constraint definition for cubic lattice
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6.3 Cantilever Beam Optimization Example. This example
uses a cantilever beam optimization problem (Fig. 9) composed of
a 15� 4 matrix of cubic cells that are defined according to Fig. 4.
The number of truss members is 677 in total.

The aim is to achieve the desired compliance and, if possible,
to reduce the weight of the structure given the boundary condi-
tions, loads, and displacement constraints that are defined for pairs
of nodes that are equidistant from the support of the cantilever
and where each pair is 50mm apart measured over the bottom
length of the cantilever beam. Truss elements that do not contrib-
ute to the overall response because they are fixed at both nodes
are removed from the lattice reducing the overall number of ele-
ments, and design variables, to 660. Thus, this study serves to
show that with multimaterial design optimization it is possible to
achieve the prescribed displacement, which is constrained from
both sides as �d � dðxÞ � ��d, while keeping the cross section of the
truss members fixed.

The boundary conditions for this example are specified accord-
ing to Fig. 10. The load of F ¼ 10:0 N is distributed among the
four nodes, two in-plane, on the top face of the cantilever beam,
and the displacement constraints 0:8 � d1 � 1:6 mm,
12:0 � d2 � 16:0 mm, and 24:0 � d3 � 30:0 mm are prescribed
for each of the nodal pairs identified. The far left face nodes
are fully constrained in x–y–z. Our tests for using a single
material taking E ¼ 3000 MPa per strut yielded d1 ¼ 0:76 mm,
d2 ¼ 2:52 mm, and d3 ¼ 4:72 mm based on the defined boundary
conditions. Those results help specify the values, i.e., ranges, for
the displacement constraint d1 of the stiff material in the multima-
terial optimization model, while allowing significant displacement
ranges for the constraints of other nodes, e.g., the soft material.

For the optimization, two starting points are selected: one in the
upper region of the Young’s modulus variable as x1i ¼ 3000 MPa

and the other as x1i ¼ 10 MPa. Finally, the cantilever beam opti-
mization problem is formulated as follows:

minimize F xð Þ ¼
X

n

i¼1

ALiqiðxiÞ

Subject to :

0:8 � d1ðxÞ � 1:6mm

12:0 � d2ðxÞ � 16:0mm

24:0 � d3ðxÞ � 30:0mm

8:3 � xi � 3250MPa

(22)

6.4 Cantilever Beam Optimization Results. The results of
the optimization as specified by the optimization model in
Eq. (22) are summarized as follows:

Fig. 8 The mass over iteration steps history for cubic lattice optimization: x1i 5 3000 MPa starting point (left) and x1i 5 10 MPa
starting point (right)

Fig. 10 Cantilever beam boundary conditions and constraints

Fig. 7 Material distribution for cubic lattice optimization
example

Fig. 9 Cantilever beam topology
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(a) The minimum mass for the starting point x1i ¼ 3000 MPa
is F xð Þ ¼ 7:12 g resulting in the material distribution as
shown in Figs. 11 and 12. The minimum mass for the start-
ing point x1i ¼ 10 MPa is F xð Þ ¼ 7:06 g.

(b) As shown in the iteration plots in Fig. 13, the optimization
stops at the 500th step according to the stopping conditions
in Eq. (20).

(c) The values of the displacement constraints for the first start-
ing point are d1 xð Þ ¼ 1:6 mm, d2 xð Þ ¼ 12 mm, and
d3 xð Þ ¼ 30 mm thus satisfying the constraints as shown in
Fig. 13. For the second starting point, x1i ¼ 10 MPa, the
first displacement constraint equals d1 xð Þ ¼ 1:46 mm thus
also being satisfied, but not located at the boundary. The
other two constraints d2 and d3 are equal to the results with
the starting point x1i ¼ 3000 MPa. Figure 14 shows the x–z
plane deformation results for the x1i ¼ 3000 MPa starting
point example. The allowed displacement span is shown
with two parallel lines that define the possible range of val-
ues for each of the constrained node pairs.

(d) The running time of the cubic lattice optimization is�48 min.

7 Discussion

A generalized OC method for optimization of AM multimate-
rial lattice structures is presented and tested on two examples. Dis-
cussion points focus on the specific phases of the DfAM
multimaterial product design approach as implemented in this
paper for material characterization and computational optimiza-
tion, followed by their implications for developing and informing
a complete product design methodology.

7.1 Empirical Studies for DfAM. New developments in AM
technologies, particularly in inkjet 3D-printing, allow for on-the-
fly mixture of multiple base materials in order to create submateri-
als resulting in a continuous transition between material proper-
ties. If three or more materials are used, it is possible to consider
new material properties across a two or more dimensional
material-property surface that covers large areas in strength versus
density. On commercial printers, such as the one used in this
work, restrictions are often made by the manufacturer such as lim-
iting material mixing ratios that can impede a user from freely
creating material combinations. For the printer investigated in this
work, the provided material mixing ratios are based on color
shades [39]. Since color shades do not correlate linearly with
mechanical properties, an equal spacing between the color shades
does not result in an equal spacing between material properties
such as density. However, the different mixing ratios at a limited
range of densities are still informative for predicting the theoreti-
cal values and curve for the Young’s modulus values, as con-
ducted in this work. These continuous curves would be generated
based on a discrete set of data even if manufacturer constraints
were lifted, and ideally should cover enough variable measure-
ments to enable the identification of a mathematical function
describing the data, such as the one developed for the Young’s
modulus and density in Fig. 3.

The unequal spacing in material densities based on software
holds are likely a product of the visual effects that emerge such
that adding a small amount of black material to a white base mate-
rial has a large visual effect, whereas adding the same amount of
white material to a black base material has a negligible effect.

Fig. 11 Material distribution for the cantilever beam optimiza-
tion with starting point x1i 5 3000 MPa

Fig. 13 Mass versus iteration step history: x1i 5 3000 MPa starting point (left) and x1i 5 10 MPa starting point (right)

Fig. 12 Front views of material distribution for cantilever beam
optimization: x1i 5 3000 MPa starting point (top) and x1i 5 10
MPa starting point (bottom)
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These considerations are possible explanations for why the values
of the high density white base material are closer together in terms
of density than the ones with a black base material and why there
are few density measurements available at densities that are repre-
sentative of near equal mixes of materials. For the actual measure-
ments collected, the higher values found for Young’s modulus are
considerably higher than manufacturer provided values, which
possibly relates to a large number of in- and out-of-process param-
eters available for the inkjet 3D-printing process [40]. No infor-
mation, besides the use of the ASTM D638-10 standard, is
available on the testing procedure of the manufacturer; hence the
properties are not directly comparable.

Generally mechanical properties scale with the density, e.g.,
low-density materials tend to have lower elastic moduli than
materials with higher densities [43]. While the results presented
are valid with respect to the AM machine tested, future work
includes theoretical testing of the method for a problem with a
more evenly spread distribution of Young’s modulus versus den-
sity and identifying other AM processes that offer such a
capability.

7.2 OC Method Application. The OC method extended to
multimaterial optimization of a lattice structure under displace-
ment constraints achieved a mass reduction while satisfying all of
the imposed constraints for both studies. The optimization prob-
lem examples are developed because no other established bench-
mark examples for discrete lattice multimaterial optimization
were found. The overall optimization results can be considered as
acceptable as the overall material density range is itself narrow
spanning from approximately 1.10–1.18 g/cm3, as shown from the
material testing in Fig. 3. The effect of this narrow material span
is clearly visible in the results in Figs. 8 and 13 when considering
two different initial starting points. The cubic lattice optimization
example shows fast convergence for both examples and the distri-
bution of material exactly as expected. The overall running time
of �24 s is extremely fast considering the number of 548 variables
and the benchmark performance of other methods as shown in
Fig. 2.

The resulting structure for the cantilever lattice example as
shown in Figs. 11, 12, and 14 conforms well to the imposed
boundary conditions. The distribution of stiff material in the first
beam section before point 1 shown in Fig. 12 relates to the con-
straint d1 as it allows a very narrow range for both the x1i ¼ 3000
MPa and x1i ¼ 10 MPa starting point examples. For the midsec-
tion of the beam between points 1 and 2, as shown in Fig. 12, the
distribution of the material favors more compliant material distri-
bution at the bottom while retaining more stiff material at the top.
This effect is more visible in the lighter solution resulting from
the starting point, x1i ¼ 10 MPa. However, as there were no other
constraints implemented, a significant 6–8mm displacement
occurs in the z-direction, measured at the tip of the beam. This
implies an addition of more constraints if this lateral displacement
is to be reduced.

The algorithm had difficulties satisfying the narrow range of
allowed displacements that are imposed by the constraints. This is
visible in Fig. 13, which shows long scaling procedures per resiz-
ing cycle. Rather than converging on an optimum to halt the opti-
mization either by relative or absolute changes in the objective
function margins (19), the stopping criterion applied is a cut-off,
which limits the duration of optimization runs. However, con-
straints that allow ranges, e.g., two inequality constraints, are not
often applied with the OC method and how to handle this success-
fully is a potential future research direction. Considering the con-
straints that are imposed, both solutions are almost front and back
face symmetric with respect to the material distribution. The other
symmetries are difficult to assess especially in view of one cell
thickness of the beam. The overall running time of �48min for
the beam example is significantly higher than the cubic lattice
optimization with a running time of �24 s. It can be calculated
that 12 iteration steps for the cantilever beam example have a run-
ning time of �69 s, which is roughly 2.9 times longer than that of
the cubic lattice example. As both examples have about the same
number of truss members, but the cantilever has more constraints,
it is concluded that it is the number of constraints that increases
the optimization running time. This can be mitigated either by a
parallel programming implementation, effectively reducing the
number of iterations but not affecting the convergence process. To
tackle the latter, the addition of other constraints and constraint
types might support the convergence process if, an appropriate
constraint handling strategy is applied with respect to the addition
and removal of the constraints from the active constraint set.

The results presented in this study are achieved considering the
following model simplifications, which will be addressed in future
work:

(a) Young’s modulus is considered as a continuous variable.
While this is theoretically possible in inkjet 3D printing, the
current machine only allows discrete material combinations.
This exact case requires integer-based selection of materials,
which might diminish the quality of the optimized design.

(b) Future extensions require the consideration of stress
�r ¼ �rðEÞ and buckling �FB ¼ �FB Eð Þ constraints, which are
material dependent. Both of the constraints are considered
as local constraints requiring more advanced constraint
handling procedures, otherwise a heavy load on computa-
tional resources is imposed [33]. It is expected that the ma-
terial dependency of both of the constraint boundaries
presents far less of a problem then satisfying a large num-
ber of local constraints during scaling procedures.

(c) OC methods require knowledge of the constraint behavior
with respect to their activity and optimum location to be
successfully implemented. This will be investigated in the
future to develop a generalized method for complex-
shaped, multimaterial lattices fabricated with AM.

7.3 Implications for a DfAM Product Design Methodology.
The empirical testing of materials, input of constraints into an
optimization model, and optimization of a final structure are all
developed in this paper as general methods within a DfAM prod-
uct design methodology (Fig. 1). In this paper, the DfAM
approach is implemented specifically for initial optimization
examples characteristic of sports helmet design, such as maximiz-
ing performance through alteration of materials within a fixed vol-
ume. Particularly, the displacement constraints investigated in the
paper form the basis of evaluation of structures for energy absorp-
tion, such that a structure should have some displacement to
absorb energy, while not too much displacement that could harm
a user. The additional example of a compliant beam that must
meet a specific displacement over a series of points is representa-
tive of the need to design a structure that conforms to a user’s
head shape comfortably. The general approaches for empirical
testing, constraint characterization, and computational optimiza-
tion are demonstrated to support optimized design of multimaterial

Fig. 14 Cantilever beam in plane displacement results for the
x1i 5 3000 MPa starting point. The allowed displacement range
is shown with two parallel lines per each constrained node pair.
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lattice structures that outperform single material lattice structures.
Once extended and generalized, the methods as a whole could form
the basis for AM-based customized design for a variety of products
beyond the helmet application. Future research will implement the
final phase of the proposed DfAM process. This involves the testing
of an optimized design to confirm the results and to potentially
refine the models based on the compared performance of the opti-
mization results with empirical measurements.

8 Conclusion

In this paper, an optimization approach using OC is developed
to facilitate effective design of complex, multimaterial products
for optimal performance within the confines of AM constraints.
The optimization approach is developed in the context of design-
ing multimaterial lattice structures as part of a larger DfAM meth-
odology and product design cycle. An OC approach is utilized
due to its potential effective use for optimizing large-scale dis-
crete structures and the possibility to extend it for multimaterial
applications. In order to adhere to DfAM considerations, empiri-
cal measurements are conducted to characterize the properties of
two printable base materials. The materials consist of a low
strength and high strength material that are combined through the
AM process to form mixtures of materials with intermediate prop-
erties. These measured material properties are used to generate
data curves that are utilized by the optimization algorithm for con-
figuring multimaterial lattices for two problems that demonstrate
a basis for the effective configuration of multimaterial products.

The application of the developed method resulted in the
reduced mass of multimaterial lattices in both examples while sat-
isfying the modeled constraints. More specifically, as shown in
cubic lattice example, the results demonstrate that the use of mul-
tiple materials in lattice applications returned higher performance
than similar structures using only a single material, thus motivat-
ing the need for multimaterial optimization approaches for prod-
uct design. The developed method also exhibited difficulties in
meeting the narrow range of displacement constraints in the sec-
ond example resulting in slow convergence, which could possibly
be mitigated both by including additional constraints, improving
constraint handling and applying parallel programming techniques
to improve the overall performance. The results and the study as a
whole demonstrate the feasibility of the OC method in developing
specific design optimization algorithms that adhere to DfAM con-
straints and enable the design of highly complex structures for
multimaterial AM. The extension of the method beyond displace-
ment constraints requires handling of dynamic stress and buckling
stress constraints and the introduction of a discrete material selec-
tion procedure to adhere to current constraints of the AM
machine. These considerations, in addition to empirical testing of
fabricated, optimized structures are important for future develop-
ment of these methods. Such advancements in optimization are
crucial for leveraging the unique manufacturing capabilities of
AM and developing new designs that surpass the performance of
those limited by traditional manufacturing technologies.
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