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A Generalized Partial Credit Model:

Application of an EM Algorithm
Eiji Muraki, Educational Testing Service

The partial credit model (PCM) with a varying
slope parameter is developed and called the

generalized partial credit model (GPCM). The item

step parameter of this model is decomposed to a
location and a threshold parameter, following
Andrich’s (1978) rating scale formulation. The EM

algorithm for estimating the model parameters is
derived. The performance of this generalized
model is compared on both simulated and real
data to a Rasch family of polytomous item
response models. Simulated data were generated
and then analyzed by the various polytomous item

response models. The results demonstrate that the

rating formulation of the GPCM is quite adaptable

to the analysis of polytomous item responses.
The real data used in this study consisted of the
National Assessment of Educational Progress
(Johnson & Allen, 1992) mathematics data that
used both dichotomous and polytomous items.
The PCM was applied to these data using both
constant and varying slope parameters. The GPCM,
which provides for varying slope parameters,
yielded better fit to the data than did the PCM.
Index terms: item response model, National Assess-
ment of Educational Progress, nominal response
model, partial credit model, polytomous response
model, rating scale model.

If responses to a test item are classified into two categories, dichotomous item response models
can be applied. When responses to an item have more than two categories, a polytomous item response
model is appropriate for the analysis of the responses. If the options on a rating scale are successively
ordered, applicable models include the graded response model (GRM) (Samejima, 1969) and its rating
scale version (Muraki, 1990a), or the partial credit model (PCM) (Masters, 1982) and its rating scale
version (Andrich, 1978). For a test item in which the response options are not necessarily ordered,
Bock (1972) proposed the nominal response model (NRM). The dichotomous item response model
can be thought of as a special case of the polytomous item response model in which the number
of categories is two.

The Partial Credit Model

A Rasch F Ily of Polytomous Item Response Models

Although the Rasch (1960) dichotomous model was developed independently of the latent trait
models of Birnbaum (1968) and Lord (1980), the basic difference between the Rasch and the other
models is the introduction of the assumption about the discriminating power of test items. These
models share the following common form:

which expresses the probability of person i, whose ability is parameterized by latent trait 0, correctly
responding to an itern j (Uj = 1). The parameter bj usually refers to item difficulty. If the
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discrimination a is assumed to vary among test items, then the model in Equation 1 is called Birn-

baum’s two-parameter logistic model. If a is assumed to be common for all items, then it can be
eliminated from the model by arbitrarily setting a = 1. This model is known as Rasch’s dichotomous

response model.

The separability of the model parameters and the existence of the minimal sufficient statistics of
the column-wise and row-wise analyses of the response data matrix (Wright & Stone, 1979) are distinct
mathematical properties of the Rasch model. These features permit a specialized parameter estima-
tion procedure-conditional maximum likelihood estimation. If the model is viewed as a latent trait
model with latent trait variable 0, the conditional likelihood of bj, given the scores of examinee i

(r;), is independent of 0. Therefore, the parameters bj can be estimated from the conditional likelihood
involving no person parameters. From this point of view, the inflection points of the model are bj.
On the other hand, if the model is viewed as a latent trait model with latent trait variable b, then
the conditional likelihood of Oi, given the scores of item j, is independent of b. Therefore, the

parameters Oi can be estimated from this conditional likelihood involving no item parameters. From
this point of view, the inflection points of the models are 0,. If the assumption is met that all items
have equal discriminations and vary only in terms of difficulty, then the Rasch model provides an

elegant and simple solution for several technical applications to test analysis and construction (Wright
& Stone, 1979).

The notable distinction between the Rasch polytomous item response models (Andrich, 1978;
Masters, 1982) and the GRM (Muraki, 1990a; Samejima, 1969) is not the number of parameters but
the difference in terms of the operating characteristic function (OCF) (Samejima, 1972). The OCF is
central to the polytomous item response models. This function expresses how the probability of a

specific categorical response is formulated according to the law of probability, as well as psychological
assumptions about item response behavior. Masters (1982) formulated his PCM by using the Rasch
dichotomous model; therefore, it is legitimate to construct the PCM based on the two-parameter logistic
response model following the same OCF Masters employed. Because the essential mechanism for con-

structing a general model is shared with Masters’ PCM, the model constructed here can be called
the generalized partial credit model (GPCM).

The Generalized Partial Credit Model

The GPCM is formulated based on the assumption that the probability of selecting the kth category
over the k minus first (k - 1) category is governed by the dichotomous response model. To develop
the PCM, denote lJk(8) as the specific probability of selecting the kth category from mj possible
categories of item j.

For each of the adjacent categories, the probability of the specific categorical response k over
k - 1 is given by the conditional probability, which is the same as Equation 1:

where k = 2, 3, ..., m~. Equation 2 then becomes

Note that C~kl(1 - C~k) is the ratio of the two conditional probabilities, which also may be expressed
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as exp[~.(6 - bj,)]. Equation 3 may be called the OCF for the PCM.
If

where G is called a normalizing factor (defined below), the following probabilities are obtained by
applying the OCF in Equation 3:

and

where is a subscript for a specific categorical response k = g. Because

and

the PCM is formulated by

where bj, --- 0.

Note that b;l is arbitrarily defined as 0. This value is not a location factor. It could be any value,
because the term including this parameter is canceled from the numerator and denominator of the
model:
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where Zj~(0) = o,(6 - b~k). The PCM in Equation 10 reduces to the dichotomous item response model
when = 2 and k = 1, 2.

Masters (1982) calls the parameters b~k in Equation 10 item step parameters. The b;k are the points
on the 0 scale at which the plots of Pk_l(8) and Pk(&reg;) intersect. These two curves-which can be
referred to as the item category response functions (ICRFS)-intersect only once, and the intersection
can occur anywhere along the 0 scale. Thus,

under the assumption aj > 0. It should be noted that b~k is not sequentially ordered within item j
because the parameter represents the relative magnitude of the adjacent probabilities ~-1(6) and Pk(&reg;).

Although the intersection points of ICRFS of the PCM are easily interpretable, the peak points of
these curves for the middle categories are not. The first derivative of Pk~&reg;) is expressed by

By setting the first derivative in this equation to 0,

Equation 14 shows that the peak of the ICRF, IJk(8), is affected by all the other probabilities, P~(~),

The parameter aj is a slope parameter for item j. The range of aj is generally assumed to be from
0 to co. In contrast to the dichotomous models, for the polytomous item response model the

discriminating power of each ICRF depends on a combination of the slope and threshold parameters.
Andrich (1978) distinguished between the discriminating powers of the two types of models and re-
tained only the threshold discrimination in his Rasch family of rating scale models (RSMS).

In the PCM, only the item discriminating power is included. This slope parameter indicates the

degree to which categorical responses vary among items as 0 level changes. This concept of item

discriminating power is closely related to the item reliability index in classical test theory. Thus, by
retaining the item discriminating power in the model, the continuity of Birnbaum’s (1968) two-

parameter model from the dichotomous to the polytomous response case, as well as the connection
with the classical test concept, is retained. The model with this slope parameter also can be extended
to the multidimensional form (Muraki, 1985, 1990b).
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Figures la, lb, and Ic show the ICRFS for the PCM with four categorical responses. Figure la shows
the ICRFs for an item with aj = 1.0, b~z = -2.0, b~3 = 0.0, and b~4 = 2.0. If bj2 and b~3 are brought
closer together by changing bj2 to -.5, then the probability of responding to the second category
decreases, as illustrated in Figure lb. In other words, the range of the 0 values of persons who are
more likely to respond to the second category than to the other categories decreases from (-2, 0)
to (-.5, 0). If the slope parameter is changed from 1.0 to .7, as shown in Figure lc, the intersection

points of all ICRFs are left unchanged, and the curves become flatter. The discriminating power of
these ICRFs decreases for all categorical responses.

Figure 2a shows the ICRFs for the PCM with three categorical responses. When the second item

step parameter is made larger than the third item step parameter (b;2 > bj,), the ICRF of Pj2 drops,
as shown in Figure 2a. For the entire range of 0 values, the probability of the first or third categorical
response is higher than the probability of the second categorical response. Figure 2a shows that every
person who is more likely to respond to the second category than to the first (or third) category,
is most likely to respond to the third (or first) category. Consequently, the marginal frequency of
the second categorical response becomes quite small compared to the other response frequencies.

If all item step parameters have the same value, as shown in Figure 2b, all ICRFs intersect at the
same value of 0. Although the values of item step parameters are not sequentially ordered, the PCM

expresses the probabilities of ordered responses.

Figure 2
PCM ICRFs for a Three-Category Item

The RSM is derived from the PCM by assuming b~k can be decomposed additively as b;k = bj - dk9

where d, = 0 and the parameter bj, is resolved into two parameters b, and dk (bjk = b; - ~). Masters
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(1982) modified Andrich’s (1978) model in Equation 15 and called it the PCM. In their models, the

slope parameter is assumed to be a constant. Samejima’s (1972) GRM also was extended to the RSM

by Muraki (1990a). Both Andrich and Muraki separated the item category threshold parameter into
an item parameter and a category parameter in the same manner. Because the RSM in Equation 15
is essentially identical to the PCM when single items are considered, this model is simply called a
rating formulation of the PCM. The rating-version of the PCM can be applied to any situations where
the PCM is fitted. The parameter b;k can be recomputed from the estimates of hj and dk (or d~k) after
the parameters are estimated. Therefore, the model in Equation 15 is called the GPCM, unless its rating
aspect is specifically emphasized.

Andrich (1982) calls bj and dk in Equation 15 an item location parameter and a threshold parameter,
respectively, Because the values of the item step parameters (b;k) are not necessarily ordered within
item j, the threshold parameters (dk) are not sequentially ordered for k = 1, 2, ..., m. The parameter
dk is interpreted as the relative difficulty of step k in comparing other steps within an item.

Parameter Estimation

Let Ujki represent an element in the matrix of the observed response pattern i. Uji = 1 if the
response to item j is in the kth category, otherwise Uj,i = 0. By the principle of local independence
(Birnbaum, 1968), the conditional probability of a response pattern i, given 0, for m response categories
and n items, as denoted by a response matrix [I1; = (Ujk)ill is the joint probability:

where l~~k = 1 if the kth category of item j is selected, otherwise Ujk = 0.
For examinees randomly sampled from a population with a normal distribution of the latent trait

variable, Ø(8), the marginal probability of the observed response pattern i is

If an examinee responds to n items with rrE categories, the examinee’s response pattern i can then

be assigned to one of m&dquo; mutually exclusive patterns. Let r, represent the number of examinees observed
in such a pattern i, and let A~ be the total number of examinees sampled from the population. Then

ri is multinomially distributed with parameters N and P[(17~k)]. Thus,

Taking the natural logarithm of Equation 18 yields

The likelihood equation for ai, hi’ and d, can be derived from the first partial derivative of Equa-
tion 19 with respect to each parameter and setting them to 0.

Item parameter estimation. Let Uj represent the parameter aj or bj. With respect to Uh, which is
the parameter uj for the specific item j = h, the likelihood in Equation 19 can be differentiated as
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Now let the observed score patterns be indexed by P = 1, 2, ..., S where S -5 min(N,m&dquo;). If the
number of examinees with response pattern is denoted by ~, then

The first derivative of the likelihood function in Equation 20 can be approximated by using the Gauss-
Hermite quadrature, such that

where

and

In Equation 22, A(Xf) is the weight of the Gauss-Hermite quadrature, and Xf is the quadrature point
(Stroud & Secrest, 1966). The quadrature weight A(Xf) is approximately the standard normal proba-
bility density at the point Xf, such that

where F is the total number of quadrature points. Because Ilhk~ can take only two possible values,
1 or 0, Equation 22 can be rewritten as

where

and rhkf is the provisional expected frequency of the kth categorical response of item h at the fth
quadrature point.

Bock and Aitkin (1981) applied the EM algorithm (Dempster, Laird, & Rubin, 1977) to estimate
the parameters for each item individually, and then repeat the iteration process over n items until
the estimates of all items become stable to the required number of decimal places. The qth cycle of
the iterative process can be expressed as

where u, and uq - are the parameter estimates of the qth and q - 1st cycles respectively, V -1 is the
inverse of the information matrix, and t is the gradient vector. For item parameter estimation, the
elements of t and V are
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and

where u, = a,, or b,, and co, = ah or bh. In Equation 30, Nf is called the provisional expected sample
size at quadrature point f and is computed by

A rigorous proof of the approximation of the second derivatives in Equation 30 by the product of
the first derivatives is given by Kendall and Stuart (1973).

The model, lJk(Xf), is a logistic function so that the evaluation of several functions stated above
becomes relatively simple in comparison with the normal ogive model. The elements of the gradient
vector and the information matrix are given by

and

where

Threshold parameter estimation. Because the threshold parameter dg, which is the parameter d,
for the specific category k = g, is contained in all ~(8) (k = 1, 2, ... , raa) as shown in Equation
15, the first derivative of the likelihood function in Equation 24 with respect to dg is given by

According to the EM algorithm and Equation 38, the maximum likelihood function in Equation 19
with respect to dg is written as
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The entry of the information matrix for g’ ~ g, then becomes

Because di is defined to be 0, the orders of the gradient vector t and the information matrix V are
rn - 1 and (m - 1) x (r~ - 1), respectively.

Comparison with the Nominal Response Model

The PCM can be rewritten by using Zjt(8) as defined in Equation 37, that is,

Equation 41 is exactly the form of the NRM proposed by Bock (1972). His original formulation of
the NRM is

where

Therefore, the NRM becomes equivalent to the PCM if the following conditions are satisfied:

and

If the item response model is for ordered categories, the odds of being in a higher score category
should be greater for an examinee with higher 0 than for an examinee with lower 0. Wainer (personal
communication, May, 1991) constructed the following inequality:

where 8, > 0. Inequality 46 can be rewritten as

Taking the natural logarithm of Inequality 47 yields

Substituting each Pk*(8~ with the NRM in Equation 42, yields
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Therefore, the more general condition for the NRM to be the model for ordered response categories is

The increment of scaling factors along the consecutive categories, shown in Equations 44 and 50,
is a hidden feature of the PCM. Because of this characteristic, the PCM becomes the model for ordered

response categories. The PCM is a special case of the NRM. In the PCM, the degree of the expansion
of scaling factors is expressed by Equation 44, that is, aj, 2aj, 3aj, etc. Andrich (1978) called this feature
the linear scoring function.

The numerator of the PCM can be rewritten as

Andrich’s RSM (Andrich, 1978), with a varying slope parameter, aj, is written as

where 7~ is the scoring function, and K, is the category coefficient. Note that Andrich’s RSM becomes
the NRM if the scoring function, T,, is treated as an estimable quantity from response data. In the

PCM, 7~ is set a priori as a series of sequential integers, which is shown in Equation 44. Andrich

(1988) further extended his RSM by reparameterizing the category coefficient so that the model in-

corporated binomial and Poisson response processes as well as linear and quadratic coefficients.
As observed above, the PCM is a special case of Bock’s (1972) NRM. Andrich’s (1978) scoring func-

tion is a key concept to understanding these model formulations. Andrich (1978, 1982, 1988) also
demonstrated that the PCM can be extended further by reparameterizing the scoring function and
the category coefficient. By using these features, the model expressing the partial order of the

categorical responses or any specific response processes may be constructed. Thissen and Steinberg
(1986) demonstrated that the nominal item response model is a basic model which can be extended
further to the ordered response model or other models, including the completely nonordered and
the partially ordered models. Their approach to the polytomous item response model using the con-
trast is quite useful for further developments with respect to these models.

Constraints on the Threshold Parameters

Integrating out a nuisance variable, 0, from the likelihood with a fixed prior, as shown in Equa-
tion 17, eliminates the indeterminacy of the item parameters, aj and b;k. Thus, for dichotomous item
responses, both slope and location parameters can be estimated without constraints. In this case,
d, is already defined to be 0.
A block of items is defined here as a set of items that share the same set of threshold parameters.

For the polytomous item response models, there is an indeterminacy between a set of threshold

parameters and location parameters of items within a block. To obtain a unique set of parameters,
a constraint, called a location constraint, must be imposed on the estimation of threshold parameters.
A location constraint is imposed so that the mean of threshold parameters within a categorical scale
is constant over blocks. A natural choice is 0, that is,
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If there are more than two blocks of items in a given questionnaire or cognitive test, estimated
location parameters can be compared within each block, but not among blocks. The location
constraint makes the comparison of location parameters over the blocks possible.

For the dichotomous item response models, a slope parameter represents the discriminating
power of the item. However, for the polytomous item response models, the discriminating power
of each item is a combination of a slope parameter and a set of threshold parameters. In other

words, each ICRF may have a different discriminating power within an item. The slope parameters
are directly comparable only when the items share the same set of threshold parameters. In this case,
the scaling factor due to the threshold parameters is controlled, and the item discriminating power
for each item is extracted. Separability of the effects due to the slope and threshold parameters on
the discriminating power needs to be investigated further.

Reparameterization of a Rasch family of polytomous item response models provides more
flexibility for the analyses of polytomous item responses. The two-parameter dichotomous item

response model becomes a special case of the GPCM. More importantly, the model can be tested
in a step-wise manner. If more than a single item is involved with a given block, a common set of
threshold parameters and slope and location parameters for each item can be estimated. The model
then can be fitted again to each item, a separate set of threshold parameters for each item can be
obtained, and the assumption about the common threshold parameters for all items included in a
block can be tested. If a common set of threshold parameters for items in a block is reasonably fitted
to polytomously scored response data, then all methodologies based on the dichotomous item

response models can be applicable without great difficulty. If item step parameters are necessary,
the model in Equation 15 can be fit by imposing the location constraint on the threshold parameters.
Then, the item step parameters, b;k, can be computed by

Thus, the model can be equally applicable to situations in which each block contains only one item
and to situations in which a test contains a mixture of dichotomous and polytomous item responses.

The IVIa~°ginal Maxi Likelihood (MML) EM Algorithm

The EM algorithm presented here is available in the PARSCALE computer program (Muraki & Bock,

1991). PARSCALE also can estimate the parameters of the GRM. Data analyses by this model were

presented by Muraki (1990a).
The MML-EM algorithm implemented in the PARSCALE program consists of two steps. The

first is the expectation step (the E step) in which the provisional expected frequency and the pro-
visional expected sample size are computed by Equations 27 and 31, respectively. Then, in the
maximization step (the M step), the MML estimates are obtained by Equation 28. Both the E step
and the M step are repeated (the EM cycle) until all estimates become stable.

Each EM cycle consists of two estimation processes. First, the threshold parameters, dkl are
estimated one block at a time with or without constraints, and then the item parameters within the
block are estimated one item at a time. Each estimation process is repeated until the values become
stable at a specified level of precision.

PARSCALE provides a likelihood ratio ~2 for each item, which is computed based on the method

Mislevy and Bock (1990) described in the manual of PC-BILOG 3. An index of model fit is computed
by summing the item fit statistics over items.
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Examples Applications

Simulated Data

5,000 Likert-type response vectors for 30 items and three categories were generated with a stan-
dard normal distribution of 0. The original parameter values were obtained from the analysis of
knowledge of physics data (Masters, 1982). The slope parameters of all items were 1.0. Masters’ item
step parameters, b,k, varied (see Table 1). The RESGEN computer program (Muraki, 1990b) was used

Table 1

Original and Estimated Item Step
Parameters for Analysis 1

to generate the simulated dataset. These data were then analyzed four times under various constraints.
10 quadrature points were used, and the precision level .0001 was set for all estimations.

In Analysis 1, the simulated data were analyzed based on Masters’ (1982) PCM. Slope parameters
were kept constant during the estimation process. The location constraint was not applied to the
estimation. Analysis 2 was identical to Analysis 1, except that the location constraint was applied.
The item step parameters, b~k, were computed from bj and d~k. Original and estimated item step
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parameter values are presented in Table 1. As shown in Table 1, the EM algorithm successfully recovered

original parameter values.

Although the location estimates, bj, were different between the results of Analyses 1 and 2, as
shown in Table 2, the values of b~k were computed from bj and d;k of Analysis 1, and they were found
to be indistinguishable from the estimated values of Analysis 2. Their -2 log likelihood statistics were
almost identical. In other words, these two models were essentially the same. However, Analysis 2
needed fewer iterations to reach the convergence criterion because the indeterminacy was eliminated.
In addition, the location estimates of Analysis 2 can be compared with each other because of the
location constraint.

Table 2

Means and Standard Deviations (SD) of Estimated Slope and Location
Parameters and -2 Log Likelihoods for Analyses 1 Through 6

In Analysis 3, the 30 items were made into a block and only one set of threshold parameters was
estimated. The slope parameters were again kept constant. No location constraint was applied to
this estimation. The -2 log likelihood was considerably higher than the solution found using Analyses
1 or 2. In other words, the assumption about a common set of threshold parameters for all 30 items
was not appropriate for these data, as would be expected based on the model used to specify the
original set of parameter values. It also should be pointed out that the mean of b, was 0 in Analysis
3. The mean of the set of location estimates was completely absorbed into the threshold parameters.
The threshold estimates were -.257 and .249. When the data were analyzed by imposing the location
constraint, the results showed that the threshold parameter estimates were shifted left by .004, and
the mean of b~ was shifted in the opposite direction by the same amount. The location constraint
again shortened the number of iterations.

Slope parameters were estimated in Analysis 4. Because a block of 30 items was set and only
one set of threshold parameters was estimated, the -2 log likelihood was higher than that obtained
in Analysis 1 or 2, but the model fit was improved compared to Analysis 3. In other words, some
portion of the categorical discriminating power was absorbed by the slope parameters.

Using the same item step parameters, another simulated dataset was generated in Analysis 5. In
this simulated dataset, various slope parameter values were used. The original slope parameters were

.3, .6, .9, 1.2, 1.5, and 1. ~ for the set of six items. This set of slope parameters was applied repeated-
ly to the remaining items. The PCM was fitted with a constant slope. The -2 log likelihood was

264,366, as shown in Table 2. When the GPCM was fit and the slope parameters were estimated

(Analysis 6), the -2 log likelihood decreased to 256,466. The difference was 7,900 with 30 degrees
of freedom (df ). The difference of the model fit statistics was 7,480 (df = 5). Thus, the model fit
was significantly improved by applying the GPCM.

Parameter estimates for the first 12 items are presented in Table 3. All slope parameters were
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Table 3

Estimated Values of Slope, Location, and Threshold Parameters for Two
Thresholds, and Standard Errors (SE) of the Estimates for Analysis 6

underestimated; consequently, all threshold parameters were overestimated. The parameters of the
first six items with various numbers of quadrature points then were repeatedly estimated. This initial

investigation (Muraki, 1992) suggested that parameters are not necessarily underestimated, and estima-
tion bias seems to decrease as the number of quadrature points increases. A reasonable number of

quadrature points may be determined by the number of items in a test and the number of response
categories. This estimation problem should be studied further.

I~lati&reg;nal Assessment of Educational Progress (NAEP) Mathematics Data

NAEP mathematics data for 1999-90 were analyzed, based on 16 items from the Grade 8 assess-
ment. 12 items were dichotomously scored, and the other four items were polytomous items for which
the number of categories varied from three to six. The number of categorical responses for each item
is the number of threshold parameters, which is shown in Table 4, pius 1. Item 10 originally had
six categories, but no student responded to the fifth category. Therefore, the item was treated as a

five-category item. The item responses of 3,679 students were used for the analysis. (The total number
of students was 3,699, but 20 students were excluded from the analysis because they omitted all items.)
33 quadrature points and a convergence criterion .001 were used for the estimation.

The PCM with a constant slope was fit to the data. The -2 log likelihood was 69,688. The fit was

significantly improved when the PCM was fit with varied slope parameters. The -2 log likelihood of
this GPCM was 68,748. The difference was 940 (df = 16). The model fit statistics for these models
were 1,577 and 957 (df = 188 and 189, respectively). Thus, the difference of the fit statistics, 620,
also indicates a significant improvement. The estimated parameters are presented in Table 4.

The location constraint for each set of threshold parameters was applied. Therefore, the location
estimates are comparable. The higher location estimates indicate more difficult items. Item 6 was
the easiest item, and Item 11 was the most difficult. More than 80% of the students correctly responded
to Item 6, and only 49% of the students could answer Item 11 correctly. The slope parameters of
the polytomous items tended to be lower than the dichotomous items, because the overall discriminating
power of these polytomous items was shared by the dispersion of threshold parameters as well as
the slope parameters.

For the polytomous item response model, the parameter values must be interpreted with the aid
of the graphical presentation of the ICRFS. Figure 3a shows the ~c~~’s of Item 13, and Figure 3b
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Table 4

Estimated Slope, Location, and Threshold (T) Parameters and Their SEs for the NAEP Math Data

shows ICRFS for Item 14. For Item 13, the proportions of categorical responses from 1 to 3 were .45,
.10, and .46, respectively. For Item 14, the proportions were .64, .01, and .35, respectively. Item 14

(b14 = .603) was more difficult than Item 13 (b,3 = .058). Therefore, the ICRFS of Item 14 are shifted
to the right compared to those of Item 13. Because Item 14 discriminated more highly between the
first categorical response and the third categorical response, compared to Item 13, its item

discriminating power was higher (â14 = .946) than that of Item 13 (â13 = .778). Both figures show
that the ICRF of the first and third categorical responses dominate over the middle category. The
ICRF of the middle category in Item 14 is flatter than that of Item 13 because fewer students responded
to the middle category of Item 14 than Item 13.

Conclusions

This study has demonstrated that the rating formulation of the PCM is quite flexible for analyz-
ing polytomous item responses. The Rasch family of polytomous item response models was found
to be inappropriate if the response data contain varying slope parameters. For this type of data, the
marginal maximum likelihood estimation method with the EM algorithm can recover the slope
parameters, and fitting the GPCM can improve the model fit.

It was assumed that the NAEP data were unidimensional. Because the slope parameters can be
estimated without any constraints, the GPCM can be extended to the multidimensional model in the
same way that Bock, Gibbons, and Muraki (1988) developed the multidimensional item response model
based on the dichotomous model. The EM algorithm for the full-information factor analysis model
for polytomous item responses was derived by Muraki (1985).

Polytomous item response data are often analyzed by assigning numeric scores to the response
categories, based on the assumption that the observed categorical responses are quantitative and con-
tinuous. However, the actual intervals between adjacent categories are generally unknown in advance.

Recently, the demand for the analysis of polytomous item responses has increased. The polytomous
item response model can facilitate this type of analysis and create further applications. Investigation
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Figure 3
PCM ICRFs for Three-Category NAEP Mathematics Items

has begun only recently on polytomous item response models. Some of the knowledge acquired through
research about the dichotomous item response models can be applied directly to the polytomous item

response models, but the basic properties of the model parameters also need to be studied.
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