
Journal of Machine Learning Research 11 (2010) 3137-3181 Submitted 1/10; Revised 7/10; Published 11/10

A Generalized Path Integral Control Approach

to Reinforcement Learning

Evangelos A.Theodorou ETHEODOR@USC.EDU

Jonas Buchli JONAS@BUCHLI.ORG

Stefan Schaal∗ SSCHAAL@USC.EDU

Department of Computer Science

University of Southern California

Los Angeles, CA 90089-2905, USA

Editor: Daniel Lee

Abstract

With the goal to generate more scalable algorithms with higher efficiency and fewer open parame-

ters, reinforcement learning (RL) has recently moved towards combining classical techniques from

optimal control and dynamic programming with modern learning techniques from statistical esti-

mation theory. In this vein, this paper suggests to use the framework of stochastic optimal control

with path integrals to derive a novel approach to RL with parameterized policies. While solidly

grounded in value function estimation and optimal control based on the stochastic Hamilton-Jacobi-

Bellman (HJB) equations, policy improvements can be transformed into an approximation problem

of a path integral which has no open algorithmic parameters other than the exploration noise. The

resulting algorithm can be conceived of as model-based, semi-model-based, or even model free,

depending on how the learning problem is structured. The update equations have no danger of

numerical instabilities as neither matrix inversions nor gradient learning rates are required. Our

new algorithm demonstrates interesting similarities with previous RL research in the framework

of probability matching and provides intuition why the slightly heuristically motivated probability

matching approach can actually perform well. Empirical evaluations demonstrate significant per-

formance improvements over gradient-based policy learning and scalability to high-dimensional

control problems. Finally, a learning experiment on a simulated 12 degree-of-freedom robot dog

illustrates the functionality of our algorithm in a complex robot learning scenario. We believe that

Policy Improvement with Path Integrals (PI2) offers currently one of the most efficient, numeri-

cally robust, and easy to implement algorithms for RL based on trajectory roll-outs.

Keywords: stochastic optimal control, reinforcement learning, parameterized policies

1. Introduction

While reinforcement learning (RL) is among the most general frameworks of learning control to cre-

ate truly autonomous learning systems, its scalability to high-dimensional continuous state-action

systems, for example, humanoid robots, remains problematic. Classical value-function based meth-

ods with function approximation offer one possible approach, but function approximation under the

non-stationary iterative learning process of the value-function remains difficult when one exceeds

about 5-10 dimensions. Alternatively, direct policy learning from trajectory roll-outs has recently

made significant progress (Peters, 2007), but can still become numerically brittle and full of open
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tuning parameters in complex learning problems. In new developments, RL researchers have started

to combine the well-developed methods from statistical learning and empirical inference with clas-

sical RL approaches in order to minimize tuning parameters and numerical problems, such that ulti-

mately more efficient algorithms can be developed that scale to significantly more complex learning

system (Dayan and Hinton, 1997; Koeber and Peters, 2008; Peters and Schaal, 2008c; Toussaint

and Storkey, 2006; Ghavamzadeh and Yaakov, 2007; Deisenroth et al., 2009; Vlassis et al., 2009;

Jetchev and Toussaint, 2009).

In the spirit of these latter ideas, this paper addresses a new method of probabilistic reinforce-

ment learning derived from the framework of stochastic optimal control and path integrals, based on

the original work of Kappen (2007) and Broek et al. (2008). As will be detailed in the sections be-

low, this approach makes an appealing theoretical connection between value function approximation

using the stochastic HJB equations and direct policy learning by approximating a path integral, that

is, by solving a statistical inference problem from sample roll-outs. The resulting algorithm, called

Policy Improvement with Path Integrals (PI2), takes on a surprisingly simple form, has no open

algorithmic tuning parameters besides the exploration noise, and it has numerically robust perfor-

mance in high dimensional learning problems. It also makes an interesting connection to previous

work on RL based on probability matching (Dayan and Hinton, 1997; Peters and Schaal, 2008c;

Koeber and Peters, 2008) and motivates why probability matching algorithms can be successful.

This paper is structured into several major sections:

• Section 2 addresses the theoretical development of stochastic optimal control with path in-

tegrals. This is a fairly theoretical section. For a quick reading, we would recommend Sec-

tion 2.1 for our basic notation, and Table 1 for the final results. Exposing the reader to a

sketch of the details of the derivations opens the possibility to derive path integral optimal

control solutions for other dynamical systems than the one we address in Section 2.1.

The main steps of the theoretical development include:

– Problem formulation of stochastic optimal control with the stochastic Hamilton-Jacobi-

Bellman (HJB) equation

– The transformation of the HJB into a linear PDE

– The generalized path integral formulation for control systems with controlled and un-

controlled differential equations

– General derivation of optimal controls for the path integral formalism

– Path integral optimal control applied to special cases of control systems

• Section 3 relates path integral optimal control to reinforcement learning. Several main issues

are addressed:

– Reinforcement learning with parameterized policies

– Dynamic Movement Primitives (DMP) as a special case of parameterized policies,

which matches the problem formulation of path integral optimal control.

– Derivation of Policy Improvement with Path Integrals (PI2), which is an application of

path integral optimal control to DMPs.

• Section 4 discusses related work.
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• Section 5 illustrates several applications of PI2 to control problems in robotics.

• Section 6 addresses several important issues and characteristics of RL with PI2.

2. Stochastic Optimal Control with Path Integrals

The goal in stochastic optimal control framework is to control a stochastic dynamical system while

minimizing a performance criterion. Therefore, stochastic optimal control can be thought as a con-

strained optimization problem in which the constrains corresponds to stochastic dynamical systems.

The analysis and derivations of stochastic optimal control and path integrals in the next sections rely

on the Bellman Principle of optimality (Bellman and Kalaba, 1964) and the HJB equation.

2.1 Stochastic Optimal Control Definition and Notation

For our technical developments, we will use largely a control theoretic notation from trajectory-

based optimal control, however, with an attempt to have as much overlap as possible with the

standard RL notation (Sutton and Barto, 1998). Let us define a finite horizon cost function for a

trajectory τi (which can also be a piece of a trajectory) starting at time ti in state xti and ending at

time1 tN

R(τi) = φtN +
∫ tN

ti

rt dt, (1)

with φtN = φ(xtN ) denoting a terminal reward at time tN and rt denoting the immediate cost at time

t. In stochastic optimal control (Stengel, 1994), the goal is to find the controls ut that minimize the

value function:

V (xti) =Vti = min
uti:tN

Eτi
[R(τi)] , (2)

where the expectation Eτi
[.] is taken over all trajectories starting at xti . We consider the rather

general class of control systems:

ẋt = f(xt , t)+G(xt)(ut + εt) = ft +Gt (ut + εt) , (3)

with xt ∈ ℜ n×1 denoting the state of the system, Gt = G(xt) ∈ ℜ n×p the control matrix, ft = f(xt) ∈
ℜ n×1 the passive dynamics, ut ∈ ℜ p×1 the control vector and εt ∈ ℜ p×1 Gaussian noise with vari-

ance Σε. As immediate cost we consider

rt = r(xt ,ut , t) = qt +
1

2
uT

t Rut , (4)

where qt = q(xt , t) is an arbitrary state-dependent cost function, and R is the positive semi-definite

weight matrix of the quadratic control cost. The stochastic HJB equation (Stengel, 1994; Fleming

and Soner, 2006) associated with this stochastic optimal control problem is expressed as follows:

−∂tVt = min
u

(

rt +(∇ xVt)
T Ft +

1

2
trace

(

(∇ xxVt)GtΣεGT
t

)

)

, (5)

1. If we need to emphasize a particular time, we denote it by ti, which also simplifies a transition to discrete time

notation later. We use t without subscript when no emphasis is needed when this “time slice” occurs, t0 for the start

of a trajectory, and tN for the end of a trajectory.
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where Ft is defined as Ft = f(xt , t)+G(xt)ut . To find the minimum, the cost function (4) is

inserted into (5) and the gradient of the expression inside the parenthesis is taken with respect to

controls u and set to zero. The corresponding optimal control is given by the equation:

u(xt) = ut =−R−1GT
t (∇ xt

Vt).

Substitution of the optimal control above, into the stochastic HJB (5), results in the following

nonlinear and second order Partial Differential Equation (PDE):

−∂tVt = qt +(∇ xVt)
T ft −

1

2
(∇ xVt)

T GtR
−1GT

t (∇ xVt)+
1

2
trace

(

(∇ xxVt)GtΣεGT
t

)

.

The ∇ x and ∇ xx symbols refer to the Jacobian and Hessian, respectively, of the value function

with respect to the state x, while ∂t is the partial derivative with respect to time. For notational

compactness, we will mostly use subscripted symbols to denote time and state dependencies, as

introduced in the equations above.

2.2 Transformation of HJB into a Linear PDE

In order to find a solution to the PDE above, we use a exponential transformation of the value

function:

Vt =−λ logΨt .

Given this logarithmic transformation, the partial derivatives of the value function with respect to

time and state are expressed as follows:

∂tVt =−λ
1

Ψt

∂tΨt ,

∇ xVt =−λ
1

Ψt

∇ xΨt ,

∇ xxVt = λ
1

Ψ2
t

∇ xΨt ∇ xΨT
t −λ

1

Ψt

∇ xxΨt .

Inserting the logarithmic transformation and the derivatives of the value function we obtain:

λ
Ψt

∂tΨt = qt −
λ
Ψt

(∇ xΨt)
T ft −

λ2

2Ψ2
t

(∇ xΨt)
T GtR

−1GT
t (∇ xΨt)+

1

2
trace(Γ) , (6)

where the term Γ is expressed as:

Γ =

(

λ
1

Ψ2
t

∇ xΨt ∇ xΨT
t −λ

1

Ψt

∇ xxΨt

)

GtΣεGT
t .

The trace of Γ is therefore:

trace(Γ) = λ
1

Ψ2
trace

(

∇ xΨT
t GtΣεGt ∇ xΨt

)

−λ
1

Ψt

trace
(

∇ xxΨtGtΣεGT
t

)

. (7)
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Comparing the underlined terms in (6) and (7), one can recognize that these terms will cancel

under the assumption of λR−1 = Σε, which implies the simplification:

λGtR
−1GT

t = GtΣεGT
t = Σ(xt) = Σt . (8)

The intuition behind this assumption (cf. also Kappen, 2007; Broek et al., 2008) is that, since the

weight control matrix R is inverse proportional to the variance of the noise, a high variance control

input implies cheap control cost, while small variance control inputs have high control cost. From

a control theoretic stand point such a relationship makes sense due to the fact that under a large

disturbance (= high variance) significant control authority is required to bring the system back to a

desirable state. This control authority can be achieved with corresponding low control cost in R.

With this simplification, (6) reduces to the following form

−∂tΨt =−
1

λ
qtΨt + fT

t (∇ xΨt)+
1

2
trace

(

(∇ xxΨt)GtΣεGT
t

)

, (9)

with boundary condition: ΨtN = exp
(

− 1
λ φtN

)

. The partial differential equation (PDE) in (9) corre-

sponds to the so called Chapman Kolmogorov PDE, which is of second order and linear. Analytical

solutions of (9) cannot be found in general for general nonlinear systems and cost functions. How-

ever, there is a connection between solutions of PDEs and their representation as stochastic differ-

ential equation (SDEs), that is mathematically expressed by the Feynman-Kac formula (Øksendal,

2003; Yong, 1997). The Feynman-Kac formula (see appendix B) can be used to find distributions

of random processes which solve certain SDEs as well as to propose numerical methods for solving

certain PDEs. Applying the Feynman-Kac theorem, the solution of (9) is:

Ψti = Eτi

(

ΨtN e−
∫ tN

ti
1
λ qt dt

)

= Eτi

[

exp

(

−1

λ
φtN −

1

λ

∫ tN

ti

qt dt

)]

. (10)

Thus, we have transformed our stochastic optimal control problem into the approximation prob-

lem of a path integral. With a view towards a discrete time approximation, which will be needed for

numerical implementations, the solution (10) can be formulated as:

Ψti = lim
dt→0

∫
p(τi|xi)exp

[

−1

λ

(

φtN +
N−1

∑
j=i

qt j
dt

)]

dτi, (11)

where τi = (xti , .....,xtN) is a sample path (or trajectory piece) starting at state xti and the term

p(τi|xi) is the probability of sample path τi conditioned on the start state xti . Since Equation (11)

provides the exponential cost to go Ψti in state xti , the integration above is taken with respect to

sample paths τi = (xti ,xti+1 , .....,xtN). The differential term dτi is defined as dτi = (dxti , .....,dxtN ).
Evaluation of the stochastic integral in (11) requires the specification of p(τi|xi), which is the topic

of our analysis in the next section.

2.3 Generalized Path Integral Formulation

To develop our algorithms, we will need to consider a more general development of the path integral

approach to stochastic optimal control than presented in Kappen (2007) and Broek et al. (2008). In

particular, we have to address that in many stochastic dynamical systems, the control transition

matrix Gt is state dependent and its structure depends on the partition of the state in directly and
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non-directly actuated parts. Since only some of the states are directly controlled, the state vector

is partitioned into x = [x(m)T
x(c)

T
]T with x(m) ∈ ℜ k×1 the non-directly actuated part and x(c) ∈

ℜ l×1the directly actuated part. Subsequently, the passive dynamics term and the control transition

matrix can be partitioned as ft = [f
(m)
t

T
f
(c)
t

T
]T with fm ∈ ℜ k×1, fc ∈ ℜ l×1 and Gt = [0k×p G

(c)
t

T
]T

with G
(c)
t ∈ ℜ l×p. The discretized state space representation of such systems is given as:

xti+1 = xti + ftidt +Gti

(

utidt +
√

dtεti

)

,

or, in partitioned vector form:

(

x
(m)
ti+1

x
(c)
ti+1

)

=

(

x
(m)
ti

x
(c)
ti

)

+

(

f
(m)
ti

f
(c)
ti

)

dt +

(

0k×p

G
(c)
ti

)

(

utidt +
√

dtεti

)

. (12)

Essentially the stochastic dynamics are partitioned into controlled equations in which the state

x
(c)
ti+1

is directly actuated and the uncontrolled equations in which the state x
(m)
ti+1

is not directly actu-

ated. Since stochasticity is only added in the directly actuated terms (c) of (12), we can develop

p(τi|xi) as follows.

p(τi|xti) = p(τi+1|xti)

= p(xtN , .....,xti+1|xti)

= ΠN−1
j=i p

(

xt j+1 |xt j

)

,

where we exploited the fact that the start state xti of a trajectory is given and does not contribute

to its probability. For systems where the control has lower dimensionality than the state (12), the

transition probabilities p
(

xt j+1 |xt j

)

are factorized as follows:

p
(

xt j+1 |xt j

)

= p
(

x
(m)
t j+1
|xt j

)

· p
(

x
(c)
t j+1
|xt j

)

= p
(

x
(m)
t j+1
|x(m)

t j
,x

(c)
t j

)

· p
(

x
(c)
t j+1
|x(m)

t j
,x

(c)
t j

)

∝ p
(

x
(c)
t j+1
|xt j

)

, (13)

where we have used the fact that p
(

x
(m)
ti+1
|x(m)

ti ,x
(c)
ti

)

is the Dirac delta function, since x
(m)
t j+1

can be

computed deterministically from x
(m)
t j

,x
(c)
t j

. For all practical purposes,2 the transition probability of

the stochastic dynamics is reduced to the transition probability of the directly actuated part of the

state:

p(τi|xti) = ΠN−1
j=i p

(

xt j+1 |xt j

)

∝ Π N−1
j=i p

(

x
(c)
t j+1
|xt j

)

. (14)

Since we assume that the noise ε is zero mean Gaussian distributed with variance Σε, where

Σε ∈ ℜ l×l , the transition probability of the directly actuated part of the state is defined as:3

p
(

x
(c)
t j+1
|xt j

)

=
1

(

(2π)l · |Σt j
|
)1/2

exp

(

−1

2

w

w

w
x
(c)
t j+1
−x

(c)
t j
− f

(c)
t j

dt

w

w

w

2

Σ−1
t j

)

, (15)

2. The delta functions will all integrate to 1 in the path integral.

3. For notational simplicity, we write weighted square norms (or Mahalanobis distances) as vT Mv = ‖v‖2
M.
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where the covariance Σt j
∈ ℜ l×l is expressed as Σt j

= G
(c)
t j

ΣεG
(c)
t j

T
dt. Combining (15) and (14)

results in the probability of a path expressed as:

p(τi|xti) ∝
1

ΠN−1
j=i

(

(2π)l‖Σt j
|
)1/2

exp

(

−1

2

N−1

∑
j=1

w

w

w
x
(c)
t j+1
−x

(c)
t j
− f

(c)
t j

dt

w

w

w

2

Σ−1
t j

)

.

Finally, we incorporate the assumption (8) about the relation between the control cost and the vari-

ance of the noise, which needs to be adjusted to the controlled space as Σt j
= G

(c)
t j

ΣεG
(c)
t j

T
dt =

λG
(c)
t j

R−1G
(c)
t j

T
dt = λHt j

dt with Ht j
= G

(c)
t j

R−1G
(c)
t j

T
. Thus, we obtain:

p(τi|xti) ∝
1

ΠN−1
j=i

(

(2π)l|Σt j
|
)1/2

exp



− 1

2λ

N−1

∑
j=i

w

w

w

w

w

x
(c)
t j+1
−x

(c)
t j

dt
− f

(c)
t j

w

w

w

w

w

2

H−1
t j

dt



.

With this formulation of the probability of a trajectory, we can rewrite the the path integral (11)

as:

Ψti = lim
dt→0

∫ exp



− 1
λ



φtN +∑N−1
j=i qt j

dt + 1
2 ∑N−1

j=i

w

w

w

w

x
(c)
t j+1
−x

(c)
t j

dt
− f

(c)
t j

w

w

w

w

2

H−1
t j

dt









ΠN−1
j=i

(

(2π)l/2|Σt j
|1/2
) dτ(c)i

= lim
dt→0

∫
1

D(τi)
exp

(

−1

λ
S(τi

)

dτ(c)i , (16)

where, we defined

S(τi) = φtN +
N−1

∑
j=i

qt j
dt +

1

2

N−1

∑
j=i

w

w

w

w

w

x
(c)
t j+1
−x

(c)
t j

dt
− f

(c)
t j

w

w

w

w

w

2

H−1
t j

dt,

and

D(τi) = ΠN−1
j=i

(

(2π)l/2|Σt j
|1/2
)

.

Note that the integration is over dτ(c)i =
(

dx
(c)
ti , .....,dx

(c)
tN

)

, as the non-directly actuated states

can be integrated out due to the fact that the state transition of the non-directly actuated states is

deterministic, and just added Dirac delta functions in the integral (cf. Equation (13)). Equation (16)

is written in a more compact form as:

Ψti = lim
dt→0

∫
exp

(

−1

λ
S(τi)− logD(τi)

)

dτ(c)i

= lim
dt→0

∫
exp

(

−1

λ
Z(τi)

)

dτ(c)i , (17)

where Z(τi) = S(τi)+λ logD(τi). It can be shown that this term is factorized in path dependent

and path independent terms of the form:
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Z(τi) = S̃(τi)+
λ(N− i)l

2
log(2πdtλ) ,

where S̃(τi) = S(τi) +
λ
2 ∑N−1

j=i log |Ht j
|. This formula is a required step for the derivation of

optimal controls in the next section. The constant term
λ(N−i)l

2 log(2πdtλ) can be the source of

numerical instabilities especially in cases where fine discretization dt of stochastic dynamics is

required. However, in the next section, and in a great detail in Appendix A, lemma 1, we show how

this term drops out of the equations.

2.4 Optimal Controls

For every moment of time, the optimal controls are given as uti = −R−1GT
ti
(∇ xti

Vti). Due to the

exponential transformation of the value function, the equation of the optimal controls can be written

as

uti = λR−1Gti

∇ xti
Ψti

Ψti

.

After substituting Ψti with (17) and canceling the state independent terms of the cost we have:

uti = lim
dt→0






λR−1GT

ti

∇
x
(c)
ti

(∫
e−

1
λ S̃(τi)dτ(c)i

)

∫
e−

1
λ S̃(τi)dτ(c)i






,

Further analysis of the equation above leads to a simplified version for the optimal controls as

uti =
∫

P(τi)uL (τi)dτ(c)i , (18)

with the probability P(τi) and local controls uL (τi) defined as

P(τi) =
e
− 1

λ S̃(τi)

∫
e
− 1

λ S̃(τi)dτi

(19)

uL (τi) =−R−1G
(c)
ti

T lim
dt→0

(

∇
x
(c)
ti

S̃(τi)

)

.

The path cost S̃(τi) is a generalized version of the path cost in Kappen (2005a) and Kappen (2007),

which only considered systems with state independent control transition4 Gti . To find the local

controls uL (τi) we have to calculate the limdt→0 ∇
x
(c)
ti

S̃(τi). Appendix A and more precisely lemma

2 shows in detail the derivation of the final result:

lim
dt→0

(

∇
x
(c)
ti

S̃(τi)

)

=−H−1
ti

(

G
(c)
ti εti−bti

)

,

where the new term bti is expressed as bti = λHtiΦti and Φti ∈ ℜ l×1 is a vector with the jth element

defined as:

(Φti) j =
1

2
trace

(

H−1
ti

(

∂
[x

(c)
ti
] j

Hti

))

.

4. More precisely if G
(c)
ti

= G(c) then the term λ
2 ∑N−1

j=i log |Ht j
| disappears since it is state independent and it appears in

both nominator and denominator in (19). In this case, the path cost is reduced to S̃(τi) = S(τi).
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The local control can now be expressed as:

uL(τi) = R−1G
(c)
ti

T H−1
ti

(

G
(c)
ti εti−bti

)

,

By substituting Hti = G
(c)
ti R−1G

(c)
ti

T in the equation above, we get our main result for the local

controls of the sampled path for the generalized path integral formulation:

uL(τi) = R−1G
(c)
ti

T
(

G
(c)
ti R−1G

(c)
ti

T
)−1(

G
(c)
ti εti−bti

)

. (20)

The equations in boxes (18), (19) and (20) form the solution for the generalized path integral

stochastic optimal control problem. Given that this result is of general value and constitutes the

foundation to derive our reinforcement learning algorithm in the next section, but also since many

other special cases can be derived from it, we summarized all relevant equations in Table 1.

The Given components of Table 1 include a model of the system dynamics, the cost function,

knowledge of the system’s noise process, and a mechanism to generate trajectories τi. It is important

to realize that this is a model-based approach, as the computations of the optimal controls requires

knowledge of εi. εi can be obtained in two ways. First, the trajectories τi can be generated purely

in simulation, where the noise is generated from a random number generator. Second, trajectories

could be generated by a real system, and the noise εi would be computed from the difference be-

tween the actual and the predicted system behavior, that is, G
(c)
ti εi = ẋti − ˆ̇xti = ẋti − (fti +Gtiuti).

Computing the prediction ˆ̇xti also requires a model of the system dynamics.

Previous results in Kappen (2005a), Kappen (2007), Kappen (2005b) and Broek et al. (2008)

are special cases of our generalized formulation. In the next section we show how our generalized

formulation is specialized to different classes of stochastic dynamical systems and we provide the

corresponding formula of local controls for each class.

2.5 Special Cases

The purpose of this section is twofold. First, it demonstrates how to apply the path integral approach

to specialized forms of dynamical systems, and how the local controls in (20) simplify for these

cases. Second, this section prepares the special case which we will need for our reinforcement

learning algorithm in Section 3.

2.5.1 SYSTEMS WITH ONE DIMENSIONAL DIRECTLY ACTUATED STATE

The generalized formulation of stochastic optimal control with path integrals in Table 1 can be

applied to a variety of stochastic dynamical systems with different types of control transition matri-

ces. One case of particular interest is where the dimensionality of the directly actuated part of the

state is 1D, while the dimensionality of the control vector is 1D or higher dimensional. As will be

seen below, this situation arises when the controls are generated by a linearly parameterized func-

tion approximator. The control transition matrix thus becomes a row vector G
(c)
ti = g

(c)T
ti ∈ ℜ 1×p.

According to (20), the local controls for such systems are expressed as follows:

uL(τi) =
R−1g

(c)
ti

g
(c)T
ti R−1g

(c)
ti

(

g
(c)T
ti εti−bti

)

.
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• Given:

– The system dynamics ẋt = ft +Gt (ut + εt) (cf. 3)

– The immediate cost rt = qt +
1
2 uT

t Rut (cf. 4)

– A terminal cost term φtN (cf. 1)

– The variance Σε of the mean-zero noise εt

– Trajectory starting at ti and ending at tN : τi = (xti , .....,xtN)

– A partitioning of the system dynamics into (c) controlled and (m) uncontrolled equa-

tions, where n = c+m is the dimensionality of the state xt (cf. Section 2.3)

• Optimal Controls:

– Optimal controls at every time step ti: uti =
∫

P(τi)u(τi)dτ(c)i

– Probability of a trajectory: P(τi) =
e
− 1

λ S̃(τi)

∫
e
− 1

λ S̃(τi)dτi

– Generalized trajectory cost: S̃(τi) = S(τi)+
λ
2 ∑N−1

j=i log |Ht j
| where

∗ S(τi) = φtN +∑N−1
j=i qt j

dt + 1
2 ∑N−1

j=i

w

w

w

w

x
(c)
t j+1
−x

(c)
t j

dt
− f

(c)
t j

w

w

w

w

2

H−1
t j

dt

∗ Ht j
= G

(c)
t j

R−1G
(c)
t j

T

– Local Controls: uL(τi) = R−1G
(c)
ti

T
(

G
(c)
ti R−1G

(c)
ti

T
)−1(

G
(c)
ti εti−bti

)

where

∗ bti = λHtiΦti

∗ [Φti ] j =
1
2 trace

(

H−1
ti

(

∂
[x

(c)
ti
] j

Hti

))

Table 1: Summary of optimal control derived from the path integral formalizm.

Since the directly actuated part of the state is 1D, the vector x
(c)
ti collapses into the scalar x

(c)
ti

which appears in the partial differentiation above. In the case that g
(c)
ti does not depend on x

(c)
ti , the

differentiation with respect to x
(c)
ti results to zero and the the local controls simplify to:

uL(τi) =
R−1g

(c)
ti g

(c)T
ti

g
(c)T
ti R−1g

(c)
ti

εti .

2.5.2 SYSTEMS WITH PARTIALLY ACTUATED STATE

The generalized formula of the local controls (20) was derived for the case where the control transi-

tion matrix is state dependent and its dimensionality is G
(c)
t ∈ ℜ l×p with l < n and p the dimension-

ality of the control. There are many special cases of stochastic dynamical systems in optimal control
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and robotic applications that belong into this general class. More precisely, for systems having a

state dependent control transition matrix that is square (G
(c)
ti ∈ ℜ l×l with l = p) the local controls

based on (20) are reformulated as:

uL(τi) = εti−G
(c)
ti

−1
bti . (21)

Interestingly, a rather general class of mechanical systems such as rigid-body and multi-body

dynamics falls into this category. When these mechanical systems are expressed in state space

formulation, the control transition matrix is equal to rigid body inertia matrix G
(c)
ti = M(θti) (Sci-

avicco and Siciliano, 2000). Future work will address this special topic of path integral control for

multi-body dynamics.

Another special case of systems with partially actuated state is when the control transition matrix

is state independent and has dimensionality G
(c)
t = G(c) ∈ ℜ l×p. The local controls, according to

(20), become:

uL(τi) = R−1G(c)T
(

G(c)R−1G(c)T
)−1

G(c)εti . (22)

If G
(c)
ti is square and state independent, G

(c)
ti = G(c) ∈ ℜ l×l , we will have:

uL(τi) = εti . (23)

This special case was explored in Kappen (2005a), Kappen (2007), Kappen (2005b) and Broek

et al. (2008). Our generalized formulation allows a broader application of path integral control

in areas like robotics and other control systems, where the control transition matrix is typically

partitioned into directly and non-directly actuated states, and typically also state dependent.

2.5.3 SYSTEMS WITH FULLY ACTUATED STATE SPACE

In this class of stochastic systems, the control transition matrix is not partitioned and, therefore, the

control u directly affects all the states. The local controls for such systems are provided by simply

substituting G
(c)
ti ∈ ℜ n×p in (20) with Gti ∈ ℜ n×n. Since Gti is a square matrix we obtain:

uL(τi) = εti−G−1
ti

bti ,

with bti = λHtiΦti and

(Φti) j =
1

2
trace

(

H−1
ti

(

∂(xti
) j

Hti

))

,

where the differentiation is not taken with respect to (x
(c)
ti ) j but with respect to the full state (xti) j.

For this fully actuated state space, there are subclasses of dynamical systems with square and/or

state independent control transition matrix. The local controls for these cases are found by just

substituting G
(c)
ti with Gti in (21), (22) and (23).

3. Reinforcement Learning with Parameterized Policies

Equipped with the theoretical framework of stochastic optimal control with path integrals, we can

now turn to its application to reinforcement learning with parameterized policies. Since the be-

ginning of actor-critic algorithms (Barto et al., 1983), one goal of reinforcement learning has been
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to learn compact policy representations, for example, with neural networks as in the early days of

machine learning (Miller et al., 1990), or with general parameterizations (Peters, 2007; Deisenroth

et al., 2009). Parameterized policies have much fewer parameters than the classical time-indexed

approach of optimal control, where every time step has it own set of parameters, that is, the optimal

controls at this time step. Usually, function approximation techniques are used to represent the op-

timal controls and the open parameters of the function approximator become the policy parameters.

Function approximators use a state representation as input and not an explicit time dependent rep-

resentation. This representation allows generalization across states and promises to achieve better

generalization of the control policy to a larger state space, such that policies become re-usable and

do not have to be recomputed in every new situation.

The path integral approach from the previous sections also follows the classical time-based

optimal control strategy, as can be seen from the time dependent solution for optimal controls in

(33). However, a minor re-interpretation of the approach and some small mathematical adjustments

allow us to carry it over to parameterized policies and reinforcement learning, which results in a

new algorithm called Policy Improvement with Path Integrals (PI2).

3.1 Parameterized Policies

We are focusing on direct policy learning, where the parameters of the policy are adjusted by a

learning rule directly, and not indirectly as in value function approaches of classical reinforcement

learning (Sutton and Barto, 1998)—see Peters (2007) for a discussion of pros and cons of direct

vs. indirect policy learning. Direct policy learning usually assumes a general cost function (Sutton

et al., 2000; Peters, 2007) in the form of

J(x0) =
∫

p(τ0)R(τ0)dτ0, (24)

which is optimized over states-action trajectories5 τ0 =(xt0 ,at0 , ...,xtN ). Under the first order Markov

property, the probability of a trajectory is

p(τi) = p(xti)Π
N−1
j=i p(xt j+1 |xt j

,at j
)p(at j

|xt j
).

Both the state transition and the policy are assumed to be stochastic. The particular formulation

of the stochastic policy is a design parameter, motivated by the application domain, analytical con-

venience, and the need to inject exploration during learning. For continuous state action domains,

Gaussian distributions are most commonly chosen (Gullapalli, 1990; Williams, 1992; Peters, 2007).

An interesting generalized stochastic policy was suggested in Rueckstiess et al. (2008) and applied

in Koeber and Peters (2008), where the stochastic policy p(ati |xti) is linearly parameterized as:

ati = gT
ti
(θ+ εti), (25)

with gti denoting a vector of basis functions and θ the parameter vector. This policy has state de-

pendent noise, which can contribute to faster learning as the signal-to-noise ratio becomes adaptive

since it is a function of gti . It should be noted that a standard additive-noise policy can be expressed

in this formulation, too, by choosing one basis function (gti) j = 0. For Gaussian noise ε the proba-

bility of an action is p(ati |xti) = N
(

θT gti ,Σti

)

with Σti = gT
ti

Σεgti . Comparing the policy formulation

5. We use at to denote actions here in order to avoid using the symbol u in a conflicting way in the equations below, and

to emphasize that an action does not necessarily coincide with the control command to a physical system.
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in (25) with the control term in (3), one recognizes that the control policy formulation (25) should

fit into the framework of path integral optimal control.

3.2 Generalized Parameterized Policies

Before going into more detail of our proposed reinforcement learning algorithm, it is worthwhile

contemplating what the action at actually represents. In many applications of stochastic optimal

control there are three main problems to be considered: i) trajectory planning, ii) feedforward con-

trol, and iii) feedback control. The results of optimization could thus be an optimal kinematic

trajectory, the corresponding feedforward commands to track the desired trajectory accurately in

face of the system’s nonlinearities, and/or time varying linear feedback gains (gain scheduling) for

a negative feedback controller that compensates for perturbations from accurate trajectory tracking.

There are very few optimal control algorithms which compute all three issues simultaneously,

such as Differential Dynamic Programming(DDP) (Jacobson and Mayne, 1970), or its simpler ver-

sion the Iterative Linear Quadratic Regulator(iLQR) (Todorov, 2005). However, these are model

based methods which require rather accurate knowledge of the dynamics and make restrictive as-

sumptions concerning differentiability of the system dynamics and the cost function.

Path integral optimal control allows more flexibility than these related methods. The concept of

an “action” can be viewed in a broader sense. Essentially, we consider any “input” to the control

system as an action, not unlike the inputs to a transfer function in classical linear control theory.

The input can be a motor command, but it can also be anything else, for instance, a desired state,

that is subsequently converted to a motor command by some tracking controller, or a control gain

(Buchli et al., 2010) . As an example, consider a robotic system with rigid body dynamics (RBD)

equations (Sciavicco and Siciliano, 2000) using a parameterized policy:

q̈ = M(q)−1 (−C(q, q̇)−v(q))+M(q)−1u, (26)

u = G(q)(θ+ εti), (27)

where M is the RBD inertia matrix, C are Coriolis and centripetal forces, and v denotes gravity

forces. The state of the robot is described by the joint angles q and joint velocities q̇. The policy

(27) is linearly parameterized by θ, with basis function matrix G—one would assume that the di-

mensionality of θ is significantly larger than that of q to assure sufficient expressive power of this

parameterized policy. Inserting (27) into (26) results in a differential equation that is compatible

with the system equations (3) for path integral optimal control:

q̈ = f(q, q̇)+ G̃(q)(θ+ εti) (28)

where

f(q, q̇) = M(q)−1 (−C(q, q̇)−v(q)) ,

G̃(q) = M(q)−1G(q).

This example is a typical example where the policy directly represents motor commands.

Alternatively, we could create another form of control structure for the RBD system:

q̈ = M(q)−1 (−C(q, q̇)−v(q))+M(q)−1u,

u = KP(qd−q)+KD(q̇d− q̇),

q̈d = G(qd , q̇d)(θ+ εti). (29)
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Here, a Proportional-Derivative (PD) controller with positive definite gain matrices KP and KD

converts a desired trajectory qd , q̇d into a motor command u. In contrast to the previous example,

the parameterized policy generates the desired trajectory in (29), and the differential equation for

the desired trajectory is compatible with the path integral formalism.

What we would like to emphasize is that the control system’s structure is left to the creativity

of its designer, and that path integral optimal control can be applied on various levels. Importantly,

as developed in Section 2.3, only the controlled differential equations of the entire control system

contribute to the path integral formalism, that is, (28) in the first example, or (29) in the second

example. And only these controlled differential equations need to be known for applying path

integral optimal control—none of the variables of the uncontrolled equations is ever used.

At this point, we make a very important transition from model-based to model-free learning.

In the example of (28), the dynamics model of the control system needs to be known to apply

path integral optimal control, as this is a controlled differential equation. In contrast, in (29), the

system dynamics are in an uncontrolled differential equation, and are thus irrelevant for applying

path integral optimal control. In this case, only knowledge of the desired trajectory dynamics is

needed, which is usually created by the system designer. Thus, we obtained a model-free learning

system.

3.3 Dynamic Movement Primitives as Generalized Policies

As we are interested in model-free learning, we follow the control structure of the 2nd example of

the previous section, that is, we optimize control policies which represent desired trajectories. We

use Dynamic Movement Primitives (DMPs) (Ijspeert et al., 2003) as a special case of parameterized

policies, which are expressed by the differential equations:

1

τ
żt = ft +gT

t (θ+ εt), (30)

1

τ
ẏt = zt ,

1

τ
ẋt = −αxt ,

ft = αz(βz(g− yt)− zt).

Essentially, these policies code a learnable point attractor for a movement from yt0 to the goal

g, where θ determines the shape of the attractor. yt , ẏt denote the position and velocity of the

trajectory, while zt ,xt are internal states. αz,βz,τ are time constants. The basis functions gt ∈
ℜ p×1are defined by a piecewise linear function approximator with Gaussian weighting kernels, as

suggested in Schaal and Atkeson (1998):

[gt ] j =
w j xt

∑p
k=1 wk

(g− y0),

w j = exp
(

−0.5h j(xt − c j)
2
)

, (31)

with bandwith h j and center c j of the Gaussian kernels—for more details see Ijspeert et al. (2003).

The DMP representation is advantageous as it guarantees attractor properties towards the goal while

remaining linear in the parameters θ of the function approximator. By varying the parameter θ the

shape of the trajectory changes while the goal state g and initial state yt0 remain fixed. These

properties facilitate learning (Peters and Schaal, 2008a).
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3.4 Policy Improvements with Path Integrals: The (PI2) Algorithm

As can be easily recognized, the DMP equations are of the form of our control system (3), with only

one controlled equation and a one dimensional actuated state. This case has been treated in Section

2.5.1. The motor commands are replaced with the parameters θ—the issue of time dependent vs.

constant parameters will be addressed below. More precisely, the DMP equations can be written as:





ẋt

żt

ẏt



=





−αxt

yt

αz(βz(g− yt)− zt)



+





01×p

01×p

g
(c)
t

T



(θt + εt) .

The state of the DMP is partitioned into the controlled part x
(c)
t = yt and uncontrolled part

x
(m)
t = (xt zt)

T . The control transition matrix depends on the state, however, it depends only on one

of the state variables of the uncontrolled part of the state, that is, xt . The path cost for the stochastic

dynamics of the DMPs is given by:

S̃(τi) = φtN +
N−1

∑
j=i

qt j
dt +

1

2

N−1

∑
j=i

w

w

w

w

w

x
(c)
t j+1
−x

(c)
t j

dt
− f

(c)
t j

w

w

w

w

w

2

H−1
t j

dt +
λ
2

N−1

∑
j=i

log |Ht j
|

∝ φ tN +
N−1

∑
j=i

qt j
+

1

2

N−1

∑
j=i

w

w

wg
(c)T
t j

(θt j
+ εt j

)
w

w

w

2

H−1
t j

= φtN +
N−1

∑
j=i

qt j
+

1

2

N−1

∑
j=i

1

2
(θt j

+ εt j
)T g

(c)
t j

H−1
t j

g
(c)T
t j

(θt j
+ εt j

)

= φtN +
N−1

∑
j=i

qt j
+

1

2

N−1

∑
j=i

1

2
(θt j

+ εt j
)T

g
(c)
t j

g
(c)T
t j

g
(c)T
t R−1 g

(c)
t

(θt j
+ εt j

)

= φtN +
N−1

∑
j=i

qt j
+

1

2

N−1

∑
j=i

1

2
(θt j

+ εt j
)T MT

t j
RMt j

(θt j
+ εt j

). (32)

with Mt j
=

R−1gt j
gT

t j

gT
t j

R−1gt j

. Ht becomes a scalar given by Ht = g
(c)T
t R−1 g

(c)
t . Interestingly, the term

λ
2 ∑N−1

j=i log |Ht j
| for the case of DMPs depends only on xt , which is a deterministic variable and

therefore can be ignored since it is the same for all sampled paths. We also absorbed, without

loss of generality, the time step dt in cost terms. Consequently, the fundamental result of the path

integral stochastic optimal problem for the case of DMPs is expressed as:

uti =
∫

P(τi)uL (τi)dτ(c)i , (33)

where the probability P(τi) and local controls u(τi) are defined as

P(τi) =
e−

1
λ S̃(τi)

∫
e−

1
λ S̃(τi)dτi

, uL(τi) =
R−1g

(c)
ti g

(c)T
ti

g
(c)T
ti R−1g

(c)
ti

εti ,
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and the path cost given as

S̃(τi) = φtN +
N−1

∑
j=i

qt j
+

1

2

N−1

∑
j=i

εT
t j

MT
t j

RMt j
εt j
.

Note that θ= 0 in these equations, that is, the parameters are initialized to zero. These equations

correspond to the case where the stochastic optimal control problem is solved with one evaluation

of the optimal controls (33) using dense sampling of the whole state space under the “passive dy-

namics” (i.e., θ = 0), which requires a significant amount of exploration noise. Such an approach

was pursued in the original work by Kappen (2007) and Broek et al. (2008), where a potentially

large number of sample trajectories was needed to achieve good results. Extending this sampling

approach to high dimensional spaces, however, is daunting, as with very high probability, we would

sample primarily rather useless trajectories. Thus, biasing sampling towards good initial conditions

seems to be mandatory for high dimensional applications.

Thus, we consider only local sampling and an iterative update procedure. Given a current guess

of θ, we generate sample roll-outs using stochastic parameters θ+εt at every time step. To see how

the generalized path integral formulation is modified for the case of iterative updating, we start with

the equations of the update of the parameter vector θ, which can be written as:

θ(new)
ti =

∫
P(τi)

R−1gtigti
T (θ+ εti)

gti
T R−1gti

dτi

=
∫

P(τi)
R−1gtigti

T εti

gti
T R−1gti

dτi +
R−1gtigti

T θ
gti

T R−1gti

= δθti +
R−1gtigti

T

trace(R−1gtigti
T )

θ

= δθti +Mtiθ. (34)

The correction parameter vector δθti is defined as δθti =
∫

P(τi)
R−1gti

gti
T εti

gti
T R−1gti

dτi. It is important to

note that θ(new)
ti is now time dependent, that is, for every time step ti, a different optimal parameter

vector is computed. In order to return to one single time independent parameter vector θ(new), the

vectors θ(new)
ti need to be averaged over time ti.

We start with a first tentative suggestion of averaging over time, and then explain why it is

inappropriate, and what the correct way of time averaging has to look like. The tentative and most

intuitive time average is:

θ(new) =
1

N

N−1

∑
i=0

θ(new)
ti =

1

N

N−1

∑
i=0

δθti +
1

N

N−1

∑
i=0

Mtiθ.

Thus, we would update θ based on two terms. The first term is the average of δθti , which is reason-

able as it reflects the knowledge we gained from the exploration noise. However, there would be a

second update term due to the average over projected mean parameters θ from every time step—it

should be noted that Mti is a projection matrix onto the range space of gti under the metric R−1, such

that a multiplication with Mti can only shrink the norm of θ. From the viewpoint of having optimal

parameters for every time step, this update component is reasonable as it trivially eliminates the part

of the parameter vector that lies in the null space of gti and which contributes to the command cost
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of a trajectory in a useless way. From the view point of a parameter vector that is constant and time

independent and that is updated iteratively, this second update is undesirable, as the multiplication

of the parameter vector θ with Mti in (34) and the averaging operation over the time horizon reduces

the L2 norm of the parameters at every iteration, potentially in an uncontrolled way.6 What we

rather want is to achieve convergence when the average of δθti becomes zero, and we do not want

to continue updating due to the second term.

The problem is avoided by eliminating the projection matrix in the second term of averaging,

such that it become:

θ(new) =
1

N

N−1

∑
i=0

δθti +
1

N

N−1

∑
i=0

θ=
1

N

N−1

∑
i=0

δθti +θ.

The meaning of this reduced update is simply that we keep a component in θ that is irrelevant and

contributes to our trajectory cost in a useless way. However, this irrelevant component will not

prevent us from reaching the optimal effective solution, that is, the solution that lies in the range

space of gti . Given this modified update, it is, however, also necessary to derive a compatible cost

function. As mentioned before, in the unmodified scenario, the last term of (32) is:

1

2

N−1

∑
j=i

(θ+ εt j
)T MT

t j
RMt j

(θ+ εt j
)

To avoid a projection of θ, we modify this cost term to be:

1

2

N−1

∑
j=i

(θ+Mt j
εt j
)T R(θ+Mt j

εt j
).

With this modified cost term, the path integral formalism results in the desired θ(new)
ti without the

Mti projection of θ.

The main equations of the iterative version of the generalized path integral formulation, called

Policy Improvement with Path Integrals (PI2), can be summarized as:

P(τi) =
e−

1
λ S(τi)

∫
e−

1
λ S(τi)dτi

, (35)

S(τi) = φtN +
N−1

∑
j=i

qt j
dt +

1

2

N−1

∑
j=i

(θ+Mt j
εt j
)T R(θ+Mt j

εt j
)dt, (36)

δθti =
∫

P(τi)Mtiεtidτi, (37)

[δθ] j =
∑N−1

i=0 (N− i) w j,ti [δθti ] j

∑N−1
i=0 w j,ti(N− i)

, (38)

θ(new) = θ(old)+δθ.

Essentially, (35) computes a discrete probability at time ti of each trajectory roll-out with the help

of the cost (36). For every time step of the trajectory, a parameter update is computed in (37) based

6. To be precise, θ would be projected and continue shrinking until it lies in the intersection of all null spaces of the gti

basis function—this null space can easily be of measure zero.
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on a probability weighted average over trajectories. The parameter updates at every time step are

finally averaged in (38). Note that we chose a weighted average by giving every parameter update a

weight7 according to the time steps left in the trajectory and the activation of the kernel in (31). This

average can be interpreted as using a function approximator with only a constant (offset) parameter

vector to approximate the time dependent parameters. Giving early points in the trajectory a higher

weight is useful since their parameters affect a large time horizon and thus higher trajectory costs.

Other function approximation (or averaging) schemes could be used to arrive at a final parameter

update—we preferred this simple approach as it gave very good learning results. The final parameter

update is θ(new) = θ(old)+δθ.

The parameter λ regulates the sensitivity of the exponentiated cost and can automatically be

optimized for every time step i to maximally discriminate between the experienced trajectories.

More precisely, a constant term can be subtracted from (36) as long as all S(τi) remain positive—this

constant term8 cancels in (35). Thus, for a given number of roll-outs, we compute the exponential

term in (35) as

exp

(

−1

λ
S(τi)

)

= exp

(

−h
S(τi)−minS(τi)

maxS(τi)−minS(τi)

)

,

with h set to a constant, which we chose to be h = 10 in all our evaluations. The max and min

operators are over all sample roll-outs. This procedure eliminates λ and leaves the variance of the

exploration noise ε as the only open algorithmic parameter for PI2. It should be noted that the

equations for PI2 have no numerical pitfalls: no matrix inversions and no learning rates,9 rendering

PI2 to be very easy to use in practice.

The pseudocode for the final PI2 algorithm for a one dimensional control system with function

approximation is given in Table 2. A tutorial Matlab example of applying PI2 can be found at

http://www-clmc.usc.edu/software .

4. Related Work

In the next sections we discuss related work in the areas of stochastic optimal control and rein-

forcement learning and analyze the connections and differences with the PI2 algorithm and the

generalized path integral control formulation.

4.1 Stochastic Optimal Control and Path Integrals

The path integral formalism for optimal control was introduced in Kappen (2005a,b). In this work,

the role of noise in symmetry breaking phenomena was investigated in the context of stochastic

optimal control. In Kappen et al. (2007), Wiegerinck et al. (2006), and Broek et al. (2008), the path

integral formalism is extended for the stochastic optimal control of multi-agent systems.

Recent work on stochastic optimal control by Todorov (2008), Todorov (2007) and Todorov

(2009b) shows that for a class of discrete stochastic optimal control problems, the Bellman equa-

7. The use of the kernel weights in the basis functions (31) for the purpose of time averaging has shown better perfor-

mance with respect to other weighting approaches, across all of our experiments. Therefore this is the weighting that

we suggest. Users may develop other weighting schemes as more suitable to their needs.

8. In fact, the term inside the exponent results by adding
hminS(τi)

maxS(τi)−minS(τi)
, which cancels in (35), to the term

− hS(τi)
maxS(τi)−minS(τi)

which is equal to − 1
λ S(τi).

9. R is a user design parameter and usually chosen to be diagonal and invertible.
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• Given:

– An immediate cost function rt = qt +θT
t Rθt (cf. 1)

– A terminal cost term φtN (cf. 1)

– A stochastic parameterized policy at = gT
t (θ+ εt) (cf. 25)

– The basis function gti from the system dynamics (cf. 3 and Section 2.5.1)

– The variance Σε of the mean-zero noise εt

– The initial parameter vector θ

• Repeat until convergence of the trajectory cost R:

– Create K roll-outs of the system from the same start state x0 using stochstic parameters

θ+ εt at every time step

– For k = 1...K, compute:

∗ P(τi,k) =
e
− 1

λ S(τi,k)

∑K
k=1[e

− 1
λ S(τi,k)]

∗ S(τi,k) = φtN ,k +∑N−1
j=i qt j,k +

1
2 ∑N−1

j=i+1(θ+Mt j,kεt j,k)
T R(θ+Mt j,kεt j,k)

∗ Mt j,k =
R−1gt j ,k

gT
t j ,k

gT
t j ,k

R−1gt j ,k

– For i = 1...(N−1), compute:

∗ δθti = ∑K
k=1 [P(τi,k)Mti,k εti,k]

– Compute [δθ] j =
∑N−1

i=0 (N−i) w j,ti [δθti
] j

∑N−1
i=0 w j,ti (N−i)

– Update θ← θ+δθ
– Create one noiseless roll-out to check the trajectory cost R = φtN +∑N−1

i=0 rti . In case

the noise cannot be turned off, that is, a stochastic system, multiple roll-outs need be

averaged.

Table 2: Pseudocode of the PI2 algorithm for a 1D Parameterized Policy (Note that the discrete

time step dt was absorbed as a constant multiplier in the cost terms).

tion can be written as the KL divergence between the probability distribution of the controlled and

uncontrolled dynamics. Furthermore it is shown that the class of discrete KL divergence control

problem is equivalent to the continuous stochastic optimal control formalism with quadratic cost

control function and under the presence of Gaussian noise. In Kappen et al. (2009), the KL diver-

gence control formalism is considered and it is transformed to a probabilistic inference problem.

In all this aforementioned work, both in the path integral formalism as well as in KL divergence

control, the class of stochastic dynamical systems under consideration is rather restrictive since the
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control transition matrix is state independent. Moreover, the connection to direct policy learning in

RL and model-free learning was not made in any of the previous projects.

Our PI2 algorithm differs with respect to the aforementioned work in the following points.

• In Todorov (2009b) the stochastic optimal control problem is investigated for discrete action

- state spaces and therefore it is treated as Markov Decision Process (MDP). To apply our PI2

algorithm, we do not discretize the state space and we do not treat the problem as an MDP.

Instead we work in continuous state - action spaces which are suitable for performing RL in

high dimensional robotic systems. To the best of our knowledge, our results present RL in

one of the most high dimensional continuous state action spaces.

• In our derivations, the probabilistic interpretation of control comes directly from the Feynman-

Kac Lemma. Thus we do not have to impose any artificial “pseudo-probability“ treatment of

the cost as in Todorov (2009b). In addition, for the continuous state - action spaces we do not

have to learn the value function as it is suggested in Todorov (2009b) via Z-learning. Instead

we directly find the controls based on our generalization of optimal controls.

• In the previous work, the problem of how to sample trajectories is not addressed. Sampling

is performed at once with the hope to cover the all state space. We follow a rather different

approach that allows to attack robotic learning problems of the complexity and dimensionality

of the little dog robot.

• The work in Todorov (2009a) considers stochastic dynamics with state dependent control

matrix. However, the way of how the stochastic optimal control problem is solved is by

imposing strong assumptions on the structure of the cost function and, therefore, restrictions

of the proposed solution to special cases of optimal control problems. The use of this specific

cost function allows transforming the stochastic optimal control problem to a deterministic

optimal control problem. Under this transformation, the stochastic optimal control problem

can be solved by using deterministic algorithms.

• With respect to the work in Broek et al. (2008), Wiegerinck et al. (2006) and Kappen et al.

(2009) our PI2 algorithm has been derived for a rather general class of systems with control

transition matrix that is state dependent. In this general class, Rigid body and multi-body

dynamics as well as the DMPs are included. Furthermore we have shown how our results

generalize previous work.

4.2 Reinforcement Learning of Parameterized Policies

There are two main classes of related algorithms: Policy Gradient algorithms and probabilistic

algorithms.

Policy Gradient algorithms (Peters and Schaal, 2006a,b) compute the gradient of the cost func-

tion (24) at every iteration and the policy parameters are updated according to θ(new) = θ(old) +
α∇ θJ. Some well-established algorithms, which we will also use for comparisons, are as follows

(see also Peters and Schaal, 2006a,b).

4.2.1 REINFORCE

Williams (1992) introduced the episodic REINFORCE algorithm, which is derived from taking the

derivative of (24) with respect to the policy parameters. This algorithm has rather slow convergence

3156



A GENERALIZED PATH INTEGRAL CONTROL APPROACH TO REINFORCEMENT LEARNING

due to a very noisy estimate of the policy gradient. It is also very sensitive to a reward baseline

parameter bk (see below). Recent work derived the optimal baseline for REINFORCE (cf. Peters

and Schaal, 2008a), which improved the performance significantly. The episodic REINFORCE

update equations are:

∇ θk
J = Eτ0

[

(R(τ0)−bk)
N−1

∑
i=0

∇ θk
ln p(ati |xti)

]

,

bk =
Eτ0

[

(

∑N−1
i=0 ∇ θk

ln p(ati |xti)
)2

R(τ0)
]

Eτ0

[

(

∑N−1
i=0 ∇ θk

ln p(ati |xti)
)2
] ,

where k denotes the k-th coefficient of the parameter vector and R(τ0) =
1
N ∑N−1

i=0 rti .

4.2.2 GPOMDP AND THE POLICY GRADIENT THEOREM ALGORITHM

In their GPOMDP algorithm, Baxter and Bartlett (2001) introduced several improvements over RE-

INFORCE that made the gradient estimates more efficient. GPOMDP can also be derived from the

policy gradient theorem (Sutton et al., 2000; Peters and Schaal, 2008a), and an optimal reward base-

line can be added (cf. Peters and Schaal, 2008a). In our context, the GPOMDP learning algorithm

can be written as:

∇ θk
J = Eτ0

[

N−1

∑
j=0

(rt j−b
(k)
t j
)

j

∑
i=0

(∇ θk
ln p(ati |xti))

]

,

b
(k)
ti =

Eτ0

[

(∇ θk
ln p(ati |xti))

2
rti

]

Eτ0

[

(∇ θk
ln p(ati |xti))

2
] .

4.2.3 THE EPISODIC NATURAL ACTOR CRITIC

One of the most efficient policy gradient algorithm was introduced in Peters and Schaal (2008b),

called the Episodic Natural Actor Critic. In essence, the method uses the Fisher Information Matrix

to project the REINFORCE gradient onto a more effective update direction, which is motivated by

the theory of natural gradients by Amari (1999). The eNAC algorithm takes the form of:

ξti,k =

[

∇ θk
ln p(ati |xti)

1

]

,

[

∇ θJ

J0

]

= Eτ0

[

N−1

∑
i=0

ξti,kξ
T
ti,k

]−1

Eτ0

[

R(τ0)
N−1

∑
i=0

ξti,k

]

,

where J0 is a constant offset term.

4.2.4 POWER

The PoWER algorithm (Koeber and Peters, 2008) is a probabilistic policy improvement method, not

a gradient algorithm. It is derived from an Expectation-Maximization framework using probability

3157



THEODOROU, BUCHLI AND SCHAAL

matching (Dayan and Hinton, 1997; Peters and Schaal, 2008c). Using the notation of this paper, the

parameter update of PoWER becomes:

δθ= Eτ0

[

N−1

∑
i=0

Rti

gtig
T
ti

gT
ti gti

]−1

Eτ0

[

tN

∑
ti=to

Rti

gtig
T
ti

εt

gT
ti gti

]

,

where Rti = ∑N−1
j=i rt j

. If we set R−1 = c I in the update (37) of PI2, and set
gti

gT
ti

gT
ti

gti

= I in the matrix

inversion term of (39), the two algorithms look essentially identical. But it should be noted that

the rewards rti in PoWER need to behave like an improper probability, that is, be strictly positive

and integrate to a constant number—this property can make the design of suitable cost functions

more complicated. PI2, in contrast, uses exponentiated sum of reward terms, where the immedi-

ate reward can be arbitrary, and only the cost on the motor commands needs be quadratic. Our

empirical evaluations revealed that, for cost functions that share the same optimum in the PoWER

pseudo-probability formulation and the PI2 notation, both algorithms perform essentially identical,

indicating that the matrix inversion term in PoWER may be unimportant for many systems. It should

be noted that in Vlassis et al. (2009), PoWER was extended to the discounted infinite horizon case,

where PoWER is the special case of a non-discounted finite horizon problem.

5. Evaluations

We evaluated PI2 in several synthetic examples in comparison with REINFORCE, GPOMDP,

eNAC, and, when possible, PoWER. Except for PoWER, all algorithms are suitable for optimiz-

ing immediate reward functions of the kind rt = qt +utRut . As mentioned above, PoWER requires

that the immediate reward behaves like an improper probability. This property is incompatible with

rt = qt +utRut and requires some special nonlinear transformations, which usually change the na-

ture of the optimization problem, such that PoWER optimizes a different cost function. Thus, only

one of the examples below has a compatible a cost function for all algorithms, including PoWER. In

all examples below, exploration noise and, when applicable, learning rates, were tuned for every in-

dividual algorithms to achieve the best possible numerically stable performance. Exploration noise

was only added to the maximally activated basis function in a motor primitive,10 and the noise was

kept constant for the entire time that this basis function had the highest activation—empirically, this

tick helped improves the learning speed of all algorithms.

5.1 Learning Optimal Performance of a 1 DOF Reaching Task

The first evaluation considers learning optimal parameters for a 1 DOF DMP (cf. Equation 30). The

immediate cost and terminal cost are, respectively:

rt = 0.5 f 2
t +5000 θT θ, φtN = 10000(ẏ2

tN
+10(g− ytN )

2)

with yt0 = 0 and g = 1—we use radians as units motivated by our interest in robotics application,

but we could also avoid units entirely. The interpretation of this cost is that we would like to reach

the goal g with high accuracy while minimizing the acceleration of the movement and while keeping

the parameter vector short. Each algorithm was run for 15 trials to compute a parameter update, and

10. That is, the noise vector in (25) has only one non-zero component.
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a total of 1000 updates were performed. Note that 15 trials per update were chosen as the DMP

had 10 basis functions, and the eNAC requires at least 11 trials to perform a numerically stable

update due to its matrix inversion. The motor primitives were initialized to approximate a 5-th

order polynomial as point-to-point movement (cf. Figure 1a,b), called a minimum-jerk trajectory

in the motor control literature; the movement duration was 0.5 seconds, which is similar to normal

human reaching movements. Gaussian noise of N(0,0.1) was added to the initial parameters of the

movement primitives in order to have different initial conditions for every run of the algorithms.

The results are given in Figure 1. Figure 1a,b show the initial (before learning) trajectory generated

by the DMP together with the learning results of the four different algorithms after learning—

essentially, all algorithms achieve the same result such that all trajectories lie on top of each other.

In Figure 1c, however, it can be seen that PI2 outperforms the gradient algorithms by an order

of magnitude. Figure 1d illustrates learning curves for the same task as in Figure 1c, just that

parameter updates are computed already after two roll-outs—the eNAC was excluded from this

evaluation as it would be too heuristic to stabilize its ill-conditioned matrix inversion that results

from such few roll-outs. PI2 continues to converge much faster than the other algorithms even in

this special scenario. However, there are some noticeable fluctuation after convergence. This noise

around the convergence baseline is caused by using only two noisy roll-outs to continue updating

the parameters, which causes continuous parameter fluctuations around the optimal parameters.

Annealing the exploration noise, or just adding the optimal trajectory from the previous parameter

update as one of the roll-outs for the next parameter update can alleviate this issue—we do not

illustrate such little “tricks” in this paper as they really only affect fine tuning of the algorithm.

5.2 Learning Optimal Performance of a 1 DOF Via-Point Task

The second evaluation was identical to the first evaluation, just that the cost function now forced

the movement to pass through an intermediate via-point at t = 300ms. This evaluation is an abstract

approximation of hitting a target, for example, as in playing tennis, and requires a significant change

in how the movement is performed relative to the initial trajectory (Figure 2a). The cost function

was

r300ms = 100000000(G− yt300ms
)2, φtN = 0

with G = 0.25. Only this single reward was given. For this cost function, the PoWER algorithm

can be applied, too, with cost function r̃300ms = exp(−1/λ r300ms) and r̃ti = 0 otherwise. This

transformed cost function has the same optimum as r300ms. The resulting learning curves are given in

Figure 2 and resemble the previous evaluation: PI2 outperforms the gradient algorithms by roughly

an order of magnitude, while all the gradient algorithms have almost identical learning curves. As

was expected from the similarity of the update equations, PoWER and PI2 have in this special case

the same performance and are hardly distinguishable in Figure 2. Figure 2a demonstrates that all

algorithms pass through the desired target G, but that there are remaining differences between the

algorithms in how they approach the target G—these difference have a small numerical effect in

the final cost (where PI2 and PoWER have the lowest cost), but these difference are hardly task

relevant.

5.3 Learning Optimal Performance of a Multi-DOF Via-Point Task

A third evaluation examined the scalability of our algorithms to a high-dimensional and highly

redundant learning problem. Again, the learning task was to pass through an intermediate target G,
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Figure 1: Comparison of reinforcement learning of an optimized movement with motor primitives.

a) Position trajectories of the initial trajectory (before learning) and the results of all algo-

rithms after learning—the different algorithms are essentially indistighuishable. b) The

same as a), just using the velocity trajectories. c) Average learning curves for the differ-

ent algorithms with 1 std error bars from averaging 10 runs for each of the algorithms. d)

Learning curves for the different algorithms when only two roll-outs are used per update

(note that the eNAC cannot work in this case and is omitted).

just that a d = 2,10, or 50 dimensional motor primitive was employed. We assume that the multi-

DOF systems model planar robot arms, where d links of equal length l = 1/d are connected in an

open chain with revolute joints. Essentially, these robots look like a multi-segment snake in a plane,

where the tail of the snake is fixed at the origin of the 2D coordinate system, and the head of the

snake can be moved in the 2D plane by changing the joint angles between all the links. Figure 3b,d,f

illustrate the movement over time of these robots: the initial position of the robots is when all joint

angles are zero and the robot arm completely coincides with the x-axis of the coordinate frame.

The goal states of the motor primitives command each DOF to move to a joint angle, such that the

entire robot configuration afterwards looks like a semi-circle where the most distal link of the robot
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Figure 2: Comparison of reinforcement learning of an optimized movement with motor primitives

for passing through an intermediate target G. a) Position trajectories of the initial trajec-

tory (before learning) and the results of all algorithms after learning. b) Average learning

curves for the different algorithms with 1 std error bars from averaging 10 runs for each

of the algorithms.

(the end-effector) touches the y-axis. The higher priority task, however, is to move the end-effector

through a via-point G = (0.5,0.5). To formalize this task as a reinforcement learning problem, we

denote the joint angles of the robots as ξi, with i = 1,2, ...,d, such that the first line of (30) reads

now as ξ̈i,t = fi,t +gT
i,t(θi + εi,t)—this small change of notation is to avoid a clash of variables with

the (x,y) task space of the robot. The end-effector position is computed as:

xt =
1

d

d

∑
i=1

cos(
i

∑
j=1

ξ j,t), yt =
1

d

d

∑
i=1

sin(
i

∑
j=1

ξ j,t).

The immediate reward function for this problem is defined as

rt =
∑d

i=1(d +1− i)
(

0.1 f 2
i,t +0.5 θT

i θi

)

∑d
i=1(d +1− i)

, (39)

∆r300ms = 100000000
(

(0.5− xt300ms
)2 +(0.5− yt300ms

)2
)

,

φtN = 0,

where ∆r300ms is added to rt at time t = 300ms, that is, we would like to pass through the via-

point at this time. The individual DOFs of the motor primitive were initialized as in the 1 DOF

examples above. The cost term in (39) penalizes each DOF for using high accelerations and large

parameter vectors, which is a critical component to achieve a good resolution of redundancy in the

arm. Equation (39) also has a weighting term d + 1− i that penalizes DOFs proximal to the orgin

more than those that are distal to the origin—intuitively, applied to human arm movements, this

would mean that wrist movements are cheaper than shoulder movements, which is motivated by the
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fact that the wrist has much lower mass and inertia and is thus energetically more efficient to move.

The results of this experiment are summarized in Figure 3. The learning curves in the left

column demonstrate again that PI2 has an order of magnitude faster learning performance than the

other algorithms, irrespective of the dimensionality. PI2 also converges to the lowest cost in all

examples:

Algorithm 2-DOFs 10-DOFs 50-DOFs

PI2 98000±5000 15700±1300 2800±150

REINFORCE 125000±2000 22000±700 19500±24000

PG 128000±2000 28000±23000 27000±40000

NAC 113000±10000 48000±8000 22000±2000

Figure 3 also illustrates the path taken by the end-effector before and after learning. All algo-

rithms manage to pass through the via-point G appropriately, although the path particularly before

reaching the via-point can be quite different across the algorithms. Given that PI2 reached the low-

est cost with low variance in all examples, it appears to have found the best solution. We also added

a “stroboscopic” sketch of the robot arm for the PI2 solution, which proceeds from the very right to

the left as a function of time. It should be emphasized that there were absolutely no parameter tun-

ing needed to achieve the PI2 results, while all gradient algorithms required readjusting of learning

rates for every example to achieve best performance.

5.4 Application to Robot Learning

Figure 4 illustrates our application to a robot learning problem. The robot dog is to jump across as

gap. The jump should make forward progress as much as possible, as it is a maneuver in a legged

locomotion competition which scores the speed of the robot—note that we only used a physical

simulator of the robot for this experiment, as the actual robot was not available. The robot has three

DOFs per leg, and thus a total of d = 12 DOFs. Each DOF was represented as a DMP with 50

basis functions. An initial seed behavior (Figure 5-top) was taught by learning from demonstration,

which allowed the robot barely to reach the other side of the gap without falling into the gap—the

demonstration was generated from a manual adjustment of spline nodes in a spline-based trajectory

plan for each leg.

PI2 learning used primarily the forward progress as a reward, and slightly penalized the squared

acceleration of each DOF, and the length of the parameter vector. Additionally, a penalty was

incurred if the yaw or the roll exceeded a threshold value—these penalties encouraged the robot to
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Figure 3: Comparison of learning multi-DOF movements (2,10, and 50 DOFs) with planar robot

arms passing through a via-point G. a,c,e) illustrate the learning curves for different RL

algorithms, while b,d,f) illustrate the end-effector movement after learning for all algo-

rithms. Additionally, b,d,f) also show the initial end-effector movement, before learning

to pass through G, and a “stroboscopic” visualization of the arm movement for the final

result of PI2 (the movements proceed in time starting at the very right and ending by

(almost) touching the y axis).
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Figure 4: Reinforcement learning of optimizing to jump over a gap with a robot dog. The improve-

ment in cost corresponds to about 15 cm improvement in jump distance, which changed

the robot’s behavior from an initial barely successful jump to jump that completely tra-

versed the gap with entire body. This learned behavior allowed the robot to traverse a gap

at much higher speed in a competition on learning locomotion. The experiments for this

paper were conducted only on the robot simulator.

jump straight forward and not to the side, and not to fall over. The exact cost function is:

rt = rroll + ryaw +
d

∑
i=1

(

a1 f 2
i,t +0.5a2 θT

i θ
)

(a1 = 1.e−6,a2 = 1.e−8),

rroll =

{

100∗ (|rollt |−0.3)2, if (|rollt |> 0.3)

0, otherwise,

ryaw =

{

100∗ (|yawt |−0.1)2, if (|yawt |> 0.1)

0, otherwise,

φtN = 50000(goal− xnose)
2,

where roll,yaw are the roll and yaw angles of the robot’s body, and xnose is the position of the front

tip (the “nose”) of the robot in the forward direction, which is the direction towards the goal. The

multipliers for each reward component were tuned to have a balanced influence of all terms. Ten

learning trials were performed initially for the first parameter update. The best 5 trials were kept, and

five additional new trials were performed for the second and all subsequent updates. Essentially, this

method performs importance sampling, as the rewards for the 5 trials in memory were re-computed
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Figure 5: Sequence of images from the simulated robot dog jumping over a 14cm gap. Top: before

learning. Bottom: After learning. While the two sequences look quite similar at the first

glance, it is apparent that in the 4th frame, the robot’s body is significantly higher in the

air, such that after landing, the body of the dog made about 15cm more forward progress

as before. In particular, the entire robot’s body comes to rest on the other side of the gap,

which allows for an easy transition to walking. In contrast, before learning, the robot’s

body (and its hind legs) are still on the right side of the gap, which does not allow for a

successful continuation of walking.

with the latest parameter vectors. A total of 100 trials was performed per run, and ten runs were

collected for computing mean and standard deviations of learning curves.

Figure 4 illustrates that after about 30 trials (i.e., 5 updates), the performance of the robot was

converged and significantly improved, such that after the jump, almost the entire body was lying on

the other side of the gap. Figure 4 captures the temporal performance in a sequence of snapshots of

the robot. It should be noted that applying PI2 was algorithmically very simple, and manual tuning

only focused on generated a good cost function, which is a different research topic beyond the scope

of this paper.

6. Discussion

This paper derived a more general version of stochastic optimal control with path integrals, based

on the original work by Kappen (2007) and Broek et al. (2008). The key results were presented in

Table 1 and Section 2.5, which considered how to compute the optimal controls for a general class

of stochastic control systems with state-dependent control transition matrix. One important class

of these systems can be interpreted in the framework of reinforcement learning with parameterized

policies. For this class, we derived Policy Improvement with Path Integrals (PI2) as a novel algo-

rithm for learning a parameterized policy. PI2 inherits its sound foundation in first order principles

of stochastic optimal control from the path integral formalism. It is a probabilistic learning method

without open algorithmic tuning parameters, except for the exploration noise. In our evaluations,

PI2 outperformed gradient algorithms significantly. It is also numerically simpler and has easier

cost function design than previous probabilistic RL methods that require that immediate rewards

are pseudo-probabilities. The similarity of PI2 with algorithms based on probability matching indi-

cates that the principle of probability matching seems to approximate a stochastic optimal control

framework. Our evaluations demonstrated that PI2 can scale to high dimensional control systems,

unlike many other reinforcement learning systems.

Some issues, however, deserve more detailed discussions in the following paragraphs.
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6.1 The Simplification λR−1 = Σε

In order to obtain linear 2nd order differential equations for the exponentially transformed HJB equa-

tions, the simplification λR−1 = Σε was applied. Essentially, this assumption couples the control

cost to the stochasticity of the system dynamics, that is, a control with high variance will have rela-

tively small cost, while a control with low variance will have relatively high cost. This assumption

makes intuitively sense as it would be mostly unreasonable to attribute a lot of cost to an unreliable

control component. Algorithmically, this assumption transforms the Gaussian probability for state

transitions into a quadratic command cost, which is exactly what our immediate reward function

postulated. Future work may allow removing this simplification by applying generalized versions

of the Feynman-Kac Lemma.

6.2 Model-based, Hybrid, and Model-free Learning

Stochastic optimal control with path integrals makes a strong link to the dynamic system to be

optimized—indeed, originally, it was derived solely as model-based method. As this paper demon-

strated, however, this view can be relaxed. The roll-outs, needed for computing the optimal controls,

can be generated either from simulating a model, or by gathering experience from an actual system.

In the latter case, only the control transition matrix of the model needs be known, such that we obtain

a hybrid model-based/model-free method. In this paper, we even went further and interpreted the

stochastic dynamic system as a parameterized control policy, such that no knowledge of the model

of the control system was needed anymore—that is, we entered a model-free learning domain. It

seems that there is a rich variety of ways how the path integral formalism can be used in different

applications.

6.3 Rules of Cost Function Design

The cost functions allowed in our formulations can have arbitrary state cost, but need quadratic

command cost. This is somewhat restrictive, although the user can be flexible in what is defined as

a command. For instance, the dynamic movement primitives (30) used in this paper can be written

in two alternative ways:

1

τ
żt = ft +gT

t (θ+ εt),

or

1

τ
żt =

[

gT
t ft
]

([

θ
1

]

+ ε̃t

)

,

where the new noise vector ε̃t has one additional coefficient. The second equation treats ft as another

basis function whose parameter is constant and is thus simply not updated. Thus, we added ft to the

command cost instead of treating it as a state cost.

We also numerically experimented with violations of the clean distinction between state and

command cost. Equation (36) could be replaced by a cost term, which is an arbitrary function of

state and command. In the end, this cost term is just used to differentiate the different roll-outs

in a reward weighted average, similarly as in Peters and Schaal (2008c) and Koeber and Peters

(2008). We noticed in several instances that PI2 continued to work just fine with this improper cost

formulation.
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Again, it appears that the path integral formalism and the PI2 algorithm allow the user to exploit

creativity in designing cost functions, without absolute need to adhere perfectly to the theoretical

framework.

6.4 Dealing with Hidden State

Finally, it is interesting to consider in how far PI2 would be affected by hidden state. Hidden state

can either be of stochastic or deterministic nature, and we consider hidden state as adding additional

equations to the system dynamics (3). Section 2.3 already derived that deterministic hidden states

drop out of the PI2 update equations—these states of the system dynamics were termed as “ non-

directly actuated” states.

More interesting are hidden state variables that have stochastic differential equations, that is,

these equations are uncontrolled but do have a noise term and a non-zero corresponding coefficient

in Gt in Equation (3), and these equations are coupled to the other equations through their passive

dynamics. The noise term of these equations would, in theory, contribute terms in Equation (36),

but given that neither the noise nor the state of these equations are observable, we will not have the

knowledge to add these terms. However, as long as the magnitude of these terms is small relative to

the other terms in Equation (36), PI2 will continue to work fine, just a bit sub-optimally. This issue

would affect other reinforcement learning methods for parameterized policies in the same way, and

is not specific to PI2.

6.5 Arbitrary States in the Cost Function

As a last point, we would like to consider which variables can actually enter the cost functions for

PI2. The path integral approach prescribes that the cost function needs to be a function of the state

and command variables of the system equations (3). It should be emphasized that the state cost qt

can be any deterministic function of the state, that is, anything that is predictable from knowing the

state, even if we do not know the predictive function. There is a lot of flexibility in this formulation,

but it is also more restrictive than other approaches, for example, like policy gradients or the PoWER

algorithm, where arbitrary variables can be used in the cost, no matter whether they are states or

not.

We can think of any variable that we would like to use in the cost as having a corresponding

differential equation in the system dynamics (3), that is, we simply add these variables as state

variables, just that we do not know the analytical form of these equations. As in the previous

section, it is useful to distinguish whether these states have deterministic or stochastic differential

equations.

If the differential equation is deterministic, we can cover the case with the derivations from

Section 2.3, that is, we consider such an equation as uncontrolled deterministic differential equation

in the system dynamics, and we already know that we can use its state in the cost without any

problems as it does not contribute to the probability of a roll-out.

If the differential equation is stochastic, the same argument as in the previous section applies,

that is, the (unknown) contribution of the noise term of this equation to the exponentiated cost (36)

needs to be small enough for PI2 to work effectively. Future work and empirical evaluations will

have to demonstrate when these issues really matter—so far, we have not encountered problems in

this regard.
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7. Conclusions

The path integral formalism for stochastic optimal control has a very interesting potential to dis-

cover new learning algorithms for reinforcement learning. The PI2 algorithm derived in this paper

for learning with parameterized policies demonstrated a surprisingly good performance, literally

without any need for manual tuning of the parameters of the algorithm. We also demonstrated that

the algorithm scales well into very high dimensional domains that were previously hardly approach-

able for reinforcement learning. Future work will thus allow us to focus much more on machine

learning algorithms for cost function design, as the algorithmic components of the learning algo-

rithm seem to be able to move towards a “black box” character.
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Appendix A.

Appendix A contains the lemmas A1 and A2 and one theorem. The theorem provides the main

result of the generalized path integral control formalism expressed by (18), (19), (20). Its proof is

based on results proven in the lemmas A1 and A2. In appendix B we provide the Feynman-Kac

formula and we sketch the corresponding proof.

Lemma 1 : The optimal control solution to the stochastic optimal control problem expressed by

(1),(2),(3) and (4) is formulated as:

uti = lim
dt→0

[

−R−1G
(c)
ti

T

∫
p̃(τi) ∇

x
(c)
ti

S̃(τi)dτi

]

where p̃(τi) =
exp(− 1

λ S̃(τi))∫
exp(− 1

λ S̃(τi))dτi
is a path dependent probability distribution. The term S̃(τi) is

a path function defined as S̃(τi) = S(τi) +
λ
2 ∑N−1

j=i log |Ht j
| that satisfies the following condition

limdt→0

∫
exp
(

− 1
λ S̃(τi)

)

dτi ∈ C (1) for any sampled trajectory starting from state xti . Moreover the

term Ht j
is given by Ht j

= G
(c)
t j

R−1G
(c)
t j

T while the term S(τi) is defined according to

S(τi) = φtN +
N−1

∑
j=i

qt j
dt +

1

2

N−1

∑
j=i

‖
x
(c)
t j+1
−x

(c)
t j

dt
− f

(c)
t j
‖2

Ht j
dt.

Proof The optimal controls at the state xti is expressed by the equation uti = −R−1Gti ∇ xti
Vti . Due

to the exponential transformation of the value function Ψti = −λ logVti the equation of the optimal

controls is written as:

uti = λR−1Gti

∇ xti
Ψti

Ψti

.
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In discrete time the optimal control is expressed as follows:

uti = lim
dt→0

(

λR−1GT
ti

∇ xti
Ψ(dt)

ti

Ψ(dt)
ti

)

.

By using equation (17) and substituting Ψ(dt)(xti , t) we have:

uti = lim
dt→0

(

λR−1GT
ti

∇ xti

∫
exp
(

− 1
λ Z(τi)

)

dτi∫
exp
(

− 1
λ Z(τi)

)

dτi

)

.

Substitution of the term Z(τi) results in the equation:

uti = lim
dt→0



λR−1GT
ti

∇ xti

∫
exp
(

− 1
λ S̃(τi)− λ(N−i)l

2 log(2πdtλ)
)

dτi

∫
exp
(

− 1
λ S̃(τi)− λ(N−i)l

2 log(2πdtλ)
)

dτi



 .

Next we are using standard properties of the exponential function that lead to:

uti = lim
dt→0



λR−1GT
ti

∇ xti

[∫
exp
(

− 1
λ S̃(τi)

)

exp
(

− λ(N−i)l
2 log(2πdtλ)

)

dτi

]

∫
exp
(

− 1
λ S̃(τi)

)

exp
(

− λ(N−i)l
2 log(2πdtλ)

)

dτi



 .

The term exp
(

− λNl
2 log(2πdtλ)

)

does not depend on the trajectory τi, therefore it can be taken

outside the integral as well as outside the gradient. Thus we will have that:

uti = lim
dt→0



λR−1GT
ti

exp
(

− λ(N−i)l
2 log(2πdtλ)

)

∇ xti

[∫
exp
(

− 1
λ S̃(τi)

)

dτi

]

exp
(

− λ(N−i)l
2 log(2πdtλ)

)∫
exp
(

− 1
λ S̃(τi)

)

dτi



 .

The constant term drops from the nominator and denominator and thus we can write:

uti = lim
dt→0

(

λR−1GT
ti

[

∇ xti

∫
exp
(

− 1
λ S̃(τi)

)

dτi∫
exp
(

− 1
λ S̃(τi)

)

dτi

])

.

Under the assumption that term exp
(

− 1
λ S̃(τi)

)

dτi is continuously differentiable in xti and dt we

can change order of the integral with the differentiation operations. In general for ∇ x

∫
f (x,y)dy =∫

∇ x f (x,y)dy to be true, f (x, t) should be continuous in y and differentiable in x. Under this as-

sumption, the optimal controls can be further formulated as:

uti = lim
dt→0

[

λR−1GT
ti

∫
∇ xti

exp
(

− 1
λ S̃(τi)

)

dτi∫
exp
(

− 1
λ S̃(τi)

)

dτi

]

.

Application of the differentiation rule of the exponent results in:

uti = lim
dt→0

[

λR−1GT
ti

∫
exp
(

− 1
λ S̃(τi)

)

∇ xti

(

− 1
λ S̃(τi)

)

dτi∫
exp
(

− 1
λ S̃(τi)

)

dτi

]

.
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The denominator is a function of xti the current state and thus it can be pushed inside the integral

of the nominator:

uti = lim
dt→0

[

λR−1GT
ti

∫
exp
(

− 1
λ S̃(τi)

)

∫
exp
(

− 1
λ S̃(τi)

)

dτi

∇ xti

(

−1

λ
S̃(τi)

)

dτi

]

.

By defining the probability p̃(τi) =
exp(− 1

λ S̃(τi))∫
exp(− 1

λ S̃(τi))dτi
the expression above can be written as:

uti = lim
dt→0

[

λR−1GT
ti

∫
p̃(τi) ∇ xti

(

−1

λ
S̃(τi)

)

dτi

]

.

Further simplification will result in:

uti = lim
dt→0

[

−R−1GT
ti

∫
p̃(τi) ∇ xti

S̃(τi)dτi

]

.

We know that the control transition matrix has the form G(xti)
T = [0T Gc(xxti

)T ]. In addition

the partial derivative ∇ xti
S̃(τi) can be written as ∇ xti

S̃(τi)
T = [∇

x
(m)
ti

S̃(τi)
T ∇

x
(c)
ti

S̃(τi)
T ]. By using

these equations we will have that:

uti = lim
dt→0

(

−R−1[0T G
(c)
ti

T ]
∫

p̃(τo)

[

∇
x
(m)
ti

S̃(τi)

∇
x
(c)
ti

S̃(τi)

]

dτi

)

.

The equation above can be written in the form:

uti = lim
dt→0

(

−[0T R−1G
(c)
ti

T ]
∫

p̃(τi)

[

∇
x
(m)
ti

S̃(τi)

∇
x
(c)
ti

S̃(τi)

]

dτi

)

.

or

uti = lim
dt→0

(

−[0T R−1G
(c)
ti

T ]

[
∫

p̃(τi) · ∇ x
(m)
ti

S̃(τi)dτi∫
p̃(τi) · ∇ x

(c)
ti

S̃(τi)dτi

])

.

Therefore we will have the result

uti = lim
dt→0

[

−R−1G
(c)
ti

T

∫
p̃(τi) ∇

x
(c)
ti

S̃(τi)dτi

]

.

Lemma 2 : Given the stochastic dynamics and the cost in (1),(2),(3) and(4) the gradient of the

path function S̃(τi) with respect to the directly actuated part of the state x
(c)
ti is formulated as:

lim
dt→0

(

∇
x
(c)
ti

S̃(τi)

)

=−H−1
ti

(

G
(c)
ti εti−bti

)
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where the function b(xti) defined as λH(xti)Φti with Hti =G
(c)
ti R−1G

(c)
ti

T
and the quantity Φti ∈ ℜ l×1

is expressed as:

Φti =
1

2





























trace

(

H−1
ti ∂

x
(c1)
ti

Hti

)

trace

(

H−1
ti ∂

x
(c2)
ti

Hti

)

.

.

.

trace

(

H−1
ti ∂

x
(cl)
ti

Hti

)





























.

Proof

We are calculating the term ∇
x
(c)
to

S̃(τo) . More precisely we have shown that

S̃(τi) = φtN +
N−1

∑
j=i

qt j
dt +

1

2

N−1

∑
j=i

‖
x
(c)
t j+1
−x

(c)
t j

dt
− f

(c)
t j
‖2

Ht j
dt +

λ
2

N−1

∑
j=i

log |Ht j
|.

To limit the length of our derivation we introduce the notation γt j
= αT

t j
h−1

t j
αt j

and αt j
=

(

x
(c)
t j+1
−x

(c)
t j
− f

(c)
t j

dt
)

and it is easy to show that ‖
x
(c)
t j+1
−x

(c)
t j

dt
− f

(c)
t j
‖2

Ht j
dt = 1

dt
γt j

and therefore we will

have:

S̃(τi) = φtN +
1

2dt

N−1

∑
j=i

γt j
+

tN

∑
to

Qt j
dt +

λ
2

N−1

∑
j=i

log |Ht j
|.

In the analysis that follows we provide the derivative of the 1th, 2th and 4th term of the cost

function. We assume that the cost of the state during the time horizon Qti = 0. In cases that this

is not true then the derivative ∇
x
(c)
ti

∑tN
ti Qtidt needs to be found as well. By calculating the term

∇
x
(c)
to

S̃(τo) we can find the local controls u(τi). It is important to mention that the derivative of the

path cost S(τi) is taken only with respect to the current state xto .

The first term is:

∇
x
(c)
ti

(φtN ) = 0.

DERIVATIVE OF THE 2TH TERM ∇
x
(c)
ti

[

1
2dt ∑N−1

i=1 γti

]

OF THE COST S(τi).

The second term can be found as follows:

∇
x
(c)
ti

[

1

2dt

N−1

∑
j=i

γt j

]

.
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The operator ∇
x
(c)
to

is linear and it can massaged inside the sum:

1

2dt

N−1

∑
j=i

∇
x
(c)
t j

(

γt j

)

.

Terms that do not depend on x
(c)
ti drop and thus we will have:

1

2dt
∇

x
(c)
ti

γti .

Substitution of the parameter γti = αT
ti

H−1
ti αti will result in:

1

2dt
∇

x
(c)
ti

[

αT
ti

H−1
ti

αti

]

.

By making the substitution βti
=H−1

ti αti and applying the rule ∇
(

u(x)T v(x)
)

= ∇ (u(x))v(x)+
∇ (v(x))u(x) we will have that:

1

2dt

[

∇
x
(c)
ti

αti βti
+ ∇

x
(c)
ti

βti
αti

]

. (40)

Next we find the derivative of αto :

∇
x
(c)
ti

αti = ∇
x
(c)
ti

[

x
(c)
ti+1
−x

(c)
ti − fc(xti)dt

]

.

and the result is

∇
x
(c)
ti

αti =−Il×l− ∇
x
(c)
ti

f
(c)
ti dt.

We substitute back to (40) and we will have:

1

2dt

[

−
(

Il×l + ∇
x
(c)
ti

f
(c)
ti dt

)

βti
+ ∇

x
(c)
ti

βti
αti

]

.

− 1

2dt

(

Il×l + ∇
x
(c)
ti

f
(c)
ti dt

)

βti
+

1

2dt
∇

x
(c)
ti

βti
αti .

After some algebra the result of ∇
x
(c)
ti

(

1
2dt ∑N−1

i=1 γti

)

is expressed as:

− 1

2dt
βti
− 1

2
∇

x
(c)
ti

f
(c)
ti βti

+
1

2dt
∇

x
(c)
ti

βti
αti .

The next step now is to find the limit of the expression above as dt→ 0. More precisely we will

have that:

lim
dt→0

[

− 1

2dt
βti
− 1

2
∇

x
(c)
ti

f
(c)
ti βti

+
1

2dt
∇

x
(c)
ti

βti
αti

]

.
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LIMIT OF THE FIRST SUBTERM: − 1
2dt

βti

We will continue our analysis by finding the limit for each one of the 3 terms above. The limit of

the first term is calculated as follows:

lim
dt→0

(

− 1

2dt
βti

)

=− lim
dt→0

(

1

2dt
H−1

ti
αti

)

=−1

2
H−1

ti
lim

dt→0
αti

=−1

2
H−1

ti
lim

dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

.

LIMIT OF THE SECOND SUBTERM: − 1
2 ∇

x
(c)
ti

f
(c)
ti βti

The limit of the second term is calculated as follows:

− lim
dt→0

(

1

2
∇

x
(c)
ti

f
(c)
ti βti

)

=−1

2
∇

x
(c)
ti

fc(xti) lim
dt→0

βti

=−1

2
∇

x
(c)
ti

f
(c)
ti lim

dt→0

(

H−1
ti

αti

)

=−1

2
∇

x
(c)
ti

fc(xti) H−1
ti

lim
dt→0

αti

= 0.

The limit of the term limdt→0 αti is derived as:

lim
dt→0

(

x
(c)
ti+1
−x

(c)
ti − fc(xti)dt

)

= lim
dt→0

(

x
(c)
tti+dt
−x

(c)
ti

)

− lim
dt→0

fc(xti)dt = 0−0 = 0.

LIMIT OF THE THIRD SUBTERM: 1
2dt

∇
x
(c)
ti

βti
αti

Finally the limit of the third term can be found as:

lim
dt→0

(

1

2dt
∇

x
(c)
ti

βti
αti

)

=

= lim
dt→0

∇
x
(c)
ti

βti
lim

dt→0

(

1

2dt
αti

)

=

= lim
dt→0

∇
x
(c)
ti

βti

1

2
lim

dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

.

We substitute βti
= H−1

ti αti and write the matrix H−1
ti in row form:
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= lim
dt→0

∇
x
(c)
ti

(

H−1
ti

αti

) 1

2
lim

dt→0

(

(x
(c)
ti −x

(c)
ti )

1

dt
− f

(c)
ti

)

=

= lim
dt→0

∇
x
(c)
ti









































H
(1)−T

ti

H
(2)−T

ti

.

.

.

H
(l)−T

ti





















αti





















1

2
lim

dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

= lim
dt→0

∇
x
(c)
ti





















H
(1)−T

ti αti

H
(2)−T

ti αti

.

.

.

H
(l)−T

ti αti





















1

2
lim

dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

.

We can push the operator ∇
x
(c)
ti

insight the matrix and apply it to each element.

= lim
dt→0

























∇ T

x
(c)
ti

(

H
(1)−T

ti αti

)

∇ T

x
(c)
ti

(

H
(2)−T

ti αti

)

.

.

.

∇ T

x
(c)
ti

(

H
(l)−T

ti αti

)

























1

2
lim

dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

.

We again use the rule ∇
(

u(x)T v(x)
)

= ∇ (u(x))v(x)+ ∇ (v(x))u(x) and thus we will have:

= lim
dt→0































(

∇
x
(c)
ti

H
(1)−T

ti αti + ∇
x
(c)
ti

αti H
(1)−T

ti

)T

(

∇
x
(c)
ti

H
(2)−T

ti αti + ∇
x
(c)
ti

αti H
(2)−T

ti

)T

.

.

.
(

∇
x
(c)
ti

H
(l)−T

ti αti + ∇
x
(c)
ti

αti H
(l)−T

ti

)T































lim
dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

.

We can split the matrix above into two terms and then we pull out the terms αti and ∇
x
(c)
ti

αti

respectively :
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= lim
dt→0

























αT
ti

























∇
x
(c)
ti

H
(1)−T

ti

∇
x
(c)
ti

H
(2)−T

ti

.

.

.

∇
x
(c)
ti

H
(l)−T

ti

























+





















H
(1)−T

ti

H
(2)−T

ti

.

.

.

H
(l)−T

ti





















∇
x
(c)
ti

αT
ti

























1

2
lim

dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

= lim
dt→0

(

αT
ti

∇
x
(c)
ti

H−1
ti

+H−1
ti

∇
x
(c)
ti

αT
ti

)

1

2
lim

dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

=

(

lim
dt→0

(

αT
ti

)

∇
x
(c)
ti

H−1
ti

+H−1
ti

lim
dt→0

(

∇
x
(c)
ti

αT
ti

))

1

2
lim

dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

.

Since limdt→0

(

αT
ti

)

= 01×l and limdt→0

(

∇
x
(c)
ti

αT
ti

)

= −Il×l the final result is expressed as fol-

lows

lim
dt→0

(

1

2dt
∇

x
(c)
ti

βti
αti

)

=−H−1
ti

1

2
lim

dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
to

)

.

After we have calculated the 3 sub-terms, the 2th term of the of the derivative of path cost S(τo)
can be expressed in the following form:

∇
x
(c)
ti

(

1

2λdt

N−1

∑
j=i

γt j

)

=−H−1
ti

lim
dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti )

)

.

DERIVATIVE OF THE FOURTH TERM ∇
x
(c)
ti

(

λ
2 ∑N−1

j=i log |Ht j
|
)

OF THE COST S(τi).

The analysis for the 4th term is given below:

∇
x
(c)
ti

(

λ
2

N−1

∑
j=i

log |Ht j
|
)

=
λ
2

∇
x
(c)
ti

log |Hti |.

If we assume that x
(c)
to = [x

(c1)
to ,x

(c2)
to ....x

(cl)
to ] and take the derivative with respect to each element we

will have

∂
x
(ci)
ti

(

λ
2

log |Hti |
)

=
λ
2

1

|Hti |
∂

x
(ci)
ti

|Hti |.

∂
x
(ci)
ti

(

λ
2

log |Hti |
)

=
λ
2

1

|H(xti)|
|Hti | trace

(

H−1
ti
·∂

x
(ci)
ti

Hti

)

.

∂
x
(ci)
ti

(

λ
2

log |Hti |
)

=
λ
2

trace

(

H−1
ti

∂
x
(ci)
ti

Hti

)

.
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Where we make used of the identity ∂det(A) = det(A)Tr
(

A−1∂A
)

. The result is expressed as:

∇
x
(c)
ti

(

λ
2

log |Hti |
)

=
λ
2





























trace

(

H−1
ti ∂

x
(c1)
ti

Hti

)

trace

(

H−1
ti ∂

x
(c2)
ti

Hti

)

.

.

.

trace

(

H−1
ti ∂

x
(cl)
ti

Hti

)





























.

or in a more compact form:

∇
x
(c)
ti

(

λ
2

log |Hti |
)

= H−1
ti

bti .

where b(xti) = λH(xti)Φti and the quantity Φti ∈ ℜ l×1 is defined as:

Φti =
1

2





























trace

(

H−1
ti ∂

x
(c1)
ti

Hti

)

trace

(

H−1
ti ∂

x
(c2)
ti

Hti

)

.

.

.

trace

(

H−1
ti ∂

x
(cl)
ti

Hti

)





























. (41)

Since we computed all the terms of the derivative of the path cost S̃(τo) and after putting all the

terms together we have the result expressed as follows:

lim
dt→0

(

∇
x
(c)
ti

S̃(τi)

)

=−H−1
ti

(

lim
dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

−bti

)

.

By taking into account the fact that limdt→0

(

(x
(c)
ti+1
−x

(c)
ti ) 1

dt
− f

(c)
ti

)

= G
(c)
ti εti we get the follow-

ing final expression:

lim
dt→0

(

∇
x
(c)
ti

S̃(τi)

)

=−H−1
ti

(

G
(c)
ti εti−bti

)

.

Theorem 3 : The optimal control solution to the stochastic optimal control problem expressed

by (1),(2),(3),(4) is formulated by the equation that follows:

uti = lim
dt→0

∫
p̃(τi) uL (τi) dτi,
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where p̃(τi) =
exp(− 1

λ S̃(τi))∫
exp(− 1

λ S̃(τi))dτi
is a path depended probability distribution and the term u(τi) de-

fined as uL (τi) = R−1G
(c)
ti

T
(

G
(c)
ti R−1G

(c)
ti

T
)−1(

G
(c)
ti εti−bti

)

are the local controls of each sam-

pled trajectory starting from state xti . The terms εti and bti are defined as εti =
(

(x
(c)
ti+1
−x

(c)
ti ) 1

dt
− f

(o)
ti

)

and b(xti) = λH(xti)Φti with Hti = G
(c)
ti R−1G

(c)
ti

T
and Φti given in (41).

Proof

To prove the theorem we make use of the Lemma 2 and we substitute ∇
x
(c)
ti

S̃(τi) in the main

result of Lemma 1. More precisely from lemma A1 we have that:

uti = lim
dt→0

(

R−1G
(c)
ti

T

∫
p̃(τi)H−1

ti

(

∇
x
(c)
ti

S̃(τi)

)

dτi

)

.

The terms R−1 and Gti can be pushed insight the integral since they are independent of τi =
(x1,x2, ...,xN). Thus we have the expression:

uti = lim
dt→0

(∫
p̃(τi)R−1G

(c)
ti

T H−1
ti

(

∇
x
(c)
ti

S̃(τi)

)

dτi

)

,

uti = lim
dt→0

∫
p̃(τi) u

(dt)
L (τi) dτi,

where the local controls u
(dt)
L (τi) are given as follows:

u
(dt)
L (τi) = R−1G

(c)
ti

T H−1
ti

∇
x
(c)
ti

S̃(τi).

After applying the limit, and making use of the result in Lemma 2 the equation above is ex-

pressed as:

uti =
∫

p̃(τi)uL(xti+1 ,xti)dτi,

where the local controls uL(xti+1 ,xti) are given as follows:

uL(τi) = uL(xti+1 ,xti) = R−1G
(c)
ti

T H−1
ti

(

lim
dt→0

(

(x
(c)
ti+1
−x

(c)
ti )

1

dt
− f

(c)
ti

)

−bti

)

,

or in a simpler form:

uL(xti+1 ,xti) = R−1G
(c)
ti

T H−1
ti

(Gcεti−bti) .

By substituting with H(xti) = G
(c)
ti R−1G

(c)
ti

T we have the final result:

uL(τi) = uL(xti+1 ,xti) = R−1G
(c)
ti

T
(

G
(c)
ti R−1G

(c)
ti

T
)−1(

G
(c)
ti εti−bti

)

.
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Appendix B.

Theorem 4 : Let us assume that x satisfies the SDE ẋ = f(x, t) +G(x)ε(t). Then Ψ(x, to) =

Ψ(x, to, tN) = E
(

Ψ(x, tN) e
∫ tN

to − 1
λ q(x)dτ

)

if and only if Ψ(x, t) satisfies the backward Kolmogorov

PDE:

−∂tΨt =−
1

λ
qtΨt + fT

t (∇ xΨt)+
1

2
trace

(

(∇ xxΨt)GtΣεGT
t

)

,

with boundary condition:

Ψ(x, tN) = exp

(

−1

λ
φ(x(tN))

)

.

Proof Given that x satisfies the SDE ẋ = f(x, t)+G(x)ε(t) and Ψ(x, t) satisfies the PDE above,

application of Ito lemma (Øksendal, 2003) to function Y (t) = Ψ(xt , t) e
∫ t

to
− 1

λ q(x)dτ leads to the final

result Ψ(x, to) = E
(

Ψ(x, tN) e
∫ tN

to − 1
λ q(x)dτ

)

. This result is the solution of the linear PDE.
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