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A b s t r a c t .  In this paper, we study a Pdlya urn model containing balls of (rn + 1) 
different labels under a general replacement scheme, which is characterized by an 
(rn + 1) • (m + 1) addition matrix of integers without constraints on the values 
of these (m + 1) 2 integers other than non-negativity. Let X1, X2 , . . . ,  X~ be trials 
obtained by the Pdlya urn scheme (with possible outcomes: "0", "1" , . . . ,  "rn"). We 
consider the multivariate distributions of the numbers of occurrences of runs of differ- 
ent types arising from the various enumeration schemes and give a recursive formula 
of the probability generating function. Some closed form expressions are derived as 
special cases, which have potential applications to various areas. Our methods for the 
derivation of the multivariate run-related distribution are very simple and suitable 
for numerical and symbolic calculations by means of computer algebra systems. The 
results presented here develop a general workable framework for the study of PSlya 
urn models. Our attempts are very useful for understanding non-classic urn models. 
Finally, numerical examples are also given in order to illustrate the feasibility of our 
results. 

Key words and phrases: PSlya urn, replacement scheme, addition matrix, run, enu- 
meration schemes, recursive scheme, probability generating function, double gener- 
ating function, random structures. 

1. Introduction 

The theory and applications of urn models have been a popular subject of s tudy 
for researchers in a wide range of areas such as statistics, probability theory and physics 
(see Kotz and Balakrishnan (1997), Feller (1968)). We can mention P61ya urn models 
as the interesting class of urn models, which was introduced by Eggenberger and P61ya 
(1923) as a model for the spread of contagious diseases (see Johnson and Zotz  (1977), 
Inoue and Aki (2001), Inoue (2003)). 
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We describe the Pdlya urn scheme briefly. From an urn containing a0 balls labeled 
0 and a l  balls labeled 1, a ball is drawn, its label is noted and the ball is returned to 
the urn along with additional balls depending on the label of the drawn ball; if a ball 
labeled i (i = 0, 1) is drawn, aij  balls labeled j (j = 0, 1) are added. This scheme is 

/ \ 

characterized by the following 2 x 2 addition matrix of integers, ( a0o am ~,  whose rOWS 
a lO  a l l  / 

are indexed by the label of the drawn ball and whose columns are indexed by the label 
of balls added. 

One is interested in the exact distribution of the number of occurrences of "1" (or the 
exact distribution of the number of occurrences of "l"-runs of length k) within n draws 
from the urn. A number of Pdlya urn models have been considered by many authors 
in various addition matrices, so that  the distributions have been studied in a variety of 
different areas. The classical Pdlya urn model (a00 = al l ,  a 0 1  = a 1 0  = 0) was studied 
earlier and a detailed discussion can be found in Johnson and Kotz (1977). In the case 
where a0o = al l ,  a 0 1  = a l 0  ---- 0 ,  Aki and Hirano (1988) obtained the Pdlya distribution 
of order k. Friedman (1949) considered the generalization a00 = a11, a01 = a10 (see 
Shur (1984)). Furthermore, a multivariate Pdlya urn model, which is characterized by 
an rn x rn (m > 3) addition matrix, is studied by many authors (see Tripsiannis et al. 
(2002), Johnson et al. (1997)). 

For a long time, most investigations have been made under the special structure of 
the addition matrix with constant row sums; in the 2 x 2 case, a0o + aol = al0 -/- a11, 
which implies a steady linear growth of the urn size. It has been pointed out that  
the derivation of the exact distribution of the number of occurrences of "1" (or the 
number of occurrences of "l"-runs of length k) becomes very complicated in the case 
when a0o + am r al0 + a l l  (see Ling (1993)). Recently, Kotz et al. (2000) revealed why 
the case ao0 + aol r al0 + all  is considerably more challenging. They also described 
that  the exact distribution is rather unwieldy for numerical purposes, even with the 
aid of a modern computer. The nature of urn schemes not satisfying the condition 
a00 + am = alo + all  essentially differs from those that  do. Even in the 2 x 2 case, urn 
schemes where the constraint is not imposed are generally more difficult to analyze than 
those where it was imposed. 

Traditionally, enumerative combinatorial methods were used to obtain the exact dis- 
tributions. Their derivation involves counting paths representing a realization of the urn 
development (see Sen and Jain (1997)). However, it is difficult to s tudy the generalized 
Pdlya urn models (not fixed row sum) by using the traditional combinatorial approach. 

Our purpose in the present paper is to develop a general workable framework for the 
exact distribution theory for Pdlya urn models. We give the method for the derivation 
of the exact distribution regardless of whether or not the constraint is imposed. In this 
paper, we consider a generalized Pdlya urn model containing balls of (rn + 1) different 
labels, whose replacement is controlled by an (rn+l)  x ( rn+l)  addition matrix without the 
constraint. We study the multivariate distributions of the numbers of occurrences of runs 
of different types by engaging the various enumeration schemes. The approach departs 
from the traditional combinatorial approach and provides a very efficient computational 
tool. Our results offer the key to the understanding of a class of non-classic Pdlya urn 
models. 

The rest of this paper is organized as follows. In Section 2, a P61ya urn model 
containing balls of (rn + 1) different labels is introduced, which is characterized by the 
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general replacement scheme. Also we introduce the necessary notation that  will be used 
in the remaining sections. In Section 3, we propose a method for the derivation of the 
multivariate run-related distribution. The present approach provides a computationally 
more efficient scheme. Section 4 gives some closed form expressions as special cases. All 
the results presented in the section are, to the best of our knowledge, new and have 
potential applications to other problems such as statistical tests based on multiple run 
and a class of multiple failure mode reliability system (see Boutsikas and Koutras (2002)). 
In Section 5, numerical examples are given in order to illustrate the feasibility of our 
main results, which nowadays can be easily achieved by computer algebra systems. 

2. The Model 

In this section, to begin with, we will introduce a P51ya urn model containing balls 
of (m + 1) different labels, which is characterized by the general replacement scheme. 
Next, we introduce the different ways of counting the numbers of runs that will be used 
in the remaining sections. 

2.1 Generalized P6lya urn models 
From an urn containing c~i balls labeled i (i = 0, 1 , . . . ,  m), a ball is drawn, its label 

is noted and the ball is returned to the urn along with additional balls depending on the 
label of the drawn ball; if a ball labeled i (i = 0, 1 , . . .  ,m) is drawn, a U balls labeled 
j (j = 0, 1 , . . . , m )  are added. This scheme is characterized by the (m + 1) • (m + 1) 
addition matrix of non-negative integers A = (aij) (i ,j  = 0, 1 , . . . , m )  whose rows are 
indexed by the label of the ball drawn and whose columns are indexed by the label of 
the balls added. We denote the urn composition and (i + 1)-st row of the matrix A 
by b(= (c~0,c~l,..., C~m)) and a/ = (ai0, n i l , . . . ,  aim), respectively. If we draw a ball 
labeled i (i = 0, 1 , . . . ,  m) from the urn b, then the urn composition changes from b to 
b + ai. Also the total numbers of balls in the urn changes from Ibl to Ibl + lail, where, 
Ibl = Cto + a l  + . . .  + c~m and la~l = a/o + a~l + . . -  + aim. Always starting with the newly 
constituted urn, this experiment is continued. 

2.2 Enumeration schemes 
In a sequence of Bernoulli trials (with two possible outcomes: "1" or "0"), there 

are various ways of counting the number of "l"-runs of length k in the literature (see 
Balakrishnan and Koutras (2002)). The four best-known types of the ways of counting 
the number of "l"-runs of length k are as follows. 

(i) Type I enumeration scheme: the way of counting the number of non-overlapping 
and recurrent "l"-runs of length k, in the sense of Feller's (1968) counting, 

(ii) Type II enumeration scheme: the way of counting the number of "l"-runs of 
length at least k, in the sense of Goldstein's (1990) counting (see Gibbons (1971)), 

(iii) Type III enumeration scheme: the way of counting the number of overlapping 
"l"-runs of length k, in the sense of Ling's (1988) counting, 

(iv) Type IV enumeration scheme: the way of counting the number of "l"-runs of 
size exactly k, in the sense of Mood's (1940) counting. 

Let X1, X 2 , . . . ,  Xn be a sequence of {0, 1 , . . . ,  m}-valued random variables obtained 
by the Phlya urn scheme described in Subsection 2.1. Then we study the multivariate 
distributions of the numbers of occurrences of runs of different types by engaging the 
various enumeration schemes. The counting of "/"-runs of length k~ i) (i = 1, 2 , . . . ,  m, 
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j = 1 , 2 , . . . , r i )  is per formed by engaging Type  fl(i)(__ I ,  II ,  I I I ,  IV)  enumera t ion  
scheme. Let N(n ,  k(i);fl  (i)) = (N(n, k ~ 0 ; f l ( 0 ) , . . . ,  N(n,  k(~);fl(i))) denote  the  r a n d o m  
variables ( i - -  1 , 2 , . . .  ,m) ,  where,  k (0 = (k~ i), k~ i), � 9  ,~r,~(i)~/ and  N(n,s; f i  (i)) represents  
the number  of occurrences of " /"-runs of length  s (i = 1, 2 , . . . ,  m)  by engaging Type  
fl(i) (=  I ,  II ,  I I I ,  IV)  enumera t ion  scheme. 

We define 

(2.1) t t ( j ;  fl(i)) = (# l ( j ;  f l ( i ) ) , . . . ,  #r, ( j ; /3(0)) 

= ( i ( j  >_ >_ 

( ( j -  1))+, . . . ,  (j - ( k r  - 1))+) 
(I(j  = k~i)) , . . . , I ( j  = k(~))) 

fl(*) = I ,  

fl(i) = II ,  
fl(~) = I I I ,  
fl(~) = I V ,  

where,  (j - (k (i) - 1)) + = max{0,  (j  - (k~ i) - 1))} and 

1 u is t rue,  
I(u) = 0 otherwise.  

3. Recursive formulae 

In this section, we establish a recursive scheme for the  evaluat ion of the  probabi l i ty  
generat ing funct ion (p.g.f.) of ( N ( n ,  k0 ) ;  fl(1)), N(n ,  k(2); f l (2 ) ) , . . . ,  N(n ,  k(m); fl(m))). 

Suppose  tha t  we have an initial urn  composi t ion  b0 (=  (aoo, ( ~ m , . . . ,  aom)).  Then ,  
the  p.g.f, of (N(n ,  k(1); fl(1)), N(n ,  k(2) ; f l (2) ) , . . . ,  N(n ,  k(m);fl (m))) will be denoted  by 
Cn(bo, t;/5); i.e., 

Cn(b0, t;/3) -- E[t(1)N(n'~(1);'(1))t(2)N(~'~(2);z(2)) ... t (m)N(n'~(m);'(m)) ] bo], 

where,  t = (t~ 1), § ,t~i), § ,t~m) § fl(m)) o r , ,  ,orm j,  f l  = ( f l (1) , f l (2) ,  . . . ,  u r l  , . . . . . .  , � 9  , . . . . . .  , 

and 
(i)N<~,q');~(')) t(i)N(.,k(~'>;~(')) t(i)N(~'~(O;~(O) = tl "''~r~ " 

Suppose  tha t  we have X1 = s (s = 0, 1 , . . . , m )  and the  urn  compos i t ion  before 
the next  trial is b (-- (~0, a l , . . . ,  (Xm)). Then  we denote  r t ; /3) by the  condit ional  
p.g.f, of the numbers  of occurrences of " /"-runs of length  k~ i) (j = 1 , 2 , . . . , r i ,  i = 
1, 2 , . . . ,  m) by engaging T y p e / 3  (0 (=  I ,  II ,  I I I ,  IV)  enumera t ion  scheme in the  sequence 

X1 ,X2 ,X3 , . . . ,Xn+I  given X1 = s. F rom the definition, we see t ha t  r  (b, t; /3) -- 
Cn(b, t;/3). The  condi t ional  p.g.f. r t ; /3) s = 0, 1 , . . . ,  m will be defined by 

r s) (b, t;/3) = E[t(1)N(~+I'~(1);~(1)) t(2)N(~+I'U(2);~(:)) "'" t (m)N(~+l'~(~);#(~)) I b, X I  = 8]. 

THEOREM 3.1. For an initial urn composition bo and every possible urn compo- 
sition b, the p.g.f. Cn(b0, t ; /3)  and the conditional p.g.f.'s r i = 0 , 1 , . . . , m  
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satisfy the recurrence relations. 

(3.1) Cn (bo, t; f~) 

(3.2) r (bo, t; ~)  

(3.3) r176 t; f~) 

(3.4) r (b, t; f~) 

(3.5) r (b, t; f~) 

m 

V" aoi r (bo + hi ,  t; f~) n > 1, 
I ol n -1  

i = O  

m 

a/~( i )  (b + ai ,  t; f~) n > 1, 
i = 0  

= 1 ,  
n - - 1  ~ [ j , a i i ]  

i'r j=o [b[[J,l"~l] [b[ + j]ai[ 

A(i') (h 
x ~ _ ~ _ ~ + j a i  + ai,,t;13) 

c~ i t(i)-(~+~;~(0) 
q-[b[[n,la~l ] 

n >  1, ~(i)__ i,  i i ,  i i i ,  iV, i = 1 , 2 , . . . , m ,  

(3.6) r = t (i)~1;~(')) i = 1 , 2 , . . .  ,m ,  

where, t t ( j ; f i ( i ))  is given by (2.1), a Ix,c] = a(a + c) . . .  (a + (x - 1)c) with a [~ -- 1, 
-_ m oL rn m . . .  [bo] ~-]i=o oi, [b[ = ~ i=oai ,  [ai[ -- ~-~j=oaij and t (i)~(j+l;~(~ -- ~l§ 

t(i),~ (~ +i;~ (i)) 
? ' i  

PROOF. Given the  initial urn  composi t ion  bo (=  ( a o o , a o l , . . . , a o m ) ) ,  we observe 
the first trial. T h e n  we obta in  

---- fii=O ~~ S[t(1)N(~'~O);~(~)) t(2)N(''k(2);~(2)) . . . t (m)  N(~'~(~);~(~)) I b0, X1 -- i]. 

Since we see t ha t  

E [ t  (1)N(~'k(');~r t (2)N(~'~r " - t  (m)N(~'~(m);~('~)) ] bo, Z l  ~-= i] 

~-r  for i = 0 , 1 , . . . , m ,  

therefore we have the  equat ion  (3.1). Since r176 $;/3) = Cn(b, $; f~) f rom the definit ion,  
we have the  equa t ion  (3.3). 

Suppose  tha t  we have X1 -- i (i = 1, 2 , . . . ,  m) and  the  urn  compos i t ion  before the  
i' i ~ next  tr ial  is b (=  (Co, a l , . . . ,  am)) .  Consider ing the  event  B~+ 2 t ha t  the  first (i' ~ i) 

occurs at  the  (j + 2)-th trials (j  = 0, 1 , . . . ,  n -  1) and  the  event C tha t  the  first i '  (i' r i) 
does not  occur  in X 2 , X 3 , . . . ,  Xn+l. 

T h e n  we obta in  

E[t(1)m~+~'~(~)~(1))t(2)m~+~'~(2);~(~)) . . .  t ( ~ ) m ~ + ~ ' ~  ] b, X1 = i] 
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n - 1  ^ [J,aii] 
: E E  c~i ~ + 3 a i i '  

i'r j=o ]bl[J'la'[] ]b] + j lai l  

x E[ t  (~)~('~+''~(1);'('),t (~)~('+~'~(~);'(:)) - . - t (m)N(~+~'~(~);'(~)) I b, X l  = i, By+2 ] 

+ ib[[n,la, I] "'" 

t (rn)N(~+L~(m);~('~)) I b, X~ = i,C], for i = 1 , 2 , . . . , r n .  

Since we see tha t  

E[t(1)N(~+~.~(~);Z(~))t(2)N(~+~.k(2);~(2))...t(m)~(~+~.~(~);~(~))lb, X 1 = i, By+2 ] 

t(i)~CJ+l;~(~)) A(i') Cb w ~ - j - l ~  + j a i + a i , , t ; ~ )  for i ' ~ i ,  i = 0 , 1 , . .  ,m,  

E[t(1)~(~+~'~(~);'(~))t(2)N(~+"~(~);'(~)) . . .  t (m)N(~+~'~(m);'(~)) ] b, X1 = i, C] 

= t (0"(~+~;'(~)), for i = 1, 2 , . . . ,  m, 

therefore we have the equation (3.5). It is easy to check the equations (3.2), (3.4) and 
(3.6). The  proof is completed. [] 

The  method  established in Theorem 3.1 is a very efficient recursive scheme. The  ad- 
vantage of this me thod  is that  it survives in a much broader  framework than  the ones used 
so far. When  the sequence X 1 , X 2 , . . . ,  X n  is const ructed from other  random trials (for 

example, Markov chain), the exact distr ibution of ( g ( n ,  k~0; /%i)) , . . . ,  N ( n ,  k(~);~5(0)) 
could be easily obtained through Theorem 3.1 after trivial modifications. 

Remark  3.1. Recently, Aki and Hirano (2000) in t roduced a generalized enumer-  
ation scheme which is called g-overlapping counting (see Inoue and Aki (2003)). In 
Theorem 3.1, set t ing 

i t ( j ;  j3 (i)) = ( # l ( j ;  ~ ( / ) ) , . - . ,  lZ r~ ( j ; / 3 ( i ) ) )  
�9 

where, r ~ l +  : max{0, r J - ~ )  11 g(i) k~i) s s t ~ l i  and 0 < < - 1, the  methods  in Theorem i k(~) _g(i)  J _ - -  - -  

3.1 can be extended to cover this case easily. 

Remark  3.2. It is possible to s tudy the mult ivariate run-re la ted distr ibutions by 
engaging various enumera t ion  schemes through some modifications on i t ( j ;  ~(i)). If we 

count  the number  of occurrences of "i"-runs of length k~ i) by engaging Type  '-3/~!i) enumer-  

. . . . .  , [~!i) = I,  I I ,  I I I ,  I V ) ,  we should replace a t i o n s c h e m e  (i = 1, 2, . , m , j  = 1, 2, ri,,_3 

i t( j ; /3(0) in Theorem 3.1 by 

t t ( j ; /3  (/)) = (#(j;/3~i)), # ( j ; /3 ( i ) ) , . . . ,  p(j;/3(~))), 
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where, f~(i) = (/3~i),/3~i), s(i)~ and for s 1 , 2 , . . .  �9 �9 �9 , / ~ r i  ] - - - -  , ri, 

• I,  

= I( />_ kl = Iz ,  

(j  _ (k(i) _ 1))+ /3(0 = I I I ,  

I ( j  ---- k (i)) /3 (i) = IV.  

In closing, we would like to mention that  Theorem 3.1 provides a tool for the evalu- 
ation of the r-th descending factorial moment  and r- th order moment  of N ( n ,  kJi); ~(0).  

The recursive scheme for the descending factorial moment  of N ( n ,  k~i); ~(i)) can be de- 
rived from the r- th  order derivatives of the p,g.f.'s directly. The recursive scheme for 
the r- th order moment  N ( n ,  k~i);/3 (i)) can be derived from the r- th  order derivatives of 

moment  generating functions obtained by replacing t~ i) by t (Q the e-J . We can also derive 
a recursive scheme for the covariance between N ( n ,  Sl; ui)  and N ( n ,  s2; u2). The details 
can be worked out easily and are thus omit ted here. 

4. Mult ivariate distributions as special cases 

In this section, we assume that  the addition matrix A is equal to the (m + 1) • 
(m + 1) zero matrix. Then the initial urn composition b0 (= (aoo, a m , . . . ,  a0m)) does 
not change with each draw. In this section, we will denote the p.g.f.'s simply by r 
and r i)(t; j3) (instead of r t;/3) and r t;/3)). Easily we see that  r = 
Cn(t; f~) from the definition. 

Using Theorem 3.1, we obtain the next corollary. 

The p.g.f. Cn(t;f~) and the conditional p.g.f . 's  r i = COROLLARY 4.1. 
1, 2 , . . .  , m  satisfy the recurrence relations. 

m 

x-~ ,(i)  
Cn(t;fil)  = P O C n - l ( t ; f ~ ) +  ~._~pig)n_l(t;f~) n >  1, 

i=l  
r -- 1, 

n - - 1  

t(i)~(3+1"~(~) ) r (t; ~)  = E P~iPo ' Cn--j--1 (t; f~) 
j=O 

n--1 

+ E E ~j~''+(i)'(r (+.r~ nt(i)'(~+l;~(~)) FiYz ~ ~ n - - j - - l  ~ ~ '  ~/  ~- Pi , 
i'7~O,i j=O 

n >_ 1, ~(i) = i ,  i i ,  i i i ,  iV ,  i = l , 2 , . . . , m ,  

r (t; /3) -- t (i)"(~;#~)) i = 1 ,2 , . . .  ,m,  

where, #(j ;~( i ) )  is given by (2.1) and pi = aoi/Ibol (i = O, 1 , . . . , m ) .  

We will introduce the following double generating functions 

oo 

r  z; - -  On(t; n, 
n = 0  
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o o  

�9 (~)(t, z; ~)  = ~ r ~ ) z  n 
n = 0  

i ----1,2,. .. ,m.  

Using Corollary 4.1, we can easily obtain the system of equations of the double generat ing 
functions. The  next corollary provides the details. 

COROLLARY 4.2. The double generating functions O(t,z;13) and O(~)(t,z;j3) i = 
1, 2 , . . . ,  m satisfy the system of equations 

m 

�9 (t, z; f~) = 1 + poz~(t ,  z; ~)  + y ~  p~z~(i)(t, z; ~), 
i=1 

(I)(i) (t, Z;/3) ---- P(t(i),piz; ~(i)) + pozP(t(i),piz;/~(i))O(t ' z; f~) 

+ p(t(i),piz; ~(i)) E Pi'Z~(i')(t' z; f~) 
i ' ~ O , i  

~(~) = I, I I ,  I I I ,  IV, i = 1, 2 , . . . ,  m,  

where, t t ( j ;  ~ (i)) is given by (2.1), t (i) -- (t~i), �9 �9 ~r~'(i)~, and 
(~  

(4.1) P(t(i),piz; /3 (i)) = E (piz)Jt (i1"~ . 
j=O 

Corollary 4.2 reveals the following compact  formula for the double generat ing func- 
tion (I)(t, z; 13). 

PROPOSITION 4.1. The double generating function of ( N ( n , k ( 1 ) ; ~ ( 1 ) ) , . . . ,  
N ( n ,  k(m);/3(m))) is given by 

�9 (t,z;f~) = 
m pizP(t(i),piz; ~(i)) 

1 - p o z -  E i=l  1 +pizP(t(i),piz;l~(i)) 

where, P(t(i),p~z; ~(i)) is as in (4.1). 

Example 4.1. Joint distribution of (N(n,k~l);~(1)) , . . . ,N(n,k~m);~(m))) .  We 

consider the  joint distr ibution of (N(n,k~l);~(1)), . . . ,N(n,k~m);/3(m))).  The  double 
generat ing function (I)(t, z; t3) is given by 

�9 ( t ,  z; ~)  = 
,~ pizP(t~i),piz; ~(i)) 

1 - poz - E i = I  1 + pizP(t~i),piz;~(i)) 

where, for i - -  1 , 2 , . . . , m ,  

o o  _ _  i 
z----~. .j (i).i(i+~;~ ( )) P(t~) ,p iz ;~  (i)) ~..,(piz) t 1 
j=o 
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l_(plz)k~ i) --l ~-(piz)k~i)--lt~i)(1--piZ) 
(1 --piz)(1--(piz)k~ ~) t~ i) ) 

1--(plz)k~ ~)-1(1-t~`) ) 
1 --Pi z 

1-(p~ z ) ~ -  ~ (1-t~ ~))-~zt~ ~) 
(1--plz)(1--pizt~ ') ) 

1--(plz)k~ i ) - l (1- t [ i ) ) (1-plz)  
1 --p~ z 

~(i) = I ,  

~(i) = I I ,  

~(i) = I I I ,  

~(~) = IV. 

Remark 4.1. In  t he  case  w h e r e  m = 2 r l  = 1 a n d  r2 = 1, B M a k r i s h n a n  

a n d  K o u t r a s  (2002) s t ud i ed  the  jo in t  d i s t r i b u t i o n s  of  (N(n ,k~ l ) ; I ) ,N(n ,k~2) ; I ) ) ,  
(N(n , k~ l ) ; I I ) ,N (n , k~2) ; I I ) )  and  ( N ( n , k ~ l ) ; I I I ) , N ( n , k ~ 2 ) ; I I I ) ) ,  which  a re  ca l led  

T y p e  I, T y p e  I I  a n d  T y p e  I I I  t r i n o m i a l  d i s t r i b u t i o n s  of  o rde r  r~(1) ~(2)~ T h e  resu l t s  \'~1 , 'Vl  2" 
p r e s e n t e d  in th is  sec t ion  are  gene ra l i z a t i ons  of  these  t r i n o m i a l  d i s t r ibu t ions .  

5. Numerical examples 

T h e  resu l t s  p r e s e n t e d  in T h e o r e m  3.1 a re  su i t ab le  for c o m p u t a t i o n .  In  th is  sec t ion ,  
we i l lus t ra t ive  how to  o b t a i n  the  m u l t i v a r i a t e  r u n - r e l a t e d  d i s t r i b u t i o n  b y  m a k i n g  use  of  
T h e o r e m  3.1 a n d  a c o m p u t e r  a l g e b r a  sy s t em.  

Example 5.1. The joint distribution of  (N(n,  k}l); I ) ,  N(n ,  k}2);III)) .  U n d e r  the  
fol lowing ini t ia l  u r n  c o m p o s i t i o n  a n d  the  a d d i t i o n  m a t r i x  

bo = (1 ,6 ,4 ) ,  A = 2 3 1 , 

1 5 2  

we cons ide r  the  jo in t  d i s t r i b u t i o n  of  (g(n,k~l);  I ) ,N(n , k~2) ; I I I ) ) .  For  n -- 10, k~ 1) = 4 

and  k~ 2) -- 6, the  va lues  of  p robab i l i t i e s  a re  g iven  in Tab l e  1. 

Example 5.2. The joint distribution of (N(n ,k~ l ) ; I ) , g (n , k~2) ; I ) ) .  U n d e r  the  
fol lowing ini t ia l  u rn  c o m p o s i t i o n  a n d  the  a d d i t i o n  m a t r i x  (11 ) 

b0 = (1 ,2 ,3 ) ,  A = 0 2 , 

1 3  

Table 1. Values of probabilities in Example 5.1. 

N(n,k~l);I) = 0 N(n,k~l);I) = 1 N(n,k~l);I) = 2 Marginal 

N(n, k~2) ; III) = 0 0.712578 0.267807 0.017249 0.997636 
N(n, k~2); I I I )=  1 0.001710 0.000107 0 0.001817 

N(n, k~2); I I I )=  2 0.000427 0 0 0.000427 

N(n, k~2); I I I )=  3 0.000095 0 0 0.000095 

N(n, k~J); I I I )=  4 0.000019 0 0 0.000019 
N(n, k~2); I I I )=  5 0.383 • 10 -6 0 0 0.383 • 10 -6 

Marginal 0.714834 0.267915 0.017249 1 
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we cons ider  the  jo int  d i s t r i bu t ion  of (N(n,k~l);I),N(n,k~2);I)). For  n = 10, k~ 1) = 2 

and  k~ 2) = 3, the  p.g.f, is 

r t; ~) = 0.06023023367r + 0 0005015316096t~ ~)~ + 0 024237T4105r )~ 

+ 0 0103s354171r 2)~ + 0 01632694797t~ ~)~ + 0 1103976042 

+ 0.2170400500t~ 1)2 + 0.2339697290t~ 1) + 0.08736207037t~ 2) 
3 

+ 0.1221110338t~Dt~ 2) + 0.1051554984t~ ') + 0.009732021762t~ 1) t~ 2) 

+ 0.0009754937684t~l)2t~2)2 + 0.001576502720t~ 1)~. 

For n = 50, k~ 1) = 2 and k~ 2) -- 3, we give Fig. 1, which is the three-dimensional plot of 
the exact joint probability function of (N(n,k~l); I),N(n,k~2); I)). 

0 . 0 4  

0 . 0 3  
z 

0 . 0 2  

ool ~ �9 ~ 4 =  

~ o  

~0 
Fig. 1. Probability function for k~ 1) = 2, k~ 2) = 3 and n = 50. 
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