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a b s t r a c t

As one of the most adopted sequential data assimilation methods in many areas, especially
those involving complex nonlinear dynamics, the ensemble Kalman filter (EnKF) has been
under extensive investigation regarding its properties and efficiency. Compared to other
variants of the Kalman filter (KF), EnKF is straightforward to implement, as it employs ran-
dom ensembles to represent solution states. This, however, introduces sampling errors that
affect the accuracy of EnKF in a negative manner. Though sampling errors can be easily
reduced by using a large number of samples, in practice this is undesirable as each ensem-
ble member is a solution of the system of state equations and can be time consuming to
compute for large-scale problems. In this paper we present an efficient EnKF implementa-
tion via generalized polynomial chaos (gPC) expansion. The key ingredients of the pro-
posed approach involve (1) solving the system of stochastic state equations via the gPC
methodology to gain efficiency; and (2) sampling the gPC approximation of the stochastic
solution with an arbitrarily large number of samples, at virtually no additional computa-
tional cost, to drastically reduce the sampling errors. The resulting algorithm thus achieves
a high accuracy at reduced computational cost, compared to the classical implementations
of EnKF. Numerical examples are provided to verify the convergence property and accuracy
improvement of the new algorithm. We also prove that for linear systems with Gaussian
noise, the first-order gPC Kalman filter method is equivalent to the exact Kalman filter.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Data assimilation addresses the problem of producing useful simulation predictions based on imperfect model equations
and measurements. It has been used extensively in atmospheric and oceanic applications and other geoscience areas, and
beyond. The most widely adopted approach is Kalman filter [22,5], which is optimal for linear systems of state equations
associated with Gaussian modeling and observation errors. However, for nonlinear systems the Kalman filter requires a lin-
earization or a closure model of the state equations, resulting in the extended Kalman filter (for example, [11,19]), which
may introduce significant error into the scheme. Furthermore, both the Kalman filter (KF) and the extended Kalman filter
(EKF) require calculations of the evolution of the covariance function of the state variables. Although the covariance function
provides a good estimate of uncertainty in the solutions, its storage and manipulation can be highly inefficient for systems
with large dimensions of the state variables.

The ensemble Kalman filter (EnKF), first proposed by Evensen in [6] and later developed in [3] and many more work, has
become popular in a wide variety of application areas. EnKF addresses the problem associated with linearization and
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efficiency by using ensemble representation of solution states. Sets of ensemble realizations are generated using Monte Carlo
sampling for the initial state, model noise and measurement noise. Ensemble members are then forwarded in time by solving
the (nonlinear) state equations and are analyzed by an approximate Kalman filter scheme. In doing so, EnKF avoids linear-
ization of the model equations. The ensemble covariance is used as an approximation of the true covariance, thus avoiding
explicit evolution and storage of the covariance as well. Since its introduction, several variations of EnKF have appeared to
gain computational efficiency. See, for example, extensive reviews in [8,10].

The obvious source of numerical errors of EnKF stems from sampling, which includes sampling of the state variables and
of the measurement. Such sampling errors can have a notable impact on the effectiveness of EnKF. In fact, a numerical error
estimate was conducted in [23], and the result indicates that more frequent data assimilation by EnKF does not intuitively
lead to a more accurate estimate of the true states due to the accumulation of sampling errors. Efforts have been devoted to
design more efficient EnKF schemes by reducing the sampling errors. In particular, ensemble square-root filter (EnSRF)
[26,2,1,9] employs a deterministic update of the forecast model states without generating measurement noises numerically
and thus eliminates the errors induced by sampling the measurement. However, to reduce errors in sampling the model
states, there are not many effective approaches except to increase the ensemble size. See, for example, [17], for discussions
on various options such as localization. The relatively slow convergence rate of Monte Carlo sampling implies that in order to
effectively reduce the sampling error, a large number of realizations are required. This is undesirable in practice as each real-
ization requires a solution of the governing model equations and can be time consuming to compute for large-scale complex
systems. As a result, a trade-off between efficiency and accuracy exists when one implements EnKF (or EnSRF) in practice.

A method to reduce sampling errors for model states was proposed in [23]. It employs a set of optimal cubature rules in
place of the Monte Carlo sampling and can be quite efficient. This is similar to the earlier work on unscented Kalman filter
(UKF) [20,21] and Gauss–Hermite quadrature filter [18]. However, the numerical accuracy of such methods can not be easily
refined without incurring additional computational cost, and this can limit its effectiveness for highly complex systems. In
this paper we present a numerical strategy for EnKF based on generalized polynomial chaos (gPC). The gPC, first systemat-
ically presented in [31], is an extension of the classical polynomial chaos theory pioneered by Ghanem [13,12] and has been
successful for stochastic computations. In gPC, stochastic quantities are expressed as convergent polynomial series of input
random variables, and efficient numerical schemes (stochastic Galerkin or stochastic collocation) can be constructed accord-
ingly. Here we construct a set of efficient algorithms based on the gPC expansion and the EnSRF scheme. The key ingredients
of the proposed approach involve (1) solving the system of stochastic state equations via the gPC-based numerical methods
(stochastic Galerkin or stochastic collocation) to gain efficiency; (2) sampling the gPC approximation of the stochastic solu-
tion with an arbitrarily large number of samples, at virtually no additional computational cost, to drastically reduce sampling
errors; (3) combining with the EnSRF strategy to eliminate errors in sampling the measurement. The resulting algorithm thus
achieves a high accuracy at reduced computational cost, compared to the classical implementations of EnKF/EnSRF. For the
linear system of equations with Gaussian noise, it can be shown that the first-order gPC filter is equivalent to the Kalman
filter. We remark that although the new gPC filer can significantly reduce sampling errors of EnKF/EnSRF, it inherits the same
fundamental assumptions, such as Gaussian noise from the Kalman filter. In other words, if one views all versions of EnKF
and EnSRF as numerical approximations of the Kalman filter, then the gPC filter is another approximation that offers (much)
smaller numerical errors.

The rest of the paper is arranged as follows: a brief review of KF, EnKF and EnSRF is in Section 2. The gPC methods are
introduced in Section 3, where fast solvers for forecast state equations are in Section 3.1 and the new filtering scheme is
in Section 3.2. Numerical examples are presented in Section 4 to examine the properties of the gPC–EnSRF and to demon-
strate its efficiency. Conclusions and comments are in Section 5.

2. Data assimilation and Kalman filter

In this section we briefly review the idea and main properties of the Kalman filter (KF) and ensemble Kalman filter (EnKF)
for data assimilation. The exposition will be made in the context of nonlinear system of ordinary differential equations, as we
follow the traditional approach by focusing on time evolution of the system.

2.1. Data assimilation

Let uf 2 Rm;m P 1, be a vector of forecast state variables (denoted by the superscript f) that are modeled by the following
system:

duf

dt
¼ f ðt;uf Þ; t 2 ð0; T�; ð1Þ

uf ð0Þ ¼ u0; ð2Þ

with T > 0. The model (1) and (2) is obviously not a perfect model for true physics and the forecast may not represent the
true state variables, ut 2 Rm, sufficiently well. If a set of measurements d 2 R‘; ‘ P 1, are available as

d ¼ Hut þ �; ð3Þ
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where H : Rm ! R‘ is a measurement operator relating the true state variables ut and the observation vector d 2 R‘, and
� 2 R‘ is measurement error. Note the measurement operator can be nonlinear, although it is written here in a linear fashion
by following the traditional exposition of the (ensemble) Kalman filter. Also the characterization of true state variables ut can
be highly nontrivial in practice. Here we assume they are well defined variables with dimension m.

The objective of data assimilation is to construct an optimal estimate of the true state, the analyzed state vector denoted as
ua 2 Rm, based on the forecast uf and the observation d. Note it is possible to add a noise term in (1) as a model for the mod-
eling error. Here we restrict ourselves to the deterministic model (1).

2.2. Kalman filter

The Kalman filter is a sequential data assimilation method that consists of two stages at each time level – a forecast stage
where the system (1) and (2) is solved, and an analysis stage where the analyzed state ua is obtained.

Let Pf 2 Rm�m be the covariance matrix of the forecast solution uf . The analyzed solution ua in the standard KF is deter-
mined as a combination of the forecast solution uf and the measurement d in the following manner,

ua ¼ uf þ Kðd�Huf Þ; ð4Þ

where K is the so-called Kalman gain matrix defined as

K ¼ Pf HTðHPf HT þ RÞ�1
: ð5Þ

Here the superscript T denotes the matrix transpose, and R 2 R‘�‘ is the covariance of the measurement error �. The covari-
ance function of the analyzed state ua;Pa 2 Rm�m, is then obtained by

Pa ¼ ðI� KHÞPf ðI� KHÞT þ KRKT ¼ ðI� KHÞPf ; ð6Þ

where I is the identity matrix.
When the system (1) is linear, the KF can be applied in a straightforward manner, as equations for the evolution of the

solution covariance can be derived. For nonlinear systems, explicit derivation of the equations for the covariance function is
not possible. Subsequently, the extended Kalman filter (EKF), which employs either linearization of the model equation (1) or
some closure approximation, is developed. The applicability of the EKF is, however, limited due to approximation errors by
the linearization or closure assumption. Furthermore, in practical applications, forwarding the covariance functions (6) in
time requires an explicit storage and computation of Pf , which scales as Oðm2Þ and can be inefficient when the dimension
of the model states, m, is large.

2.3. Ensemble Kalman filter

The ensemble Kalman filter (EnKF) overcomes the limitations of the Kalman filter (or the extended Kalman filter) by using
an ensemble approximation of the random state solutions.

Let

ðuf Þi; i ¼ 1; . . . ;M; M > 1; ð7Þ

be an ensemble of the forecast state variables uf , where each ensemble member is indexed by the subscript i ¼ 1; . . . ;M; and
obtained by solving the full nonlinear system (1). The analysis step for the EnKF consists of the following update performed
on each of the model state ensemble members

ðuaÞi ¼ ðuf Þi þ KeððdÞi �Hðuf ÞiÞ; i ¼ 1; . . . ;M; ð8Þ

where

Ke ¼ Pf
eHTðHPf

eHT þ ReÞ�1 ð9Þ

is the ensemble Kalman gain matrix. Here

Pf
e, ðuf � �uf Þðuf � �uf ÞT ’ Pf ;

Pa
e, ðua � �uaÞðua � �uaÞT ’ Pa;

ð10Þ

are the approximate forecast covariance and analysis covariance, respectively, obtained by using statistical averages of the
solution ensemble (denoted by the overbar), and Re ¼ ��T ’ R is the approximate observation error covariance. Therefore,
the covariance functions are approximated by ensemble averages and are not needed to be forwarded in time explicitly.

In its original setting, cf. [6,3], the observations are treated as random variables and an ensemble of observations are gen-
erated, based on the covariance matrix R. Though straightforward to implement, this approach introduces a sampling error
in the Kalman gain matrix and subsequently affects the accuracy. An alternative, called the ensemble square-root filter (EnS-
RF), was introduced to eliminate the error in sampling the observations. This is achieved by constructing the analysis scheme
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without perturbing the measurements. Various versions of EnSRF have been proposed. See, for example, [2,1,26,9]. Here we
briefly review the method developed in [26].

The forecast and analyzed states can be written as follows:

ðuf Þi ¼ �uf þ ðuf Þ0i; ðuaÞi ¼ �ua þ ðuaÞ0i; i ¼ 1; . . . ;M; ð11Þ

where �uf and �ua denote the mean of the forecast and the analyzed states, and ðuf Þ0i and ðuaÞ0i are the corresponding deviations
from their mean.

In the analysis step of EnSRF, the ensemble mean and the deviations are updated separately.

�ua ¼ �uf þ Keðd�H�uf Þ; ð12Þ
ðuaÞ0i ¼ ðuf Þ0i � eKeHðuf Þ0i; i ¼ 1; . . . ;M; ð13Þ

where Ke is the ensemble Kalman gain matrix (9), and

eKe ¼ Pf
eHT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HPf

eHT þ R
q� ��1

 !T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HPf

eHT þ R
q

þ
ffiffiffiffi
R
p� ��1

; ð14Þ

which is obtained by satisfying the equation

ðI� eKeHÞPf
eðI�HT eKT

e Þ ¼ ðI� eKeHÞPf
e; ð15Þ

so that the resulting covariance of the analysis states matches the theoretical covariance Pa from the KF. It is obvious that the
EnSRF does not require explicit ensemble representation of the measurement d in the analysis scheme and eliminates the
corresponding sampling error. However, sampling errors for the state variables are still present.

2.4. Error bound of EnKF

The major contribution of numerical errors for EnKF is made by sampling. To understand the impact of numerical errors,
we here cite an error bound of EnKF derived in [23]. Let t1 < t2 < � � � be discrete time instances at which data arrive sequen-
tially and assimilation is made. Without loss of generality let us assume they are uniformly distributed with a constant step
size DT ¼ tk � tk�1;8k > 1. Let En be the numerical error of the EnKF, that is, the difference between the EnKF results and the
exact KF results measured in a proper norm (note this is not the difference between the EnKF results and the true states,) at
time level tn;n P 1, then the following bound holds,

En 6 E0 þ
Xn

k¼1

ek

 !
expðK � tnÞ; ð16Þ

where E0 is the error of sampling the initial state, ek is the local error at time level tk;1 6 k 6 n, and K > 0 is a constant. The
local error scales as

ek � OðDtp;rM�aÞ; Dt ! 0; M !1; ð17Þ

where OðDtpÞ denotes the numerical integration error in time induced by solving (1) and (2) with a time step Dt and a tem-
poral integration order p P 1;r > 0 is the noise level of the measurement that scales with the standard deviation of the mea-
surement noise, M is the size of the ensemble, and a > 0 is the convergence rate of the sampling scheme. For Monte Carlo
sampling, a ¼ 1=2. In most cases, this sampling error dominates. A notable result is that the constant K depends on the size
of the assimilation step in an inverse manner, i.e., K / DT�1. This implies that more frequent data assimilation by the EnKF
can magnify the numerical errors. Since more frequent assimilation is always desirable (whenever data are available) for bet-
ter estimate of the true state, it is imperative to keep the numerical errors, particularly the sampling errors, of the EnKF under
control. Although the sampling errors can be easily reduced by increasing the ensemble size, in practice this can significantly
increase the computational burden, especially for large-scale problems.

3. gPC-based ensemble Kalman filter

In this section we present an ensemble Kalman filter algorithm using the methodology of generalized polynomial chaos
(gPC). The gPC framework is presented first; we then discuss how to construct a set of highly accurate EnKF methods based
on the gPC expansion.

3.1. Solution of the forecast state by gPC

In the Kalman filter, the modeling error in the system (1) and (2) is typically assumed to be in the initial condition (2)
which is modeled as a random quantity. That is, (2) becomes

J. Li, D. Xiu / Journal of Computational Physics 228 (2009) 5454–5469 5457
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uf ð0Þ ¼ u0ðZÞ; Z 2 Rn; n P 1; ð18Þ

where Z ¼ ðZ1; . . . ; ZnÞ is a set of independent random variables parameterizing the random initial condition with probability
density function qðzÞ : Rn ! Rþ ¼

Qn
k¼1qðkÞðzkÞ. Here qðkÞðzkÞ is the probability distribution of Zk; k ¼ 1; . . . ;n. Subsequently,

the forecast state variables become stochastic variables and can be parameterized by the same set of random variables, i.e.,

uf
,uf ðt; ZÞ : ½0; T� � Rn ! Rm:

An Nth-order generalized polynomial chaos (gPC) expansion to the solution of (1) and (2), uf ðt; ZÞ, takes the following form,
for any t 2 ½0; T�,

uNðt; ZÞ ¼
XN

jij¼0

ûiðtÞUiðZÞ; ð19Þ

where i ¼ ði1; . . . ; inÞ 2 Nn
0 is a multi-index with jij ¼ i1 þ � � � þ in, and

UiðZÞ ¼
Yn

k¼1

/ik
ðZkÞ; jij 6 N;

are n-variate orthogonal polynomial basis functions constructed as products of the univariate polynomials /ik
ðZkÞ. Here

/ik
ðZkÞ are the ikth-order orthogonal polynomials in the Zk dimension satisfying

Ek½/mðZkÞ/nðZkÞ�,
Z

/mðzkÞ/nðzkÞqðkÞðzkÞdzk ¼ dmn; 0 6 m; n 6 N; ð20Þ

where dmn is the Kronecker delta function and the polynomials are normalized. Therefore, fUiðZÞgjij6N are n-variate orthonor-
mal polynomials of total degree up to N such that

E½UiðZÞUjðZÞ�,
Z

UiðzÞUjðzÞqðzÞdz ¼ dij; ð21Þ

where dij ¼
Qn

k¼1dikjk . The total number of basis functions is

N þ n

n

� �
: ð22Þ

The expansion coefficients in (19) can be obtained by an orthogonal projection,

ûiðtÞ ¼ E½uf ðt; ZÞUiðZÞ� ¼
Z

uf ðt; zÞUiðzÞqðzÞdz; 8jij 6 N: ð23Þ

Classical approximation theory guarantees that this is the best approximation in the linear space of n-variate polynomials of
degree up to N in the mean-square sense.

3.1.1. Stochastic Galerkin and collocation methods
In practice, the projection for the expansion coefficients (23) is not available as it requires knowledge of the solution. Two

often used approaches to numerically approximate the coefficients are the stochastic Galerkin (SG) method and the stochas-
tic collocation (SC) method. The stochastic Galerkin approach seeks an approximate gPC solution in the similar form of (19),
i.e., for any t 2 ½0; T�,

vNðt; ZÞ ¼
XN

jij¼0

v̂iðtÞUiðZÞ: ð24Þ

The expansion coefficients fv̂ig are obtained by satisfying (1) and (2) in the following weak form, for all jkj 6 N,

dv̂k

dt
¼ E½f ðt;vNÞUk�; t 2 ð0; T�; ð25Þ

v̂kð0Þ ¼ E½u0Uk�: ð26Þ

The resulting equations are a set of (usually coupled) deterministic equations for fv̂kg, and standard numerical techniques
can be applied.

Another approach is to employ the pseudo-spectral stochastic collocation approach [28]. Here we again seek an approx-
imate solution in the form of the gPC expansion (19), i.e., for any t 2 ½0; T�,

wNðt; ZÞ ¼
XN

jij¼0

ŵiðtÞUiðZÞ; ð27Þ

where the expansion coefficients are determined as
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ŵiðtÞ ¼
XQ

j¼1

uf ðt; ZðjÞÞUiðZðjÞÞaðjÞ; 8jij 6 N: ð28Þ

Here fZðjÞ;aðjÞgQ
j¼1 are a set of nodes and weights, and uf ðt; ZðjÞÞ is the deterministic solution of (1) with fixed ZðjÞ. The nodes

and weights should be chosen from a cubature rule such that

ŵiðtÞ � E½uf ðt; ZÞUiðZÞ� ¼ ûiðtÞ; 8jij 6 N; ð29Þ

where the last equality follows from (23). Subsequently (27) becomes an approximation of the exact gPC expansion (19). The
difference between the two is caused by the integration error from (29) and is termed ‘‘aliasing error” in [28], following sim-
ilar terminology from the classical deterministic spectral methods (cf. [14,4,16]).

We also remark that the original development of stochastic collocation methods utilizes multivariate Lagrange interpo-
lation technique [30]. This approach, however, is not amenable to the data assimilation work we undertake here. Therefore,
we will focus on the pseudo-spectral stochastic collocation approach [28].

3.1.2. Summary of gPC-based methods
In summary, all gPC-based methods seek to approximate the stochastic solution of (1) and (2) in the form of (19), where

the expansion coefficients are obtained approximately via either a Galerkin approach, (24), or a collocation approach, (27).
Depending on the probability distribution of the random variables Z, different orthogonal polynomials can be employed for
better performance [31]. Whenever the solution is relatively smooth in the random space, the gPC methods exhibit fast con-
vergence and can be significantly more efficient than the traditional methods such as the Monte Carlo sampling. For an
extensive review of the gPC-based numerical methods, see [29].

3.2. Solution of the analyzed state by gPC and EnKF

Let

uf
Nðt; ZÞ ¼

XN

jij¼0

ûf
i ðtÞUiðZÞ ð30Þ

denote the gPC solution to the forecast equation (1) and (2) with sufficiently high accuracy, where the expansion coefficients
ûf

i ðtÞ can be either the v̂iðtÞ obtained by the stochastic Galerkin procedure (24) or the ŵiðtÞ obtained by the stochastic col-
location procedure (27).

In addition to offering efficient solvers for the forecast solution, as discussed in the previous section, another (often over-
looked) advantage of the gPC expansion is that it provides an analytical representation of the solution in term of the random
inputs. All statistical information about uf

N can be obtained analytically, or with minimum computational effort. For example,
the mean and covariance are

�uf
N ¼ ûf

0; Pf
N ¼

X
0<jij6N

ûf
i ðû

f
i Þ

T
h i

; ð31Þ

respectively. And they can be used as accurate approximations of the exact mean and covariance of the forecast solution uf .
Furthermore, one can generate an ensemble of solution realizations by sampling the random variables Z in (30). This proce-
dure involves nothing but polynomial evaluations and thus generating ensemble with arbitrarily large number of samples
does not require any computations of the original governing equations (1) and (2). Let

ðuf
NÞi ¼

XN

jkj¼0

ûf
kðtÞUkððZÞiÞ i ¼ 1; . . . ;M; M � 1; ð32Þ

be an ensemble of the forecast solution realizations with size M, where ðZÞi; i ¼ 1; . . . ;M; are Monte Carlo samples of the ran-
dom vector Z. Equipped with the knowledge of the solution statistics, particularly the mean and covariance from (31), we can
apply the EnKF scheme (8) to obtain analyzed states. Here we employ the EnSRF approach, primarily because of the elimi-
nation of error in sampling the measurement. Following the procedure in Section 2.3, the gPC forecast and analyzed states
are split into the mean and deviation parts:

ðuf
NÞi ¼ �uf

N þ ðu
f
NÞ
0
i; ðua

NÞi ¼ �ua
N þ ðua

NÞ
0
i; i ¼ 1; . . . ;M; ð33Þ

and updated separately as

�ua
N ¼ �uf

N þ KNðd�H�uf
NÞ; ð34Þ

ðua
NÞ
0
i ¼ ðu

f
NÞ
0
i � eKNHðuf

NÞ
0
i; i ¼ 1; . . . ;M; ð35Þ

where KN is the gPC Kalman gain matrix defined as
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KN ¼ Pf
NHTðHPf

NHT þ RÞ�1
; ð36Þ

which approximates the Kalman gain matrix (5), and

eKN ¼ Pf
NHT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HPf

NHT þ R
q� ��1

 !T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HPf

NHT þ R
q

þ
ffiffiffiffi
R
p� ��1

; ð37Þ

which is obtained by requiring

ðI� eKNHÞPf
NðI�HT eKT

NÞ ¼ ðI� eKNHÞPf
N: ð38Þ

3.3. Algorithms

Here we present two versions of the aforementioned gPC-based EnSRF method in detail, one based on the stochastic
Galerkin method and the other on the stochastic collocation method. In the following, we assume observation data arrives
sequentially in time at time level t1 < t2 < � � �, at which data assimilation is made.

3.3.1. Stochastic Galerkin based gPC–EnSRF
Here the Nth degree gPC solutions of the forecast and analyzed variables are expressed as

uf
Nðt; ZÞ ¼

XN

jij¼0

v̂f
i ðtÞUiðZÞ; ua

Nðt; ZÞ ¼
XN

jij¼0

v̂a
i ðtÞUiðZÞ: ð39Þ

1. Initialization. At time t ¼ 0, let ua
Nð0; ZÞ ¼

P
v̂a

i ð0ÞUiðZÞ be the gPC approximation of the initial state (18), where the coef-
ficients v̂a

i ð0Þ ¼ E½u0ðZÞUiðZÞ�.
2. Forecast.
	 At time tn�1, let fðv̂a

i ðtn�1Þg be the expansion coefficients for the gPC analyzed state estimates. For each i such that
jij 6 N, we solve the system of (1) by the stochastic Galerkin scheme (25) with initial condition fðv̂a

i ðtn�1Þg at tn�1

and advance to time level tn to obtain fv̂f
i ðtnÞg for the forecast coefficients.

	 Construct Nth-order gPC approximation of the forecast solution

uf
Nðtn; ZÞ ¼

XN

jij¼0

v̂f
i ðtnÞUiðZÞ: ð40Þ

3. Analysis.
	 Evaluate the statistics of the forecast state solution such as the mean and covariance by (31). Evaluate the gPC Kalman

gain matrix (36) and (37).
	 Generate a large ensemble of forecast state realizations ðuf

NðtnÞÞi ¼ uf
Nðtn; ðZÞiÞ; i ¼ 1; . . . ;M, by sampling the random

variables Z in the gPC solution (40) with ensemble size M � 1. Update each member of the ensemble by the EnSRF
procedure (34) and (35) and obtain the ensemble of analyzed state fðua

NðtnÞÞig
M
i¼1.

	 Evaluate the expansion coefficients for the analyzed state by averaging

v̂a
i ðtnÞ ¼ E½uaðtn; ZÞUiðZÞ� �

1
M

XM

i¼1

ðua
NðtnÞÞiUiððZÞiÞ: ð41Þ

	 Return to Step 2. Advance in time till the final time is reached.

Note the averaging procedure (41) for approximating the gPC coefficients introduces sampling errors, which can be very
small because we can employ an arbitrarily large number of samples in the analysis step. Again, the computational cost of
generating an arbitrarily large number of samples requires nothing but sampling of the polynomial expression of (40) with a
large number of random ‘‘seeds” in Z. Hence this cost is minimal because it does not require any simulations of the governing
system of equations.

3.3.2. Stochastic collocation based gPC–EnSRF
Here the gPC solutions of the forecast and analyzed variables are expressed as

uf
Nðt; ZÞ ¼

XN

jij¼0

ŵf
i ðtÞUiðZÞ; ua

Nðt; ZÞ ¼
XN

jij¼0

ŵa
i ðtÞUiðZÞ: ð42Þ

1. Initialization. Choose a proper cubature rule with nodes and weights fZðjÞ;aðjÞgQ
j¼1, where Q P 1 is the total number of

nodes. At time t ¼ 0, let fðuað0ÞÞjg
Q
j¼1 ¼ fu0ðZðjÞÞgQ

j¼1 be the nodal values of the initial condition (18).
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2. Forecast.
	 At time tn�1, let fðuaðtn�1ÞÞjg

Q
j¼1 ¼ fuaðtn�1; Z

ðjÞÞgQ
j¼1 be the analyzed state estimates on the nodes fZðjÞgQ

j¼1. For each
j ¼ 1; . . . ;Q , we solve the system of equations (1) with fixed ZðjÞ and initial condition ðuaðtn�1ÞÞj at tn�1 and advance
to time level tn to obtain the forecast solution at tn; ðuf ðtnÞÞj.

	 Construct Nth-order pseudo-spectral gPC approximation of the forecast solution

uf
Nðtn; ZÞ ¼

XN

jij¼0

ŵf
i ðtnÞUiðZÞ; ð43Þ

where the coefficients are

ŵf
i ðtnÞ ¼

XQ

j¼1

ðuf ðtnÞÞjUiðZðjÞÞaðjÞ; 8jij 6 N: ð44Þ

3. Analysis.
	 Evaluate the statistics of the forecast state solution such as the mean and covariance (31). Evaluate the gPC Kalman

gain matrix (36) and (37).
	 Generate a large ensemble of forecast state realizations ðuf

NðtnÞÞi ¼ uf
Nðtn; ðZÞiÞ; i ¼ 1; . . . ;M, by sampling the random

variables Z in the gPC solution (43) with ensemble size M � 1. Update each member of the ensemble by the EnSRF
procedure (34) and (35) and obtain the ensemble of analyzed state fðua

NðtnÞÞig
M
i¼1.

	 Evaluate the analyzed state at the cubature nodes to obtain ðuaðtnÞÞj ¼ uaðtn; Z
ðjÞÞ for j ¼ 1; . . . ;Q . A general procedure

to achieve this is accomplished by first evaluating the gPC coefficients of the analyzed state via averaging

ŵa
i ðtnÞ ¼ E½uaðtn; ZÞUiðZÞ� �

1
M

XM

i¼1

ðua
NðtnÞÞiUiððZÞiÞ; ð45Þ

and then constructing the gPC expansion for the analyzed state

ua
Nðtn; ZÞ ¼

XN

jij¼0

ŵa
i ðtnÞUiðZÞ; ð46Þ

and evaluating the expression at the nodes ZðjÞ; j ¼ 1; . . . ;Q .
	 Return to Step 2. Advance in time till the final time is reached.

Note the objective of the third step in the Analysis step is to evaluate the values of uaðtnÞ at the cubature nodes fZðjÞgQ
j¼1,

given the values of the uaðtnÞ at the large number of random nodes fðZÞig
M
i¼1, where typically Q 
 M. It is possible to achieve

the goal by using a multivariate interpolation scheme, without using (45) and (46). The interpolation approach can be effec-
tive when the dimension of the random space, n, is low, e.g. less than four.

3.4. Discussions

3.4.1. Efficiency and accuracy
In the stochastic Galerkin based algorithm, the key quantities are the gPC expansion coefficients fv̂iðtÞ; jij 6 Ng, which are

propagated by the forecast equations and updated by the EnSRF scheme. In the stochastic collocation based algorithm, the
key quantities are the nodal values of the gPC solution at the chosen cubature nodes, fuðt; ZðjÞÞ; j ¼ 1; . . . ;Qg. For accurate
approximation of the state variables and solution of the forecast system of equations (1), the total number of Galerkin equa-
tions or collocation equations can be significantly smaller than that required by traditional stochastic solvers such as Monte
Carlo sampling, provided that the number of random variables n is small or moderately large. Such efficiency gain has been
well documented in the literature (cf. [13,31]).

Furthermore, the present algorithms (both Galerkin based and collocation based) allow accurate EnSRF update at the
analysis step, because the explicit gPC expression allows one to generate ensembles with arbitrarily large size. Such ensem-
ble generation requires only algebraic evaluations that can be implemented without incurring notable computational cost
and results in much reduced sampling errors for the state variables.

3.4.2. Choice of algorithms
For practical problems involving highly nonlinear system of equations, the stochastic collocation based algorithm is pre-

ferred, primarily due to its ease of implementation and ability to handle nonlinearity. However, it should be noted that sto-
chastic collocation method suffers from aliasing error. Whenever possible, the stochastic Galerkin based method offers better
accuracy. More discussions about Galerkin and collocation can be found in [29].

It is worth noting that the gPC collocation based filter is in a way similar to the unscented Kalman filter (UKF) [20,21] and
Gauss–Hermite quadrature filter [18]. However, the key and unique feature of the gPC filter is in the construction of the gPC
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polynomial expression (40), which allows one to generate an arbitrarily large number of samples in the update step and thus
significantly reduces sampling errors.

3.4.3. Equivalence to Kalman filter
When the system of state Eqs. (1) and (2) is linear and with Gaussian noise, the Kalman filter is optimal and relatively easy

to implement. In this case, the optimal gPC basis functions are the Hermite polynomials [13,31]. It is straightforward to show
that the first-order stochastic Galerkin implementation of the gPC Kalman filter is exact, in the sense that it is equivalent to
the Kalman filter. This is expressed in the following theorem, whose proof is included in Appendix.

Theorem 1. Assume the forecast system of equations is linear

duf

dt
¼ AðtÞuf þ gðtÞ; ð47Þ

uf ðt0Þ ¼ u0ðZÞ; ð48Þ

where the initial condition u0ðZÞ has a Gaussian distribution, and measurement (3) also has a Gaussian distribution. Let uf
1ðtÞ be

the first-order gPC Galerkin solution, using Hermite polynomials, to (47) and (48), and K1 be the corresponding gPC Kalman gain
matrix defined in (36). Then the analyzed state obtained by the first-order gPC Kalman filter

ua
1 ¼ uf

1 þ K1ðd�Huf
1Þ

is equivalent to the analyzed state ua obtained by the exact Kalman filter (4).

For general nonlinear system of equations with possibly non-Gaussian noise, it is reasonable to assume that as the order
of the gPC approximation N and the ensemble size M increase, the approximation error should decay and the gPC–EnSRF
algorithms would converge. Rigorous analysis of such convergence and error estimate are beyond the scope of this paper
and will be reported in future work. Again we emphasize the convergence here refers to the convergence of the gPC–EnSRF
(or EnSRF) solutions to the Kalman filter solutions, not to the true states.

4. Numerical examples

In this section we provide numerical examples to examine the numerical properties and efficiency of the gPC-based EnSRF
methods. The first example is a nonlinear scalar equation with a univariate random input; the second one is a linear scalar
equation with a multivariate random input; and the third one is the Lorenz equations, a nonlinear system with a multivariate
random input. In all examples the modeling noise is in the initial conditions and is Gaussian, and we adopt the stochastic
collocation based algorithm, with the Hermite polynomials as the gPC basis. The focus is on the convergence and accuracy
of the methods. Throughout this section, we consider ‘‘error” as the difference between the numerical results produced by
the EnSRF or gPC EnSRF and the ‘‘exact” solution of the Kalman filter (if available). Therefore, the discrepancy between the
assimilation result and the ‘‘true” state, which is often dominated by the linear Gaussian assumption made in the Kalman
filter, is not considered.

4.1. Nonlinear population equation

Here we consider the following population equation:

duf

dt
¼ �r 1� uf

A

� �
uf ; uf ð0Þ ¼ u0; ð49Þ

where r and A are positive real parameters. The solution of (49) is sensitive to the initial values. If uf
0 > A, the solution will

grow exponentially; if 0 < uf
0 < A, the solution will converge to 0.

We fix r ¼ 1 and A ¼ 2, and consider the solution in the time interval t 2 ½0;1�. A true state (unavailable to the simulation)
is constructed by adding a Wiener process with a Gaussian distribution of 0:2�Nð0; tÞ to the solution of (49) with initial
condition u0 ¼ 2:1. Measurements are then made every DT ¼ 0:1 time unit on the true state, with the measurement error
following Nð0;0:12Þ. The behavior of the gPC–EnSRF can be seen in Fig. 1. The analyzed state (dash-dotted line) can quickly
deviate from the true state (solid line). However, when observation data (circles) arrives, the analyzed state can track the
true state much more closely. This simulation is conducted by a gPC expansion of eighth-order ðN ¼ 8Þ, with Q ¼ 10 Hermite
quadrature points in the stochastic collocation and M ¼ 105 realizations in the analysis step.

Next we examine the convergence properties of gPC–EnSRF. We employ a ‘‘well-resolved” simulation result, based on a
tenth-order gPC expansion, N ¼ 10, with Q ¼ 20 quadrature points in the collocation scheme and M ¼ 106 ensemble realiza-
tions in the analysis step, and consider it as the ‘‘exact” solution. We then compare the error convergence of the numerical
results obtained with lower resolution. In Fig. 2(a), the error convergence with respect to the order of gPC expansion ðNÞ is
shown, while the other parameters (Q and M) are fixed at the well-resolved level. The fast convergence of error, in fact expo-
nential convergence, can be clearly observed. In Fig. 2(b), the error convergence with respect to the number of quadrature
points ðQÞ in the gPC collocation is shown, with N and M fixed at the well-resolved level. Again we observe very fast con-
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vergence. From the results it is clear that the problem can be fully resolved with N ¼ 8 and Q ¼ 10 (lower than the resolution
used for our well-resolved exact solution).

The performance comparison between the gPC–EnSRF and the traditional EnSRF is in Fig. 3, where the ensemble size of
the traditional EnSRF is varied from 102 to 106. While the gPC–EnSRF employs M ¼ 106 ensemble in the analysis step, the
number of simulations for the model equation – the effective ensemble size for simulations – is the number of quadrature
points Q. The computational gain, both in accuracy and efficiency, can be clearly seen from Fig. 3 – with about Q ¼ 10 sim-
ulations the gPC–EnSRF is more accurate (by about six orders in accuracy) than the traditional EnSRF with 106 simulations.
We emphasize again that the accuracy improvement is made by reducing the sampling errors. The new methods does not
improve the error caused by the inherent linear Gaussian assumption made by the Kalman filter for the nonlinear systems.

4.2. Advection equation

Here we consider the model problem used in [9,10], a one-dimensional linear advection model

@uf

@t
þ c

@uf

@x
¼ 0; x 2 ½0; L�; t > 0; ð50Þ

where the length of the domain is L ¼ 100 with periodic boundary condition and the advection speed is c ¼ 1. The grid spac-
ing is Dx ¼ 1. A true state ut is sampled from a Gaussian distribution, N , with zero mean, unit variance, and a spatial de-cor-
relation length of 10. This results in 10 i.i.d. Gaussian random variables and a random space of 10 dimension, i.e., z 2 Rn with
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Fig. 2. Error convergence of gPC–EnSRF (a) with respect to the gPC expansion order ðNÞ; (b) with respect to the number ðQÞ of quadrature points in gPC
collocation.
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Fig. 1. Dynamic performance of gPC–EnSRF.
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n ¼ 10. Compared to [9,10], the length of the domain and dimensionality of the random space are smaller, in order to facil-
itate our simulations for convergence study.

The first guess solution is generated by drawing another sample from N and adding this to the true state. The initial
ensemble is then generated by adding samples drawn from N to the first guess solution. Thus, the initial state has an error
variance of one. Four measurements of the true solution, distributed evenly in the spatial domain, are assimilated every one
time unit, i.e., DT ¼ 1, with observation errors of zero mean and standard deviation of 0.1.

According to Theorem 1, for this linear problem with Gaussian noise, the first-order gPC KF method is exact. Therefore, we
fix the gPC order at N ¼ 1 and use a set of sparse grid Hermite cubature points with second degree accuracy from [15] for the
gPC coefficients evaluations. The number of cubature points is Q ¼ 21. The qualitative behavior of the gPC–EnSRF is shown in
Fig. 4, where the ensemble size at the analysis step is M ¼ 105. As expected, the mean of the gPC–EnSRF estimates converge
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Fig. 3. Comparison of error convergence of gPC–EnSRF and standard EnSRF.
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Fig. 4. Results of the gPC–EnSRF to the model problem (50) at three different times t ¼ 1 (top figure), t ¼ 15 (middle figure), and t ¼ 30 (bottom figure).
Solid lines are the true state, circles are the measurements, and dashed lines are the mean of the gPC–EnSRF estimates. Another set of solid lines near the
bottom of each figure are the standard deviations of the gPC–EnSRF estimate.
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to the true state as time evolves, and the standard deviation of the estimates converges to the standard deviation of the mea-
surements, which is 0.1 and visually indistinguishable in the bottom figure.

Since there is no need to refine the gPC order and cubature accuracy for this linear problem, we examine the error behav-
ior of the gPC–EnSRF with respect to the ensemble size (M) at the analysis step and the level of measurement noise. Here
error is defined as the difference between the exact KF estimates (available for this linear problem) and the numerical esti-
mates obtained by the gPC–EnSRF. In Fig. 5(a) the error convergence at t ¼ 30 with respect to the ensemble size M can be
seen clearly. The slope of convergence is approximately �0.4 which is consistent with the rate of convergence of the tradi-
tional Monte Carlo sampling ð�0:5Þ. Again it is worth noting that the increase of the ensemble size M is achieved in the step
of evaluating the gPC polynomial expression (40) and does not involve more simulations of the state equations. Hence
increasing the ensemble size does not increase the computational effort of the gPC–EnSRF in a noticeable way. In
Fig. 5(b), we observe that the error increases as the standard deviation of the measurement noise increases, and the depen-
dency is almost linear. This is consistent with the error analysis of the classical EnKF ([23]).

4.3. Lorenz equations

A well-known example of a strongly nonlinear system is the Lorenz model, which has been intensively studied in the data
assimilation community. See, for example, [7,24,25,27]. For certain values of parameters, this system exhibits chaotic behav-
ior in the sense that very small perturbation in the initial values will lead to completely different trajectories. The system of
Lorenz equations are

dx
dt
¼ rðy� xÞ; ð51Þ

dy
dt
¼ qx� y� xz; ð52Þ

dz
dt
¼ xy� bz; ð53Þ

with the coefficients chosen as r ¼ 10;q ¼ 28, and b ¼ 8=3, and the initial condition

ðx0; y0; z0Þ ¼ ð1:508870;�1:531271;25:46091Þ: ð54Þ

These values have been employed extensively in the literature. The trajectories of the solution are shown in Fig. 6, along with
another set of trajectories obtained by perturbing the initial condition of x by 0.001. The two sets of trajectories become com-
pletely different as the time evolves.

Here we use the following setting in our gPC assimilation.

	 The system of equations are integrated for t 2 ½0;20� by the fourth-order Runge–Kutta method with a time step
Dt ¼ 0:005.

	 A set of true states are constructed by perturbing the solutions of the system with the initial condition (54) by three inde-
pendent Wiener processes with a distribution 0:1�Nð0; tÞ. Measurements are made on all three components of the true
states at intervals of DT ¼ 0:05 (every 10 integration steps) with independent measurement errors following a distribution
Nð0;0:12Þ.

	 The gPC forecast model is the system with the random initial condition

ðxf
0; y

f
0; z

f
0Þ ¼ ðx0; y0; z0Þ þ ðZ1; Z2; Z3Þ;

where Z � Nð0; I3Þ are i.i.d. Gaussian.
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Fig. 5. Error convergence of gPC–EnSRF (a) with respect to ensemble size M; (b) with respect to the standard deviation of the measurement.
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	 The gPC–EnSRF employs the third-order Hermite polynomials ðN ¼ 3Þ;Q ¼ 53 tensor product of the one-dimensional Her-
mite quadrature nodes, and M ¼ 104 ensemble realizations in the analysis step. Therefore, the computational cost is
Q ¼ 125 number of simulations of the corresponding deterministic system.

The general behavior of gPC–EnSRF is illustrated in Fig. 7, where two set of curves are present. One is the true state and
the other is the numerical estimate, and the two almost coincide with each other.

With a lack of the exact solution of the Kalman filter to the Lorenz system, we examine the errors in term of the difference
between the assimilation results and the true states, in a qualitative manner, by following the existing studies on data assim-
ilation of the Lorenz system. Let DX ¼ xest � xtrue be the difference in the x variable between the numerical estimate xest and
the true state xtrue. Similarly we define DY and DZ as the differences in y and z variables, respectively. The time evolution of
the L2 norm of the differences ðDX;DY ;DZÞ is shown in Fig. 8, with the dotted line obtained by the second-order gPC filter
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Fig. 6. Two different sets of trajectories of the Lorenz system with small deviation in the initial condition – a difference of 0.001 in the initial condition of x.
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Fig. 7. Time evolution of the gPC–EnSRF estimates for the Lorenz system.
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ðN ¼ 2Þ, dashed line by the third-order gPC filter ðN ¼ 3Þ, and the solid line by the traditional EnSRF with 104 realizations. The
convergence from the second-order gPC filter to the third-order is obvious. While the third-order gPC filter produces a very
similar result to that of the EnSRF, it is much more efficient than the traditional EnSRF, as the simulation cost ratio is roughly
125 versus 104. At this stage, all results have converged, though not to the true states due to the errors in observation and the
errors induced by the linear Gaussian assumption made in the Kalman filter, with the latter likely to be dominant for this
nonlinear system.

5. Conclusion

In this paper we proposed a set of efficient ensemble Kalman filter algorithms based on generalized polynomial chaos
(gPC) expansion. The algorithms employ gPC-based numerical methods, either a stochastic Galerkin or a stochastic colloca-
tion method, to solve the forecast problem with high accuracy and efficiency, then utilize the gPC expansion to generate arbi-
trarily large ensemble realizations, without incurring notable computational cost, to obtain the analyzed state estimates in
the subsequent ensemble Kalman filter step. This naturally leads to significantly reduced sampling errors which is the main
source of numerical errors in traditional ensemble Kalman filter methods. When combined with the ensemble square-root
filter (EnSRF), the gPC–EnSRF algorithms can also eliminate the sampling errors associated with perturbing the measure-
ment. The detailed algorithms were presented, and numerical examples were provided to demonstrate the efficiency of
the algorithms. Also, the collocation based gPC–EnSRF can be extended to highly nonlinear and complex systems in a
straightforward manner (at least on a conceptual level). Rigorous accuracy analysis, e.g. convergence rate, of the gPC-based
algorithms and their applications to more complex systems are being pursued and will be reported in future work.

Appendix A

Proof of Theorem 1

Theorem 1. Assume the forecast system of equations is linear

duf

dt
¼ AðtÞuf þ gðtÞ; ð55Þ

uf ðt0Þ ¼ u0ðZÞ; ð56Þ
where the initial condition u0ðZÞ has a Gaussian distribution, and measurement (3) also has a Gaussian distribution. Let uf

1ðtÞ be
the first-order gPC Galerkin solution, using Hermite polynomials, to (55) and (56) , and K1 be the corresponding gPC Kalman gain
matrix defined in (36) . Then the analyzed state obtained by the first-order gPC Kalman filter

ua
1 ¼ uf

1 þ K1ðd�Huf
1Þ ð57Þ

is equivalent to the analyzed state ua obtained by the exact Kalman filter (4).
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Proof. The general solution of (55) is

uf ðtÞ ¼ Bðt; t0; AÞu0 þ Cðt; t0; A;gÞ; ð58Þ

where

Bðt; t0; AÞ ¼ SðtÞS�1ðt0Þ; ð59Þ

Cðt; t0; A;gÞ ¼ SðtÞ
Z t

t0

S�1ðsÞgðsÞds; ð60Þ

where SðtÞ is the fundamental matrix of the corresponding homogeneous equation of (55). It is obvious the forecast solution
uf ðtÞ remains Gaussian, so does the analyzed solution uaðtÞ following Gaussian assumption on the measurement noise.

Again, let t1 < t2 < � � � be the time instances when data arrive and assimilation is made. It suffices to prove the theorem
for any interval from tn�1 to tn;n > 1. Let uaðtn�1Þ be the analyzed solution at tn�1 with mean �uaðtn�1Þ and covariance
function Paðtn�1Þ.

In Kalman filter, (55) is first solved from tn�1 to tn with initial condition uaðtn�1Þ, and the forecast state is

uf ðtnÞ ¼ Bðtn; tn�1; AÞuaðtn�1Þ þ Cðtn; tn�1; A;gÞ: ð61Þ

Therefore, uf ðtnÞ follows Gaussian distribution with mean B�uaðtn�1Þ þ C and covariance function

Pf ðtnÞ ¼ BPaðtn�1ÞBT : ð62Þ

In the stochastic Galerkin based gPC–EnSRF, to solve (55) from tn�1 to tn we first need to project the initial condition uaðtn�1Þ
by a set of gPC basis. Under the Gaussian assumption, the initial value can be represented by a first-order gPC expansion as
follows:

uaðtn�1Þ ¼ �uaðtn�1Þ þ Qz ð63Þ

where Q 2 Rm�m is the Cholesky decomposition of Paðtn�1Þ satisfying Paðtn�1Þ ¼ QQ T , and z ¼ ðZ1; . . . ; ZmÞ � Nð0; ImÞ is a
Gaussian vector of length m whose components have zero mean and unit variance and are mutually independent.

The obvious basis polynomials in this case are the Hermite polynomials [13,?]. A straightforward application of the
stochastic Galerkin procedure reveals the first-order expansion is sufficient, i.e., the coefficients of higher order terms are
zero.

uf
1ðt; zÞ ¼

X
jij61

v̂f
i ðtÞUiðzÞ ¼ v̂f

0ðtÞ þ
Xm

k¼1

v̂f
kðtÞZk; ð64Þ

where the expansion coefficients satisfy

dv̂f
0

dt
¼ Av̂f

0 þ gðtÞ; v̂f
0ðtn�1Þ ¼ �uaðtn�1Þ

dv̂f
k

dt
¼ Av̂f

k; v̂f
kðtn�1Þ ¼ qk; 1 6 k 6 m; ð65Þ

where qk is the kth column of matrix Q . Following (58), the solutions to the above system are

v̂f
0ðtnÞ ¼ B�uaðtn�1Þ þ C

v̂f
kðtnÞ ¼ Bqk; 1 6 k 6 m:

By substituting the solution back into the first-order Hermite expansion (64), we obtain

uf
1ðtnÞ ¼ ðB�uaðtn�1Þ þ CÞ þ

Xm

k¼1

BqkZk ¼ ðB�uaðtn�1Þ þ CÞ þ BQz: ð66Þ

Therefore, the first-order gPC Galerkin solution uf
1ðtnÞ follows Gaussian distribution with mean ðB�uaðtn�1Þ þ CÞ and covari-

ance function

Pf
1 ¼ ðBQ ÞImðBQ ÞT ¼ BPaðtn�1ÞBT ;

which are the same as those of uf ðtnÞ. Since both uf ðtnÞ and uf
1ðtnÞ are Gaussian, we have uf

1ðtnÞ ¼ uf ðtnÞ. Subsequently, the
first-order gPC Galerkin method will produce the gPC Kalman gain matrix K1 from (36) that is the same as the exact Kalman
gain matrix (5), and the analyzed solution ua

1ðtnÞ from (57) will be the same as uaðtnÞ obtained by the exact Kalman filter (4),
with both following the same Gaussian distribution. This completes the proof. h
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