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Abstract The problem of allocating network re-
sources to the users of an integrated services network
is investigated in the context of rate based flow con-
trol. The network is assumed to be a virtual cir-
cuit, connection-based packet network. We propose
a highly flexible and efficient multiplexing scheme
called Generalized Processor Sharing (GPS) that al-
lows the network to make worst-case performance
guarantees. A practical packet-by-packet service dis-
cipline that closely approximates Generalized Proces-
sor Sharing is also presented. This allows us to relate
performance results for GPS to the packet-by-packet
scheme in a precise manner.

A single server GPS system is analyzed exactly,
and tight bounds on worst-case packet delay, out-
put burstiness and backlog are derived for each ses-
sion, when the sources are constrained by leaky buck-
ets. The analysis yields a simple resource assignment
scheme that allows the server to make worst case de-
lay and rate guarantees to every session in the sys-
tem. Extensions of this work to arbitrary topology
networks are also discussed.

1 Introduction

This paper focuses on a central problem in the con-
trol of congestion in high speed integrated services
networks. Traditionally, the flexibility of data net-
works has been traded off with the performance guar-
antees given to the users. For example, the telephone
network provides good performance guarantees but
poor flexibility, while most packet switched networks
are more flexible, but only provide marginal perfor-
mance guarantees. Integrated services networks must
carry a wide range of traffic types and still be able
to provide performance guarantees to real-time ses-
sions such as voice and video. We will investigate
an approach to reconcile these apparently conflicting
requirements when the short-term demand for link
usage frequently exceeds the usable capacity.

We propose the use of a packet service discipline at

the nodes of the network that is based on a multiplex-
ing scheme called generalized processor sharing. This
service discipline is combined with leaky bucket rate
admission control to provide flexible, efficient and fair
use of the links. A major part of our work is to an-
alyze networks of arbitrary topology using these spe-
cialized servers, and to show how the analysis leads to
implementable schemes for guaranteeing worst-case
packet delay. In this paper, however, we will restrict
our attention to sessions at a single node, and post-
pone the analysis of arbitrary topologies to [10].

The analysis will concentrate on providing guar-
antees on throughput and worst-case packet delay.
While packet delay in the network can be expressed
as the sum of the processing queueing, transmission
and propagation delays, we will focus exclusively on
how to limit queueing delay.

Our approach can be described as a strategy for
rate-based flow control. Under rate-based schemes,
a source’s traffic is parametrized by a set of statis-
tics such as average rate, maximum rate, burstiness
etc., and is assigned a vector of values corresponding
to these parameters. The user also requests a cer-
tain quality of service, that might be characterized,
for example, by tolerance to worst-case or average de-
lay. The network checks to see if a new source can be
accommodated, and if so, it takes actions (such as
reserving transmission links or switching capacity) to
ensure the quality of service desired. Once a source
begins sending traffic, the network ensures that the
agreed upon values of traffic parameters are not vio-
lated.

We will assume that rate admission control is done
through leaky buckets [12]. An important advantage
of using leaky buckets is that this allows one to sep-
arate the packet delay into two components–delay in
the leaky bucket and delay in the network. The first
of these components is independent of the other active
sessions and can be estimated by the user, if the sta-
tistical characterization of the incoming data is suffi-
ciently simple (See Section 6.3 of [1] for an example).
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The traffic entering the network has been “shaped”
by the leaky bucket in a manner that can be suc-
cinctly characterized (we will do this in Section 6),
and so the network can upper bound the second com-
ponent of packet delay through this characterization.
This upper bound is independent of the statistics of
the incoming data, which is helpful in the usual case
where these statistics are either complex or unknown.
From this point on, we will not consider the delay in
the leaky bucket.

2 An Outline

Generalized Processor Sharing (GPS) is defined and
explained in Section 3. In Section 4 we present a
packet-based scheme, PGPS, and show that it closely
approximates GPS. Results obtained in this section
allow us to translate session delay and buffer re-
quirement bounds derived for a GPS server system
to a PGPS server system. We propose a virtual
clock implementation of PGPS in the next subsection.
Then PGPS is compared to some other multiplexing
schemes.

Having established PGPS as a desirable service dis-
cipline scheme we turn our attention to the rate en-
forcement function in Section 6. The leaky bucket
is described and proposed as a desirable strategy for
admission control. We then proceed with an analysis,
in Sections 7 and Section 8, of a single GPS server
system in which the sessions are constrained by leaky
buckets. In Section 9 we outline an algorithm for pro-
viding performance guarantees to a new user without
violating guarantees made to the existing sessions of
the system. Conclusions are in Section 10.

3 GPS Multiplexing

The choice of an appropriate service discipline at the
nodes of the network is key to providing effective flow
control. A good scheme should allow the network
to treat users differently, in accordance with their
desired quality of service. However, this flexibility
should not compromise the fairness of the scheme, i.e.
a few classes of users should not be able to degrade
service to other classes, to the extent that perfor-
mance guarantees are violated. Also, if one assumes
that the demand for high bandwidth services is likely
to keep pace with the increase in usable link band-
width, time and frequency multiplexing are too waste-
ful of the network resources to be considered as candi-

date multiplexing disciplines. Finally, the service dis-
cipline must be analyzable so that performance guar-
antees can be made in the first place. We now present
a flow-based multiplexing discipline called General-
ized Processor Sharing that is efficient, flexible, fair
and analyzable, and that therefore seems very ap-
propriate for integrated services networks. However,
it has the significant drawback of not transmitting
packets as entities. In Section 4 we will present a
packet-based multiplexing discipline that is an excel-
lent approximation to GPS even when the packets are
of variable length.

A Generalized Processor Sharing (GPS) server is
work conserving and operates at a fixed rate r. It is
characterized by positive real numbers φ1, φ2, ..., φN .
Let Si(τ, t) be the amount of session i traffic served
in an interval [τ, t]. Then a GPS server is defined as
one for which

Si(τ, t)
Sj(τ, t)

≥ φi

φj
, j = 1, 2, ..., N (1)

for any session i that is backlogged in the interval
[τ, t].

Summing over all sessions j:

Si(τ, t)
∑

j

φj ≥ (t− τ)rφi

and session i is guaranteed a rate of

gi =
φi∑
j φj

r. (2)

GPS is an attractive multiplexing scheme for a num-
ber of reasons:
• Define ρi to be the session i average rate. Then

as long as ρi ≤ gi, the session can be guaranteed
a throughput of ρi, independent of the demands
of the other sessions.

• The delay of an arriving session i bit can be
bounded as a function of the session i queue
length, independent of the queues and arrivals
of the other sessions. Schemes such as FCFS,
LCFS, and Strict Priority do not have this prop-
erty.

• By varying the φi’s we have the flexibility of
treating the sessions in a variety of different ways.
For example, when all the φi’s are equal the sys-
tem reduces to uniform processor sharing. As
long as the combined average rate of the sessions
is less than r, any assignment of positive φi’s
yields a stable system.



• It is possible to make worst-case network queue-
ing delay guarantees when the sources are con-
strained by leaky buckets. We will present our
results on this later. Thus GPS is particularly at-
tractive for sessions sending real-time traffic such
as voice and video.

Figure 3.1 illustrates generalized processor sharing.
Variable length packets arrive from both sessions on
infinite capacity links and appear as impulses to the
system. For i = 1, 2, let Ai(0, t) be the amount of
session i traffic that arrives at the system in the in-
terval (0, t], and similarly, let Si(0, t) be the amount
of session i traffic that is served in the interval (0, t].
We assume that the server works at rate 1.

When φ1 = φ2, and both sessions are backlogged,

Figure 3.1: An example of generalized processor shar-
ing.

they are each served at rate 1
2 (eg. the interval [1, 6]).

When 2φ1 = φ2, and both sessions are backlogged,
session 1 is served at rate 1

3 and session 2 at rate
2
3 . Notice how increasing the relative weight of φ2

leads to better treatment of that session in terms of
both backlog and delay. Also, notice that under both
choices of φi, the system is empty at time 13 since the
server is work conserving under GPS.

4 Packet-by-Packet GPS

A problem with GPS is that it is an idealized disci-
pline that does not transmit packets as entities. It
assumes that the server can serve multiple sessions
simultaneously and that the traffic is infinitely divis-
ible. In this section we propose a simple packet-by-
packet transmission scheme that is an excellent ap-
proximation to GPS even when the packets are of
variable length. Our idea is similar to the one used
in [4] to simulate uniform processor sharing. We will
adopt the convention that a packet has arrived only
after its last bit has arrived.

Let Fp be the time at which packet p will depart
(finish service) under generalized processor sharing.
Then a very good approximation of GPS would be
a work conserving scheme that serves packets in in-
creasing order of Fp. (By work conserving we mean
that the server is always busy when there are back-
logged packets in the system.) Now suppose that the
server is becomes free at time τ . The next packet to
depart under GPS may not have arrived at time τ ,
and since the server has no knowledge of when this
packet will arrive, there is no way for the server to be
both work conserving and to serve the packets in in-
creasing order of Fp. Now suppose the server becomes
free at time τ , i.e. it has just finished transmitting
a packet at time τ . The server picks the first packet
that would complete service in the GPS simulation if
no additional packets were to arrive after time τ . Let
us call this scheme PGPS for packet-by-packet gener-
alized processor sharing.

Notice that when φ1 = φ2 in the example of Figure
3.1, the first packet to complete service under GPS is
the session 1 packet that arrives at time 1. However,
the PGPS server is forced to begin serving the long
session 2 packet at time 0, since there are no other
packets in the system at that time. Thus the session
1 packet arriving at time 1 departs the system at time
4, i.e. 1 time unit later than it would depart under
GPS.

A natural issue to examine at this point is how
much later packets may depart the system under
PGPS relative to GPS. First we present a useful prop-
erty of GPS systems.

Lemma 1 Let p and p′ be packets in a GPS system
at time τ and suppose that packet p completes service
before packet p′ if there are no arrivals after time τ .
Then packet p will also complete service before packet
p′ for any pattern of arrivals after time τ .



Now let F̂p be the time at which packet p departs
under PGPS. We show that

Theorem 1 For all packets p,

F̂p − Fp <
Lmax

r
,

where Lmax is the maximum packet length, and r is
the rate of the server.

Proof. Since both GPS and PGPS are work con-
serving disciplines, their busy periods coincide i.e. the
GPS server is in a busy period iff the PGPS server is
in a busy period. Hence it suffices to prove the result
for each busy period. Consider any busy period and
let the time that it begins be time zero. Let pk be the
kth packet in the busy period to depart under PGPS
and let its length be Lk. Also let tk be the time that
pk departs under PGPS and uk be the time that pk

departs under GPS. Finally, let ak be the time that
pk arrives. We now show that

tk ≤ uk +
Lmax

r

for k = 1, 2, .... Let m be the largest integer that
satisfies both 0 < m ≤ k − 1 and um > uk. Thus

um > uk ≥ ui for m < i < k. (3)

Then packet pm is transmitted before packets
pm+1 . . . , pk under PGPS, but after all these pack-
ets under GPS. If no such integer m exists then set
m = 0. Now for the case m > 0, packet pm begins
transmission at tm − Lm

r , so from from Lemma 1:

min{am+1, ..., ak} > tm − Lm

r
(4)

Since pm+1, ..., pk−1 arrive after tm − Lm
r and depart

before pk does under GPS:

uk ≥ 1
r
(Lk + Lk−1 + Lk−2 + . . . + Lm+1) + tm − Lm

r

⇒ uk ≥ tk − Lm

r
.

If m = 0, then pk−1, ..., p1 all leave the GPS server
before pk does, and so

uk ≥ tk.

2

Let Si(τ, t) and Ŝi(τ, t) be the amount of session i
traffic served under GPS and PGPS in the interval
[τ, t]. Then we can use Theorem 1 to show:

Theorem 2 For all times τ and sessions i.

Si(0, τ)− Ŝi(0, τ) ≤ Lmax

r
.

When φ = φi for all i, this result reduces to one es-
tablished in [8]. Let Q̂i(τ) and Qi(t) be the session i
backlog at time τ under PGPS and GPS respectively.
Then it immediately follows from Theorem 2 that

Corollary 1 For all times τ and sessions i.

Q̂i(0, τ)−Qi(0, τ) ≤ Lmax.

Notice that

• We can use Theorem 1 and Corollary 1 to trans-
late bounds on GPS worst-case packet delay and
backlog to the corresponding bounds on PGPS.

• Variable packet lengths are easily handled by
PGPS. This is not true of service disciplines such
as weighted round robin.

4.1 A Virtual Time Implementation of PGPS

In Section 4 we described PGPS but did not pro-
vide an efficient way to implement it. In this sec-
tion we will use the concept of Virtual Time to track
the progress of GPS that will lead to a practical im-
plementation of PGPS. Our interpretation of virtual
time is a generalization of the one considered in [4]
for uniform processor sharing. In the following we
assume that the server works at rate 1.

Denote as an event each arrival and departure from
the GPS server, and let tj be the time at which the
jth event occurs (simultaneous events are ordered ar-
bitrarily). Let the time of the first arrival of a busy
period be denoted as t1 = 0. Now observe that for
each j = 2, 3, ..., the set of sessions that are busy in
the interval (tj−1, tj) is fixed, and we may denote this
set as Bj . Virtual time V (t) is defined to be zero for
all times when the server is idle. Consider any busy
period, and let the time that it begins be time zero.
Then V (t) evolves as follows:

V (0) = 0

V (tj−1 + τ) = V (tj−1) +
τ∑

i∈Bj
φi

, τ ≤ tj − tj−1,

j = 2, 3, ... (5)

The rate of change of V , namely ∂V (tj+τ)
∂τ , is 1∑

i∈Bj
φi

,

and each backlogged session i receives service at rate



φi
∂V (tj+τ)

∂τ . Thus, V can be interpreted as increas-
ing at the marginal rate at which backlogged sessions
receive service.

Now suppose that the kth session i packet arrives
at time ak

i and has length Lk
i . Then denote the vir-

tual times at which this packet begins and completes
service as Sk

i and F k
i respectively. Defining F 0

i = 0
for all i, we have

Sk
i = max{F k−1

i , V (ak
i )}

F k
i = Sk

i +
Lk

i

φi
. (6)

There are three attractive properties of the virtual
time interpretation from the standpoint of implemen-
tation. First, the virtual time finishing times can be
determined at the packet arrival time. Second, the
packets are served in order of virtual time finishing
time. Finally, we need only update virtual time when
there are events in the GPS system. However, the
price to paid for these advantages is some overhead
in keeping track of the sets Bj , which is essential in
the updating of virtual time:

Define Next(t) to be the real time at which the next
packet will depart the GPS system after time t if there
are no more arrivals after time t. Thus the next vir-
tual time update after t will be performed at Next(t)
if there are no arrivals in the interval [t, Next(t)]. Now
suppose a packet arrives at some time, t, and that
the time of the event just prior to t is τ (if there is
no prior event, i.e. if the packet is the first arrival
in a busy period, then set τ = 0). Then, since the
set of busy sessions is fixed between events, V (t) may
be computed from (5), and the packet stamped with
its virtual time finishing time. Next(t) and the new
value of B are also computed.

Given this mechanism for updating virtual time,
PGPS is defined as follows: When a packet arrives,
virtual time is updated and the packet is stamped
with its virtual time finishing time. The server is work
conserving and serves packets in increasing order of
time-stamp.

5 Comparing PGPS to other schemes

Under weighted round robin, every session i, has an
integer weight, wi associated with it. The server polls
the sessions according a precomputed sequence in an
attempt to serve session i at a rate of wi∑

j
wj

. If an

empty buffer is encountered, the server moves to the

next session in the order instantaneously. When an
arriving session i packet just misses its slot in a frame
it cannot be transmitted before the next session i slot.
If the system is heavily loaded in the sense that almost
every slot is utilized, the packet may have to wait
almost N slot times to be served, where N is the
number of sessions sharing the server. Since PGPS
approximates GPS to within one packet transmission
time regardless of the arrival patterns, it is immune
to such effects. PGPS also handles variable length
packets in a much more systematic fashion than does
weighted round robin. However, if N or the packets
sizes are small then it is possible to approximate GPS
well by weighted round robin.

Zhang proposes an interesting scheme called
virtual clock multiplexing [13]. Virtual clock multi-
plexing allows guaranteed rate and (average) delay
for sessions independent of the behavior of other ses-
sions. However, if a session produces a large burst
of data, even while the system is lightly loaded, that
session can be “punished” much later when the other
sessions become active. Under PGPS the delay of a
session i packet can be bounded in terms of the session
i queue size seen by that packet upon arrival, whereas
no such bound is possible under virtual clock mul-
tiplexing because of the punishment feature. Thus,
good worst-case performance can only be guaranteed
under virtual clock multiplexing under stringent ac-
cess control. Also, the additional flexibility of PGPS
may be useful in an integrated services network.

Stop-and-Go Queueing is proposed by Golestani in
[5, 6, 7], and is based on a network-wide time slot
structure. A finite number of connection types are
defined, where a type g connection is characterized
by a fixed frame size of Tg. Each session i is as-
signed a connection type g. The admission policy
under which delay and buffer size guarantees can be
made is that no more than riTg bits may be submitted
during any type g frame. Thus bandwidth is allocated
by peak rates rather than average rates. While this is
a more restrictive admission policy than leaky bucket
(as we shall see in Section 6), it allows for tight con-
trol of jitter in the network. The service discipline
is not work-conserving, but is designed to preserve
the smoothness properties of the admitted traffic. It
has the advantage of being very amenable to analysis.
PGPS uses the links more efficiently and flexibly and
can provide comparable worst-case end-to-end delay
bounds. Since it is work-conserving, PGPS will also
provide better average delay than stop-and-go for a



given access control scheme. However, stop-and-go
queueing may provide significantly better bounds on
jitter.

6 Leaky Bucket

Consider the leaky bucket scheme [12] of Figure 6.1.
Tokens or permits are generated at a fixed rate, ρ,
and packets can be released into the network only af-
ter removing the required number of tokens from the
token bucket. There is no bound on the number of
packets that can be buffered, but the token bucket
contains at most σ bits worth of tokens. In addition
to securing the required number of tokens, the traffic
is further constrained to leave the bucket at a maxi-
mum rate of C > ρ. The constraint imposed by the

Figure 6.1: The Leaky Bucket

leaky bucket is as follows: If Ai(τ, t) is the amount of
session i flow that leaves the leaky bucket and enters
the network in the time interval (τ, t], then

Ai(τ, t) ≤ min{(t− τ)Ci, σi + ρi(t− τ)}, ∀t ≥ τ ≥ 0,
(7)

for every session i. We say that session i conforms to
(σi, ρi, Ci), or Ai ∼ (σi, ρi, Ci).

This model for incoming traffic is essentially identi-
cal to the one recently proposed by Cruz [2], [3], and
it has also been used in various forms to represent the
inflow of parts into manufacturing systems by Kumar
[9]. The arrival constraint is attractive since it re-
stricts the traffic in terms of average rate (ρ), peak
rate (C), and burstiness (σ and C).

Figure 6.2 shows how a fairly bursty source might
be characterized using the constraints. Represent
Ai(0, t) as in Figure 6.2. Let there be lAi (t) bits worth
of tokens in the session i token bucket at time t. We
assume that the session starts out with a full bucket of
tokens. If Ki(t) is the total number of tokens arriving

at the session i bucket in (0, t] (it does not include the
full bucket of tokens that session i starts out with),
then

Ki(t) = min
0≤τ≤t

{Ai(0, τ) + ρi(t− τ)}.

We now have the following expression for lAi (t):

lAi (t) = σi + Ki(t)−Ai(0, t). (8)

Figure 6.2: Ai(t) and li(t).

7 Analysis

In this section we analyze the worst-case performance
of single node GPS systems for sessions that operate
under leaky bucket constraints i.e., the session traffic
is constrained as in (7).

There are N sessions, and the only assumptions
we make about the incoming traffic are that Ai ∼
(σi, ρi, Ci) for i = 1, 2, ..., N , and that the system is
empty before time zero. The server is work conserving
(i.e. it is never idle if there is work in the system),
and operates at the fixed rate of 1.

Let Si(τ, t) be the amount of session i traffic served
in the interval (τ, t]. Note that Si(0, t) is continuous
and non-decreasing for all t (see Figure 7.1). The
session i backlog at time τ is defined to be

Qi(τ) = Ai(0, τ)− Si(0, τ).

The session i delay at time τ is denoted by Di(τ),
and is the amount of time that session i flow arriving
at time τ spends in the system before departing. Thus

Di(τ) = inf{t ≥ τ : Si(0, t) = Ai(0, τ)} − τ. (9)

From Figure 7.1 we see that Di(τ) is the horizontal
distance between the curves Ai(0, t) and Si(0, t) at the



ordinate value of Ai(0, τ). Clearly, Di(τ) depends on
the arrival functions A1, ..., AN . We are interested in
computing the maximum delay over all time, and over
all arrival functions that are consistent with (7). Let
D∗

i be the maximum delay for session i. Then

D∗
i = max

(A1,....,AN )
max
τ≥0

Di(τ).

Similarly, we define the maximum backlog for session
i, Q∗

i :
Q∗

i = max
(A1,....,AN )

max
τ≥0

Qi(τ).

We can characterize the session i traffic that leaves

Figure 7.1: Ai(0, t), Si(0, t), Qi(t) and Di(t)

the server in terms of additional parameters so that
Si ∼ (σout

i , ρout
i , Cout

i ). The problem we will solve in
the following sections is:

Given φ1, ..., φN for a GPS server of rate 1 and given
(σj , ρj , Cj), j = 1, ..., N , what are D∗

i , Q
∗
i and the

parameters σout
i , ρout

i and Cout
i for every session i?

7.1 Preliminaries

Given A1, ..., AN , let στ
i be defined for each session i

and time τ ≥ 0 as

στ
i = Qi(τ) + li(τ) (10)

where li(τ) is defined in (8). Thus στ
i is the sum

of the number of tokens left in the bucket and the
session i backlog at the server at time τ . If Ci = ∞
we can think of στ

i as the maximum amount of session
i backlog at time τ+, over all arrival functions that
are identical to A1, ..., AN up to time τ . Observe that
σ0

i = σi.
Define a system busy period to be a maximal

interval B such that for any τ, t ∈ B, τ ≤ t:

N∑

i=1

Si(τ, t) = t− τ.

Since the system is work conserving, if B = [t1, t2],
then

∑N
i=1 Qi(t1) =

∑N
i=1 Qi(t2) = 0.

Lemma 2 When
∑

j ρj < 1, the length of a system
busy period is at most

∑N
i=1 σi

1−∑N
i=1 ρi

.

A simple consequence of this Lemma is that all system
busy periods are bounded when

∑
i ρi < 1. Since

session delay is bounded by the length of the largest
possible system busy period, the session delays are
bounded as well. Since the system is stable, ρout

i = ρi,
and σout

i is bounded for each session i. Also, Cout
i = 1,

since the maximum rate at which the session can send
traffic on the output link for session i is the rate at
which it operates. Finally, σout

i ≥ σi for each i. To
see this, suppose that
Ai(0, τ) = min{Ciτ, σi + ρiτ}, τ ≥ 0. Then for
sufficiently large τ , we have Ai(0, τ) = σi + ρiτ. Since
the system is stable, any session i backlog must be
cleared. Then the amount served at this time must
be σi + ρiτ , implying that σout

i ≥ σi.
Let a session i busy period be a maximal interval

Bi contained in a single system busy period, such that
for all τ, t ∈ Bi:

Si(τ, t)
Sj(τ, t)

≥ φi

φj
j = 1, 2, .., N. (11)

Notice that it is possible for a session to have zero
backlog during its busy period. However, if Qi(τ) > 0
then τ must be in a session i busy period at time τ .
We have already shown that

Lemma 3 : For every interval [τ, t] that is in a ses-
sion i busy period

Si(τ, t) ≥ (t− τ)
φi∑N

j=1 φj

.

Notice that when φ = φi for all i, the service guaran-
tee reduces to

Si(τ, t) ≥ t− τ

N
.

7.2 Greedy Sessions

Session i is defined to be greedy starting at time τ if

Ai(τ, t) = min{Ci(t−τ), li(τ)+(t−τ)ρi}, for all t ≥ τ.
(12)

In terms of the leaky bucket, this means that it uses
as many tokens as possible (i.e. sends at maximum



possible rate) for all times ≥ τ . At time τ , session i
has li(τ) tokens left in the bucket, but it is constrained
to send traffic at a maximum rate of Ci. Thus it takes

lτi
Ci−ρi

time units to deplete the tokens in the bucket.
After this, the rate will be limited by the token arrival
rate, ρi.

Figure 7.2 depicts the arrival function Aτ
i which is

greedy starting at time τ . Inspection of the figure

Figure 7.2: A session i arrival function that is greedy
from time τ .

(and from (12)), we see that if a system busy period
starts at time zero, then

A0
i (0, t) ≥ A(0, t), ∀A ∼ (σi, ρi, Ci), t ≥ 0.

We have shown the following [11]:

Theorem 3 Under generalized processor sharing,
for every session i: D∗

i , Q∗
i and σout

i are achieved
(not necessarily at the same time) when every session
is greedy starting at time zero.

This is an intuitively pleasing and satisfying result.
It seems reasonable that if a session sends as much
traffic as possible at all times, it is going to impede
the progress of packets arriving from the other ses-
sions. But notice that we are claiming a worst case
result, which implies that it is never more harmful for
a subset of the sessions to “save up” their bursts, and
to transmit them at a time greater than zero. While
there are many examples of service disciplines for
which which this “all-greedy regime” does not maxi-
mize delay, the amount of work required to establish
Theorem 3 (see [11]) is still somewhat surprising.

7.3 An All-greedy GPS system

Theorem 3 suggests that in order to compute D∗
i , Q∗

i ,
and σout

i , we should examine the dynamics of a sys-
tem in which all the sessions are greedy starting at

time 0, the beginning of a system busy period. Since
the system busy period is finite we can label the ses-
sions in the order in which their first individual busy
periods are terminated. To simplify the presentation,
we will assume that Ci ≥ 1 for all i—the general case
is dealt with in [11].

From (7) we know that

A0
i (0, τ) = min{Ciτ, σi + ρiτ}, τ ≥ 0,

and let us assume for clarity of exposition, that σi > 0
for all i. Both Qi(τ) and Di(τ) can be found from
Figure 7.3. As we explained earlier, Qi(τ) is just the

Figure 7.3: Session 5 arrivals and departures after 0,
the beginning of a system busy period.

vertical distance between the two curves, and Di(τ)
is the horizontal distance between the curves A0

i (0, t)
and Si(0, t) at the ordinate value of A0

i (0, τ).
Session i will arrive at rate Ci for time

bi =
σi

Ci − ρi
, (13)

after which it arrives at rate ρi. Let ei be the time
(≥ 0) when the session i busy period is terminated
for the first time. Then note that bi ≤ ei for every i
(since Ci ≥ 1).

In the interval [0, e1], each session i is in a busy
period (since we assumed that σi > 0 for all i), and is
served at rate φi/(

∑N
k=1 φk). At e1 one of the sessions,

which we label session 1 by convention, ends its busy
period. Since session 1 is greedy after 0, it follows
that ρ1 < φ1/(

∑N
k=1 φk). (It is easy to show that

such a session must exist when
∑

i ρi < 1.) Now each
session j, still in a busy period will be served at rate
(1 − ρ1)φj/(

∑N
k=2 φk) until a time e2, when another

session, 2, ends its busy period. Similarly, we can can
show that

ρk <
(1−∑k−1

j=1 ρj)φk∑N
j=k φj

, k = 1, 2, ..., N. (14)



As shown in Figure 7.3, the slopes of the various seg-
ments that comprise Si(0, t) are si

1, s
i
2, ..., s

i
i. From

(14) we deduce that:

si
k =

(1−∑k−1
j=1 ρj)φi∑N

j=k φj

, k = 1, 2, ..., i.

It can be seen that {si
k} k = 1, 2, ..., i forms an in-

creasing sequence.
For any two sessions i, j indexed greater than k we

can define a “univeral slope” sk, by:

sk =
si
k

φi
=

sj
k

φi
=

1−∑k−1
j=1 ρj∑N

j=k φk

, i, j > k, k = 1, 2, ..., N.

This allows us to describe the behavior of all the ses-
sions in a single figure as is depicted in Figure 7.4. It

Figure 7.4: The dynamics of an all-greedy GPS sys-
tem.

is interesting to note that the universal service curve
S(0, t) is identical to the Virtual Clock function, V (t),
defined in (5).

8 Calculating D∗
i , Q∗

i and σout
i

The universal service curve shown in Figure 7.4 can
be efficiently computed. Thus, in order to compute
worst case performance measures we assume that all
the sessions will be greedy starting at some time zero,
and that they all have full buckets of tokens at this
time.

Again we assume that Ci ≥ 1 for all i. For the
more general case we refer the reader to [11]. Find
the largest indexed slope j such that sj <

ρj

φj
. If

there is no such slope, set j = 0. Let

ti = max{ej , bi},

where bi was defined in (13).
Now we have:

Q∗
i = A0

i (0, ti)− φiS(0, ti).

To compute D∗
i when Ci < ∞ we first find t∗ the

smallest time such that

A0
i (0, t

∗) = φiS(0, ti).

Then
D∗

i = ti − t∗.

Now if Ci = ∞ we first check if σi ≤ φiS(0, ti). If it
is, then compute t∗ and D∗

i as above. Otherwise find
e∗ the smallest time such that

S(0, e∗) =
σi

φi

and set
D∗

i = e∗.

Finally, we can evaluate σout
i through the following

result:

Lemma 4 For every session i:

σout
i = max{σi, Q

∗
i }.

In principle it is possible to give closed form expres-
sions for these quantities once the order in which the
sessions end their individual busy periods has been
determined. However, such expressions are messy and
do not yield much insight.

9 Picking the φ’s

Suppose a new session wants to use a server that is
currently being shared by sessions {1, ..., N}. Every
session i is characterized by σi, ρi, Ci, di where di is
the worst case packet delay that can be tolerated by
session i. For the active sessions we have φ1, ..., φN ,
and wish to assign φN+1 so that the new session can
be accommodated without violating any of the exist-
ing guarantees on throughput and delay. The follow-
ing is one possible approach that could be used.



1. If
∑N+1

i=1 ρi ≥ 1 then reject session N + 1. Oth-
erwise proceed to step 2.

2. Find φmin
N+1, the smallest value of φN+1 that

would ensure session N + 1 a worst case delay
of dN+1.

3. For every session i = 1, 2, ..., N find φi
N+1, the

largest value of φN+1 that would still ensure ses-
sion i a worst case delay of di.

4. Compute φmax
N+1 = mini=1,...,N φi

N+1. If φmin
N+1 >

φmax
N+1 then reject session N + 1. Otherwise

φN+1 =
φmax

N+1 − φmin
N+1

2
.

Note that any choice of φN+1 ∈ [φmin
N+1, φ

max
N+1] will

meet worst case delay guarantees. However, picking
the extreme points is not advisable since otherwise no
more sessions could be accepted after session N + 1.
In step four we pick the midpoint of the interval.

It is also worth noting, that the assignment scheme
presented here assumes the existence of a “fairness
checker” that prevents a few sessions from monopoliz-
ing the server at the expense of later arriving sessions
whose requirements cannot be met.

10 Conclusions

We presented a fair, flexible and efficient multiplex-
ing scheme called Generalized Processor Sharing that
appears to be appropriate for integrated services net-
works. We also proposed a packet based scheme that
approximates GPS closely. We analyzed the GPS
multiplexer when the sources are constrained by leaky
buckets, and presented an efficient algorithm to deter-
mine worst case delays for a given single server GPS
system. A method to add new users to the system
was also discussed.

Elsewhere [10], we have extended this work to
PGPS networks of arbitrary topologies. We provide
an efficient method for computing bounds on session
delay and backlog for a broad class of GPS networks.
It is hoped that our results in this paper and in the
sequel can form the basis for a highly flexible and ef-
ficient rate-based flow control scheme for integrated
services networks.
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Figure 1: An example of generalized processor sharing.
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