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Abstract. Quarter-car models are popular, simple, unidirectional in kinematics and enable quicker compu-

tation than full-car models. However, they do not account for three other wheels and their suspensions, nor for

the frame’s flexibility, mass distribution and damping. Here we propose a generalized quarter-car modelling

approach, incorporating both the frame as well as other-wheel ground contacts. Our approach is linear, uses

Laplace transforms, involves vertical motions of key points of interest and has intermediate complexity with

improved realism. Our model uses baseline suspension parameters and responses to step force inputs at sus-

pension attachment locations on the frame. Subsequently, new suspension parameters and unsprung mass

compliance parameters can be incorporated, for which relevant formulas are given. The final expression for the

transfer function, between ground displacement and body point response, is approximated using model order

reduction. A simple Matlab code is provided that enables quick parametric studies. Finally, a parametric study

and wheel hop analysis are performed for a realistic numerical example. Frequency and time domain responses

obtained show clearly the effects of other wheels, which are outside the scope of usual quarter-car models. The

displacements obtained from our model are compared against those of the usual quarter-car model and show

ways in which predictions of the quarter-car model include errors that can be reduced in our approach. In

summary, our approach has intermediate complexity between that of a full-car model and a quarter-car model,

and offers corresponding intermediate detail and realism.

Keywords. Quarter-car model; laplace domain; other wheel effects; reduced order; wheel hop; frame

flexibility.

1. Introduction

A vehicle’s suspension isolates its occupants from ground

disturbances. It achieves a trade-off between ride comfort

and vehicle handling.

Much research has been carried out on vehicle suspen-

sions [1]. Mathematical models for suspension design are

broadly of three types: quarter-car [2], half-car [3] and full-

car models [4, 5]. More sophisticated full-car models may

include the flexibility of the frame. These models have

various limitations. The quarter-car model accounts for

neither the effects of three other wheels and their suspen-

sions nor for frame flexibility. The full-car model is com-

putationally complex. The half-car model is midway in

complexity, allows for fore–aft or sideways interaction but

not both, and does not incorporate frame flexibility.

Although they are popular, quarter-car models clearly

cannot capture all relevant dynamic effects [6, 7]. There are

remarkable differences in ride vibration predictions of

various models (quarter car, half car, half car with discrete

masses and models with and without frame flexibility) [8].

The engine, passenger CG locations and frame flexibility

influence the vibration response, though they are not

included in quarter-car model.

In the context of these range of models, our aim here is to

develop a useful modelling approach of intermediate

complexity, representing the car’s dynamics with both

reasonable accuracy and low computational effort. Our

approach is depicted schematically in figure 1.

Advantages of our proposed approach over the usual

quarter-car model go beyond incorporation of frame flexi-

bility and other-wheel effects. In a car, if we change the

front left (FL) wheel suspension stiffness, we change the

front right (FR) wheel suspension stiffness identically. This

effect (symmetric changes at other-wheel locations) is

ignored in the usual quarter-car model, but incorporated in

our approach.

We note that vehicle dynamics can be modelled at dif-

ferent levels of complexity. For instance, in cruise control

design the vehicle might be represented as a point mass [9].

For some aspects of handling, a two-wheel bicycle-like

model may suffice [10, 11]. A half-car model may elucidate*For correspondence
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braking and stability performance [5, 12]. In this context,

our approach provides a fundamental extension of the

quarter-car model, incorporating frame flexibility as well as

ground-wheel contacts at three other locations.

A Matlab code for obtaining the generalized quarter-car

model is provided towards the end of this paper. The code

enables a user to perform fairly quick parametric studies.

An example of such a parametric study is presented there as

well. The role of other wheels, in particular, is seen clearly

within our simple modelling framework, emphasizing the

advantages of our approach over usual quarter-car models.

Lastly, a numerical comparison between a usual quarter-car

model and our generalized quarter-car model is given in

Appendix D. As may be expected, the results reveal some

inaccuracies in the usual quarter-car model, which are

captured by our more general approach.

2. Methodology

Our proposed modelling approach is outlined using a flow

chart in figure 2.

We begin with the actual vehicle in step �1 on the flow

chart, which could be either a design or a prototype. A

realistic vehicle model is developed using, for example,

MD Adams� [13], as shown in step �2 . An alternative

experimental approach might, at least in principle, use

direct field testing of a prototype as indicated by step �3 . In

such experiments, applying and then removing forces on

chassis points may require less specialized equipment than

a full base-excitation test, and this motivates our beginning

with force inputs at chassis points Bi as described later.

From the Adams model, it is our intention to obtain a

useful transfer function matrix for the vehicle. A key point

is that subsequent parameter studies should be possible

without repeated Adams modelling. To this end, we iden-

tify four points on the car body (Bis), labelled B1–B4, where

the suspension is attached (if these points are not unique,

then representative points can be used). We also identify

the ground contact points (Cis), labelled C1–C4; see

subfigure �4 .

Now, four independent sets of responses are calculated

sequentially for unit step inputs acting one by one at the

four points B1–B4. For each such step input, the displace-

ment time histories of points B1–B4 are computed numer-

ically. All effects of car flexibility, and the four ground

contacts, are implicitly included within these computed

responses. The process is indicated schematically in sub-

figure �4 . A total of 16 different time histories are com-

puted in this way.

These time histories are then approximated using a linear

combination of decaying exponentials (plus a constant in

each). The exponential rates used are the same for all 16

time histories. Sketches of four time histories are shown in

subfigure �5 , which shows also that the approximation can

be refined when three decaying exponentials are used.

These fitted exponential approximations are Laplace

transformed to yield a transfer matrix H(s) between forces

and displacements at points Bi (subfigure �6 ).

From H(s), we compute the transfer function matrix

between ground excitation at Ci and body displacements at

Bi. A key step here is that the notional suspension param-

eters of the model in step �4 are now replaced by

adjustable parameters in step �7 . A simple optimization

calculation may be conducted on the side if desired, as in

step �8 .

We will incorporate an unsprung mass at each wheel in

the final stage �9 .
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Figure 1. (a) Usual quarter-car model, with a single sprung mass. (b) Proposed approach: somewhat resembles the quarter-car model in

that x1 is computed in response to u, but incorporates complex dynamics of the car including effects of frame flexibility and three other

wheel-ground contacts. An unsprung mass is not shown here for simplicity but will be incorporated later. We emphasize that small

rolling and pitching motions of the frame are reflected in corresponding vertical motions of points Bi.
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Thus, our proposed modelling approach accounts for

frame flexibility and damping, details of mass distribution,

as well as interactions of the wheel suspension of interest

with the other three wheels’ suspensions, under the sim-

plifying assumption that the dominant ground excitation

acts on the wheel of interest. In terms of kinematics, our
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Figure 2. Work flow of this paper.
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approach retains much of the simplicity of the quarter-car

model. Yet, it incorporates more realism and greater scope

for parameter studies than the usual quarter-car model. At

the same time, it stops short of the significantly greater

complexity of full-car models, wherein parameter studies

can be more laborious and time consuming.

3. Vehicle model

The structural part of the vehicle model used in this study is

based on a FOX Silver S2 GT racing car1 [14, 15]. The

vehicle chassis is made of a roll-cage-type structure with

1.2500 SAE 1018 steel pipes of 0.2500 thickness. From the

CAD model of the chassis (see top-left of figure 4), a

simplified but somewhat similar geometrical model was

developed with pipe curvatures removed (figure 4, top

right), and a finite-element (FE) model of the latter was

developed in Nastran� [5]. The FE model had 17369 nodes

and 18705 CQUAD4 shell elements2.

Next, a mathematical model of the vehicle including the

suspension was developed in Adams�. The FE model of the

chassis was imported into Adams fromNastran using Adams/

Flex3. The four mounting locations Bi were defined as inter-

face nodes. In addition, the model had three more interface

nodes denoted D, E and F, corresponding to the centre ofmass

locations of the passengers, some generic payload and battery,

respectively (figure 4, bottom). Three rigid bodies with mass

and inertia properties representing the passengers, payload and

battery were attached to these interface nodes4. In reality,

flexibility and damping in the driver and seat can be

significant, and they have indeed been modelled elsewhere,

e.g., [16]. These effectswere not retained here for simplicity. It

will be clear that adding such effects in our approach will

simply involve adding some internal modelling details.

We now consider the vehicle suspension. The vehicle has

push rod front and double wishbone rear suspensions.

Effective suspension characteristics were obtained from

separate Adams models of the front and rear suspension

assemblies (see Appendix A). Using those simulations, the

suspensions in the full-car model were replaced by four

equivalent spring–dashpot pairs between the points Bi and

Ci described earlier.

At this stage, the Adams model was complete. Forces can

be applied to points Bi, and the responses of the vehicle can

be computed, as depicted in subfigure �4 in figure 2.

4. Reduced order vehicle model

Model order reduction has well-known advantages in large-

scale simulation, analysis and control design, and has been

extensively studied and used. Some early papers are

[17–20]. More recent work on low-order modelling in an

automotive application (a quarter-car model with realistic

suspension details) is reported in [21]. Here, since we are

working with strongly decaying oscillatory solutions, we

will directly use fitted decaying exponentials.

As discussed in section 2, we selected eight key points

for reduced order modelling, namely four ground–wheel

contacts Ci and four suspension–body attachment points Bi.

Consider a set of four numerical responses obtained from

Adams for the motion at Bi, in response to a unit step input

force (1 kN) at B1. The numerical responses contain dis-

cretely sampled data, at time intervals of T ¼ 0:02 s in the

present case. These are denoted by x(kT), a 4� 1 vector

containing the displacements of B1–B4 at the kth sampling

instant5. We will approximate these displacement responses

using the mathematical form

~xðtÞ ¼ R0 þ R1e
�r1tsinx1t þ R2e

�r1tcosx1t þ � � �

þ R2j�1e
�rjtsinxjt þ R2je

�rjtcosxjt;
ð1Þ

where ~xðtÞ is 4� 1, the Rs are to-be-fitted 4� 1 column

vectors, and the rs and xs are fitted real numbers. Equa-

tion (1) can be written more compactly as

~xðtÞ ¼ R0 þ
Xj

k¼1

R2k�1e
�rk t sinxkt þ R2ke

�rk t cosxktð Þ:

In our calculations, we initially estimated rs and xs

using a separate simple state space model, but finally

refined our fits using nonlinear optimization (see Appendix

B).

Figure 3. FOX racing car S2. Source: University of Seville,

Spain.

1Photograph from Carlos Bordon’s laboratory in the University of

Seville (figure 3), reproduced with permission.
2Four noded iso-parametric quadrilateral shell elements.
3Adams/Flex is an add-on for incorporating a component’s flexibility.

It uses component mode synthesis through modal superposition. We

retained 42 modes for the flexible body model.
4We have modelled the rigid bodies using spheres in Adams with mass

of 300 kg, 100 kg, 100 kg and radius of gyration of 210 mm, 150 mm,

125 mm respectively. The interface nodes are in turn connected to the

FE mesh using RBE2 elements, which are used to connect rigid body

nodes to a few nodes in a deformable mesh. 5The Adams solver used was GSTIFF with integrator SI2 [22].
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For fitting rs and xs, we work at any time with a set of

estimates for these parameters. Given these estimates, the

coefficient matrices Rj are fitted by solving the following

system of equations in a least squares sense:

xðtÞ ¼ R0 R1 R2 . . . R2j�1 R2j½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

R

4�ð2jþ1Þ

�

1

e�r1tsinx1t

e�r1tcosx1t

.

.

.

e�rjtsinxjt

e�rjtcosxjt

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
qðtÞ

ð2jþ1Þ�1

;

ð2Þ

or

xðtÞ ¼ R qðtÞ; ð3Þ

where q(t) is a vector with a unit entry followed by expo-

nential terms. Equation (3) is to be used for several time

instants (say N þ 1)6, with the left hand side vectors x(t)

stacked side by side to make a large 4� ðN þ 1Þ matrix X,

and the right hand side vectors q(t) stacked side by side to

make a large ð2jþ 1Þ � ðN þ 1Þ matrix Q. Thus

X ¼ xð0Þ xðTÞ . . . xðkTÞ . . . xðNTÞ½ �4�ðNþ1Þ

and

Q ¼ qð0Þ qðTÞ . . . qðkTÞ . . . qðNTÞ½ �ð2jþ1Þ�ðNþ1Þ

with Eq. (2) or (3) yielding

X ¼ RQ: ð4Þ

In Eq. (4), X is known from simulation (or possibly

experiment, if working directly with a prototype), Q is

known in terms of the rs and xs, and R is to be found.

Equation (4) can be transposed and solved in a least squares

sense for given r’s and x’s; that sum of squares of errors is

then minimized with respect to the rs and xs using an

optimization routine (we typically use Matlab’s

fminsearch).

However, for our present application, this fitting needs to

be simultaneously done for independent step force inputs at

all suspension-to-body attachment points Bi (16 responses

in total). The same exponential rates must be used to fit all

16 responses. Thus, there are four versions of Eq. (4), one

for each individual step input at four locations; and they can

be stacked vertically in the form

X1
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X3

X4

2

6
6
6
4
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7
7
7
5

16�ðNþ1Þ

¼

R1

R2

R3
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2

6
6
6
4

3

7
7
7
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16�ð2jþ1Þ

Qð2jþ1Þ�ðNþ1Þ: ð5Þ

Figure 4. Top left: CAD model of the chassis. Top right: FE model of simplified chassis, Bottom: Simplified model of the car with

flexible chassis and with suspension assemblies replaced by equivalent spring-dashpots.

6The Adams simulation was performed for 1.5 s with a time step T of

0.02 s, i.e., N ¼ 75.
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In Eq. (5), Q does not change because the same rs and xs

are used for all four cases; the left hand side is known

(computed or measured), and the matrix of Rs is found in a

least squares sense as described earlier for Eq. (4).

Results of this fitting, for different numbers of expo-

nentials (i.e., different j), are shown in table 1 and figure 5.

The fit improves with increasing j, and we stop at j ¼ 3.

Numerical values of various R-vectors are not reported to

save space. From these fitted displacement responses, a

transfer function matrix between forces and displacements

at locations Bi is developed in section 5.

Table 1. rs and xs obtained for different numbers of exponen-

tials j.

No. of exponentials used (j) r x

1 3.546 13.894

2 1.708 12.425

4.452 17.042

3 1.559 12.365

3.079 17.257

5.909 16.659
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Figure 5. Fitted displacement responses for j ¼ 1; 2 and 3, for two excitation cases (the other two cases are not shown). The labels are:

FR for front right; FL for front left; RR for rear right; and RL for rear left. As seen clearly in the lowermost two plots, the lowest curves

on both sides are identical due to the reciprocal theorem [23] applied after Laplace transformation: the response at RR due to forcing at

FL equals the response at FL due to forcing at RR. The steady state displacement of the point of application of force is positive in both

cases; the displacement at the diagonally opposite point is negative; and the other two displacements are smaller and about the same,

because the vehicle approximately rotates about a diagonal line. Finally, displacements at the point of application are much larger than

displacements at other locations, as expected.
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Note that, since XðtÞ has been explicitly fitted using

exponentials, finding their Laplace transforms (X(s)) is

simple.

5. Transfer function matrix H(s)

Assuming zero initial conditions7, the Laplace transforms

of displacements, X(s), and of forces, F(s), at four points Bi

are related linearly as in

XðsÞ ¼ HðsÞFðsÞ: ð6Þ

Equation (6) can be expanded as

X1ðsÞ

X2ðsÞ

X3ðsÞ

X4ðsÞ

0

B
B
B
@

1

C
C
C
A

¼

H11ðsÞ H12ðsÞ H13ðsÞ H14ðsÞ
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?
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x
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x
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H1ðsÞ H2ðsÞ H3ðsÞ H4ðsÞ

ð7Þ

Each element of the above 4� 4 matrix is a separate

Laplace transform, and individual columns have been

named H1ðsÞ–H4ðsÞ as shown.
First, a step input force is applied at point B1, with all

other input forces equal to zero. The Laplace transform of

the force input is then F1ðsÞ ¼
1
s
, with F2 ¼ F3 ¼ F4 ¼ 0.

The corresponding response X(s) is computed analytically

from the fitted exponentials as described earlier; this same

X(s) is then (by Eq. (6)) equal to H1ðsÞF1ðsÞ, whence

H1ðsÞ ¼ XðsÞF1ðsÞ
�1 ¼ sXðsÞ. In this way, with four suc-

cessive simulation results, all the columns of H(s) are found.

We expect from theory that H(s) can be taken as sym-

metric, as follows. The linearized dynamics of the vehicle,

subjected to vertical forces at four locations (Bis), can

generally be described by a model of the form

M11 M12

M12
T M22

� �
€x

€y

� �

þ
C11 C12

C12
T C22

� �
_x

_y

� �

þ
K11 K12

K12
T K22

� �

x

y

� �

¼
f

0

� �

: ð8Þ

Here, x represents the vertical displacements at B1–B4, and

y represents a possibly very large number of additional

unmeasured and unforced degrees of freedom8.M and K are

respectively, symmetric mass and stiffness matrices; their

symmetry is a consequence of the quadratic form of the

kinetic and potential energies in Lagrange’s formulation.

The damping matrix C is also symmetric in typical for-

mulations. The reason for the symmetry of C is that our

dynamic model of the vehicle frame consists of (i) assigned

modal damping values for the structure (automatically

giving symmetric damping matrices), along with (ii) added

discrete dashpots in the suspension, which make symmetric

contributions given by Rayleigh’s dissipation function [24].

Additionally, and more generally, several other linear

damping models can in fact be accurately captured using

symmetric matrices, as discussed in, e.g., [25, 26].

Taking the Laplace transform of Eq. (8) we obtain

M11 M12

M12
T M22

� �
XðsÞ

YðsÞ

� �

s2 þ
C11 C12

C12
T C22

� �
XðsÞ

YðsÞ

� �

s

þ
K11 K12

K12
T K22

� �
XðsÞ

YðsÞ

� �

¼
FðsÞ

0

� �

; ð9Þ

rewritten compactly as

G11ðsÞ G12ðsÞ

G12ðsÞ
T

G22ðsÞ

� �
XðsÞ

YðsÞ

� �

¼
FðsÞ

0

� �

; ð10Þ

whence, eliminating Y(s), we obtain XðsÞ ¼ HðsÞFðsÞ with

HðsÞ ¼
h

G11ðsÞ � G12ðsÞG22ðsÞ
�1
G12ðsÞ

T
i�1

; ð11Þ

which is symmetric. SinceH(s) is symmetric, the systemobeys

reciprocity (see also, e.g., [23]). As a result, the response at RR

(rear-right) due to unit forcing at FL (front-left) equals the

response at FL due to unit forcing at RR, as seen in figure 5.

In the next section we obtain the transfer function matrix

HnðsÞ betweengroundexcitations atCi anddisplacements atBi.

6. Modified transfer function matrix HnðsÞ

The matrix H(s) relates forces and displacements at points

Bi. In determining H(s), a set of baseline suspension

properties were used. If we change the suspension proper-

ties during subsequent simulations, we do not wish to

repeat the process of exponential fitting. Instead, we will

modify H(s) to incorporate new suspension properties

treated as free parameters. Subsequently, we will use the

modified H(s) to determine a matrix HnðsÞ that relates

displacement inputs at points Ci to displacements at points

Bi.

7We have assumed zero initial conditions as we are interested in the

response of the vehicle under sustained road inputs (disturbances) in

which the role of initial conditions rapidly becomes insignificant.

8The FE model of the chassis has 17369 nodes. Four of them

correspond to points B1 through B4. The non-vertical displacements of

these four points, and the displacements of all remaining nodes, are

unforced and unmeasured degrees of freedom.
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6.1 Incorporating suspension properties as free

parameters

We have initially applied forces F(s) at Bi and obtained X(s)

using H(s). The relationship can be formally inverted

(displacements to required additional forces) as in

XðsÞ ¼ HðsÞFðsÞ �! FðsÞ ¼ HðsÞ�1
XðsÞ: ð12Þ

To obtain Hf ðsÞ, we first imagine detaching the suspen-

sions (spring–dashpots) from the vehicle body, yet applying

the same displacements X(s) at points Bi (see figure 6).

With suspensions detached, the required additional for-

ces at Bi will change from F(s) to FbðsÞ as in

FbðsÞ ¼ FðsÞ � DoðsÞXðsÞ; ð13Þ

where the subscript ‘o’ denotes ‘old’ or baseline properties,

subscript ‘b’ denotes ‘body’ and the diagonal matrix

DoðsÞ ¼

KflþCfls 0 0 0

0 Kfr þCfrs 0 0

0 0 KrlþCrls 0

0 0 0 Krr þCrrs

2

6
6
6
4

3

7
7
7
5
;

ð14Þ

where in turn Kfl;Kfr;Krl;Krr are the equivalent stiffnesses

and Cfl;Cfr;Crl;Crr are the corresponding damping coeffi-

cients of FL, FR, RL and RR wheel-suspension assemblies

respectively. We assume for simplicity that the left and

right suspension properties are identical (lateral symmetry).

Now, if we replace DoðsÞ with DnðsÞ (‘n’ denotes ‘new’
suspension properties)9, the forces in response to the same

X(s) will become (using Eqs. (13) and (12))

FnðsÞ ¼ FbðsÞ þ DnðsÞXðsÞ ¼
h

HðsÞ�1 � DoðsÞ þ DnðsÞ
i

XðsÞ: ð15Þ

Thus, upon changing suspension parameters, we obtain a

new transfer function Hf ðsÞ to replace the old H(s) as

XðsÞ ¼
h

HðsÞ�1 � DoðsÞ þ DnðsÞ
i�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hf ðsÞ

FnðsÞ:
ð16Þ

The matrix Hf ðsÞ obtained above (‘f’ denoting free

parameters), between forces and displacements at Bi, cor-

rects the original H(s) for changed suspension parameters.

The transfer function matrix Hf ðsÞ may be useful in future

studies where nonlinearity is to be introduced in one

wheel’s suspension. Here, however, we continue our linear

formulation and consider ground displacement inputs.

6.2 Obtaining the transfer function matrix

from ground to body displacements

We now incorporate displacement inputs at ground-contact

points Ci (figure 7). To this end, recall the case without

ground inputs, i.e., Eq. (15). If displacements U(s) are

additionally applied to the ground contact points, while

holding X(s) constant, then additional forces DnðsÞUðsÞ are
transmitted to the contact points Bi. For X(s) to remain the

same in Eq. (15), we must subtract DnðsÞUðsÞ from FnðsÞ.
This leads to

Table 2. Original and new suspension parameters.

Identifier Kf (N/mm) Kr (N/mm) Cf (Ns/mm) Cr (Ns/mm)

Original 25.0 30.0 0.50 0.75

New 23.6 34.9 0.62 0.76
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Figure 6. Towards finding Hf ðsÞ with suspension properties retained as free parameters.

9The suspension properties used for illustration are given in table 2.

The original suspension parameters were obtained from the Adams

model of the vehicle (see Appendix A). The new suspension

parameter values were obtained from a peripheral optimization study

(see �8 in figure 2) that is not relevant here.
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FwgiðsÞ ¼
h

HðsÞ�1 � DoðsÞ þ DnðsÞ
i

XðsÞ � DnðsÞUðsÞ;

ð17Þ

where the ‘wgi’ subscript stands for ‘with ground input.’

When there is only base excitation from the ground, and no

additional forces are applied, the left hand side above

becomes zero and we have

XðsÞ ¼
h

HðsÞ�1 � DoðsÞ þ DnðsÞ
i�1

DnðsÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HnðsÞ

UðsÞ;
ð18Þ

where HnðsÞ is the transfer function matrix between dis-

placements at Ci and Bi (‘n’ denotes ‘new’ suspension

properties).

7. Model with unsprung mass

The term ‘unsprung mass’ is attributed to Healey [27]. It

refers to the inertial effects of the suspension, wheels and

other components directly connected to them, rather than

the mass supported by the suspension. We will now

incorporate an unsprung mass in our formulation by

attributing an effective mass to the wheel10.

A schematic diagram of one wheel including its

unsprung mass is shown in figure 8. The key point is that,

due to the nonzero mass, the force from the ground is not

transmitted directly through the wheel to the base of the

suspension. In terms of figure 8, Fg;i 6¼ Ft;i.

The ith wheel’s suspension now relates four

dynamic variables: displacement Ug;iðsÞ and corre-

sponding force Fg;iðsÞ at the true ground contact, and

the transmitted displacement and force Ut;iðsÞ and

Ft;iðsÞ, respectively, at the suspension base point (they

replace the points called Ci earlier). In other words,

Ut;iðsÞ is the same as the ith component of displace-

ment U(s) in Eq. (18).

These forces and displacements are related by

Fg;iðsÞ

Ft;iðsÞ

� �

¼
T11ðsÞ T12ðsÞ

T21ðsÞ T22ðsÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Tyre’s dynamic compliance

Ug;iðsÞ

Ut;iðsÞ

� �

;

ð19Þ

where i ¼ 1; 2; 3 and 4 for FL, FR, RL, and RR wheel,

respectively. It is clear that these individual suspensions’

dynamic compliances are unaffected by phenomena at other

wheels. Considering the FL wheel we have

Ft;1ðsÞ ¼ Dn;11ðsÞðX1ðsÞ � Ut;1ðsÞÞ: ð20Þ

From Eqs. (19) and (20), we obtain

Dn;11ðsÞðX1ðsÞ � Ut;1ðsÞÞ ¼ T21ðsÞUg;1ðsÞ þ T22ðsÞUt;1ðsÞ;

which yields

Ut;1ðsÞ ¼ ðDn;11ðsÞ þ T22ðsÞÞ
�1
Dn;11X1ðsÞ

� ðDn;11ðsÞ þ T22ðsÞÞ
�1
T21ðsÞUg;1ðsÞ:

ð21Þ

Equation (21) is of the form

Ut;1ðsÞ ¼ �A1ðsÞX1ðsÞ � �B1ðsÞUg;1ðsÞ: ð22Þ

Four versions of this equation, one for each wheel, can be

assembled in matrix form as
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Figure 7. Displacement inputs at ground contact points Ci.

U
g,

U
t,

Unsprung mass

Tyre compliance model

F
g,

F
t, i

i

i

i

Figure 8. Schematic diagram representing dynamic compliance

of ith wheel including its ‘unsprung’ mass. Here, Ut;iðsÞ corre-

sponds to the base displacement U(s) in Eq. (18).

10Sometimes point masses are also added to the body points Bi, but

that does not affect our procedure.
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Ut ¼

�A1ðsÞ 0 0 0

0 �A2ðsÞ 0 0

0 0 �A3ðsÞ 0

0 0 0 �A4ðsÞ

2

6
6
6
4

3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AðsÞ

X �

�B1ðsÞ 0 0 0

0 �B2ðsÞ 0 0

0 0 �B3ðsÞ 0

0 0 0 �B4ðsÞ

2

6
6
6
4

3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

BðsÞ

UgðsÞ:

ð23Þ

From Eq. (18), noting that UtðsÞ � UðsÞ, we have

UtðsÞ ¼ H�1
n ðsÞXðsÞ; ð24Þ

which finally yields

XðsÞ ¼
h

AðsÞ � H�1
n ðsÞ

i�1

BðsÞUgðsÞ ¼ GðsÞUgðsÞ; ð25Þ

where UgðsÞ is the actual base excitation from the true

ground-contact point. As a check we may note that if the

tyres’ compliance is set to zero, then in Eq. (23) we must

have AðsÞ ¼ 0 and BðsÞ ¼ I (the identity matrix), whence

Eq. (25) reduces to Eq. (18).

The resulting car model is shown schematically in fig-

ure 9. Superficially, it looks like a full-car model, but it is

full-car restricted in various ways. For example, the motion

kinematics at the body points Bi is purely vertical. More-

over, the development of the model is based on individual

attention to one-dimensional behaviours of individual

wheels’ suspensions. A desirable practical use of this model

lies in setting input ground displacements at three wheels to

zero, and taking the appropriate scalar diagonal element of

G(s) in Eq. (25), to obtain the resulting quarter-car model

for the wheel of interest, while incorporating chassis flex-

ibility and other-wheel effects to a useful extent.

For practical work, the matrix manipulations leading to

Eq. (25) lead to long analytical expressions that can be

simplified without sacrificing accuracy as shown below.

8. Model order reduction of the final transfer

function matrix G(s)

Model order reduction of G(s) leads to obvious computa-

tional simplifications.

We have already done order reduction through direct

exponential fitting in section 4 to obtain H(s) using three

pairs of decaying sines and cosines (j ¼ 3 in table 1) plus

an added constant. Consequently, each element of H(s) is a

transfer function with both numerator and denominator of

6th order. The subsequent matrix operations with H(s), as

described in Eqs. (12)–(18), can be done symbolically in

Matlab. The matrix HnðsÞ of Eq. (18) has elements of 28th

order, which is quite large.

Finally, HnðsÞ is itself modified using Eqs. (19)–(25) to

incorporate an unsprung mass compliance model (see

table 3), leading to a more realistic vehicle transfer function

matrix G(s) as in Eq. (25).

The elements of G(s) are of 36th order. One of them is

reproduced for illustration in Appendix C. Such compli-

cated expressions can be simplified for easier use. We are

primarily interested in one diagonal element of G(s), e.g.,

G11ðsÞ for the FL wheel; accordingly, we demonstrate the

reduction of G11ðsÞ.

Since G11ðsÞ is a 36th order transfer function, its equiv-

alent time domain model will have 36 states, given by,

[x1ðtÞ; _x1ðtÞ; €x1ðtÞ; . . .; x1
ð36ÞðtÞ]. Different reduced order

models were developed using Matlab’s built-in function

balred
11. A comparison of these reduced order models is

shown in figure 10.

Figure 10 shows that a 6th order approximation GredðsÞ
preserves the model characteristics accurately. The fre-

quency response and the time domain step-input response
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Figure 9. Car model with unsprung mass.

Table 3. Parameter values used in the unsprung mass compli-

ance model. Note that the unsprung mass is small compared with

the total sprung mass (548 kg in our case); the stiffness is large

and the damping is small compared with the suspension parame-

ters of table 2. The unsprung mass values used are high for con-

ventional wheels. These values are used for clearer demonstration

later, and are representative of wheels with hub motors.

Identifier Mu (unsprung) Kt (tyre) Ct (tyre)

Front 45 kg 250 N/mm 0.05 Ns/mm

Rear 50 kg 275 N/mm 0.06 Ns/mm

11Options for matching the DC gain and phase should be used.
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of the reduced order GredðsÞ and the original G11ðsÞ are

compared in figure 11. The match is good in the frequency

range plotted (up to 100 Hz). In particular, on a logarithmic

scale, differences are seen only where the response itself is

negligibly small.

There are three peaks in the Bode plot of figure 11. The

first and second peaks correspond to the front and rear

suspension natural frequencies (1.8 and 2.6 Hz) and the

third peak represents the wheel hop frequency (10.3 Hz).

9. Recipe for Matlab implementation

of the proposed approach

Finally, we provide the Matlab code for simple imple-

mentation of the entire procedure for obtaining the gener-

alized quarter-car model, beginning from the original

Laplace transforms of Eq. (7). Assuming lateral symmetry,

only H1ðsÞ and H3ðsÞ need to be specified, corresponding to

inputs at FL and RL respectively. Additionally, due to

reciprocal relations, in fact only the last two elements of

H3ðsÞ need to be specified12. In addition to these, the user

must also specify the baseline suspension stiffness and

damping properties, in case they have to be changed later.

Given this information, the following Matlab code uses

new suspension stiffness and damping properties, unsprung

mass and tyre compliance properties (stiffness and damp-

ing), as well as the desired order of the final reduced order

model. The code returns the reduced order model GredðsÞ,
compares the frequency response (Bode plot) and the time

domain step response of GredðsÞ with the original G11ðsÞ to
help the user decide if a higher order approximation is

needed. The user can change suspension properties at will

and can simulate response to other excitations beyond a

simple step input, if desired.

The transparent algorithmic approach for obtaining this

approximation to the quarter-car response, accounting for

vehicle flexibility and unsprung mass as well as other wheel

effects, is the main contribution of this paper.
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order GredðsÞ (solid) and the original G11ðsÞ (dashed) transfer function model.

12In terms of the code below, H3(1) is the same as H1(3) by

symmetry of H (reciprocal theorem), and H3(2) is the same as

H2(3) for the same reason. But H2(3) is the RL response to FR

forcing, which by lateral symmetry of the car is identical to RR

response to FL forcing, namely H1(4).
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% Load 4x1 transfer function matrices H1(s) and H3(s) respectively

load H1.mat; load H3.mat;

% Assemble H(s):

H = [H1(1) H1(2) H3(1) H1(4);

H1(2) H1(1) H3(2) H1(3);

H1(3) H1(4) H3(3) H3(4);

H1(4) H1(3) H3(4) H3(3)];

% Enter baseline (old) suspension properties (see first row of Table 2)

K_f = 25; K_r = 30; C_f = 0.5; C_r = 0.75;

% Diagonal old suspension property matrix Do(s)

Do = diag([K_f+C_f*s; K_f+C_f*s; K_r+C_r*s; K_r+C_r*s]);

% Modifications begin (change below as needed)

% Input new suspension properties (see second row of Table 2)

K_fn = 23.6; K_rn = 34.9; C_fn =.62; C_rn =.76;

% Diagonal new suspension property matrix Dn(s)

Dn = diag([K_fn+C_fn*s; K_fn+C_fn*s; K_rn+C_rn*s; K_rn+C_rn*s]);

% Obtaining the modified transfer function matrix Hn(s) from Equation (18)

Hn = ((H^-1-Do+Dn)^-1)*Dn;

% Input unsprung mass model parameters

M_uf = 45; M_ur = 50;

% Input tyre stiffness and damping

K_tf = 250; C_tf = 0.05; K_tr = 275; C_tr = 0.06;

% Assembling the diagonal unsprung mass matrix

M_unsp = diag([M_uf, M_uf, M_ur, M_ur]);

% Diagonal tyre compliance matrix Dt(s)

Dt = diag([K_tf+C_tf*s; K_tf+C_tf*s; K_tr+C_tr*s; K_tr+C_tr*s]);

% Obtaining A(s) and B(s) as defined in Equation (23)

C = M_unsp*s^2+ Dn + Dt; % Intermediate calculation quantity

A = C^-1*Dn; B = -C^-1*Dt;

% Obtaining the final transfer function matrix G(s) from Equation (25)

G = (A-Hn^-1)^-1*B;

% Reducing the order of G_11(s) for base excitation only at front left wheel

[Num, Den] = numden(G(1,1));

N1 = double(coeffs(Num)); N = flipud(N1);

D1 = double(coeffs(Den)); D = flipud(D1);

% Building a transfer function from numerator and denominator coeffs

G_11 = tf(N,D);

% Defining balred options

opt = balredOptions(‘StateElimMethod’,‘MatchDC’);

% Input the desired reduced model order

n=6;

% Obtaining the reduced order transfer function G_red(s) using balred

G_red = balred(G_11,n,opt);

% Extracting the reduced order transfer function coefficients

[N_red, D_red] = tfdata(G_red,‘vec’);

% Dropping the sixth order numerator term to obtain a strictly proper TF

N_red = N_red(2:end); G_red = tf(N_red, D_red);

% Comparing the bode plots and the step response

figure(1) bode(G_red,‘r’,G_11,‘--’);figure(2) step(G_red,‘r’,G_11,‘--’,2)

Matlab code

% Declare ‘s’ to be symbolic (Note: with s symbolic, we can define quantities like 0.2(s-1)/(s+3),

% save them, load them, etc.)

syms s
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This Matlab code can be used to obtain the generalized

quarter-car model. It takes only a few seconds to run on an

ordinary desktop PC. It enables easy parametric studies

where a user can see the effect of changing any parameters

of interest on the response of the vehicle. We will now

discuss two potential applications.

10. Applications of our model

The first is a study on the effect of suspension parameters

and second involves wheel hop.

10.1 Parametric study of suspension

Here we consider the effects of varying three different

parameters.

10.1a Front stiffness: The front suspension stiffness is

increased by 25% and then 50% from its baseline value

Kn
f ¼ 23:6 N/mm (table 2). The corresponding frequency

and time domain responses are compared in figure 12.

As the suspension stiffness increases, the peak over-

shoot in the unit step response increases because of the

reduction in effective damping. More interestingly, note

that the steady-state displacement changes slightly as

well. In all three cases considered, the steady-state dis-

placement is close to 0.8. For a quarter-car model, the

steady-state displacement in response to a unit step dis-

placement input is unity independent of the stiffness. The

difference observed here from unity is a strictly other-

wheel effect.

10.1b Front damping: The front suspension damping

coefficient is increased by 50% and then 100% from its

baseline value Cn
f ¼ 0:62 Ns/mm (table 2). The corre-

sponding frequency and time domain responses are com-

pared in figure 13. With increase in damping, the resonant

peak in the Bode plot gets suppressed, and transients in the

step response die out faster, as expected.

10.1c Rear damping: Finally, the rear suspension damping

coefficient is increased by 50% and then 100% from its

baseline value Cn
r ¼ 0:76 Ns/mm (see table 2). The corre-

sponding frequency and time domain responses are
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compared in figure 14. As damping increases, the second

resonant peak in the Bode plot gets suppressed and the step

response shows small changes as well. They are again

other-wheel effects, not observed in a usual quarter-car

model.

Note also that there is no change in the steady-state

displacement due to changes in damping: this shows that

our automated approximation methods above retain the

‘DC gain’ behaviour correctly.

10.2 Effect of wheel hop

Wheel hop is a strong vertical oscillation of the wheels of a

car, i.e., a response dominated by motion of the unsprung

mass. The particular frequency at which wheel hop may be

dominant depends on suspension parameters and unsprung

mass but not significantly on vehicle mass. Here we

examine the effect of varying the unsprung mass.

The unsprung mass is generally much smaller than the

sprung mass; hence, in a simplified quarter-car analysis, the

sprung mass is held stationary while estimating the wheel

hop frequency [28].

Mimicking that approach in our system, for the FL

wheel, the total restoring stiffness is Ktf þ Kn
f . In this way,

an approximate equation of motion for the free vibration of

the front wheel assembly is

Muf €uþ ðCtf þ Cn
f Þ _uþ ðKtf þ Kn

f Þu ¼ 0; ð26Þ

where u is the corresponding unsprung mass displacement.

The wheel hop frequency is thus estimated to be

xn �
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ktf þ Kn
f

Muf

s

: ð27Þ
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Figure 14. Comparison of frequency domain response (Bode plot: left) and time domain response (step response: right) for different

values of rear suspension damping coefficients.

Table 4. Comparison of wheel hop frequencies estimated from

Eq. (27) and obtained from our model GredðsÞ.

Unsprung mass

Muf

Quarter-car model

(Eq. (27))

Our model (from poles

of GredðsÞ)

33.75 kg (75% of

baseline)

14.3 Hz 13.2 Hz

45 kg (baseline) 12.4 Hz 11.8 Hz

56.25 kg (125% of

baseline)

11.1 Hz 10.9 Hz
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The FOX vehicle that motivates our numerical example

has in-hub wheel motors [29], and hence the unsprung mass

is a bit higher than for conventional wheels (see table 3).

We now study the effect of varying the unsprung mass.

Results are given in table 4 and figure 15.

It was observed that in each case, the actual frequency

corresponding to poles of GredðsÞ is slightly lower than the

frequency estimated using Eq. (27). The actual poles are

expected to be slightly lower because of both damping as

well as small motions of the sprung mass. Thus, it is seen

that wheel hop effects on the body motion are also captured

easily by the present approach.

11. Conclusions

The vehicle dynamics research literature includes many

studies of vehicle suspensions under the quarter-car or

half-car simplifications. Here, we have proposed a fairly

simple way to incorporate vehicle mass, flexibility and

damping effects, as well as the effects of stationary ground

contacts at other wheels. In this way, our approach is of

intermediate complexity, between those of quarter-car or

half-car models on one hand and full-car models on the

other. Some obvious differences between usual quarter-car

model predictions and our more realistic approach can be

seen easily, e.g., in unit step input responses (see

Appendix D).

We have also provided a simple Matlab code, which

makes it easy for a user to carry out the full range of

computations, beginning with Laplace-transformed step-

force input responses from two forcing locations.

In our approach the usual suspension parameters are

retained as free parameters to enable semi-detailed com-

parative studies in the design stage. The model can also be

used for the analysis of wheel hop.

In future work, it should be possible to extend or

adapt this formulation to incorporate test results in

place of initial simulation results, to incorporate more

sophisticated unsprung mass models, and also, if there

is a need, to incorporate nonlinearities in the local-

wheel suspension (where displacements are largest),

while retaining linear behaviour at other locations. We

hope to investigate one or more of these aspects in

future research.

Appendix A: Adams suspension model

The vehicle has independent front and rear suspensions.

Suspension modelling is done in Adams Car (figure 16

(top)).

Essential aspects are described here, and some further

details are available in [15]. The front suspension is of

double wishbone type along with bi-articulated push rods

and bell crank levers. The rear suspension is of double

wishbone type. Both front and rear suspensions have elastic

(spring) and dissipative (hydraulic damper) elements.

An equivalent stiffness and damping need to be estimated

for the suspension, accounting for the kinematics of the

linkage (i.e., the damper compression differs from that of

actual wheel travel). The equivalent suspension stiffness at

wheels (the ‘wheel rate’) was determined directly by a quasi-

static wheel travel study of a half-car model in Adams. The

equivalent damping coefficient was obtained by scaling the

manufacturer-supplied damper data by the motion ratio

factor (force and velocity were scaled in inverse proportions)

to account for the linkage kinematics (see figure 16 (bot-

tom)). The baseline suspension properties obtained are

shown in table 5; see also table 2 in the main text.

Appendix B: Initial estimates of rs and xs for use

in section 4

Here we discuss how to obtain initial estimates of rs and xs

for use in section 4. We begin with an incremental model

with four-dimensional state vector �zk given by

�zk ¼ xkþ1 � xk; ð28Þ

where xkþ1 and xk are the body points’ displacements at

discrete time intervals ðk þ 1ÞT and kT, respectively. We

then extend the dimension of the state vector considered by

taking multiple time steps as in

zk ¼

�zk

�zkþ1

.

.

.

�zkþðj�1Þ

2

6
6
6
6
4

3

7
7
7
7
5

; ð29Þ

where j is to be chosen large enough to get a good fit.

An underlying discrete-time model is assumed in the form

zkþ1 ¼ Dzk; ð30Þ

where D is a state transition matrix to be fitted, in a least

squares sense, from many x-data points. The eigenvalues of

D provide the needed estimates of rs and xs, through

rþ ix ¼ loge
eigðDÞ

T
; ð31Þ

where T is the time step (in our Adams simulations,

T ¼ 0:02 s).
The exponential rates obtained for various numbers of

retained complex eigenvalues are reported in table 6.

These rs and xs were used as initial guesses in nonlinear

fitting based on Matlab’s built-in optimization routine

fminsearch.
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Appendix C: Expressions for full and reduced

order transfer functions

G11ðsÞ was found to be the following 36th order transfer

function:

Figure 16. Top: Front and rear suspension assemblies modelled in Adams Car. Bushings connect the suspension to chassis pivot points.

Bottom: Equivalent stiffness and damping characteristics of front and rear suspensions, respectively.

Table 5. Initial estimates of suspension parameters.

Kfront Krear Cfront Crear

25 N/mm 30 N/mm 0.50 Ns/mm 0.75 Ns/mm

Table 6. Initial guesses of rs and xs. They need not be very

accurate, as subsequent nonlinear fitting is done.

No. of complex pairs

retained Identifier r x

One Single-time-step

model

2.11 14.72

Two Two-time-step model 1.88 17.88

1.90 12.26

Three Three-time-step

model

1.52 12.28

2.41 18.29

4.29 13.40
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This higher order transfer function was reduced, using

Matlab’s function balred, to

The ‘s6’ term in the numerator of the above transfer func-

tion was dropped to obtain a strictly proper transfer func-

tion as

Appendix D: Further comparison between quarter

car and our model

In this section we compare the unit step response of our

model with that of a quarter-car model. Note here that the

value of steady-state displacement of a quarter-car model

for a unit step displacement input will necessarily be unity.

In our model the difference observed from unity (figure 17)

is strictly due to other-wheel effects. We have used the FL

suspension to body point B1’s displacement x1ðtÞ for

comparison. The parameters for building the quarter-car

model are reported in table 7. The vehicle total sprung mass

G11ðsÞ¼

5:9s35þ3:0e5s34þ5:5e9s33þ5:3e13s32þ1:7e17s31þ3:1e19s30þ8:5e21s29þ1:0e24s28þ1:5e26s27

þ1:5e28s26þ1:3e30s25þ9:9e31s24þ6:3e33s23þ3:4e35s22þ1:6e37s21þ6:7e38s20þ2:3e40s19þ7:6e41s18

þ2:1e43s17þ5:3e44s16þ1:2e46s15þ2:5e47s14þ4:7e48s13þ7:9e49s12þ1:2e51s11þ1:7e52s10þ2:1e53s9

þ2:4e54s8þ2:5e55s7þ2:3e56s6þ1:8e57s5þ1:3e58s4þ7:6e58s3þ3:9e59s2þ1:3e60sþ4:1e60

s36þ6:2e04s35þ1:4e09s34þ1:6e13s33þ9:2e16s32þ1:3e19s31þ3:3e21s30þ3:5e23s29þ4:7e25s28þ3:8e27s27

þ3:3e29s26þ2:1e31s25þ1:3e33s24þ6:4e34s23þ3:0e36s22þ1:1e38s21þ4:0e39s20þ1:2e41s19þ3:3e42s18

þ8:3e43s17þ1:9e45s16þ3:9e46s15þ7:3e47s14þ1:2e49s13þ2:0e50s12þ2:8e51s11þ3:7e52s10þ4:3e53s9

þ4:7e54s8þ4:5e55s7þ4:0e56s6þ3:0e57s5þ2:0e58s4þ1:1e59s3þ5:6e59s2þ1:8e60sþ5:4e60

:

GredðsÞ ¼
8:3e�3s6 þ 1:1s5 þ 2:1e2s4 þ 2:6e4s3 þ 1:1e6s2 þ 8:9e6sþ 1:9e8

s6 þ 2:9e1s5 þ 6:2e3s4 þ 7:6e4s3 þ 2:8e6s2 þ 1:3e7sþ 2:5e8
:

GredðsÞ ¼
1:1s5 þ 2:1e2s4 þ 2:6e4s3 þ 1:1e6s2 þ 8:9e6sþ 1:9e8

s6 þ 2:9e1s5 þ 6:2e3s4 þ 7:6e4s3 þ 2:8e6s2 þ 1:3e7sþ 2:5e8
:

0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

1.25

1.5

1.75
Unit step response

Time (s)

A
m

p
li

tu
d
e

Quarter-car model

Our model

  M
sprung

C
s

K
s

 M
unsprung

, K
t  
, C

t

Unsprung mass

 model

Sprung mass

Quarter-car model

Figure 17. Comparison of displacements obtained from usual quarter-car model and our model in response to a unit step displacement

input at wheel contact point C1. Both the damping level and steady-state response are affected by nonlocal stiffness and dissipation,

which is captured well by our approach.
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is 548 kg. There is almost equal mass distribution between

front and rear wheels and the vehicle is assumed to be

symmetric about its centre line. Therefore, the sprung mass

in the quarter-car model is taken to be 548=4 ¼ 137 kg:
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