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Abstract: The regularized phase tracker (RPT) is one of the most powerful 
approaches for demodulation of a single fringe pattern. However, two 
disadvantages limit the applications of the RPT in practice. One is the 
necessity of a normalized fringe pattern as input and the other is the 
sensitivity to critical points. To overcome these two disadvantages, a 
generalized regularized phase tracker (GRPT) is presented. The GRPT is 
characterized by two novel improvements. First, a general local fringe 
model that includes a linear background, a linear modulation and a 
quadratic phase is adopted in the proposed enhanced cost function. Second, 
the number of iterations in the optimization process is proposed as a 
comprehensive measure of fringe quality and used to guide the 
demodulation path. With these two improvements, the GRPT can directly 
demodulate a single fringe pattern without any pre-processing and post-
processing and successfully get rid of the problem of the sensitivity to 
critical points. Simulation and experimental results are presented to 
demonstrate the effectiveness and robustness of the GRPT. 

©2012 Optical Society of America 
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1. Introduction 

Most optical measurement techniques provide their measurement results in the form of fringe 
patterns. Depending on the applications, various physical quantities such as displacement, 
temperature, surface profile and refractive index, can be encoded in fringe patterns [1]. A 
fringe pattern can be typically represented by the following mathematical expression: 

 ( ) ( ) ( ) ( ) ( ), , , cos , , ,f x y a x y b x y x y n x yϕ= + +    (1) 

where ( ),x y  is the pixel coordinate; ( ),f x y  denotes the recorded intensity of the fringe 

pattern; ( ),a x y  is the background; ( ),b x y  is the modulation; ( ),x yϕ  is the phase term 

related to the physical quantity being measured; ( ),n x y  is the noise term. The common 

objective of fringe pattern analysis is to recover the phase ( ),x yϕ  from the intensity ( ),f x y . 

A number of well-known techniques have been developed for phase demodulation from 
fringe patterns [2]. Among them, phase shifting technique is the best choice provided that the 
experiment condition permits one to acquire several phase-shifted fringe patterns [3, 4]. 
Fourier transform is another widely used method when a carrier frequency can be introduced 
to the fringe pattern [5, 6]. However, in some experiments such as the transient mechanical 
processes, it is difficult to acquire multiple phase-shifted fringe patterns or introduce a carrier 
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frequency to the fringe pattern. In such situations, demodulation of a single fringe pattern 
becomes important. 

Various methods have been developed for phase demodulation from a single fringe 
pattern [7–23], such as the adaptive quadrature filters, the spiral phase quadrature transform, 
the correlation technique and the regularized phase tracker (RPT). The RPT [17] is one of the 
most powerful approaches and has been well recognized. However, the RPT has two 
disadvantages: the necessity of a normalized fringe pattern as input and the sensitivity to 
critical points. To overcome the first disadvantage, Ricardo et al. proposed an improved RPT 
[18] by including the modulation into the cost function of the RPT, so that a nonnormalized 
fringe pattern can be demodulated. This work was further improved for better optimization 
results by introducing a rough estimate of the modulation and the linearization of the local 
fringe model [19]. To overcome the second disadvantage, Servin et al. proposed the fringe 
follower regularized phase tracker (FFRPT) [20], which used the fringe intensity to guide the 
demodulation path in order to isolate the critical points. Wang et al. proposed a more robust 
scanning strategy called frequency guided regularized phase tracker (FGRPT) [21], which 
used the local frequency to guide the demodulation path. Tian et al. proposed a path 
independent regularized phase tracker (PIRPT) [22], where a quadratic phase is adopted to 
replace the linear phase model in the original RPT. Because the quadratic phase can match the 
local fringe data more precisely, the PIRPT is less sensitive to the critical points and is able to 
achieve a higher accuracy for phase. Recently, Wang et al. proposed a quadratic phase 
matching and frequency guided regularized phase tracker (QFGRPT), which is the 
combination of the advantages of FGRPT and PIRPT and indeed was demonstrated to be 
more robust and accurate [23]. 

Nevertheless, there still lacks a technique that overcomes both disadvantages. In this 
paper, a generalized regularized phase tracker (GRPT) is presented to achieve this goal, 
which is made possible by including two novel improvements. First, a general local fringe 
model that includes a linear background, a linear modulation and a quadratic phase is adopted 
in the cost function, and twelve parameters are optimized simultaneously. The optimization 
will be seen successful by selecting proper initial values. Second, the number of iterations in 
the optimization process is used to guide the demodulation path, which reflects the quality of 
the fringe pattern and automatically postpone the processing of critical points, noisy areas, 
image borders, and even phase discontinuities. Based on these two improvements, the GRPT 
can directly and successfully demodulate a single fringe pattern without any pre-processing 
and post-processing. Simulation and experimental results are presented to demonstrate the 
effectiveness and robustness of the GRPT. 

The rest of the paper is organized as follows. The RPT will be briefly reviewed in Sec. 2. 
The proposed GRPT will then be presented in Sec. 3. Results and discussions will be given in 
Sec. 4. The problem of phase demodulation from a single fringe pattern with phase 
discontinuities is discussed in Sec. 5. A conclusion will be drawn in Sec. 6. 

2. Regularized phase tracker 

The basic idea of the RPT [17] is that the fringe pattern is considered as locally 
monochromatic, that is, the local fringe can be modeled as a cosinusoidal function of linear 
phase. The cost function to be minimized for parameter estimation is defined as [17] 

 ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ,

2 2

0
,

, , , ; , , , ; , , ,
x y

n e e

N

U x y f f x y x y m
ε η

ε η ε η λ ϕ ε η ϕ ε η ε η
∈

= − + −      ∑  (2) 

with 

 ( ) ( ), cos , ,nf ε η ϕ ε η≈     (3) 

 ( ) ( ), ; , cos , ; , ,e ef x y x yε η ϕ ε η=     (4) 
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 ( ) ( ) ( )( ) ( )( )0, ; , , , , ,
e x y

x y x y x y x x y yϕ ε η ϕ ω ε ω η= + − + −  (5) 

where ,x y
N  is a neighborhood region around ( ),x y  with coordinates ( ),ε η ; ( ),

n
f ε η  is the 

normalized fringe pattern obtained by normalizing a fringe pattern in Eq. (1); ( ), ; ,
e

f x y ε η  is 

the local fringe model that gives the intensity distribution in ,x y
N ; ( ), ; ,

e
x yϕ ε η  indicates the 

assumed phase distribution in ,x y
N ; ( )0 ,x yϕ  is the phase estimation; ( ),

x
x yω  and 

( ),
y

x yω  are the first order phase derivatives in the x  and y  directions, respectively; they 

are also called as the local frequency estimations in the x  and y  directions, respectively; 

( ),m ε η  is an indicator that equals one if the pixel ( ),ε η  has already been demodulated and 

equals zero otherwise; λ  is a regularizing parameter that controls the smoothness of the 

phase estimation ( )0 ,x yϕ . The first term in Eq. (2), also called a fidelity term, attempts to 

keep the local fringe model ( ), ; ,
e

f x y ε η  close to the normalized fringe pattern ( ),
n

f ε η  in a 

least squares sense within the neighborhood ,x y
N . The second term, also called a 

regularization term, enforces the phase estimation ( )0 ,x yϕ  to be smooth to the already 

estimated phases marked by ( ),m ε η . By minimizing the cost function in Eq. (2) on a pixel-

by-pixel basis with respect to three parameters ( )0 ,x yϕ , ( ),
x

x yω  and ( ),
y

x yω , the given 

fringe pattern can be demodulated. A gradient descent method is adopted for optimization in 
[17, 20], while other iterative optimization methods can also be used [24]. The resultant phase 
estimation is continuous and no further unwrapping process is required. 

Two disadvantages of the RPT mentioned in Sec. 1 can be more clearly observed from the 
RPT model in Eqs. (2)-(5). First, a normalized fringe pattern ( ),

n
f ε η  is used as input in Eq. 

(2), but the normalization is a difficult task [25–29]. Second, from the fidelity term in Eq. (2), 

if ( ) ( ) ( )0 , , , , ,x yx y x y x yϕ ω ω    is a solution, so is ( ) ( ) ( )0 , , , , ,x yx y x y x yϕ ω ω − − −  , 

which results in the phase ambiguity problem. In the RPT, this problem can be solved by two 
facts: (i) the estimation in a neighboring pixel is used as the initial value of the current pixel, 
which implicitly enforces the continuity of the parameters; and (ii) the regularization term 
explicitly enforces the continuity of phase estimation. However, neither fact is effective when 
the current pixel is around critical points (maxima, minima and saddles) where all parameters 
are close to zero and can result in spurious phase signs. Once one pixel has the wrong sign, 
the error will propagate to subsequently processed pixels. Improvements to overcome the first 
or second disadvantages have been discussed in Sec. 1. An algorithm that is able to overcome 
both disadvantages is lacking but highly desired. 

3. Generalized regularized phase tracker 

In this section, we propose a generalized regularized phase tracker (GRPT) that can 
simultaneously overcome the two disadvantages of the RPT and therefore, the GRPT can 
directly demodulate a fringe pattern without any pre-processing and post-processing. Two 
novel improvements of the GRPT are detailed in Secs. 3.1 and 3.2, respectively. The overall 
algorithm is outlined in Sec. 3.3. 

3.1 An enhanced cost function for the GRPT 

In order to directly demodulate a fringe pattern without normalization, we model ( ),a x y  and 

( ),b x y  as locally linear, and ( ),x yϕ  as locally quadratic. The local fringe in ,x y
N  is thus 

expressed as follows, 
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 ( ) ( ) ( ) ( ), ; , , ; , , ; , cos , ; , ,e e e eaf x y x y b x y x yε η ε η ε η ϕ ε η= +     (6) 

 ( ) ( ) ( )( ) ( )( )0, ; , , , , ,
e x y

a x y a x y a x y x a x y yε η ε η= + − + −  (7) 

 ( ) ( ) ( )( ) ( )( )0, ; , , , , ,
e x y

b x y b x y b x y x b x y yε η ε η= + − + −  (8) 

 
( ) ( ) ( )( ) ( )( ) ( ) ( )

( )
( ) ( )( )( )

2

0

2

,
, ; , , , ,

2
,

, ,
2

xx

e x y

yy

xy

c x y
x y x y x y x x y y x

c x y
y c x y x y

ϕ ε η ϕ ω ε ω η ε

η ε η

= + − + − + −

+ − + − −

(9) 

where ( ), ; ,
e

f x y ε η  denotes the general local fringe model in ,x y
N ; ( ), ; ,

e
a x y ε η  is the local 

background model in ,x y
N ; ( )0 ,a x y  is the background estimation; ( ),

x
a x y  and ( ),

y
a x y  

are the first order derivatives of the background in the x  and y  directions, respectively; 

similarly, ( ), ; ,
e

b x y ε η  is the local modulation model in ,x y
N ; ( )0 ,b x y  is the modulation 

estimation; ( ),
x

b x y  and ( ),
y

b x y  are the first order derivatives of modulation in the x  and 

y  directions, respectively; ( ), ; ,
e

x yϕ ε η  is the local phase model in ,x y
N ; ( )0 ,x yϕ  is the 

phase estimation; ( ),
x

x yω , ( ),
y

x yω , ( ),
xx

c x y , ( ),
yy

c x y  and ( ),
xy

c x y  are the first and 

second order phase derivatives. 
With this general fringe model, the cost function in Eq. (2) is adapted and enhanced as 

follows, 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )
( ) ,

2 2

0
,

, , ; , , , ; , , , ; , ,
x y

e e

N

U x y w x y f f x y x y m
ε η

ε η ε η ε η λ ϕ ε η ϕ ε η ε η
∈

= − + −      ∑
  (10) 

where ( ), ; ,w x y ε η  is a Gaussian window with a standard deviation σ , 

 ( ) ( ) ( )2 2

2
, ; , exp .

2

x y
w x y

ε η
ε η

σ

 − + −
= − 

  
 (11) 

In this paper, the neighborhood ,x y
N  is a square region of W W×  pixels and the standard 

deviation σ  of the Gaussian window is defined as / 4Wσ = . Compared with the cost 
function of the RPT in Eq. (2), the enhanced model is more general and elegant by estimating 
background, modulation and phase simultaneously. This cost is that there are twelve 
parameters, ( )0 ,a x y , ( ),

x
a x y , ( ),

y
a x y , ( )0 ,b x y , ( ),

x
b x y , ( ),

y
b x y , ( )0 ,x yϕ , 

( ),
x

x yω , ( ),
y

x yω , ( ),
xx

c x y , ( ),
yy

c x y , and ( ),
xy

c x y , to be optimized simultaneously. 

This turns out to be achievable by setting initial values properly [23]. For the seed pixel 

( )0 0,x y , i.e., the first pixel to be demodulated, the initial values are set as follows: 

( ) ( )0 0 0, ,a x y mean f x y=    , i.e., the mean of the fringe pattern in the neighborhood 
0 0,x yN ; 

( ) ( )0 0 0 0, , 0
x y

a x y a x y= = , ( )0 0 0,b x y , ( )0 0 0,x yϕ , ( )0 0,
x

x yω  and ( )0 0,
y

x yω  are 

estimated by the windowed Fourier ridges method [30, 31]; ( ) ( )0 0 0 0, , 0
x y

b x y b x y= = ; 
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( ) ( ) ( )0 0 0 0 0 0, , , 0
xx yy xy

c x y c x y c x y= = = . For a subsequent pixel ( ),x y , the initial values are 

set according to its already demodulated adjacent pixel ( ),
s s

x y  as follows, 

 

( ) ( ) ( )( ) ( )( )
( ) ( )
( ) ( )
( ) ( ) ( )( ) ( )( )
( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( )

0 0

0 0

0 0

2 2

, , , ,

, ,

, ,

, , , ,

, ,

, ,

, , , ,

, / 2 , / 2

s s x s s s y s s s

x x s s

y y s s

s s x s s s y s s s

x x s s

y y s s

s s x s s s y s s s

xx s s s yy s s s

xy

a x y a x y a x y x x a x y y y

a x y a x y

a x y a x y

b x y b x y b x y x x b x y y y

b x y b x y

b x y b x y

x y x y x y x x x y y y

c x y x x c x y y y

c x

ϕ ϕ ω ω

= + − + −

=

=

= + − + −

=

=

= + − + −

+ − + −

+ ( )( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )
( ) ( )
( ) ( )
( ) ( )

,

, , , ,

, , , ,

, ,

, ,

, , .

s s s s

x x s s xx s s s xy s s s

y y s s yy s s s xy s s s

xx xx s s

yy yy s s

xy xy s s

y x x y y

x y x y c x y x x c x y y y

x y x y c x y y y c x y x x

c x y c x y

c x y c x y

c x y c x y

ω ω

ω ω

− −

= + − + −

= + − + −

=

=

=

 (12) 

Two optimization methods, Levenberg-Marquardt (LM) method [32] and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method [24], have been tested and both are capable of our 
demodulation. The LM method is chosen in this paper for its better performance. To 

implement the LM method, the condition of convergence is set as ( ),U x y ζ∇ < , where 

( ),U x y∇  denotes the norm of the gradient of the cost function in Eq. (10) and ζ  is a small 

positive number. The successful demodulation by optimization will be demonstrated in Sec. 4 
through various examples. 

3.2 An effective scanning strategy of the GRPT 

As mentioned in Sec. 2, critical points often cause the problem of spurious phase signs and 
then result in errors propagation. The most effective way to solve this problem is the quality 
guided scanning strategy [33, 34] by assigning low quality to critical points. Two scanning 
strategies, the fringe follower scanning strategy [20] and the frequency guided scanning 
strategy [21], have been used for the RPT. The latter was demonstrated to be more robust 
since it can distinguish the critical points more effectively. 

Naturally the success of the frequency guidance relies on reliable estimation of local 
frequencies. It can be easily achieved in [21] where the fringe patterns have been successfully 
denoised and normalized before frequency estimation, but is more difficult in the proposed 
enhanced model in Eq. (10) where the fringe patterns to be demodulated are generally noisy 
and nonnomalized. The accuracy reduction of frequency estimation may accumulate to a 
demodulation failure. To obtain more reliable frequency estimation against noise, a larger 
window is often needed which can reduce the phase estimation accuracy. 

A new scanning strategy is proposed in this paper, which uses the number of iterations 
(NI) for scanning path guidance. The NI refers to number of iterations needed to reach the 
predetermined convergence condition when an iterative optimization algorithm is performed 
to minimize the cost function given in Eq. (10). We find that the NI is large at the critical 
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points and their neighborhood pixels. In addition, the NI is also large in the regions with 
heavy noise, near image borders, or near phase discontinuities. Thus NI is discovered to be a 
comprehensive measure of overall fringe quality. This discovery inspires us to propose a new 
scanning strategy using the NI as the quality map to guide the demodulation path. In the NI 
guided scanning strategy, the pixels with smaller NIs are processed earlier than those with 
larger NIs, which not only postpones the processing of critical points, noisy pixels and pixels 
near image borders, but also recognizes phase discontinuities. Surprisingly good results will 
be reported in Secs. 4 and 5. 

3.3 The proposed GRPT 

Based on the enhanced cost function in Sec. 3.1 and the NI guided scanning strategy in Sec. 
3.2, the proposed GRPT is the NI guided minimization of the enhanced cost function given in 
Eq. (10). The GRPT algorithm is outlined as follows. 

Step 1: Select a pixel with high signal-to-noise ratio, high local frequency and away from 
image borders as the seed pixel ( )0 0,x y ; 

Step 2: Demodulate the seed pixel by minimizing the cost function in Eq. (10); push the 
seed pixel into a demodulation register. Only one register is needed for the GRPT; 

Step 3: Select the pixel ( ),
s s

x y  with the lowest NI in the demodulation register; 

demodulate its unprocessed adjacent pixels by minimizing the cost function in Eq. 
(10); remove the selected pixel from the register; 

Step 4: Push the processed pixels into the register and sort the pixels according to their 
NIs; 

Step 5: Repeat step 3 and step 4 until the register is empty. 
It should be pointed out that the LM algorithm used to minimize the cost function Eq. (10) 

is indeed a local optimization algorithm and its success mainly depends on two factors. One is 
the initial values and the other is the solution space of the cost function Eq. (10). In the 
GRPT, these two factors are elegantly solved. For the seed pixel, since a high signal-to-noise 
ratio can be selected and the robust WFR method is used, its initial values can be accurately 
estimated. For a subsequent pixel, the initial values can be estimated according to its already 
demodulated adjacent pixel, as expressed in Eq. (12). Considering the complexity of the 
solution space of the cost function Eq. (10), the LM algorithm may be failed, especially at 
these pixels with low signal-to-noise ratio, near image borders and critical points. However, 
these pixels are automatically postponed for processing in the GRPT since the NI guided 
scanning strategy is adopted, and consequently the GRPT is able to success. 

4. Results and discussions 

To verify the effectiveness and robustness of the proposed GRPT, some simulated and 
experimental fringe patterns are demodulated. All calculations are carried out on a personal 
Pentium Dual E8400 computer with 3.0GHz main frequency by C +  + programming. A 
31 31×  neighborhood for ,x y

N  is used for all the calculations in this paper. The convergence 

condition for the LM method in minimizing the cost function of the GRPT is 

( ), 0.01U x y∇ <  and in addition, a maximum iteration number of 10 is used to stop the 

iterative calculations for the non-convergence pixels. All retrieved phase results from the 
GRPT are already unwrapped, which will be rewrapped for displaying purpose. 

4.1 Results from a simulated typical fringe pattern and discussions 

A typical computer-generated fringe pattern of size 256 256×  is shown in Fig. 1(a) with its 
true phase shown in Fig. 1(b). Figure 1(c) shows the corresponding ideal fringe pattern. It can 
be seen that the fringe pattern shown in Fig. 1(a) is degraded by speckle noise and has 
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nonuniform background and modulation. Moreover, the fringe pattern contains a number of 
critical points. All these factors make the demodulation of Fig. 1(a) difficult. The GRPT with 

20λ =  is used to demodulate Fig. 1(a). Figure 1(d) shows the NI map (the gray level of Fig. 
1(d) is proportional to the NI), which is obtained along with the demodulation of Fig. 1(a) by 
the GRPT. It can be seen that the problematical regions (pixels around the critical points and 
near the image edges) are successfully and automatically distinguished in the NI map as 
pixels with large NIs. Figures 1(e)-1(g) are three snapshots showing the sequence of the 
GRPT demodulation. From these snapshots, it can be seen that the critical points are well 
avoided and the pixels near the image borders are postponed to the end. Figure 1(h) shows the 
final phase result obtained by the GRPT, which is satisfactory. The mean absolute errors 
(MAE) of the result, i.e., the mean value of the absolute difference between the extracted 
phase distribution in Fig. 1(h) and the true phase distribution in Fig. 1(b), is calculated to be 
0.15 rad. The calculation time is about 11min. 

 

Fig. 1. Demodulation of a computer-generated fringe pattern by the GRPT. (a) computer-
generated fringe pattern; (b) the true phase of the fringe pattern; (c) the ideal fringe pattern; (d) 
the NI map obtained along with the demodulation of (a) by the GRPT; (e)-(g) three snapshots 
of the estimated phase results obtained by the GRPT; (h) rewrapped phase result obtained by 
the GRPT. 

To further understand the GRPT, influences of its factors and comparison with the 
FGRPT are investigated below. 

(i) Guiding strategy (the NI vs the frequency guidance) The frequency guided scanning 
strategy is also tested for comparison. Except that NI is replaced by the frequency 
guidance, all other parameters remain the same. Figures 2(a) and 2(b) show two 
snapshots of the demodulation. As shown in Fig. 2(b), the demodulation is failed at a 
certain pixel and the errors then propagated to the following pixels. A possible way 
is to increases the window size so as to increases the reliability of frequency 
estimation against the noise. Indeed when the window size is 45 45× , the frequency 
guidance succeeds the demodulation. However usually a larger window will make 
the assumptions in Eqs. (6)-(9) less reasonable, which leads to a larger phase error. 
In this example, the MAE using frequency guidance is 0.30 rad, which is two times 
of that by the NI . 

(ii) Window shape (Gaussian vs rectangular) The rectangular window has been 
traditionally used in the original and improved RPTs. It has a compact shape and 
fully utilizes the fringe data within the window, which is suitable for the previous 
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strong assumption of linear phase. In our enhanced model, the assumption of 
quadratic phase enables us to use a larger window. The Gaussian window is less 
compact compared with the rectangle window but it is physically more reasonable. 
Nevertheless, the discrepancy between their performances is small. As an example, 
Fig. 2(c) shows the demodulation result with a rectangular window, which is also 
successful but with a higher MAE of 0.21 rad. 

(iii) Window size (small vs large) To balance the noise influence and fringe model 
assumption, a proper window size should be selected. A series of different window 
size is used to demodulate Fig. 1(a) by the GRPT with 20λ = . Table 1 shows the 
MAEs of the obtained results. It can be seen that the demodulation is failed at the 
window size 21 21×  which means the window size is too small to resist the noise. 
On the other hand, when the window size becomes large, the demodulation accuracy 
is reduced since the fringe model assumptions in Eqs. (6)-(9) are less reasonable. 
The window size of 31 31×  is found to be the best among the tested window sizes 
and, according to our experiences, the window size in the range of 25 25× ~ 35 35×  
is suitable for most fringe patterns. 

(iv) Regularizing parameter (low vs high) The regularizing parameter λ  balances the 
fidelity term and regularization term. A larger λ  emphasizes more on the 
regularization term. The selection of λ  is usually empirical [35]. Two different 
regularizing parameters, 0λ =  and 100λ = , are tested, and the corresponding 
results are shown in Figs. 2(d) and 2(e), respectively. The demodulation with 0λ =  
is failed at the regions near the image borders as shown in Fig. 2(d). On the other 
hand, the demodulation with 100λ =  is successful as shown in Fig. 2(e), but with 
MAE of 0.21 rad which is larger than that with 20λ = . According to our 
experiences, 10 ~ 100λ =  is suitable for most fringe patterns and therefore is 
recommended. 

(v) Overall performance (the GRPT vs the QFGRPT) Although the QFGRPT [23] needs 
a normalized fringe pattern as input, it adopts quadratic phase assumption and 
frequency guidance, and thus is a close relative to the GPRT. It is of interest to 
compare these two methods. Figure 1(a) is normalized and shown in Fig. 2(f) by 
performing the Hilbert transform [25] and the windowed Fourier filtering [30, 31]. 
The QFGRPT is then used to demodulate the normalized fringe pattern. Figure 2(g) 
shows the frequency map obtained along with the demodulation by the QFGRPT. 
The demodulation result is shown in Fig. 2(h), with an MAE of 0.32 rad. One major 
problem causing the higher MAE is that the fringe pattern is slightly distorted when 
it is normalized, which is unavoidable in most fringe pattern normalization 
algorithms [25–29]. 
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Fig. 2. Some comparative demodulation results of Fig. 1(a). (a)-(b) two snapshots of the 
estimated phase results obtained by the GRPT using the frequency guided strategy instead of 
the NI guided strategy; (c) rewrapped phase result obtained by the GRPT using a rectangular 
window instead of the Gaussian window; (d) rewrapped phase result obtained by the GRPT 
with the regularizing parameter 0λ = ; (e) rewrapped phase result obtained by the GRPT with 
the regularizing parameter 100λ = ; (f) normalized fringe pattern from the fringe pattern in 
Fig. 1(a); (g) the frequency map obtained along with the demodulation of (f) by the QFGRPT 
[23]; (h) rewrapped phase result obtained by the QFGRPT guided by the frequency map in (g). 

Table 1. Demodulation Results 

Window Size 21 21×  25 25×  31 31×  35 35×  41 41×  45 45×  
Mean absolute error Failed 0.16 0.15 0.16 0.23 0.25 

4.2 Results from more simulated fringe patterns 

Another four complex computer-generated fringe patterns are demodulated to show the 
robustness of the GRPT. The simulated fringe patterns, shown in first column of Fig. 3, have 
the same size of 200 200× . Their true phase distributions are shown in the second column. 
All these fringe patterns are contaminated by speckle noise and have nonuniform 
backgrounds and modulations. The parameters are set the same as for Fig. 1. The third 
column shows the NI maps obtained along with the demodulation of the fringe patterns, 
which successfully guide the demodulation. The retrieved phase results are shown in the 
fourth column and their MAEs are 0.13, 0.15, 0.15 and 0.18, respectively. It can be seen that 
the demodulated phase distributions are satisfactory. The average calculation time for the 
GRPT to demodulate one of the fringe patterns shown in Fig. 3 is about 6min. 
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Fig. 3. Four complex computer-generated fringe patterns demodulated by the GRPT. First 
column shows the four computer-generated fringe patterns; second column shows the true 
phase distributions of the fringe patterns; third column is the NI maps obtained by the GRPT 
along with the fringe patterns demodulation; fourth column shows the rewrapped phase results 
obtained by the GRPT. 

4.3 Results from experimental fringe patterns 

Finally, two experimental speckle fringe patterns are used for verification. Except for setting 
60λ = , all other parameters remain the same as for Fig. 1. The first example is from speckle 

shearography with a size of 176 176×  and is shown in Fig. 4(a). It has two critical points and 
is degraded by speckle noise. Figure 4(b) shows the NI map of Fig. 4(a). The problematical 
regions of the fringe pattern are well distinguished in the NI map. Figures 4(c)-4(f) show four 
snapshots of the demodulation of Fig. 4(a) by the GRPT. It can be seen that the two critical 
points of the fringe pattern are successfully avoided. Figure 4(g) shows the obtained phase 
result and, for the ease of comparison, the cosine fringe of the obtained phase is shown in Fig. 
4(h). The second example is from electronic speckle pattern interferometry with a size of 
210 210×  and is shown in Fig. 5(a). It has only one critical point but has nonuniform 
background and modulation, and is also degraded by speckle noise. Figure 5(b) shows the NI 
map of Fig. 5(a), which well distinguishes the problematical regions in the fringe pattern. 
Similarly to the first example, four snapshots of the estimated phase of the demodulation of 
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Fig. 5(a) by the GRPT are shown in Figs. 5(c)-5(f), which clearly indicates that the critical 
point is successfully postponed to the end of the demodulation. The obtained phase result and 
its cosine fringe are shown in Fig. 5(g) and Fig. 5(h), respectively. It can be seen that both 
experimental examples have been satisfactorily demodulated. The calculation time for the 
GRPT to demodulate Fig. 4(a) and Fig. 5(a) are about 7min and 8min, respectively. 

 

Fig. 4. Experimental fringe pattern demodulated by the GRPT. (a) noisy fringe pattern from 
speckle shearography; (b) the NI map obtained by the GRPT from the fringe pattern in (a); (c-
f) four snapshots of the estimated phase results obtained by the GRPT; (g) rewrapped phase 
result obtained by the GRPT; (h) cosine value of (g). 

 

Fig. 5. Experimental fringe pattern demodulated by the GRPT. (a) noisy fringe pattern from 
electronic speckle pattern interferometry; (b) the NI map obtained by the GRPT from the 
fringe pattern in (a); (c-f) four snapshots of the estimated phase results obtained by the GRPT; 
(g) rewrapped phase result obtained by the GRPT; (h) cosine value of (g). 
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5. Phase demodulation from a single fringe pattern with phase discontinuities by the 
GRPT 

It is of interest to demodulate a single fringe pattern with phase discontinuities. Figure 6(a) 
shows a simulated example of this issue. It can be seen that the fringe pattern contains three 
different regions. Each region has its own phase distribution and consequently, the phase 
distributions at the boundaries of these three regions are discontinuous. The most difficult 
task for demodulation of such fringe pattern is how to distinguish the different regions and 
demodulate them separately. The NI guided scanning strategy used in the GRPT provides a 
possible way to solving this problem, since the NIs at the boundaries are usually large. Figure 
6(b) shows the NI map obtained along with the demodulation of Fig. 6(a) by the GRPT, using 
the same parameters as for Fig. 1. It can be seen that the discontinuous boundaries are clearly 
distinguished by the large NIs. Figures 6(c)-6(d) show two snapshots of the demodulation of 
Fig. 6(a) by the GRPT. It can be seen that the discontinuous boundaries are automatically 
avoided and the different regions are separately demodulated. Figure 6(e) shows the obtained 
phase result, which is successful and satisfactory. To further verify the effectiveness of the 
GRPT, Fig. 6(f) shows a noisy fringe pattern with the same phase distribution as Fig. 6(a). 
Figure 6(g) shows the NI map of Fig. 6(f) obtained along with the demodulation of Fig. 6(f) 
by the GRPT, using the same parameters as for Fig. 1. Figure 6(h) shows the obtained phase 
result, which is satisfactory. 

 

Fig. 6. Fringe pattern with phase discontinuities demodulated by the GRPT. (a) fringe pattern 
with phase discontinuities; (b) the NI map obtained by the GRPT from the fringe pattern in (a); 
(c-d) two snapshots of the estimated phase results obtained by the GRPT from the fringe 
pattern in (a); (e) rewrapped phase result obtained by the GRPT from the fringe pattern in (a); 
(f) a noisy fringe pattern with the same phase distribution as the fringe pattern in (a); (g) the NI 
map obtained by the GRPT from the fringe pattern in (f); (h) rewrapped phase result obtained 
by the GRPT from the fringe pattern in (f). 

6. Conclusion 

To overcome the two disadvantages of the regularized phase tracker (RPT), i.e., the necessity 
of a normalized fringe pattern as input and the sensitivity to critical points, a generalized 
regularized phase tracker (GRPT) is presented with two novel improvements. First, an 
enhanced cost function is proposed, which uses a general local fringe model that includes a 
linear background, a linear modulation and a quadratic phase. Second, the number of 
iterations in the optimization process is used to guide the demodulation path. Based on these 
two improvements, the GRPT can directly demodulate a single fringe pattern without any pre-
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processing and post-processing and successfully solve the problem of the sensitivity to critical 
points. The GRPT is also shown to be useful to demodulate a fringe pattern with phase 
discontinuities. Simulation and experimental results are presented to demonstrate the 
effectiveness and robustness of the GRPT. 
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