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Abstract—Generalization of the well-known Walsh–Hadamard
transform (WHT), namely center-weighted Hadamard transform
(CWHT) and complex reverse-jacket transform (CRJT) have been
proposed and their fast implementation and simple index genera-
tion algorithms have recently been reported. These transforms are
of size2 2 for integral values or , and defined in terms of
binary radix representation of integers. In this paper, using appro-
priate mixed-radix representation of integers, we present a gener-
alized transform called general reverse jacket transform (GRJT)
that unifies all the three classes of transforms, WHT, CWHT, and
CRJT, and also applicable for any even length vectors, that is of
size2 2 . A subclass of GRJT which includes CRJT (but not
CWHT) is applicable for finite fields and useful for constructing
error control codes.

Index Terms—Error-control coding, image-coding, re-
verse-jacket transform, Walsh–Hadamard transform.

I. INTRODUCTION

T HE WALSH–HADAMARD transform (WHT) and dis-
crete Fourier transform (DFT) are used widely in signal

processing [1], [3], in particular image coding and processing
[2] and error-control coding [13], [4], [10]. Recently, variations
of these two transforms called center weighted Hadamard trans-
form (CWHT) and complex reverse jacket transform (CRJT)
[5]–[7], [9] have been reported and their applications in image
processing and communications have been pointed out [15].

Both the CWHT and the CRJT include the WHT as a special
case. The CRJT uses the complex number which is a
fourth root of unity. In this paper, we first generalize the CRJT
by extending it to any th root of unity, for any integer value of

. This extended CRJT is well defined for any finite field apart
from the complex field and is useful in constructing new classes
of error correcting codes. Then we obtain a further generalized
transform called generalized reverse jacket transform (GRJT)
that includes the CWHT as well as the extended CRJT and hence
the WHT as special cases. Fig. 1 illustrates the interrelationship
among these transforms.

CRJT has been used to construct optimal bipolar sequence
[14] and it is hoped that the extended CRJT presented in this
paper will lead to good multilevel sequences. Moreover, WHT
is used in practical design of substitution boxes (S-box) in data
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encryption standard (DES) [16] and the generalized transforms
presented here may be used in this design.

In this introductory section, we briefly discuss the WHT,
CWHT, and CRJT, mainly to give their definitions and fix the
terminology and notations.

A. The WHT

For a length real vector the trans-
form vector is a -length real vector given
by

(1)

where the modulo-2 inner product is given by

where denotes modulo two addition, in terms of radix-2 rep-
resentation of integers , denoted by

where

and for . The inverse transform
is given by

B. The CWHT

The CWHT is obtained by weighting the center portion of the
transform matrix given by (1) and is given by

(2)

where is any real number is the weight. The inverse transform
is given by
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Fig. 1. Interrelationship among the transforms.

Notice that for the CWHT is same as the WHT. The
and CWHT matrices corresponding to the weight

are, respectively

(3)

and

(4)

and the inverses, respectively, are

(5)

and

(6)

C. The CRJT

In [6], a class of transform called CRJT is constructed by re-
placing the weight in (2) by the complex number ,
and this CRJT is orthogonal and a fast algorithm to compute
CRJT is also given. In [8] a simple binary index generation al-
gorithm is discussed for the CRJT and its applications in coded
modulation pointed out. However, it is not discussed whether
one can use other complex numbers, instead ofor .

The and the CRJT are shown below as

(7)

and

(8)

Observe that is a primitive fourth root of unity on the com-
plex unit circle and we show that by replacingwith any th
(for any positive integer ) complex root of unity and using ap-
propriate mixed-radix indexing scheme CRJT can be extended
to any even length vectors. This extended CRJT is orthogonal.

The content of the paper is organized as follows: In the next
section, we extend the CRJT given by (7) to any
by using a th complex root of unity instead of as
an intermediate step toward a GRJT. By showing the connection
with DFT, this extended CRJT transform is shown to be orthog-
onal. It is also observed that the extended CRJT is applicable for
appropriate finite field instead of complex field and new class of
error correcting codes can be obtained. In Section III, we unify
the CWHT and the extended CRJT to obtain the GRJT, which is
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not necessarily orthogonal. Section IV contains few concluding
remarks and several directions for further research.

II. THE EXTENDED CRJT

All the transforms discussed in the previous section, WHT,
CWHT, and CRJT are defined for lengths that are powers of two
only, or equivalently the corresponding transform matrices are
of type for some positive integer. This is due to the fact
that the CWHT is nothing but the center portion of the matrix
weighted by and in CRJT it is due to the fact that
is an element of order 4. If, instead ofwhich is a fourth root of
unity, a th root of unity is used then instead of a matrix,
a matrix results. In this section we obtain this matrix,
using a mixed radix representation of integers between zero and

. A class of optimal bipolar sequences has been obtained in
[14] using CRJT and it is hoped that the generalization presented
in this section will lead to new classes of optimal sequences.

Definition 1: Let be an arbitrary positive integer and
denote a primitive th root of unity on the complex circle.

For any real or complex -length vector
the GRJT vector is given by

(9)

where, for any integer the mixed-radix
representation of it is given by where
and and .

It is easy to check that the inverse GRJT is given by

Observe that when , Definition 1 gives the CRJT
given by (7).

Example 1: Let . Then . The transform
matrix and inverse matrix corresponding to Definition 1 are

(10)

and

(11)

The following theorem shows that the transforms given by Def-
inition 1 is orthogonal for all values of.

Theorem 1: The transform given by Definition 1 is unitary.
Proof: The Theorem follows from the fact that it is a per-

muted version of the length DFT, given by

which is unitary. To be precise, starting from the DFT matrix,
the permutation

retains the first columns unchanged and reverses the last
columns. After this column permutation, the permutation

retains the first rows unchanged and reverses the lastrows.
Since column permutation and row permutation does not affect
the value of inner products of columns and rows, unitariness is
unaffected.

Notice that the matrix shown in (8) is not obtainable from
the transform of Definition 1. This calls for the further gener-
alization of Definition 1. Definition 2 gives such a transform
which we call extended CRJT. For this definition, we need the
following definition of mixed-radix representation of integers
from for of the form , where
and are positive integers.

Definition 2: Let , where and are arbitrary posi-
tive integers. An integer has a represen-
tation of the form

where and for take values
from and , and this will be
represented by

Observe that for the same value ofif and are different,
the corresponding mixed-radix number system is different. The
following example exemplifies this.

Example 2: For , and , the
mixed-radix representation of integers from
is shown in Table I.

Definition 3 (Extended CRJT):Let , where and
are positive integers. For any real or complex valued-length
vector the extended CRJT vector is the

-length complex vector given by (12),
shown at the bottom of the next page, and whereis a primitive

th root of unity on the complex unit circle and

(13)

where and are represented by the mixed-radix representation
of Definition 2.

Notice that the definition of is modulo 2 inner
product of and without the components, , and .

It is easy to verify that the inverse of the extended CRJT is
given in (12a) as shown at the bottom of the next page.



LEE et al.: A GENERALIZED REVERSE JACKET TRANSFORM 687

TABLE I
MIXED-RADIX REPRESENTATIONCORRESPONDING TOEXAMPLE 2

Now, the matrix shown in (8) is obtained from the Definition
3, for and by taking , which is a fourth
root of unity in the complex circle. Moreover, Definition 3 gives
transforms for lengths that are not powers of 2 as shown by the
following example.

Example 3: For , the extended CRJT is same
as the matrix shown in (21) with removed from wherever it
appears or equivalently with .

Now we formally show that the transform given by Definition
3 is orthogonal.

Theorem 2: The extended CRJT is unitary.
Proof: Let denote the Walsh–Hadamard matrix

the transform matrix given by Definition 1 and denote
the matrix given by Definition 3. Also, let denote the con-
jugate transposed matrix of a matrixwith complex numbers.
Then we have

where denotes the Kronecker product. (For properties of Kro-
necker products, see [17]). The Kronecker product has the fol-
lowing property:

where and are matrices. Using the above property,
we have

(14)

(15)

(16)

where denotes the identity matrix. This completes
the proof.

Unitary transforms are useful in image enhancement using
filtering in the transform domain. For a detailed discussion of
transform operations and generalized linear filtering using the
unitary transforms discrete cosine transform (DCT), WHT, and
DFT, the readers are referred to [18]. Since extended CRJT is
unitary, this can be used in such transform processing. In the fol-
lowing subsection we discuss an application of extended CRJT
in the area of error control coding.

A. The Extended CRJT Over Finite Fields

In this section, we discuss the applicability of CRJT over fi-
nite fields and its usefulness to construct codes. For basic prop-
erties of finite fields and techniques of construction the reader
is referred to [13]. Our purpose/intention is to demonstrate the
applicability of CRJT over finite fields in constructing codes not
actually giving all the details of the code construction.

(12)

(12a)
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The use of DFT over finite fields to describe cyclic codes and
for decoding is well known [13], [4]. Recently, WHT over finite
fields have been used to describe dyadic codes and quasicyclic
dyadic codes (see [10] and the references therein). The DFT is
an orthogonal transform that maps cyclic convolution to point-
wise multiplication-this is the property used to describe cyclic
codes over finite fields. Since the extended CRJT is also orthog-
onal it can be used to obtain codes in the same way as DFT is
used.

We first define the extended CRJT as applicable for finite
fields as follows:

Definition 4: Let , where are as in Definition 3
along with the mixed-radix integer representation. Also let
be a finite field with elements where and are relatively
prime and be an extension field of where is the least
integer such that divides and . Let

be a primitive element of . Then the element ,
which we denote by has order . Then the extended CRJT
equation (12) is modified as shown in (12b) at the bottom of
the page, where is a vector over and

is its transform vector over .
We construct two examples of transform matrices shown

here.
Example 4: Let and . Then

and constructed with the prime polynomial
is the set

where denotes where . Multipli-
cation of two elements is carried out modulo . The
element 13 is primitive and we take . Then .
For convenience, we show at the bottom of the page, all the
nonzero elements in terms of the power of. The extended
CRJT in this case is

(17)

Example 5: In Example 4, if is changed to 2, then
and all other values remain same and the corresponding ex-
tended CRJT is shown

(18)

III. T HE GRJT

In this section, we unify the CWHT and the extended CRJT
obtained in the previous section. When the CWHT is used on
a size image, pixels in the first and the last rows
are not weighted and among the rest rows, pixels in the
first and the last columns are not weighted. The ratio of
the number of pixels weighted to the total number of pixels is
one-quarter, and this ratio is independent of the length of the
transform. This ratio in the following GRJT is not fixed and
depends on the length of the transform as we shall see in the
sequel.

Definition 5 (GRJT): Let , where and are pos-
itive integers and any real number. For any real or complex
valued -length vector the GRJT vector
is the -length complex vector given by
(19) at the top of the next page, whereis a primitive th root
of unity on the complex unit circle

and if modulo and
otherwise.

(12b)
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(19)

(20)

(21)

It is easy to check that the inverse transform is given by (20)
shown at the top of the page.

Example 6: The GRJT matrix for and is shown
in (21), at the bottom of the page, whereis the weight and

.
The WHT, CWHT, CRJT, and the extended CRJT are all spe-

cial cases of the GRJT, obtainable from Definition 4, as follows:

• gives the WHT;
• gives the CWHT;
• and gives the CRJT;
• gives the entended CRJT.

Now, it is straight forward to see that in the GRJT the ratio of
the number of pixels that are weighted to the total number of
pixels is

and this ratio depends onand . For instance, for 24 length
transform leads to the ratio 5/6 whereas

leads to the ratio 1/2. Recall that for the CRJT this
ratio is fixed and always one-quarter.

IV. CONCLUSION

In this paper we have extended the CRJT which is defined
using the so called imaginary numberto the extended CRJT
that uses a complex th root of unity where is any positive
integer greater than or equal to 2. Further, the WHT, CWHT,
CRJT, and extended CRJT have all been shown to be obtainable
as special cases of the GRJT. The application of these transforms
to image processing, error control coding and sequences have
been cited. The possible directions for further research are as
follows:

• Optimal bipolar sequences have been obtained using the
CRJT and naturally the extended CRJT correspond to mul-

tiple valued sequences and constitute an interesting area to
investigate further.

• Extension of the fast algorithm and the index generation
algorithm given in [6] and [8] for CRJT to the GRJT is not
straight forward because of the mixed-radix representation
involved and the extent of fastness achievable is worth
investigating.

• The error correcting capability of the codes obtained by
using the entended CRJT for finite fields is an important
direction to pursue.
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