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A Generalized Sampling Theory
Without Band-Limiting Constraints

Michael Unser, Senior Member, IEEE, and Josiane Zerubia

Abstract—We consider the problem of the reconstruction of
a continuous-time function from the samples of the
responses of linear shift-invariant systems sampled at 1 the
reconstruction rate. We extend Papoulis’ generalized sampling
theory in two important respects. First, our class of admissible
input signals (typ. ) is considerably larger than the
subspace of band-limited functions. Second, we use a more
general specification of the reconstruction subspace , so
that the output of the system can take the form of a band-
limited function, a spline, or a wavelet expansion. Since we have
enlarged the class of admissible input functions, we have to give
up Shannon and Papoulis’ principle of an exact reconstruction.

Instead, we seek an approximation that is consistent in
the sense that it produces exactly the same measurements as the
input of the system. This leads to a generalization of Papoulis’
sampling theorem and a practical reconstruction algorithm that
takes the form of a multivariate filter. In particular, we show that
the corresponding system acts as a projector from onto .
We then propose two complementary polyphase and modulation
domain interpretations of our solution. The polyphase represen-
tation leads to a simple understanding of our reconstruction
algorithm in terms of a perfect reconstruction filter bank. The
modulation analysis, on the other hand, is useful in providing
the connection with Papoulis’ earlier results for the band-limited
case. Finally, we illustrate the general applicability of our theory
by presenting new examples of interlaced and derivative sampling
using splines.

NOMENCLATURE

Unknown input signal.

Reconstructed signal approximation.

Input space.

Reconstruction subspace.

Generating function.

: Autocorrelation sequence.

Fourier transform of .

Riesz bounds.

Number of channels.

Channel index.

Measurements (input).

Coefficients of signal representation (output).

Analysis filters.

Fourier transform of .

Analysis functions.

Dual synthesis functions.

Multivariate reconstruction filter.
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-transform of .

System cross-correlation matrix sequence.

Synthesis sequences.

-transform of .

Analysis sequences.

: Polyphase matrix.

Modulation matrix.

Analysis vector.

Generating vector (block representation).

Measurement sequence.

Block representation of .

-transform of .

I. INTRODUCTION

I
N 1977, Papoulis introduced a powerful extension of Shan-

non’s sampling theory, showing that a band-limited signal

could be reconstructed exactly from the samples of

the responses of linear shift-invariant systems, sampled

at ( )th the Nyquist rate [13]. The main point of this

generalization is that there are many possible ways of ex-

tracting data from a signal for a complete characterization

[6], [9], [12]. The standard approach of taking uniform signal

samples at the Nyquist rate is just one possibility among many

others [15]. Typical instances of generalized sampling that

have been studied in the literature are interlaced and deriva-

tive sampling [10], [25]. Recently, there has been renewed

interest in such alternative sampling schemes for improving

image acquisition. For instance, in high-resolution electron

microscopy there is an inherent tradeoff between contrast and

resolution. It is possible, however, to compensate for these

effects—including the frequency nulls of the transfer function

of the microscope—by combining multiple images acquired

with various degrees of defocusing [23]. Super-resolution is

another promising application where a series of low-resolution

images that are shifted with respect to each other are used to

reconstruct a higher resolution picture of a scene [16], [21].

A recent trend has been to study sampling from the general

point of view of the multiresolution theory of the wavelet

transform. The basis for this kind of formulation is the

realization that the various wavelet subspaces have essen-

tially the same shift-invariant structure as Shannon’s class of

band-limited functions. This has led researchers to propose

various sampling theorems for the representation of functions

in wavelet subspaces [2], [7], [8], [24], as well as more

general spline-like spaces which do not necessarily satisfy the

multiresolution property [3], [17].
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In principle, Papoulis’ generalized sampling theory pro-

vides an attractive framework for addressing most restoration

problems involving multiple sensors or interlaced sampling.

However, we feel that the underlying assumption of a band-

limited input function is overly restrictive. Indeed, most

real world analog signals are time or space limited which

is in contradiction with the band-limited hypothesis. Another

potential difficulty is that Papoulis did not explicitly translate

his theoretical results into a practical numerical reconstruction

algorithm. Here, we will extend Papoulis’ theory in an attempt

to correct for these shortcomings. Our three main contributions

are as follows. First, we propose a much less constrained

formulation where the analog input signal can be almost

arbitrary, typically where is the space of finite

energy functions. This is only possible because we replace

Papoulis and Shannon’s principle of a perfect reconstruction

by the weaker requirement of a consistent approximation.

In other words, we want our reconstructed signal to

provide exactly the same measurements as if it was

reinjected into the system; i.e., to look the same to the end

user when it is acquired through the measurement system.

Second, we consider a more general form of reconstruction

subspace generated from the integer translates of a

function . In this way, we obtain results that are also

applicable for recent (nonband-limited) signal representation

models such as splines [2], [18] and wavelets [11], [22].

Interestingly, in the case where the approximation is performed

in the space of band-limited functions [e.g., ],

we obtain exactly the same reconstruction formula as Papoulis.

The essential difference, however, is that the input of the

system does not need to be band-limited. Third, we do

address the implementation issue explicitly and propose a

practical reconstruction algorithm that takes the form of a

multivariate filter. We also provide an interesting connection

with perfect reconstruction filter banks. In many ways, our

approach is similar to that of Djokovic and Vaidyanathan

[7], except that these authors limited themselves to the study

of specific forms of sampling in multiresolution subspaces

(periodically nonuniform sampling, sampling of a function

and its derivative, and reconstruction from local averages).

In addition, they investigated perfect reconstruction schemes

only, which corresponds to the most restrictive case of our

theory with .

The paper is organized as follows. In Section II, we start by

defining the underlying reconstruction subspace and review

some basic results on multivariate filtering. In Section III, we

provide a detailed formulation of the generalized sampling

problem with an explicit statement of our three assumptions:

measurability (A1), well-defined reconstruction subspace (A2),

and invertibility (A3). The reconstruction process itself is

discussed in Section IV. This includes our generalized sam-

pling theorem in Section IV-A, and a multivariate filtering

reconstruction algorithm which is derived in Section IV-B. In

Section V, we interpret our sampling formulas using some of

the basic tools of multirate signal processing (polyphase and

modulation analysis). In particular, we use the modulation rep-

resentation to make the connection with Papoulis’ derivation

in the frequency domain. Finally, in Section VI, we present

some new examples of interlaced and derivative sampling

using splines.

II. PRELIMINARY NOTIONS

Before developing our sampling theory, it is important to

specify the signal subspaces in which we are performing the

approximation. It is also useful to review some basic results

on the stability and invertibility of multivariate convolution

operators which turn out to be central to the argument.

A. Representation Subspace

The purpose of sampling is to represent a function of

the continuous variable by a discrete sequence of numbers,

a representation that is often better suited for signal processing

and data transmission. Since we want this discrete representa-

tion to be unambiguous, we must restrict ourselves to a given

subclass of signals. Most classical sampling theories consider

the class of band-limited functions which can be expanded in

terms of the translates of [12], [15].

Here, we will extend our choice of signal models by

considering the representation space

(1)

where is a given generating function. For notational

simplicity, we are using a unit sampling step because we

can always perform an appropriate rescaling of the time axis.

Intrinsically, the present formulation has the same conceptual

simplicity as the band-limited model , but it allows

for more general signal classes such as splines [14], [18], and

wavelets [2], [11], [22]. Our only restriction on the choice of

the generating function is that is a well-defined (closed)

subspace of with as its Riesz basis. In other

terms, there must exist two constants, and ,

such that

(2)

The Riesz bounds correspond to the tightest possible

pair of such constants. The upper inequality ensures that

is a subspace of (the space of finite energy functions). The

lower inequality implies that the integer shifts of are linearly

independent. Thus, we have the guarantee that any function

is uniquely characterized by its coefficients

in (1) (continuous/discrete representation). Also note that the

discrete and continuous norms in (2) are rigorously

equivalent (i.e., ) if and only if the basis is

orthogonal. For example, this is the case for .

B. Multivariate Sequences and Filtering

is the space of square summable -variate sequences

. Any multivariate se-

quence is uniquely characterized by its -transform, an

-dimensional vector, which we denote using the hat symbol

(3)
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This correspondence is expressed as . The

Fourier transform is obtained by replacing by .

An linear filter with input and output vectors

and is defined by the equation

(4)

where the impulse response is a sequence of

matrices. Such a filter array is characterized by its transfer

function matrix . The effect of filter-

ing can thus be represented by a vector-matrix multiplication

in the -transform domain

(5)

The inverse filter, if it exists, corresponds to the transfer

function matrix . An important result concerning the

existence and the stability of such an inverse operator is the

following.

Proposition 1: The multivariate convolution operator

, generated from the matrix sequence

, is an invertible operator from into if and only if

ess inf (6)

ess sup (7)

where the operators and denote the maximum

and minimum eigenvalues of the self-adjoint matrix that is in

the argument.

The proof of this result can be obtained as a direct corollary

of Theorem 2.2 in [4] which provides the norm of a multivari-

ate convolution operator. Specifically, the constant is the

norm of the convolution operator and is the norm

of its inverse . These bounds are obtained by taking the

essential infimum and essential supremum of the minimum and

maximum eigenvalues of the Fourier autocorrelation matrix

. Here, the term “essential” means that

the supremum or infimum provides a bound that is valid

almost everywhere. If the argument is a continuous function

of , then these extrema calculations are equivalent to taking

the conventional minimum and maximum. Thus, in the usual

case, where is continuous and bounded, a sufficient

condition for invertibility is that the determinant of the matrix

is nonvanishing on the unit circle.

III. FORMULATION AND ASSUMPTIONS

The multichannel system that we consider is schematically

represented in Fig. 1. The continuous-time input signal

is injected into an -channel filter bank with impulse re-

sponses . The channels are sampled at

th the reconstruction rate to yield the measurement vector

. These measure-

ments are then combined to reconstruct an approximation

of the input into the subspace . The system is essentially

the same as the one considered by Papoulis except that the

Fig. 1. Generalized sampling procedure. The left part of the block diagram
represents the measurement process which is performed by sampling the
output of an channel analysis filter bank. The sampling operation is modeled
by a multiplication with a sequence of Dirac impulses. The right part describes

the reconstruction process which involves the synthesis functions in

Theorem 1. The system produces an ouput function that is a
consistent approximation of the input signal .

output is only an approximation of the input

where is a class of functions considerably larger than .

To use an analogy, is to what is to .

For mathematical convenience, we describe the measure-

ment process using the following inner products:

(8)

where the analysis functions are the time-reversed versions

of the ’s

(9)

We will now state our mathematical assumptions, emphasizing

the main differences with Papoulis’ initial formulation [13].

A. Extended Class of Input Functions

The first essential difference is that our input signal space,

, is considerably larger than the class of band-limited func-

tions, or, in more general terms, . In principle,

we can consider almost any input function , except that

we want to make sure that all measurement sequences are

well defined in the sense. Specifically, our measurability

constraint is as follows.

Condition (A1):

or, equivalently, . Thus, we would expect the

specification of an admissible input space to depend on

the smoothness class and decay properties of the analysis

functions . Interestingly enough, this is only

partially the case. For instance, if the ’s are in , then it

is usually possible to consider any possible finite energy input

function; i.e., . This statement will be clarified in a

companion paper [20]. If, on the other hand, we are dealing

with generalized functions such as tempered distributions,

we will usually need to consider more restrictive classes of

input functions, e.g., where is Schwartz’s class of
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functions that are infinitely differentiable and of rapid descent

in the sense that as , for any

fixed positive integers and . In the case where the ’s are

Dirac delta functions (interlaced sampling), we can also be

less conservative and consider where denotes

Sobolev’s space of order ; i.e., the class of functions whose

derivatives up to order are well defined in the sense. Note

that such a smoothness constraint is sufficient for the samples

of a function to be in (cf. [5, Appendix II.A]).

B. Reconstruction Subspaces

The next extension over Papoulis’ theory is that we are con-

sidering the more general reconstruction models discussed in

Section II-A. Specifically, the signal approximation produced

by our system will have the form

(10)

where the generating function can be chosen almost

arbitrarily—and not necessarily band-limited. Practically, the

Riesz basis condition (2) gets translated into a relatively simple

positivity and boundness constraint in the Fourier domain (cf.

[3])

Condition (A2):

ess inf

ess sup

where is the -transform of the autocorrelation sequence

(11)

In other words, we want to be finite and nonvanishing

almost everywhere for . This is a relatively weak

constraint. In particular, condition (A2) is satisfied for the

band-limited model with and for the various

polynomial spline spaces that are generated by the compactly

supported B-spline functions [14].

C. Consistent Measurements

Because we have enlarged the class of admissible input

functions to , we must give up Papoulis or Shannon’s idea

of an exact reconstruction. We will replace it with the notion

of a consistent approximation of in , that is, a

reconstruction that would produce the same

set of measurements if it was re-

injected into the system. Specifically, we want to impose the

consitency requirement for and

(12)

This means that and are essentially equivalent to

the end user because they both look exactly the same through

the measurement system which typically constitutes the only

observation method available.

D. Invertibility Condition

In the course of our derivation, we will need to take the

convolution inverse of the matrix sequence ,

whose scalar entries are given by

(13)

(14)

In view of Proposition 1, our invertibility requirement can

therefore be formulated as follows.

Condition (A3):

ess inf

ess sup

where and are the corresponding bound constants.

IV. RECONSTRUCTION PROCEDURE

A. Generalized Sampling Theorem

Theorem 1: Under Assumptions (A1), (A2), and (A3), it is

always possible to design a system that provides a consistent

signal approximation in the sense of (12) for any input function

. The corresponding signal approximation admits the

expansion

(15)

and the underlying operator is a projector from into .

The synthesis functions are given by

(16)

where the filter sequences are determined as follows:

(17)

The proof is deferred to Section IV-C. Let us now examine

some of the consequences of this result. First, because the

operator is a projector, our result ensures a perfect re-

construction whenever the input signal is already included in

the output space: This corresponds

to the more restrictive framework used in the majority of

published sampling theories [1], [6], [7], [8], [13], [15], [24].

The connection with univariate sampling in particular will be

examined in Section IV-D. Second, it is not difficult to show

that the functions are the duals of the

’s in the sense that they satisfy the biorthogonality property

(18)

In particular, this implies that the functions will be recon-

structed exactly if they are reinjected into the system. Third,

this theorem extends Papoulis result in [13] which corresponds

to the particular case where denotes

the subspace of finite energy functions that are band-limited
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to the frequency interval . Interestingly, it turns

out that Papoulis’ band-limited reconstruction formula also

remains valid in our more general situation where the input

signal is not necessarily band-limited. The explicit connection

with his result will be given in Section V-C. However, we

must insist on a fundamental difference in interpretation. Since

obtaining an exact reconstruction of is in general not fea-

sible for arbitrary inputs, we will reconstruct a function

that looks identical to when acquired through our

measurement system. The same type of connection can also be

made with the results by Djokovic and Vaidyanathan on the

reconstruction of periodically nonuniformly sampled data in

multiresolution subspaces [7], which again can be viewed as

particular cases of our theory. Thus, one of the main strength of

Theorem 1 is its generality: it provides a unifying perspective

of many instances of generalized sampling, while extending

the applicability of previous reconstruction procedures to the

cases where the input signal is essentially arbitrary (i.e., not

necessarily included within the reconstruction subspace).

Note that the consistent measurement condition (12) speci-

fies in a unique way. In other words, there is only one

projector that can be specified in terms of the measurement

values in Fig. 1. This projector is not necessarily the orthog-

onal one which corresponds to the minimum error solution.

This raises the important question of performance which will

be addressed in [20]. In particular, we will present a general

bound for the approximation error suggesting that our present

solution is essentially equivalent to the optimal one.

B. Reconstruction Algorithm

We will now derive the corresponding digital reconstruction

algorithm, which will also allow us to prove Theorem 1 in a

constructive manner. The main difficulty in writing down the

system’s equations is that we have to deal with a multirate

system where the measurements are collected at the

reconstruction rate. To simplify the analysis, we can match the

input and output sampling rates notationally by introducing an

equivalent block representation of the reconstructed function

(19)

where the -vector provides a block representation of

the coefficient sequence

...
(20)

and where

...
(21)

is the corresponding -vector generating function.

Fig. 2. Digital reconstruction algorithm. The block representation
of the coefficient sequence is obtained by multivariate filtering of the
measurement vector . The sequence is then unpacked by upsampling
by a factor of and summation of the delayed vector-components [cf. (25)].

Let us now reinject into the system using its vector

representation (19). By linearity, the consistency requirement

(12) implies that

where we also use the vector representation

of the analysis functions (9).

Making the change of variable , we get

a relation that can also be written in the form of a multivariate

convolution

(22)

where is precisely the

matrix sequence defined by (14). Therefore, we can solve the

system by applying the inverse operator

(23)

whose transfer function is

(24)

This inverse is well defined because of the stability condition

(A3); the norm of the deconvolution operator is precisely

. We have therefore established that a consistent approx-

imation in the form (10) or (19) exists. In addition, we have

derived a practical filtering reconstruction algorithm (23), (24)

that is schematically represented in Fig. 2.

We may also interpret the filtering operation (23) as a

change of coordinate system. For instance, it can be shown

that the dual basis functions in Theorem 1 also form a Riesz

basis of (cf. [20], Theorem 2). Thus, the system matrix

contains all the information for performing the change

of coordinate from to

, and vice versa.
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C. Proof of Theorem 1

We now proceed to complete the proof of Theorem 1.

Because of our consistency requirement, the operator that

is specified by (19) and (23) is necessarily a projector; i.e.,

. To show that this

approximation is equivalent to (15), we momentarily switch

to the -transform domain. First, we use the well-known

polyphase identity (cf. [22])

(25)

which relates the -transforms of the sequence and

its block-representation . Next, we use the fact that

and write

(26)

where the filters are defined by (17). Using the time-

domain equivalent of this last equation

we make the following substitution in (10):

with the change of variable . Finally, we obtain

(15) by identifying the term in parenthesis as [cf.

(16)].

D. Sampling in the Univariate Case

The simplest application of Theorem 1 corresponds to the

univariate case with . In this case, we recover the basic

results of the sampling theory for nonideal acquisition devices

proposed in [17]. Specifically, we have the reconstruction

formula

(27)

with the synthesis function

(28)

The sequence in (28) also represents the impulse response

of the reconstruction filter. Using (17) and (14), we obtain the

following expression for its transfer function:

(29)

where .

We will now show that we can use these results to recover

the sampling theorems of Walter and Janssen [8], [24]. The

latter situation corresponds to the choice ,

where is a shift parameter. Walter only considers the standard

interpolation formula with . First, we observe that

where we assume that is

sufficiently smooth for its samples to be in . We then place

ourselves in the case of a perfect reconstruction by restricting

the class of admissible input signals to ; (27) then

reduces to Janssen’s shifted-interpolation formula

(30)

Likewise, we find that , which specifies

the corresponding reconstruction filter. If we now consider

the resulting form of (29) for , we find that its

denominator is , which is

the Zak transform of evaluated at [8].

V. POLYPHASE AND MODULATION ANALYSIS

Here, we will reexamine our generalized sampling equations

using some of the basic tools of multirate signal processing.

Our motivation is twofold. First, we want to provide alternative

techniques for writing down the system’s equation, so that we

can select the approach that is best suited for the application at

hand. Second, we want to make the connection with Papoulis’

earlier result for the band-limited case more apparent.

A. Polyphase Representation

We have seen that our system is entirely specified once

we have determined the -transform of the cross-correlation

matrix [cf. (14)]. The determination of this transfer

function matrix may be facilitated if we introduce the auxiliary

analysis sequences

(31)

The -transform of these sequences may be decomposed as

follows:

(32)

where

(33)

is the so-called th polyphase component of the analysis filter

(cf. [22, eq. (3.4.7), p. 162]). Using the basic definition

(cf. [22, eq. (3.4.8), p. 162]), we can then write the polyphase

matrix of our auxiliary analysis filter bank

...
... (34)

which is precisely the -transform of . Thus, we have

effectively shown that the process of determining is

equivalent to computing the polyphase representation of the

auxiliary filter bank .
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(a)

(b)

Fig. 3. Generalized sampling and the filter bank interpretation. (a) Polyphase representation of the analysis/reconstruction system. (b) Equivalent
channel perfect reconstruction filter bank.

Thanks to this representation, we can now implement the

process of reinjecting the function

into our system by using the analysis stage of an equivalent

multirate filter bank. In this way, we can interpret the various

filtering sequences that have been defined so far in terms of

the component of the perfect reconstruction filter bank shown

in Fig. 3. The polyphase representation of this system is given

in the upper block diagram. The analysis part corresponds

to the multivariate convolution (22), while the synthesis part

implements the reconstruction algorithm. The condition for

a perfect reconstruction is , which is

obviously equivalent to (24). The block diagram in Fig. 3(b)

provides the equivalent -band perfect reconstruction filter

bank interpretation of the system. Switching from one repre-

sentation to the other is achieved easily by using the standard

identities for multirate systems [22]. Similar to the relation

(17) that exits between and , we have that

...
...

(35)

which is matrix form of (32). From Fig. 3(b), it is thus clear

that the auxiliary analysis sequences are the duals of the

synthesis sequences in Theorem 1.

B. Modulation Representation

An alternative way of characterizing an analysis filter bank

is to use the modulation matrix (cf. [22]), which is defined

as follows:

...
...

...

(36)

where . This representation has a particularly

simple interpretation in the Fourier domain where the modula-

tion takes the form of a simple frequency shift shown in (37)

at the bottom of the page. There is a well-known equivalence

between the modulation and polyphase representations; it is

expressed by the relation (cf. [22, problem 3.22])

(38)

where and where is the

discrete Fourier matrix with entries ,

where . Similarly, if we know the mod-

ulation matrix , we can always obtain the polyphase

matrix by applying the inverse relation

(39)

This leads to another direct way of obtaining the dual basis

functions in Theorem 1.

...
...

... (37)
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Proposition 2: The filter sequences for the synthesis

functions in (16) are given by

(40)

where is the modulation matrix defined by (36).

Proof: Starting from (39), we can easily obtain an ex-

pression for the inverse matrix:

(41)

Next, we substitute this expression in (17) and make the

following simplifications

where the last step uses the fact that is colinear to

the first column vector of and therefore perpendicular to

all the others is an orthogonal matrix).

C. The Band-Limited Case

Proposition 2 is especially interesting because it provides the

connection with Papoulis’ derivation for the band-limited case,

which he carried out entirely in the frequency domain [13]. For

the particular case , we can easily derive the

frequency response of our auxiliary analysis sequences

(42)

where is the Fourier transform of the continuous time

analysis filter . This suggests writing down the solution in

the Fourier domain using the modulation formalism. In fact,

the modulation matrix also appears implicitly in

the work of Papoulis (cf. [13, eq. (7)]).

While Papoulis’ auxiliary variables differ by a

phase factor from the one used here, his approach is essentially

equivalent to the following computational procedure:

• Determine the Fourier matrix (37) using the relation

(43)

which follows from (42) and the fact that is

-periodic.

• Apply (40) in Proposition 2 with to determine

the Fourier transforms .

• Perform an inverse discrete Fourier transform to recover

the synthesis coefficients in the signal domain.

This is, in essence, the reconstruction algorithm proposed

by Brown [6]. Also note that we are in the special situation

where the generating function has the interpolation property;

i.e., . Thus, the reconstruction sequences correspond

to the integer samples of the synthesis functions; i.e.,

.

Specific instances of generalized sampling have been dis-

cussed by a number of authors, including Papoulis and Marks,

in the more restrictive band-limited framework [12], [13]. As

mentioned in Section IV-A, these band-limited reconstruction

formulas are also applicable here, under the weaker mea-

surability constraint (A1) where the input is not

necessarily band-limited.

VI. NONBAND-LIMITED EXAMPLES

Since most of the results for are well

known, we will illustrate our theory with examples of recon-

struction in the subspace of polynomial splines of degree .

This corresponds to the choice , where is

the centered B-spline of degree [14], [18].

A. Example 1: Interlaced Sampling

In this very structured form of nonuniform sampling, the

samples are acquired at distinct locations

within the basic sampling period . This type of data acqui-

sition is also sometimes referred to as bunched sampling [13],

or periodically nonuniform sampling [7]. Here, we consider

the case , with and . The

corresponding analysis filters in the block diagram in Fig. 1

are and , or, equivalently,

and . Thus, the auxiliary

analysis sequences in (31) are given by

(44)

(45)

For the signal samples to be in , we consider the input space

, which is slightly more restrictive than all of . Let

us now be more specific and perform a reconstruction in the

space of cubic splines with . For the example

, we determine the polyphase matrix

(46)

We also compute the two bound constants

and in (A3); this shows that the system is well

defined. We then obtain the reconstruction filter by simple

matrix inversion [cf. (24)]

(47)

This matrix is rational and nonvanishing on the unit circle (the

poles are 0.2806 and 67.72). Thus, describes a stable

infinite impulse response (IIR) matrix filter. The system is

obviously noncausal but it can nevertheless be implemented

recursively using a cascade of first-order causal and anticausal
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(a)

(b)

Fig. 4. The cubic spline reconstruction functions and for
interlaced sampling in the two-channel case. The sampling locations in the
first and second channel are marked by black and white circles, respectively.
(a) ; (b) (uniform sampling).

filters. A univariate version of such a spline interpolation

algorithm is described in [19]. The corresponding cubic spline

reconstruction functions, which were specified by (16) and

(17), are shown in Fig. 4(a). Observe how the ’s take the

value one at the location of their respective sample, and how

they vanish at all other sampling positions which are marked

by small circles. This property is a direct consequence of the

biorthogonality condition (18). In order to cross check the

theory, we also considered the case which corresponds

to a uniform sampling. The reconstruction functions are shown

in Fig. 4(b). Indeed, these functions are shifted versions of

the so-called cardinal spline interpolation function whose

properties are discussed in [1]. Note that all these interlaced

spline interpolators are very similar to their sinc-counterparts

which have been investigated by Papoulis and Marks [12],

[13]. Their main advantage is that they have a much faster

(exponential) decay.

Other examples of interlaced sampling can also be found

in the work of Djokovic and Vaidyanathan [7]. As we have

already remarked, their reconstruction procedure, which was

derived under the stronger assumption , is also

transposable to our more general context—the computational

solutions (reconstruction filter banks) are rigorously equiva-

lent. These authors were especially interested in displaying

cases where the synthesis functions are compactly supported.

They showed that FIR solutions can be obtained provided

that the support of is lesser than or equal to the number

(a)

(b)

Fig. 5. Cubic spline reconstruction functions for the interlaced first deriva-

tive sampling with : (a) and its first derivative; (b)
and its first derivative. The derivative functions (dotted lines) are quadratic
splines. The sampling locations in the first and second channel are marked by
black and white circles, respectively.

of channels . The down side is that the samples typically

need to be tightly bunched together (e.g.,

), which may have a negative impact on the stability

of the algorithm [20].

B. Example 2: Interlaced Derivative Sampling

We consider the case , where we take one sample

of the input signal and one sample of its th derivative with

an offset . The corresponding analysis filters are

and , where denotes the th

derivative of the Dirac–delta function. Thus, the first auxiliary

analysis sequence remains the same as before [cf. (44)],

while the second is now given by

(48)

where is the th derivative of the generating function

. In the case of B-splines, we use the well-known relation

(49)

In order to satisfy our measurability constraint (A1), we can

consider the input space which is sufficient to

ensure that the samples of the function and its derivatives are
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(a)

(b)

Fig. 6. Cubic spline reconstruction functions for the interlaced second

derivative sampling with : (a) and its second derivative; (b)

and its second derivative. The second derivative functions (dotted
lines) are piecewise linear.The sampling locations in the first and second
channel aremarked by black and white circles, respectively.

in . Let us now consider some examples of reconstruction in

the space of cubic splines with . For (first

derivative) and , we can make the cross-correlation

matrix calculations and derive the reconstruction filter

(50)

Note that one can also obtain FIR solutions using lower order

splines; for example, with (cf. [7, Example 3.1]).

We now turn to the second derivative example with .

Unfortunately, is one of the few points where the

system is not well defined; this raises the important issue of

stability which is treated in more detail in [20]. For ,

the invertibility condition (A3) is satisfied and we find that

(51)

The corresponding cubic spline reconstruction functions are

shown in Figs. 5 and 6, respectively. Note that

and , at the precise position of their respective

sample. Otherwise, these functions are all zero at the sampling

locations in the first channel (black circle), and their first (re-

spectively, second) derivative vanish at the sampling locations

in the second channel (white circle).

VII. CONCLUSION

In this paper, we have addressed the problem of the recon-

struction of a continuous-time function from the critically

sampled outputs of linear analog filters. The generalized

sampling theory that we propose has the following novel

features.

• The system that has been described reconstructs functions

within a generic discrete/continuous reconstruction space

. Depending on the choice of , the reconstructed

signal can be a band-limited function, a spline, or a

function that lies in any of the multiresolution spaces

associated with the wavelet transform.

• In contrast with Papoulis’ theory, the input signal

is no longer constrained to be band-limited. It can be

an arbitrary function , where is a space

considerably larger than . Of course, the price to

pay is that the reconstruction will not always be

exact. However, it will be a meaningful approximation

that is consistent with in the sense that it yields

exactly the same measurements.

• The reconstructed signal is obtained by projecting

the input onto the reconstruction subspace .

The reconstruction will be exact if and only if

, which corresponds to the more restricted frame-

work of conventional sampling theories (cf. Shannon and

Papoulis).

• The theory yields a simple reconstruction algorithm that

involves a multivariate matrix filter. The reconstruction

process can also be interpreted in terms of a perfect

reconstruction filter bank.

In addition, we have presented two equivalent representations

of our solution that should facilitate the specification of the

reconstruction algorithm for any given application. Generally

speaking, the use of the polyphase representation is indicated

when the basis functions are compactly supported (B-splines or

wavelets), while the modulation analysis is more appropriate

for performing a band-limited reconstruction. There are two

additional aspects of the problem that are addressed in a

companion paper [20]. The first is the issue of stability

and robustness to noise which depends on the conditioning

of the underlying system of linear equations. The second

is the issue of performance: since our reconstruction

is not necessarily exact, we want to have some guarantee

that it is sufficiently close to the optimal—but generally

nonrealizable—estimate which is the least squares solution;

i.e., the orthogonal projection of into .
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