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A generalized solid-state nudged elastic band (G-SSNEB) method is presented for determining reac-
tion pathways of solid–solid transformations involving both atomic and unit-cell degrees of freedom.
We combine atomic and cell degrees of freedom into a unified description of the crystal structure
so that calculated reaction paths are insensitive to the choice of periodic cell. For the rock-salt to
wurtzite transition in CdSe, we demonstrate that the method is robust for mechanisms dominated
either by atomic motion or by unit-cell deformation; notably, the lowest-energy transition mecha-
nism found by our G-SSNEB changes with cell size from a concerted transformation of the cell
coordinates in small cells to a nucleation event in large cells. The method is efficient and can be
applied to systems in which the force and stress tensor are calculated using density functional theory.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3684549]

I. INTRODUCTION

The nudged elastic band (NEB) method is widely used
for calculating reaction pathways of atomic-scale processes
in chemical and materials systems.1 When the initial and final
states of a reaction are known, the NEB relaxes an initial path-
way to a minimum-energy path (MEP) between reactants and
products. With the climbing image NEB, the highest-energy
image converges to a transition state (saddle point) along the
path.2 While the end points of the band need to be speci-
fied, the reaction coordinate does not. The MEP determined
from the NEB can be complex and involve degrees of free-
dom (DOF) that are not anticipated.3

The NEB can be contrasted to a class of drag methods in
which a subset of the DOF are preselected as important for the
progress of the reaction. Popular progress coordinates include
atomic positions, bond lengths, root-mean-squared deviations
from a reference structure, or energy coordinates. The system
is constrained along the progress variables and allowed to re-
lax in the other DOF, which are considered to be unimportant
for describing the reaction mechanism. The system is then
dragged along the variables assumed to be important with the
hope that the system will be constrained to a good transition
state at some position along the path.

The distinction between the NEB and a drag method is
illustrated in Fig. 1. For a London–Eyring–Polanyi–Sato po-
tential coupled to a harmonic oscillator,4 an assumed reaction
coordinate fails to constrain the system to the transition state.
The x coordinate clearly separates the initial and final states,
but is not parallel to the negative curvature mode at the saddle
point. Using the drag method with x as the progress variable
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leads to a reaction path which avoids the transition state; that
is, the drag path misses the saddle point. The energy profile
calculated along the path (Fig. 1, inset) underestimates the
true barrier. In general, such drag paths can either over- or
under-estimate the barrier. The NEB, on the other hand, con-
verges to the MEP, which follows x near the minima and rAB

at the saddle.
Here, we address the challenge of finding reaction path-

ways for solid–solid transformations. The primary compu-
tational issue is that there are two types of variables, i.e.,
those describing atomic motion and those describing the ge-
ometry of the periodic cell. It is tempting to focus on ei-
ther the atoms or the lattice as important and minimize
the other, as in the drag method. Trinkle et al. showed
how a NEB calculation in the atomic DOF can be cou-
pled to a relaxation of the lattice in order to find solid–solid
transitions in titanium.5, 6 In the other extreme, Caspersen
and Carter utilized the NEB exclusively for lattice DOF
while maintaining the atoms in relaxed geometries—the
rapid-nuclear-motion (RNM) approximation.7 While these
approaches can be appropriate for mechanisms primarily in-
volving atomic or primarily lattice changes, they are drag
methods. Furthermore, Lui and Johnson showed for pressure-
induced bcc-to-hcp transitions in iron, such drag methods (as
applied, e.g., in Ref. 8) yield an incorrect (and unphysical)
MEP as atomic and cell DOF are not properly coupled.9

In this paper, we describe a formulation of the NEB in
which the atomic and lattice variables are treated on equal
footing so that reactions involving changes in all DOF are
properly described, permitting one to address transforma-
tions that transcend current capabilities. Critically, the relative
weight assigned to the two sets of variables is chosen so that
the resulting MEPs are independent of the unit cell (shape and
size) used to describe the transition. This new NEB formula-
tion is largely an integration of the standard NEB in atomic
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FIG. 1. In a drag calculation (black) x is chosen as the drag direction so
that images along the path are constrained in x and minimized in y. The drag
calculation misses the saddle point because the reaction coordinate near the
saddle is along the rAB direction and orthogonal to the drag direction. A con-
verged NEB (grey) finds the minimum energy pathway because the reaction
coordinate is defined by the images and not by a preconceived notion about
which DOF are important.

DOF with a similar approach for determining solid–solid tran-
sitions (e.g., from Caspersen and Carter7), but the formulation
ensures that DOF are properly coupled and MEPs are inde-
pendent of simulation cell. While there are differences in the
details of how the lattice variables are described, we keep a
similar name for the unified method, i.e., a generalized solid–
state nudged elastic band (G-SSNEB).

II. GENERALIZED NEB ALGORITHM

The reaction path is represented in the NEB by a set of
images. The NEB force (see Fig. 2) on image i is

F
NEB
i = F

s‖
i + F

∇⊥
i , (1)
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FIG. 2. The NEB force projections are shown for a typical image i and for
the climbing image l. The force components are defined in Eqs. (1)–(5).
The translucent images are along the converged path where the NEB forces
vanish.

where F
∇⊥
i is the force due to the gradient of the potential

perpendicular to the path, and F
s‖
i is the spring force parallel

to the path. F
∇⊥
i is calculated from the potential force, F

∇
i , as

F
∇⊥
i = F

∇
i − (F∇

i · τ̂ i)τ̂ i, (2)

where τ̂ i is an up-winding tangent defined by the adjacent
image with the higher potential energy.10

Spring forces are added to ensure the images are evenly
spaced along the transition path,

F
s‖
i = k(|!R+| − |!R−|)τ̂ i, (3)

where k is the spring constant, the distance to the next and
previous images are

!R+ = Ri+1 − Ri,

!R− = Ri − Ri−1, (4)

and the vector Ri has the Cartesian positions of the atoms for
image i. The converged path is insensitive to the choice of k,
but it should be chosen on the same order as the interatomic
force constants for efficient optimization.

The climbing-image NEB method (CI-NEB) is used to
find saddle points along a reaction path. The climbing image
converges to the saddle point so that no interpolation is re-
quired to approximate its energy. The image along the path
with the highest potential energy is designated the climbing
image l. The force on the climbing image

F
CI
l = F

∇
l − 2(F∇

l · τ̂ l)τ̂ l, (5)

is free from spring forces and points up the potential along τ̂ l

and down in all other DOF.

A. Stress and strain

Infinite solids are efficiently modeled with a finite set of
atoms in a unit cell replicated by periodic boundary conditions
(PBC). Figure 3 shows a periodic simulation cell defined by
three vectors: v1, v2, and v3. Rotational DOF of the cell are
eliminated by constraining v1 to the x-direction and v2 to the
xy plane. Any cell, h, is then defined by 6 DOF arranged in a

v
3 = (h   ,h   ,h   )3x 3y 3z

v
1

= (h   ,0,0)1x

(b) periodic solid (c) expanded periodic solid

 =    0(     )0  δ
δε
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v

2

FIG. 3. (a) Any three-dimensional unit cell is defined by 3 vectors and 6
DOF. (b) A periodic solid can be represented by different unit cells. (c) The
strain in a material is independent of the choice of unit cell. For example,
isotropically expanded by an amount δ gives the same strain tensor ε, defined
in Eq. (7), for both the red and blue unit cells.
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lower triangular matrix,

h =







v1

v2

v3






=







h1x 0 0

h2x h2y 0

h3x h3y h3z






, (6)

where h1x is the component of v1 in the x-direction and so on.
The choice of periodic cell for a given solid is not unique;
there are many representations of the same extended solid. It
is critical that any description of changes to the solid lattice—
compression, expansion, and shear—be independent of unit
cell. A natural choice is the engineering strain, i.e.,

ε = h
−1 · (hdef − h), (7)

where h
def is the cell for the deformed solid. Figure 3(b)

shows two periodic representations for a solid and how they
deform given a strain (Fig. 3(c)). The strain, ε, for the defor-
mation is the same for both cells.

In the NEB method, atomic configurations are moved ac-
cording to the forces on the atoms. The analogy in solid me-
chanics is that cell vectors are changed according to the stress
in the material. Thus, we need a relation between the stress,
the strain, and the corresponding change in cell vectors. A
simple system for determining this relationship is an isotropic
elastic medium with a Poisson ratio of zero. If the material is
strained out of mechanical equilibrium, Hooke’s law gives the
induced stress,

ε = Y−1
σ , (8)

where Y is Young’s modulus and the stress tensor σ is the sum
of the internal (Cauchy) stress and the external pressure,

σ = σ cauchy + P I. (9)

Here, we have assumed a hydrostatic (isotropic) pressure, P,
applied uniformly via an identity matrix I. From the stress
in a material, we would like to calculate the strain and the
change in the unit cell vectors, h

def, which will bring the solid
back into mechanical equilibrium. This deformation can be
calculated from Eqs. (7) and (8),

(hdef − h) = Y−1(h · σ ), (10)

and the steepest-descent direction to bring the solid into equi-
librium is along h · σ .

Caspersen and Carter have a different approach to cal-
culating the steepest-descent direction. They determine the
change in energy with respect to the components of hm,n,
which they call the true stress,7

σ
true
m,n = −

∂E

∂hm,n

= −&(σ · h
−1)T

m,n, (11)

where E is the potential energy of the cell and m, n are the
components of the stress tensor. The problem with this defi-
nition is that the strain along the steepest-descent direction is
not invariant to the choice of cell. This is illustrated graphi-
cally in Fig. 4. For a uniformly strained cubic cell, σ

true and
h · σ point in the same direction towards the unstrained geom-
etry. If, however, the representative cell is doubled along only
one direction, σ

true no longer points towards the unstrained

(a) (b)

v1

v2 v2

v  =2v11

h•

σ true

h•

σ true

FIG. 4. (a) A square cell in mechanical equilibrium (black) is uni-
formly expanded (dashed). The steepest-descent directions calculated from
Eqs. (10) and (11) give the same direction required to restore equilibrium.
(b) When the cell is doubled along v1, the direction from Eq. (11) does not
restore the solid to equilibrium. The direction from (10) does, and results in
the same macroscopic change to the cell as in (a).

geometry, so the approach does not maintain invariance with
respect to cell choice, as it should.

B. Coupling cell and atomic variables

In our G-SSNEB method, the atomic and cell variables
are combined into a single vector containing forces and an-
other containing distances. With this unified description, we
can use the NEB force projections as described at the be-
ginning of Sec. II. The challenge is that the cell and atomic
variables have different units and have different scaling rela-
tions with system size. Changes in the cell are described by
strain, which is unitless, and changes to atomic position have
units of length. Similarly, the corresponding cell variable to
the forces on the atoms is the stress on the cell vectors, which
has units of pressure. To combine these quantities, a Jaco-
bian J is needed to transform stress and strain into the units
of the atomic forces and distances. The Jacobian should also
make the cell and atomic variables scale in the same way with
system size so that converged minimum energy paths will be
invariant to the choice of unit cell.

The vector describing changes in configuration is formed
by concatenating the (scaled) strain and changes in atomic
coordinates,

!R = {J ε,!R}. (12)

The strain is multiplied by J to make the units and system
size scaling consistent with the atomic motions. Because ε is
unitless, J must have units of length. Our choice is the average
distance between atoms in the cell

L =

(

&

N

)1/3

, (13)

where & = det h, i.e., the volume of the unit cell, and N is the
number of atoms in the cell.

We also require that the magnitude of J ε scale in the
same way as the magnitude of !R for different unit cell sizes.
Consider a unit cell with a single atom that moves by an
amount !R0. If we take a larger cell with N atoms, the mag-
nitude of atomic motion becomes

!RN =

(

N
∑

i=1

!R
2
i

)1/2

=
√

N!R0. (14)
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The strain, however, is invariant to the system size. Thus, we
need a factor of

√
N in our Jacobian, i.e.,

J = L
√

N =

(

&

N

)1/3

N1/2 = &
1/3N1/6 . (15)

The stress is scaled to the atomic forces using similar ar-
guments. A given stress, σ , describes the force per unit area
on the cell. With the average distance between atoms defined
as L, the average force per atom is σL2. As with the distance,
the stress needs to be multiplied by a factor

√
N to scale in

the same way as the forces with system size. The resulting
G-SSNEB force,

F = (−&σ/J, F), (16)

is formed by concatenating the (scaled) stress and the atomic
forces.

C. Method details

In the G-SSNEB method, it is important to decou-
ple motion of atomic DOF from motion of the cell when
calculating !R+, !R− and the tangent direction from
Eqs. (3) and (12). When !R is calculated in Cartesian coor-
dinates, as in the NEB, a change in the cell coordinates will
contribute to atomic motion since the atoms are represented
within the periodic cell. To decouple the variables, !R should
be calculated in direct coordinates, where atomic positions are
given as fractional distances along v1, v2, and v3. The differ-
ence vectors are then converted back to Cartesian coordinates
to apply the force projections.

The vector !R is calculated between two configurations
that may have different cell geometries. To convert between
direct and Cartesian coordinates, we use the average cell ge-
ometry. More specifically, Ri and Ri+1 are first put into direct
coordinates using their respective cells, hi and hi+1. !R

direct
+

is then calculated by subtraction, and the resultant vector is
converted back to Cartesian using the average cell

h̄+ =
1

2
(hi + hi+1). (17)

This method for calculating distances is consistent with the
regular NEB when there is no change in the cell DOF.

The strain between two images, which is the fractional
change in the cell parameters, is also sensitive to which image
is used for reference. In the G-SSNEB, the vector between
image i and i + 1 should be the negative of that from i + 1 to
i. Directly using Eq. (7), we find

h
−1
i · (hi+1 − hi) &= −h

−1
i+1 · (hi − hi+1). (18)

To ensure a consistent strain between images, we use the
average,

ε̄+ =
1

2

(

h
−1
i+1 + h

−1
i

)

· (hi+1 − hi). (19)

Using a similar philosophy, we want the Jacobian
J to remain constant during the simulation. Thus, in

Eqs. (13) and (15), we use the average cell volume,

&̄ =
1

2
(&inital + &final), (20)

between the initial and final states.

III. APPLICATION

A. CdSe solid–solid transformation

The G-SSNEB is numerically demonstrated for a solid–
solid phase transition in CdSe. To illustrate the importance of
including both cell and atomic DOF in the reaction coordi-
nate, we show two paths by which CdSe can transition from
rock-salt to wurtzite (Fig. 5). Transition path (a) is dominated
by atomic DOF; each row of atoms slides with respect to the
adjacent row. Path (b) is dominated by cell DOF; the atoms
do not move significantly with respect to the cell vectors.

Initially, interatomic forces are evaluated with an empiri-
cal potential defined by Rabani.11 In Sec. III D, these calcula-
tions are repeated using density functional theory (DFT). The
empirical potential has two terms: a Lennard-Jones term with
a cutoff of 10 Å and a Coulomb term which is evaluated by
Ewald summation using a real-space radius of 10 Å. Forces
and stresses are evaluated using the LAMMPS program.12

Figure 6 shows the energy along three paths connecting
the initial and final states for the atom-dominated mechanism.
The reaction coordinate primarily involves atomic DOF so
that the regular NEB is able to find the saddle point. The
MEP along this path is not smooth, however, and a discon-
tinuity is seen in the path between images 7 and 8 as the cell
DOF suddenly relax to give a state which is similar to the fi-
nal state. In the other extreme, the RNM approximation has
only cell DOF in the reaction coordinate. Because the pro-
cess is atom-dominated, the saddle point is not found using
this approximation. There is also a discontinuity in the RNM
path between the highlighted images 4 and 5, at which point
the atoms suddenly relax from the rock-salt to wurtzite struc-
ture. The G-SSNEB treats the atomic and cell DOF on equal
footing and finds a true reaction coordinate.

(a) atom dominated (b) cell dominated
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FIG. 5. Rock-salt to wurtzite transformation in CdSe can occur via an atom-
dominated (a) and cell-dominated (b) mechanism. Cd atoms are lighter and
Se darker.
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FIG. 6. Comparison of the three algorithms used to determine the
CdSe rock-salt to wurtzite transformation along the atom-dominated path
(Fig. 5(a)). The G-SSNEB finds the saddle point. The NEB, for which the
cell DOF are always relaxed, is also able to find the saddle but the path is not
smooth because the cell DOF do not change continuously. The RNM path, for
which the atoms are always relaxed, fails to determine the saddle. Selected
configurations along each path (marked with larger open circles) are shown.

Figure 7 shows the energy along three paths for the
cell-dominated mechanism (Fig. 5(b)). Here, the RNM ap-
proximation successfully finds the same saddle point as the
G-SSNEB. The regular NEB results in a wandering path
which does not pass through the saddle. Images 1 and 2,
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FIG. 7. Similar calculations as in Fig. 6 for the cell-dominated path
(Fig. 5(b)). In this case the RNM approximation finds the saddle but the reg-
ular NEB, for which the cell coordinates are minimized, does not.
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mechanism, G-SSNEB paths are invariant to cell size and shape.

which bracket the saddle, have a discontinuous change in cell
geometry.

B. Invariance of converged paths to cell geometry

Strain was chosen to represent cell changes in Sec. II A
because it is a material property that is independent of the unit
cell chosen to represent the solid. In Sec. II B, a

√
N scaling

factor was included in the Jacobian to ensure that the magni-
tude of cell DOF changes would scale with the same power
of N as the atomic motion within the cell. Figure 8 shows
the invariance of converged G-SSNEB paths (Fig. 5(b)) to the
cell size and shape. The eight-atom cell is a little too small to
accommodate the periodicity of the fully relaxed MEP. The
MEP for larger cells are indistinguishable.

C. Crossover to a localized mechanism

Small cells with few atoms provide a computationally
efficient representation for calculating solid–solid phase
transformations. Changes in the cell DOF correspond to a
collective motion of the atoms in the solid. The energy barrier
calculated for a transformation involving cell motion will in-
crease as more atoms are included in the unit cell (the energy
barrier per atom becomes constant). There will therefore al-
ways be some cell size for which it will be energetically favor-
able to have a local nucleation event of one phase in the other
and a subsequent propagation of the interface across the cell.

The energy barrier for the cell-dominated transforma-
tions in CdSe is shown as a function of cell size in Fig. 9. The
line through the origin corresponds to the scaling of the bar-
rier for the concerted process (Fig. 5(b)). The energy barrier
scales linearly with the number of atoms, giving a unit slope
on the log plot. With increasing unit cell size, a lower saddle is
found where the concerted motion is only in one dimension.
The energy barrier scales with the length of the line defect
so that increasing the cell size in two dimensions results in a
slope of 1/2. For a local transition state, the energy barrier will
not increase with the number of atoms in the cell in the limit
of a large cell. In the largest cells considered (Fig. 9(c)) a lo-
cal mechanism (in two-dimensions) is becoming apparent. As
the cell is expanded in the xy-plane, the energy for this local
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mechanisms. For small systems, a concerted bulk mechanism is preferred (a).
For larger system, there is a crossover to a mechanism in which the crystal
slips along a line (b) and finally to a local nucleation mechanism (c).

mechanism is expected to plateau. Increasing the cell size in
the z direction as well should lead to a local nucleation event
in all three dimensions. It should be noted, however, that the
barrier for such an event will be large, and it is likely that
defects would play a role in such a transition in a real CdSe
crystal.

In general, there can be many pathways connecting a
given initial and final state for a solid–solid phase transfor-
mation. An example of this complexity is shown in Fig. 10.
The transformation is initiated with a line defect which slips

into a local minimum where a wurtzite domain is nucleated
(Fig. 10(b)). This process repeats ten times as the wurtzite
domain grows. Finally, there is a significant change in the cell
DOF and the crystal switches to the wurtzite structure. The
G-SSNEB must then follow a minimum energy path to bring
each atom to its specified location in the product structure.
Clearly this can happen in many ways. Because of this degen-
eracy, a barrier found by the G-SSNEB should be considered
an upper bound in large systems.

D. CdSe solid–solid transition using DFT

The cost of the G-SSNEB method is similar to the
regular NEB so that it can be used for systems described by
DFT. The method has been implemented both for the atomic
simulation environment (ASE) (Ref. 13) in the TSASE
code14 and for the Vienna ab initio simulation package
(VASP) in the VTST code.15 Here we consider the same
transition in CdSe from Secs. III A–III C using forces and
stresses evaluated with the VASP code. The DFT calculations
were done using a plane-wave basis set up to an energy
cutoff of 455 eV. Core electrons were treated within the
projector augmented wave framework.16 Electron exchange
and correlation were modeled within the generalized gradient
approximation using the PW91 functional.17 The simulation
cell was chosen to contain 8 atoms using a Monkhorst–Pack
mesh of 10×10×10 to sample the Brillouin zone.18 Tests
with 32 atoms per unit cell showed that the results were
converged with respect to cell size.

Figure 11 shows G-SSNEB calculations of both the
atom- and cell-dominated mechanisms (see Fig. 5). The
atom-dominated path (black) follows a similar path to what
is found using the empirical potential, although the barrier is
reduced by a factor of 5. Perhaps even more significantly, no
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FIG. 10. Energy landscape of a rock-salt to wurtzite transformation in a 2912 atom unit-cell. The highest transition state (a) is a line defect followed which
forms (b) a local wurtzite domain in a rock-salt structure. The nucleation volume continues to grow until transition state (c) where wurtzite domains dominate
the cell structure.
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concerted cell-dominated mechanism is found. In this regard,
DFT provides a qualitatively different energy landscape for
the transformation. Instead of finding a concerted mechanism,
the path to the cell-dominated final state (red) follows the
atom-dominated mechanism and then an atomic rotation to
reach the specified final state.

IV. DISCUSSION

The Jacobian in (15) is used to combine atomic and cell
DOF so that the MEP found by the G-SSNEB is insensitive
to the choice of unit cell size and geometry. The choice, how-
ever, is not unique. Multiplying the Jacobian by a constant
factor, for example, will change the relative weighting be-
tween atomic and cell motion along the MEP. In some cases,
the user may have to adjust this parameter to equalize atomic
and cell motion for their particular reaction path. While the
choice of Jacobian influences the MEP (much in the same
way that mass-weighted coordinates do), the stationary points
are not affected. This is particularly relevant when using a
climbing image; if the climbing image converges to a saddle,
the barrier height is independent of the Jacobian. For exam-
ple, in our calculations, the regular climbing image NEB is
able to converge to the saddle for the atom-dominated CdSe
phase transition (Fig. 6) because 90% of the G-SSNEB tan-
gent at the saddle can be projected onto the atomic DOF. Sim-
ilarly, the RNM approximation is able to converge to the cell-
dominated process (Fig. 7) because 68% of the G-SSNEB
tangent is along cell DOF. While the reaction coordinates are
not entirely along atom and cell coordinates, respectively, the
climbing image is robust enough to find the saddle points us-
ing these approximate methods.

There is an unusual consequence of introducing cell DOF
into the NEB. The cell is used to describe the periodicity of an
infinite solid, but the configuration of any real, finite system
is fully described (at least classically) by the coordinates of
the constituent atoms. In this sense, the cell DOF are artificial
constructs for an infinite solid. In the RNM approximation,
changes in the cell are viewed as slower than atomic motion
so that the atoms can always be relaxed. This could be, in
some limited cases, an appropriate view for an experiment in

which macroscopic variables, such as the external pressure
or the stress on the solid, are used to induce a solid–solid
phase transition. For a thermally activated process, however,
atomic motion should initiate the transition. The barrier for
any concerted mechanism will increase with the number of
atoms so that in the limit of a continuum solid, no such tran-
sition is thermally accessible. Instead, there must be a lower
energy local process that is dominated by atomic motion. For
these transitions, the standard NEB should be sufficient to
describe it.

However, for any finite-cell description, the atomic and
cell DOF are coupled and must be handled such that no one set
of the DOF dominate so as to find the correct transition state
and the results are independent of the choice of simulation
cell, as we have now made possible.

V. CONCLUSION

We have developed a generalization to the solid-state
NEB methods (i.e., G-SSNEB method) in which atomic and
cell DOF are considered equally for the reaction coordinate,
and results do not inherently depend on the simulation cell.
We demonstrated that the method is robust for transitions
dominated by atomic motion and for processes where defor-
mation of the simulation cell dominates. We show that the
mechanism found by the G-SSNEB can change with cell size
from a concerted transformation of the cell coordinates to nu-
cleation involving atomic coordinates. In addition, the method
was exemplified both by empirical and DFT methods for sys-
tem that exhibits both atom-dominated and cell-dominated
transitions.
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