A Generalized Spatial Two Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances ${ }^{1}$

Harry H. Kelejian and Ingmar R. Prucha ${ }^{2}$

April 1997
Revised August 1997

[^0]
Abstract

Cross sectional spatial models frequently contain a spatial lag of the dependent variable as a regressor, or a disturbance term which is spatially autoregressive. In this paper we describe a computationally simple procedure for estimating cross sectional models which contain both of these characteristics. We also give formal large sample results.

1 Introduction

Cross sectional spatial regression models are often formulated such that they permit interdependence between spatial units. This interdependence complicates the estimation of such models. One form of interdependence arises when the value of the dependent variable corresponding to each cross sectional unit is assumed, in part, to depend upon a weighted average of that dependent variable corresponding to neighboring cross sectional units. This weighted average is often described in the literature as a spatial lag of the dependent variable, and the model is then referred to as a spatially autoregressive model - see, e.g., Blommestein (1983) and Anselin (1988, p. 35). ${ }^{1}$ The spatially lagged dependent variable is typically correlated with the disturbance term see, e.g., $\operatorname{Ord}(1975)$ and $\operatorname{Anselin}(1988$, p. 58) - and hence the ordinary least squares estimator is typically not consistent in such situations. Another form of interdependence that arises in such models is that the disturbance term is often assumed to be spatially autoregressive. Consistent procedures, other than maximum likelihood, have been suggested in the literature for models which contain one of these interdependencies. ${ }^{2}$ Unfortunately, such procedures are not available for models which have both of these characteristics. This shortcoming is of consequence because maximum likelihood procedures are often "computationally very challenging" when the sample size is large. ${ }^{3}$

[^1]Furthermore, the maximum likelihood procedure requires distributional assumptions which the researcher may not wish to specify. ${ }^{4}$

The purpose of this paper is to suggest an estimation procedure for cross sectional spatial models which contain a spatially lagged dependent variable as well as a spatially autocorrelated error term. Our procedure is computationally simple, even in large samples. In addition, our procedure is conceptually simple in that its rational is obvious. We give formal large sample results with modest assumptions regarding the distribution of the disturbances.

The model is specified in Section 2. That section also contains a discussion of the assumptions involved. Our procedure is described in Section 3. Concluding remarks are given in Section 4. Technical details are relegated to the appendix.

2 The Model

In this section we first specify the regression model and all of its assumptions; we then provide a discussion and interpretation of these assumptions. It proves helpful to introduce the following notation: Let A_{n} with $n \in \mathbf{N}$ be some matrix; we then denote the (i, j)-th element of A_{n} as $a_{i j, n}$. Similarly, if v_{n} with $n \in \mathbf{N}$ is a vector, then $v_{i, n}$ denotes the i-th element of v_{n}. An analogous convention is adopted for matrices and vectors that do not depend on the index n, in which case the index n is suppressed on the elements. If A_{n} is a square matrix, then A_{n}^{-1} denotes the inverse of A_{n}. If A_{n} is singular, then A_{n}^{-1} should be interpreted as the generalized inverse of A_{n}. Further, let $\left(B_{n}\right)_{n \in \mathbf{N}}$ be some sequence of $n \times n$ matrices. Then we say the row and column sums of the (sequence of) matrices B_{n} are bounded uniformly in absolute value if there exists a constant $c_{B}<\infty$ (that does not dependent of

[^2]n) such that
$$
\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|b_{i j, n}\right| \leq c_{B} \text { and } \max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|b_{i j, n}\right| \leq c_{B} \text { for all } n \in \mathbf{N}
$$
holds. As a point of interest, we note that the above condition is identical to the condition that the sequences of the maximum column sum matrix norms and maximum row sum matrix norms of B_{n} are bounded; cp. Horn and Johnson (1985, pp.294-5).

2.1 Model Specification

Consider the following cross sectional (first order) autoregressive spatial model with (first order) autoregressive disturbances ($n \in \mathbf{N}$):

$$
\begin{align*}
y_{n} & =X_{n} \beta+\lambda W_{n} y_{n}+u_{n}, & & |\lambda|<1 \tag{1}\\
u_{n} & =\rho M_{n} u_{n}+\varepsilon_{n}, & & |\rho|<1
\end{align*}
$$

where y_{n} is the $n \times 1$ vector of observations on the dependent variable, X_{n} is the $n \times k$ matrix of observations on k exogenous variables, W_{n} and M_{n} are $n \times n$ spatial weighting matrices of known constants, β is the $k \times 1$ vector of regression parameters, λ and ρ are scalar autoregressive parameters, u_{n} is the $n \times 1$ vector of regression disturbances, and ε_{n} is an $n \times 1$ vector of innovations. The variables $W_{n} y_{n}$ and $M_{n} u_{n}$ are typically referred to as spatial lags of y_{n} and u_{n}, respectively. For reasons of generality we permit the elements of X_{n}, W_{n}, M_{n} and ε_{n} to depend on n, i.e., to form triangular arrays. We condition our analysis on the realized values of the exogenous variables and so, henceforth, the matrices X_{n} will be viewed as a matrices of constants.

In scalar notation the spatial model (1) can be rewritten as

$$
\begin{align*}
y_{i, n} & =\sum_{j=1}^{k} x_{i j, n} \beta_{j}+\lambda \sum_{j=1}^{n} w_{i j, n} y_{j, n}+u_{i, n}, \quad i=1, \ldots, n \tag{2}\\
u_{i, n} & =\rho \sum_{j=1}^{n} m_{i j, n} u_{j, n}+\varepsilon_{i, n}
\end{align*}
$$

The spatial weights $w_{i j, n}$ and $m_{i j, n}$ will typically be specified to be nonzero if cross sectional unit j relates to i in a meaningful way. In such cases, units
i and j are said to be neighbors. Usually neighboring units are taken to be those units which are close in some dimension - e.g., geographic, technological, etc. We allow for the possibility that $W_{n}=M_{n}$.

We maintain the following assumptions concerning the spatial model (1).
Assumption 1 All diagonal elements of the spatial weighting matrices W_{n} and M_{n} are zero.

Assumption 2 The matrices $\left(I-\lambda W_{n}\right)$ and $\left(I-\rho M_{n}\right)$ are nonsingular for all $|\lambda|<1$ and $|\rho|<1$.

Assumption 3 The row and column sums of the matrices W_{n}, M_{n}, (I$\left.\lambda W_{n}\right)^{-1}$, and $\left(I-\rho M_{n}\right)^{-1}$ are bounded uniformly in absolute value.

Assumption 4 The regressor matrices X_{n} have full column rank (for n large enough). Furthermore, the elements of the matrices X_{n} are uniformly bounded in absolute value.

Assumption 5 The innovations $\left\{\varepsilon_{i, n}: 1 \leq i \leq n, n \geq 1\right\}$ are distributed identically. Further, the innovations $\left\{\varepsilon_{i, n}: 1 \leq i \leq n\right\}$ are for each n distributed (jointly) independently with $E\left(\varepsilon_{i, n}\right)=0, E\left(\varepsilon_{i, n}^{2}\right)=\sigma_{\varepsilon}^{2}$, where $0<\sigma_{\varepsilon}^{2}<b$ with $b<\infty$. Additionally the innovations are assumed to possess finite fourth moments.

In estimating the spatial model (1) we will utilize a set of instruments. Let H_{n} denote the $n \times p$ matrix of those instruments, and let $Z_{n}=\left(X_{n}, W_{n} y_{n}\right)$ denote the matrix of regressors in the first equation of (1). We maintain the following assumptions concerning the instrument matrices H_{n}.

Assumption $6{ }^{5}$ The instrument matrices H_{n} have full column rank $p \geq$ $k+1$ (for all n large enough). They are composed of a subset of the linearly independent columns of $\left(X_{n}, W_{n} X_{n}, W_{n}^{2} X_{n}, \ldots, M_{n} X_{n}, M_{n} W_{n} X_{n}\right.$, $\left.M_{n} W_{n}^{2} X_{n}, \ldots\right)$, where the subset contains at least the linearly independent columns of $\left(X_{n}, M_{n} X_{n}\right)$.

[^3]Assumption 7 The instruments H_{n} satisfy furthermore:
(a)

$$
Q_{H H}=\lim _{n \rightarrow \infty} n^{-1} H_{n}^{\prime} H_{n}
$$

where $Q_{H H}$ is finite, and nonsingular.
(b)

$$
Q_{H Z}=\operatorname{pim}_{n \rightarrow \infty} n^{-1} H_{n}^{\prime} Z_{n}
$$

and

$$
Q_{H M Z}=\operatorname{plim}_{n \rightarrow \infty} n^{-1} H_{n}^{\prime} M_{n} Z_{n}
$$

where $Q_{H Z}$ and $Q_{H M Z}$ are finite, and have full column rank. Furthermore

$$
Q_{H Z}-\rho Q_{H M Z}=\operatorname{plim}_{n \rightarrow \infty} n^{-1} H_{n}^{\prime}\left(I-\rho M_{n}\right) Z_{n}
$$

has full column rank for all $|\rho|<1$.
(c)

$$
\Phi=\lim _{n \rightarrow \infty} n^{-1} H_{n}^{\prime}\left(I-\rho M_{n}\right)^{-1}\left(I-\rho M_{n}^{\prime}\right)^{-1} H_{n}
$$

is finite, and nonsingular for all $|\rho|<1$.
The following assumption ensures that the autoregressive parameter ρ is "identifiably unique", cp. Kelejian and Prucha (1995).
Assumption 8 The smallest eigenvalue of $\Gamma_{n}^{\prime} \Gamma_{n}$ is bounded away from zero, i.e., $\lambda_{\min }\left(\Gamma_{n}^{\prime} \Gamma_{n}\right) \geq \lambda_{*}>0$, where

$$
\Gamma_{n}=\frac{1}{n}\left(\begin{array}{lll}
2 E\left(u_{n}^{\prime} \bar{u}_{n}\right) & -E\left(\bar{u}_{n}^{\prime} \bar{u}_{n}\right) & 1 \tag{3}\\
2 E\left(\overline{\bar{u}}_{n}^{\prime} \bar{u}_{n}\right) & -E\left(\overline{\bar{u}}_{n}^{\prime} \overline{\bar{u}}_{n}\right) & \operatorname{tr}\left(M_{n}^{\prime} M_{n}\right) \\
E\left(u_{n}^{\prime} \overline{\bar{u}}_{n}+\bar{u}_{n}^{\prime} \bar{u}_{n}\right) & -E\left(\bar{u}_{n}^{\prime} \overline{\bar{u}}_{n}\right) & 0
\end{array}\right)
$$

and $\bar{u}_{n}=M_{n} u_{n}$ and $\overline{\bar{u}}_{n}=M_{n} \bar{u}_{n}=M_{n}^{2} u_{n}$.

2.2 Some Implications of the Model Specification

The specifications in (1) and Assumption 2 imply that ${ }^{6}$

$$
\begin{align*}
& y_{n}=\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta+\left(I-\lambda W_{n}\right)^{-1} u_{n} \tag{4}\\
& u_{n}=\left(I-\rho M_{n}\right)^{-1} \varepsilon_{n}
\end{align*}
$$

[^4]Assumption 5 implies further that $E\left(u_{n}\right)=0$, and that the variance-covariance matrix of u_{n} is

$$
\begin{equation*}
\Omega_{u_{n}}=E\left(u_{n} u_{n}^{\prime}\right)=\sigma_{\varepsilon}^{2}\left(I-\rho M_{n}\right)^{-1}\left(I-\rho M_{n}^{\prime}\right)^{-1} \tag{5}
\end{equation*}
$$

Thus the disturbance terms are generally both spatially correlated and heteroskedastic. It follows from (4) and (5) that $E\left(y_{n}\right)=\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta$, and that the variance-covariance matrix of y_{n} is

$$
\begin{equation*}
\Omega_{y_{n}}=\sigma_{\varepsilon}^{2}\left(I-\lambda W_{n}\right)^{-1}\left(I-\rho M_{n}\right)^{-1}\left(I-\rho M_{n}^{\prime}\right)^{-1}\left(I-\lambda W_{n}^{\prime}\right)^{-1} \tag{6}
\end{equation*}
$$

Furthermore

$$
\begin{align*}
E\left[\left(W_{n} y_{n}\right) u_{n}^{\prime}\right] & =W_{n}\left(I-\lambda W_{n}\right)^{-1} \Omega_{u_{n}} \tag{7}\\
& =\sigma_{\varepsilon}^{2} W_{n}\left(I-\lambda W_{n}\right)^{-1}\left(I-\rho M_{n}\right)^{-1}\left(I-\rho M_{n}^{\prime}\right)^{-1} \\
& \neq 0 .
\end{align*}
$$

Thus, in general, the elements of the spatially lagged dependent vector, $W_{n} y_{n}$, are correlated with those of the disturbance vector. One implication of this is, of course, that the parameters of (1) can not be consistently estimated by ordinary least squares.

2.3 Further Interpretations of the Model Specification

Assumption 1 is a normalization of the model; it also implies that no unit is viewed as its own neighbor. Assumption 2 indicates that the model is complete in that it determines y_{n} and u_{n}. Next consider Assumption 3. In practice, weighting matrices are often specified to be row normalized in that $\sum_{j=1}^{n} w_{i j, n}=\sum_{j=1}^{n} m_{i j, n}=1$ - see, e.g., Kelejian and Robinson (1993), and Anselin and Rey (1990). In many of these cases no unit is assumed to be a neighbor to more than a given number, say q, of other units - i.e., for every j the number of $m_{i j, n} \neq 0$ is less than or equal to q. Clearly in such cases Assumption 3 is satisfied for W_{n} and M_{n}. Also, often the weights are formulated such that they decline as a function of some measure of "distance" between neighbors. Again, in such cases Assumption 3 will typically be satisfied for W_{n} and M_{n}. Assumption 3 also maintains that the row and column sums of $\left(I-\rho M_{n}\right)^{-1}$ and $\left(I-\lambda W_{n}\right)^{-1}$ are uniformly bounded in absolute value. In light of (5) and (6) this assumption is reasonable in that it implies that the row and column sums of the covariance matrices $\Omega_{u_{n}}$ and
$\Omega_{y_{n}}$ are uniformly bounded in absolute value, thus limiting the degree of correlation between, respectively, the elements of u_{n} and $y_{n} .{ }^{7}$ Our results relate to the large sample; the extent of correlation is limited in virtually all large sample analysis - see, e.g., Amemiya (1985, ch. 3,4) and Pötscher and Prucha (1997, ch. 5,6). Assumptions 4 and 5 regarding the regressor matrices X_{n} and the innovations ε_{n} seem in line with typical specifications see, e.g., Schmidt (1976, p.2, 56).

The instrument matrices H_{n} will be used to instrument $Z_{n}=\left(X_{n}, W_{n} y_{n}\right)$ and $M_{n} Z_{n}=\left(M_{n} X_{n}, M_{n} W_{n} y_{n}\right)$ in terms of their predicted values from a least squares regression on H_{n}, i.e., $\widehat{Z}_{n}=P_{H_{n}} Z_{n}$ and $\widehat{M_{n} Z_{n}}=P_{H_{n}} M_{n} Z_{n}$ with $P_{H_{n}}=H_{n}\left(H_{n}^{\prime} H_{n}\right)^{-1} H_{n}^{\prime}$. The ideal instruments are $E\left(Z_{n}\right)=\left(X_{n}, W_{n} E\left(y_{n}\right)\right)$ and $E\left(M_{n} Z_{n}\right)=\left(M_{n} X_{n}, M_{n} W_{n} E\left(y_{n}\right)\right)$ where $E\left(y_{n}\right)=\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta$. In principle we would like \widehat{Z}_{n} and $\widehat{M_{n} Z_{n}}$ to approximate $E\left(Z_{n}\right)$ and $E\left(M_{n} Z_{n}\right)$ as closely as possible. Assumption 6 assumes that H_{n} contains, at least, the linearly independent columns of X_{n} and $M_{n} X_{n}$, which ensures that $\widehat{Z}_{n}=\left(X_{n}, \widehat{W_{n} y_{n}}\right)$ and $\widehat{M_{n} Z_{n}}=\left(M_{n} X_{n}, M_{n} \widehat{W_{n}} y_{n}\right)$ with $\widehat{W_{n} y_{n}}=P_{H_{n}} W_{n} y_{n}$ and $M_{n} \widehat{W}_{n} y_{n}=P_{H_{n}} M_{n} W_{n} y_{n}$. Furthermore, suppose all eigenvalues of W_{n} are less than or equal to one in absolute value - which is, e.g., the case if W_{n} is row normalized. Then, observing that $|\lambda|<1$, it is readily seen that ${ }^{8}$

$$
\begin{align*}
E\left(y_{n}\right) & =\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta \tag{8}\\
& =\left[\sum_{i=0}^{\infty} \lambda^{i} W_{n}^{i}\right] X_{n} \beta, \quad W_{n}^{0}=I .
\end{align*}
$$

Consequently, in this case, $W_{n} E\left(y_{n}\right)$ and $M_{n} W_{n} E\left(y_{n}\right)$ are seen to be formed as a linear combination of the columns of the matrices $X_{n}, W_{n} X_{n}, W_{n}^{2} X_{n}$, $\ldots, M_{n} X_{n}, M_{n} W_{n} X_{n}, M_{n} W_{n}^{2} X_{n}, \ldots$ It is for this reason that we postulate in Assumption 6 that H_{n} is composed of a subset of the linearly independent columns of those matrices. In practice that subset might be the linearly

[^5]independent columns of $\left[X_{n}, W_{n} X_{n}, W_{n}^{2} X_{n}, M_{n} X_{n}, M_{n} W_{n} X_{n}, M_{n} W_{n}^{2} X_{n}\right]$, or if the number of regressors is large, just those of $\left[X_{n}, W_{n} X_{n}, M_{n} X_{n}\right.$, $\left.M_{n} W_{n} X_{n}\right] .{ }^{9}$ We also note that the assumption that the matrices H_{n} have full column rank could be relaxed at the expense of working with generalized inverses, since the orthogonal projection of any vector onto the space spanned by the columns of H_{n} is unique even if H_{n} does not have full column rank. Finally, for future reference we note that the elements of H_{n} are in light of Assumptions 3 and 4 bounded in absolute value.

Consider now Assumption 7. This assumption will ensure that the estimators defined below remain well defined asymptotically. Assumption 7(a) is standard. Assumption 6 and Assumption 7(a) imply that $n^{-1} H_{n}^{\prime} X_{n}$ converges to a full column rank matrix. Because of this and since $n^{-1} H_{n}^{\prime} Z_{n}=$ $\left(n^{-1} H_{n}^{\prime} X_{n}, n^{-1} H_{n}^{\prime} W_{n} y_{n}\right)$ the force of the first part of Assumption 7(b) relates to the probability limit of $n^{-1} H_{n}^{\prime} W_{n} y_{n}$ and its linear independence from the limit of $n^{-1} H_{n}^{\prime} X_{n}$. In the appendix we show that

$$
\begin{equation*}
\operatorname{plim}_{n \rightarrow \infty} n^{-1} H_{n}^{\prime} W_{n} y_{n}=\lim _{n \rightarrow \infty} n^{-1} H_{n}^{\prime} W_{n}\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta \tag{9}
\end{equation*}
$$

Two points should be noted. First, Assumption 7(b) clearly rules out models in which $\beta=0$. That is, Assumption 7(b) rules out models in which all of the parameters corresponding to the exogenous regressors - including the intercept parameter, if an intercept is present - are zero. We note that in this case the mean of y_{n} is zero and hence this case may be of limited interest in practice. Second, as shown in more detail below, if W_{n} is row normalized the first part of Assumption 7(b) will also fail if the only nonzero element of β corresponds to the constant term. Thus, in this case, Assumption 7(b) requires that the generation of y_{n} involve at least one nonconstant regressor. One implication of this is that if the weighting matrix in the regression model is row normalized the hypothesis that all slopes are zero can not be tested in terms of the results provided in this paper.

We now give more detail concerning the case in which W_{n} is row normalized, and its relation to Assumption 7(b). Let \mathbf{e}_{n} be the $n \times 1$ vector of unit elements. Also, suppose that the first column of X_{n} is \mathbf{e}_{n} and the remaining columns are denoted by the $n \times(k-1)$ matrix $X_{1, n}$ so that $X_{n}=\left(\mathbf{e}_{n}, X_{1, n}\right)$. Partition β correspondingly as $\beta=\left(\beta_{0}, \beta_{1}^{\prime}\right)^{\prime}$. Then the first equation in (1)

[^6]can be expressed as
\[

$$
\begin{equation*}
y_{n}=\mathbf{e}_{n} \beta_{0}+X_{1, n} \beta_{1}+\lambda W_{n} y_{n}+u_{n} . \tag{10}
\end{equation*}
$$

\]

If W_{n} is row normalized it follows that $W_{n} \mathbf{e}_{n}=\mathbf{e}_{n}$. Now, if $\beta_{1}=0$, then it follows from (8) that

$$
\begin{equation*}
E\left(W_{n} y_{n}\right)=W_{n} \sum_{i=0}^{\infty} \lambda^{i} W_{n}^{i} \mathbf{e}_{n} \beta_{0}=\mathbf{e}_{n} \kappa, \quad \kappa=\beta_{0} /(1-\lambda) \tag{11}
\end{equation*}
$$

Thus, the mean of $W_{n} y_{n}$ is not linearly independent of \mathbf{e}_{n}. In the appendix, we demonstrate that

$$
\begin{equation*}
\operatorname{plim}_{n \rightarrow \infty} n^{-1} H_{n}^{\prime}\left(\mathbf{e}_{n}, W_{n} y_{n}\right)=\lim _{n \rightarrow \infty} n^{-1} H_{n}^{\prime}\left(\mathbf{e}_{n}, \mathbf{e}_{n} \kappa\right) \tag{12}
\end{equation*}
$$

Clearly this matrix does not have full column rank, and thus the first part of Assumption 7(b) is violated. In a similar fashion it is not difficult to show that analogous statements hold for the second and third part of Assumption 7(b).

In a sense, our Assumptions 7(b) are similar to the rank condition for identification in linear simultaneous equation systems. Among other things, that condition implies that a certain number of predetermined variables which are excluded from a given equation appear elsewhere in the system with nonzero coefficients. However, there is an important difference between our Assumption 7 (b) and the rank condition for identification in linear simultaneous systems. Specifically, suppose our Assumption 7(b) does not hold because W_{n} is row weighted and $\beta_{1}=0$. Then, the estimation procedure we suggest in Section 3 is not consistent. However, the model's coefficients may still be identified and there may exist another procedure which, although perhaps more complex, is consistent - see, e.g., Kelejian and Prucha (1995) and note that the parameters of their autoregressive model can be consistently estimated but yet a condition corresponding to Assumption 7(b) would clearly not hold. We note that if W_{n} is not row normalized, then in general $W_{n} \mathbf{e}_{n}$ will be linearly independent of \mathbf{e}_{n} and the development in (12) no longer holds. Thus in this case Assumption 7(b) does not require the existence of a nonconstant regressor in the generation of y_{n}.

Finally, consider Assumption 8. This assumption was made in Kelejian and Prucha (1995) in proving consistency of their estimator for ρ, which is used in the second step of the estimation procedure proposed below. Our development in the next section will indicate the role of Γ_{n} in that procedure.

3 A Generalized Spatial Two Stage Least Squares Procedure

Consider again the model in (1). Essentially, we propose a three step procedure. In the first step the regression model in (1) is estimated by two stage least squares (2SLS) using the instruments H_{n}. In the second step the autoregressive parameter, ρ, is estimated in terms of the residuals obtained via the first step and the generalized moments procedure suggested in Kelejian and Prucha (1995). We note that ρ can be consistently estimated in this manner whether or not W_{n} and M_{n} are equal. Finally, in the third step, the regression model in (1) is re-estimated by 2SLS after transforming the model via a Cochrane-Orcutt type transformation to account for the spatial correlation. In analogy to the generalized least squares estimator we refer to this estimation procedure as a generalized spatial two stage least squares (GS2SLS) procedure. ${ }^{10}$

For the following discussion it proves helpful to rewrite (1) more compactly as

$$
\begin{align*}
& y_{n}=Z_{n} \delta+u_{n}, \tag{13}\\
& u_{n}=\rho M_{n} u_{n}+\varepsilon_{n},
\end{align*}
$$

where $Z_{n}=\left(X_{n}, W_{n} y_{n}\right)$ and $\delta=\left(\beta^{\prime}, \lambda\right)^{\prime}$. Applying a Cochorane-Orcutt type transformation to this model yields furthermore

$$
\begin{equation*}
y_{n *}=Z_{n *} \delta+\varepsilon_{n} \tag{14}
\end{equation*}
$$

where $y_{n *}=y_{n}-\rho M_{n} y_{n}$ and $Z_{n *}=Z_{n}-\rho M_{n} Z_{n}$. In the following we may also express $y_{n *}$ and $Z_{n *}$ as $y_{n *}(\rho)$ and $Z_{n *}(\rho)$ to indicate the dependence of the transformed variables on ρ.

3.1 The First Step of the Procedure

We have previously indicated in (7) that $E\left[\left(W_{n} y_{n}\right) u_{n}^{\prime}\right] \neq 0$ and so δ in (13) can not be consistently estimated by ordinary least squares. Therefore consider the following 2SLS estimator:

$$
\begin{equation*}
\widetilde{\delta}_{n}=\left(\widehat{Z}_{n}^{\prime} \widehat{Z}_{n}\right)^{-1} \widehat{Z}_{n}^{\prime} y_{n}, \tag{15}
\end{equation*}
$$

[^7]where $\widehat{Z}_{n}=P_{H_{n}} Z_{n}=\left(X_{n}, \widehat{W_{n} y_{n}}\right)$, where $\widehat{W_{n} y_{n}}=P_{H_{n}} W_{n} y_{n}$ and $P_{H_{n}}=$ $H_{n}\left(H_{n}^{\prime} H_{n}\right)^{-1} H_{n}^{\prime}$. The proof of the following theorem is given in the appendix.

Theorem 1 Suppose the setup and the assumptions of Section 2 hold. Then $\widetilde{\delta}_{n}=\delta+O_{p}\left(n^{-1 / 2}\right)$ and hence $\widetilde{\delta}_{n}$ is consistent for δ, i.e., $\operatorname{plim}_{n \rightarrow \infty} \widetilde{\delta}_{n}=\delta$.

Remark 1: The essence of Theorem 1 is that the 2SLS estimator which is formulated in terms of the instruments H_{n} is consistent. For purposes which are related to our second step, however, it is also important to note that the rate of convergence is $n^{-1 / 2}$.

Although $\widetilde{\delta}_{n}$ is consistent, it does not utilize information relating to the spatial correlation of the error term. We therefore turn to the second step of our procedure.

3.2 The Second Step of the Procedure

Let $u_{i, n}, \bar{u}_{i, n}$, and $\overline{\bar{u}}_{i, n}$ be, respectively, the i-th elements of $u_{n}, \bar{u}_{n}=M_{n} u_{n}$, and $\overline{\bar{u}}_{n}=M_{n}^{2} u_{n}$. Similarly, let $\varepsilon_{i, n}$ and $\bar{\varepsilon}_{i, n}$ be the i-th elements of ε_{n} and $\bar{\varepsilon}_{n}=M_{n} \varepsilon_{n}$. Then, the spatial correlation model implies

$$
\begin{equation*}
u_{i, n}-\rho \bar{u}_{i, n}=\varepsilon_{i, n}, \quad i=1, \ldots, n \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{u}_{i, n}-\rho \overline{\bar{u}}_{i, n}=\bar{\varepsilon}_{i, n}, \quad i=1, \ldots, n . \tag{17}
\end{equation*}
$$

The following three equation system is obtained by squaring (16) and then summing, squaring (17) and summing, multiplying (16) by (17) and summing, and finally by dividing all terms by the sample size $n .{ }^{11}$

$$
\begin{align*}
& 2 \rho n^{-1} \sum u_{i, n} \bar{u}_{i, n}-\rho^{2} n^{-1} \sum \bar{u}_{i, n}^{2}+n^{-1} \sum \varepsilon_{i, n}^{2}=n^{-1} \sum u_{i, n}^{2} \\
& 2 \rho n^{-1} \sum \bar{u}_{i, n} \overline{\bar{u}}_{i, n}-\rho^{2} n^{-1} \sum \overline{\bar{u}}_{i, n}^{2}+n^{-1} \sum \bar{\varepsilon}_{i, n}^{2}=n^{-1} \sum \bar{u}_{i, n}^{2} \\
& \rho n^{-1} \sum\left[u_{i, n} \overline{\bar{u}_{i, n}}+\bar{u}_{i, n}^{2}\right]-\rho^{2} n^{-1} \sum \bar{u}_{i, n} \overline{\bar{u}}_{i, n}+n^{-1} \sum \varepsilon_{i, n} \bar{\varepsilon}_{i, n}=n^{-1} \sum u_{i, n} \bar{u}_{i, n} \tag{18}
\end{align*}
$$

Assumption 5 implies $E\left(n^{-1} \sum \varepsilon_{i, n}^{2}\right)=\sigma_{\varepsilon}^{2}$. Noting that $\sum \bar{\varepsilon}_{i, n}^{2}=\varepsilon_{n}^{\prime} M_{n}^{\prime} M_{n} \varepsilon_{n}$, Assumption 5 also implies that

$$
\begin{aligned}
E\left(n^{-1} \sum \bar{\varepsilon}_{i, n}^{2}\right) & =n^{-1} E\left[\operatorname{Tr}\left(\varepsilon_{n}^{\prime} M_{n}^{\prime} M_{n} \varepsilon_{n}\right)\right]=n^{-1} \operatorname{Tr}\left(E \varepsilon_{n} \varepsilon_{n}^{\prime} M_{n}^{\prime} M_{n}\right) \\
& =\sigma_{\varepsilon}^{2} n^{-1} \operatorname{Tr}\left(M_{n}^{\prime} M_{n}\right)
\end{aligned}
$$

[^8]where $\operatorname{Tr}($.$) denotes the trace operator. Finally, using similar manipulations,$ it is not difficult to show that Assumptions 1 and 5 imply $E\left(n^{-1} \sum \varepsilon_{i, n} \bar{\varepsilon}_{i, n}\right)=$ 0 . Now let $\alpha=\left(\rho, \rho^{2}, \sigma_{\varepsilon}^{2}\right)^{\prime}$ and $\gamma_{n}=n^{-1}\left(E\left(u_{n}^{\prime} u_{n}\right), E\left(\bar{u}_{n}^{\prime} \bar{u}_{n}\right), E\left(u_{n}^{\prime} \bar{u}_{n}\right)\right)^{\prime}$. Then, if expectations are taken across (18), the resulting system of three equations can be expressed as
\[

$$
\begin{equation*}
\Gamma_{n} \alpha=\gamma_{n} \tag{19}
\end{equation*}
$$

\]

where Γ_{n} is defined in Assumption 8. If Γ_{n} and γ_{n} were known, Assumption 8 implies that (19) determines α as $\alpha=\Gamma_{n}^{-1} \gamma_{n}$.

Kelejian and Prucha (1995) suggested two estimators of ρ and σ_{ε}^{2}. Essentially, these estimators are based on estimated values of Γ_{n} and γ_{n}. To define those estimators for ρ and σ_{ε}^{2} within the present context, let $\widetilde{u}_{n}=y_{n}-Z_{n} \widetilde{\delta}_{n}$, $\widetilde{\bar{u}}_{n}=M_{n} \widetilde{u}_{n}$, and $\widetilde{\overline{\bar{u}}}_{n}=M_{n}^{2} \widetilde{u}_{n}$, where $\widetilde{\delta}_{n}$ is the 2SLS estimator obtained in the first step, and denote their i-th elements, respectively, as $\widetilde{u}_{i, n}, \widetilde{\bar{u}}_{i, n}$, and $\widetilde{\bar{u}}_{i, n}$. Now consider the following estimators for Γ_{n} and γ_{n} :

$$
G_{n}=\frac{1}{n}\left[\begin{array}{ccc}
2 \sum \widetilde{u}_{i, n} \widetilde{\bar{u}}_{i, n} & -\sum \widetilde{\bar{u}}_{i, n}^{2} & 1 \tag{20}\\
2 \sum \widetilde{\bar{u}}_{i, n} \tilde{\bar{u}}_{i, n} & -\sum \widetilde{\overline{\bar{u}}}_{i, n} & \operatorname{Tr}\left(M_{n}^{\prime} M_{n}\right) \\
\sum\left[\widetilde{u}_{i, n} \widetilde{\bar{u}}_{i, n}+\widetilde{\bar{u}}_{i, n}^{2}\right] & -\sum \widetilde{\bar{u}}_{i, n} \overline{\bar{u}_{i, n}} & 0
\end{array}\right], g_{n}=\frac{1}{n}\left[\begin{array}{c}
\sum \widetilde{u}_{i, n}^{2} \\
\sum \widetilde{\bar{u}}_{i, n}^{2} \\
\sum \widetilde{u}_{i, n} \bar{u}_{i, n}
\end{array}\right] .
$$

Then, the empirical form of the relationship $\gamma_{n}=\Gamma_{n} \alpha$ in (19) is

$$
\begin{equation*}
g_{n}=G_{n} \alpha+v_{n} \tag{21}
\end{equation*}
$$

where v_{n} can be viewed as a vector of regression residuals. The simplest of the two estimators of ρ and σ_{ε}^{2} considered by Kelejian and Prucha (1995) is given by the first and the third element of the ordinary least squares estimator $\widetilde{\alpha}_{n}$ for α obtained from regressing g_{n} against G_{n}. Since G_{n} is a square matrix

$$
\begin{equation*}
\widetilde{\alpha}_{n}=G_{n}^{-1} g_{n} \tag{22}
\end{equation*}
$$

Clearly, $\widetilde{\alpha}_{n}$ is based on an overparameterization in that it does not utilize the information that the second element of α is the square of the first. We will henceforth denote the estimators of ρ and σ_{ε}^{2} which are based on $\widetilde{\alpha}_{n}$ as $\widetilde{\rho}_{n}$ and $\widetilde{\sigma}_{\varepsilon, n}^{2}$. The second set of estimators of ρ and σ_{ε}^{2}, say $\widetilde{\widetilde{\rho}}_{n}$ and $\widetilde{\widetilde{\sigma}}_{\varepsilon, n}^{2}$, considered by Kelejian and Prucha (1995) - and which turned out to be more efficient are defined as the nonlinear least squares estimators based on (21). That is
$\widetilde{\widetilde{\rho}}_{n}$ and $\tilde{\widetilde{\sigma}}_{\varepsilon, n}^{2}$ are defined as the minimizers of

$$
\left[g_{n}-G_{n}\left[\begin{array}{c}
\rho \tag{23}\\
\rho^{2} \\
\sigma_{\varepsilon}^{2}
\end{array}\right]\right]^{\prime}\left[g_{n}-G_{n}\left[\begin{array}{c}
\rho \\
\rho^{2} \\
\sigma_{\varepsilon}^{2}
\end{array}\right]\right]
$$

The basic results corresponding to the second step of our procedure are contained in the following theorem. The proof of the theorem is given in the appendix.

Theorem 2 Suppose the setup and the assumptions of Section 2 hold. Then $\left(\widetilde{\rho}_{n}, \widetilde{\sigma}_{\varepsilon, n}^{2}\right)$ and $\left(\widetilde{\widetilde{\rho}}_{n}, \widetilde{\widetilde{\sigma}}_{\varepsilon, n}^{2}\right)$ are consistent estimators of $\left(\rho, \sigma_{\varepsilon}^{2}\right)$.

Remark 2: The essence of Theorem 2 is that a consistent estimator of ρ can be obtained by a relatively simple procedure. The third step of our procedure can be based upon either $\widetilde{\rho}_{n}$ or $\widetilde{\widetilde{\rho}}_{n}$. The large sample properties of the 2 SLS estimator in the third step are the same whether it is based on $\widetilde{\rho}_{n}$ or $\widetilde{\widetilde{\rho}}_{n}$. However, $\widetilde{\widetilde{\rho}}_{n}$ is more efficient than $\widetilde{\rho}_{n}$ as an estimator for ρ, and hence its use in the third step may be preferred due to small sample considerations.

3.3 The Third Step of the Procedure

If ρ were known we could estimate the vector of regression parameters δ by 2SLS based on (14). As remarked above, in analogy to the generalized least squares estimator, we refer to this estimator, say $\hat{\delta}_{n}$, as the generalized spatial 2SLS estimator, or for short as the GS2SLS estimator. This estimator is given by

$$
\begin{equation*}
\widehat{\delta}_{n}=\left[\widehat{Z}_{n *}(\rho)^{\prime} \widehat{Z}_{n *}(\rho)\right]^{-1} \widehat{Z}_{n *}(\rho)^{\prime} y_{n *}(\rho) \tag{24}
\end{equation*}
$$

where $\widehat{Z}_{n *}(\rho)=P_{H_{n}} Z_{n *}(\rho)$. (Recall that $Z_{n *}(\rho)=Z_{n}-\rho M_{n} Z_{n}, y_{n *}(\rho)=$ $y_{n}-\rho M_{n} y_{n}, Z_{n}=\left(X_{n}, W_{n} y_{n}\right)$ and $\left.P_{H_{n}}=H_{n}\left(H_{n}^{\prime} H_{n}\right)^{-1} H_{n}^{\prime}.\right)$ Because H_{n} includes the linearly independent columns of both X_{n} and $M_{n} X_{n}$ it should be clear that $\widehat{Z}_{n *}(\rho)=\left(X_{n}-\rho M_{n} X_{n}, W_{n} y_{n}-\widehat{\rho M_{n}} W_{n} y_{n}\right)$ where

$$
W_{n} y_{n}-\widehat{\rho M_{n}} W_{n} y_{n}=P_{H_{n}}\left(W_{n} y_{n}-\rho M_{n} W_{n} y_{n}\right)
$$

are the predicted values of $\left(W_{n} y_{n}-\rho M_{n} W_{n} y_{n}\right)$ in terms of the least squares regression on the instruments H_{n}.

Of course, in practical applications ρ is typically not known. In this case we may replace ρ in the above expressions by some estimator, say $\widehat{\rho}_{n}$. The
resulting estimator may be termed the feasible GS2SLS estimator and is given by

$$
\begin{equation*}
\widehat{\delta}_{F, n}=\left[\widehat{Z}_{n *}\left(\hat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\hat{\rho}_{n}\right)\right]^{-1} \widehat{Z}_{n *}\left(\hat{\rho}_{n}\right)^{\prime} y_{n *}\left(\hat{\rho}_{n}\right), \tag{25}
\end{equation*}
$$

with $\hat{Z}_{n *}\left(\hat{\rho}_{n}\right)=P_{H_{n}} Z_{n *}\left(\hat{\rho}_{n}\right), Z_{n *}\left(\hat{\rho}_{n}\right)=Z_{n}-\widehat{\rho}_{n} M_{n} Z_{n}, y_{n *}\left(\hat{\rho}_{n}\right)=y_{n}-\hat{\rho}_{n} M_{n} y_{n}$. By the same argument as above $\widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)=\left(X_{n}-\widehat{\rho}_{n} M_{n} X_{n}, W_{n} y_{n}-\widehat{\rho}_{n} M_{n} W_{n} y_{n}\right)$ with

$$
W_{n} y_{n}-\widehat{\widehat{\rho}_{n}} M_{n} W_{n} y_{n}=P_{H_{n}}\left(W_{n} y_{n}-\widehat{\rho}_{n} M_{n} W_{n} y_{n}\right)
$$

The proof of the following theorem is given in the appendix.
Theorem 3 Suppose the setup and the assumptions of Section 2 hold, and $\hat{\rho}_{n}$ is a consistent estimator for ρ. (Thus, in particular $\widehat{\rho}_{n}$ may be taken to be equal to $\widetilde{\rho}_{n}$ or $\widetilde{\widetilde{\rho}}_{n}$ which are defined in the second step of the procedure.) Furthermore, let $\widehat{\varepsilon}_{n}=y_{n *}\left(\widehat{\rho}_{n}\right)-Z_{n *}\left(\widehat{\rho}_{n}\right) \widehat{\delta}_{F, n}$, and $\widehat{\sigma}_{\varepsilon, n}^{2}=\widehat{\varepsilon}_{n}^{\prime} \widehat{\varepsilon}_{n} / n$. Then
(a) $\sqrt{n}\left(\widehat{\delta}_{F, n}-\delta\right) \xrightarrow{D} N(0, \Phi)$ with

$$
\begin{align*}
\Phi= & \sigma_{\varepsilon}^{2}\left[\operatorname{plim}_{n \rightarrow \infty} n^{-1} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)\right]^{-1} \tag{26}\\
& =\sigma_{\varepsilon}^{2}\left[\operatorname{plim}_{n \rightarrow \infty} n^{-1} \widehat{Z}_{n *}(\rho)^{\prime} \widehat{Z}_{n *}(\rho)\right]^{-1} .
\end{align*}
$$

(b) $\operatorname{plim}_{n \rightarrow \infty} \widehat{\sigma}_{\varepsilon, n}^{2}=\sigma_{\varepsilon}^{2}$.

Remark 3: Among other things, Theorem 3 implies that $\widehat{\delta}_{F, n}$ is consistent. In addition, it suggests that small sample inferences concerning δ can be based on the small sample approximation

$$
\begin{equation*}
\widehat{\delta}_{F, n} \dot{\sim} N\left[\delta, \widehat{\sigma}_{\varepsilon, n}^{2}\left[\widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)\right]^{-1}\right] \tag{27}
\end{equation*}
$$

4 Concluding Remarks

In this paper we propose a feasible GS2LSL (generalized spatial two stage least squares) procedure to estimate the parameters of a linear regression model which has a spatially lagged dependent variable as well as a spatially autoregressive disturbance term. We demonstrate that our estimator is consistent and asymptotically normal, and we give its large sample distribution. We also demonstrate that the autoregressive parameter in the disturbance
process, ρ, is a nuisance parameter in the sense that the large sample distribution of our feasible GS2LSL estimator, which is based upon a consistent estimator of ρ, is the same as that of the GS2LSL estimator which is based upon the true value of ρ. We note that our results are not based upon the assumption that the disturbance terms are normally distributed.

Our feasible GS2LSL estimator is conceptually simple in the sense that its rational is obvious. It is also computationally feasible even in large samples. This is important to note because, at present, the only alternative to our estimator is the maximum likelihood estimator which may not be feasible in large samples unless the weighting matrices involved have simplifying features, such as spareness, symmetry, etc.

The analysis of the feasible GS2SLS estimator given in this paper focuses on its large sample distribution. An obvious suggestions for further research, therefore, relates to corresponding small sample issues. In this regard, a Monte Carlo study focusing on both our suggested GS2SLS procedure as well as the maximum likelihood estimator should be of interest. Such a study could also shed light on how well the large sample distribution given in this paper approximates the actual small sample distribution under various conditions.

A Appendix

Proof of (9) and (12): Let $\psi_{n}=n^{-1} H_{n}^{\prime} W_{n} y_{n}$. Then from (4)

$$
\begin{equation*}
\psi_{n}=n^{-1} H_{n}^{\prime} W_{n}\left(I-\lambda W_{n}\right)^{-1}\left(X_{n} \beta+u_{n}\right) . \tag{A.1}
\end{equation*}
$$

Because H_{n}, W_{n} and X_{n} are nonstochastic matrices, Assumption 5 implies that the mean vector and variance covariance matrix of ψ_{n} are

$$
\begin{aligned}
E\left(\psi_{n}\right) & =n^{-1} H_{n}^{\prime} W_{n}\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta \\
E\left(\psi_{n}-E \psi_{n}\right)\left(\psi_{n}-E \psi_{n}\right)^{\prime} & =n^{-2} H_{n}^{\prime} W_{n}\left(I-\lambda W_{n}\right)^{-1} \Omega_{u_{n}}\left(I-\lambda W_{n}^{\prime}\right)^{-1} W_{n}^{\prime} H_{n} \\
& =n^{-2} H_{n}^{\prime} A_{n} H_{n}
\end{aligned}
$$

where $A_{n}=W_{n}\left(I-\lambda W_{n}\right)^{-1} \Omega_{u_{n}}\left(I-\lambda W_{n}^{\prime}\right)^{-1} W_{n}^{\prime}$ and were $\Omega_{u_{n}}$ is given in (5). Assumption 3 and footnote 7 imply that the row and column sums of A_{n} are uniformly bounded in absolute value. That is there exists some finite constant c_{a} such that $\sum_{r=1}^{n}\left|a_{r s, n}\right| \leq c_{a}$ and $\sum_{s=1}^{n}\left|a_{r s, n}\right| \leq c_{a}$. Observe also that in light of Assumptions 3 and 4 the elements of H_{n} are uniformly bounded in absolute value by some finite constant, say c_{h}. Now let the $(i, j)-$ th element of $E\left(\psi_{n}-E \psi_{n}\right)\left(\psi_{n}-E \psi_{n}\right)^{\prime}$ be $\Delta_{i j, n}$. Then

$$
\begin{align*}
\left|\Delta_{i j, n}\right| & \leq n^{-2} \sum_{s=1}^{n} \sum_{r=1}^{n}\left|h_{r i, n}\right|\left|a_{r s, n}\right|\left|h_{s j, n}\right| \tag{A.3}\\
& \leq n^{-2} c_{h} \sum_{s=1}^{n}\left|h_{s j, n}\right| \sum_{r=1}^{n}\left|a_{r s, n}\right| \\
& \leq n^{-1} c_{h}^{2} c_{a} \rightarrow 0
\end{align*}
$$

The result in (9) follows from (A.2), (A.3), and Chebyshev's inequality. Since $E\left(W_{n} y_{n}\right)=W_{n}\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta$ the result in (9) can also be stated as

$$
\operatorname{plim}_{n \rightarrow \infty} n^{-1} H_{n}^{\prime} W_{n} y_{n}=\lim _{n \rightarrow \infty} n^{-1} H_{n}^{\prime} E\left(W_{n} y_{n}\right)
$$

The result in (12) follows as a special case.

The proof of Theorem 1 is based upon a central limit theorem for triangular arrays. This theorem is, e.g., given in Kelejian and Prucha (1995), and is described here for the convenience of the reader.

Theorem A. 1 Let $\left\{v_{i, n}, 1 \leq i \leq n, n \geq 1\right\}$ be a triangular array of identically distributed random variables. Assume that the random variables $\left\{v_{i, n}, 1 \leq\right.$ $i \leq n\}$ are (jointly) independently distributed for each n with $E\left(v_{i, n}\right)=0$ and $E\left(v_{i, n}^{2}\right)=\sigma^{2}<\infty$. Let $\left\{a_{i j, n}, 1 \leq i \leq n, n \geq 1\right\}, j=1, \ldots, k$, be triangular arrays of real numbers that are bounded in absolute value. Further, let

$$
v_{n}=\left[\begin{array}{c}
v_{1, n} \\
\vdots \\
v_{n, n}
\end{array}\right], \quad A_{n}=\left[\begin{array}{ccc}
a_{11, n} & \ldots & a_{1 k, n} \\
\vdots & & \vdots \\
a_{n 1, n} & \ldots & a_{n k, n}
\end{array}\right]
$$

Assume that $\lim _{n \rightarrow \infty} n^{-1} A_{n}^{\prime} A_{n}=Q_{A A}$ is a finite and nonsingular matrix. Then $n^{-1 / 2} A_{n}^{\prime} v_{n} \xrightarrow{D} N\left(0, \sigma^{2} Q_{A A}\right)$.

Proof of Theorem 1: Recall that $\widehat{Z}_{n}=P_{H_{n}} Z_{n}$ with $P_{H_{n}}=H_{n}\left(H_{n}^{\prime} H_{n}\right)^{-1} H_{n}^{\prime}$. Hence clearly $\widehat{Z}_{n}^{\prime} \widehat{Z}_{n}=\widehat{Z}_{n}^{\prime} Z_{n}$. In light of this we have from (13) and (15) that

$$
\begin{align*}
\widetilde{\delta}_{n} & =\left(\widehat{Z}_{n}^{\prime} \widehat{Z}_{n}\right)^{-1} \widehat{Z}_{n}^{\prime} y_{n} \tag{A.4}\\
& =\delta+\left(\widehat{Z}_{n}^{\prime} \widehat{Z}_{n}\right)^{-1} \widehat{Z}_{n}^{\prime} u_{n} \\
& =\delta+\left(\widehat{Z}_{n}^{\prime} \widehat{Z}_{n}\right)^{-1} \widehat{Z}_{n}^{\prime}\left(I-\rho M_{n}\right)^{-1} \varepsilon_{n} \\
& =\delta+\left[Z_{n}^{\prime} H_{n}\left(H_{n}^{\prime} H_{n}\right)^{-1} H_{n}^{\prime} Z_{n}\right]^{-1} Z_{n}^{\prime} H_{n}\left(H_{n}^{\prime} H_{n}\right)^{-1} H_{n}^{\prime}\left(I-\rho M_{n}\right)^{-1} \varepsilon_{n} .
\end{align*}
$$

Let $Q_{H H, n}=n^{-1} H_{n}^{\prime} H_{n}, Q_{H Z, n}=n^{-1} H_{n}^{\prime} Z_{n}, F_{n}^{\prime}=H_{n}^{\prime}\left(I-\rho M_{n}\right)^{-1}$, then

$$
\begin{equation*}
\sqrt{n}\left(\widetilde{\delta}_{n}-\delta\right)=\left[Q_{H Z, n}^{\prime} Q_{H H, n}^{-1} Q_{H Z, n}\right]^{-1} Q_{H Z, n}^{\prime} Q_{H H, n}^{-1} n^{-1 / 2} F_{n}^{\prime} \varepsilon_{n} \tag{A.5}
\end{equation*}
$$

Observe that, as remarked in the text, in light of Assumptions 3, 4 and 6 the elements of H_{n} are bounded in absolute value. Observe further that by Assumption 3 the row and column sums of $\left(I-\rho M_{n}\right)^{-1}$ are uniformly bounded in absolute value. Consequently the elements of F_{n} are bounded in absolute value. Since $\lim _{n \rightarrow \infty} n^{-1} F_{n}^{\prime} F_{n}=\Phi$ is finite and nonsingular by Assumption $7(\mathrm{c})$ it follows from Theorem A. 1 that $n^{-1 / 2} F_{n}^{\prime} \varepsilon_{n} \xrightarrow{D} N\left(0, \sigma^{2} \Phi\right)$. Given Assumptions 7(a),(b) it then follows from (A.5) that

$$
\begin{equation*}
\sqrt{n}\left(\widetilde{\delta}_{n}-\delta\right) \xrightarrow{D} N(0, \Delta) \tag{A.6}
\end{equation*}
$$

where

$$
\Delta=\sigma^{2}\left[Q_{H Z}^{\prime} Q_{H H}^{-1} Q_{H Z}\right]^{-1} Q_{H Z}^{\prime} Q_{H H}^{-1} \Phi Q_{H H}^{-1} Q_{H Z}\left[Q_{H Z}^{\prime} Q_{H H}^{-1} Q_{H Z}\right]^{-1}
$$

The claims in Theorem 1 now follow trivially from (A.6).

In proving Theorem 2 we will use the following notation: Let A be some matrix or vector. Then the Euclidean or l_{2} norm of A is $\|A\|=\left[\operatorname{Tr}\left(A^{\prime} A\right)\right]^{1 / 2}$. This norm is sub-multiplicative, i.e., if B is a conformable matrix, then $\|A B\| \leq\|A\|\|B\|$. We will utilize the following simple lemma, which is proven here for the convenience of the reader.

Lemma A. 2 Let $\left\{\xi_{i, n}: 1 \leq i \leq n, n \geq 1\right\}$ with $\xi_{i, n}=\left(\xi_{i 1, n}, \ldots, \xi_{i m, n}\right)$ be a triangular array of $1 \times m$ random vectors. Then a sufficient condition for

$$
\begin{equation*}
n^{-1} \sum_{i=1}^{n}\left\|\xi_{i, n}\right\|^{s}=O_{p}(1), \quad s>0, \tag{A.7}
\end{equation*}
$$

is that the s-th absolute moments $E\left|\xi_{i j, n}\right|^{s}$ are uniformly bounded, i.e., that there exists a finite nonnegative constant c_{ξ} such that for all $1 \leq i \leq n$, $n \geq 1$, and $j=1, \ldots, m$

$$
\begin{equation*}
E\left|\xi_{i j, n}\right|^{s} \leq c_{\xi}<\infty \tag{A.8}
\end{equation*}
$$

Proof: First observe that a sufficient condition for (A.7) is that there exists some finite nonnegative constant c_{1} such that

$$
\begin{equation*}
E\left(n^{-1} \sum_{i=1}^{n}\left\|\xi_{i, n}\right\|^{s}\right) \leq c_{1} \tag{A.9}
\end{equation*}
$$

for all $n \geq 1$. To see this consider some arbitrary $\eta>0$ and define the constant $c_{2}=c_{1} / \eta$. Then

$$
P\left(n^{-1} \sum_{i=1}^{n}\left\|\xi_{i, n}\right\|^{s} \geq c_{2}\right) \leq \frac{E\left(n^{-1} \sum_{i=1}^{n}\left\|\xi_{i, n}\right\|^{s}\right)}{c_{2}} \leq \frac{c_{1}}{c_{2}}=\eta,
$$

which satisfies the requirements of the definition of $O_{p}(1)$. The first of the above inequalities follows from Markov's inequality. Of course a sufficient condition for (A.9) is that for all $1 \leq i \leq n$ and $n \geq 1$

$$
\begin{equation*}
E\left\|\xi_{i, n}\right\|^{s} \leq c_{1} \tag{A.10}
\end{equation*}
$$

Given the definition of $\|$.$\| we have$

$$
\begin{equation*}
E\left\|\xi_{i, n}\right\|^{s}=E\left[\sum_{j=1}^{m} \xi_{i j, n}^{2}\right]^{s / 2} \leq m^{s / 2} \sum_{j=1}^{m} E\left|\xi_{i j, n}\right|^{s} \tag{A.11}
\end{equation*}
$$

where the last step is based on an inequality given, e.g., in Bierens (1981, p. 16). Hence clearly, if (A.8) holds, then we can find a constant c_{1} such that (A.10) and hence (A.7) holds.

Proof of Theorem 2: We prove the theorem by demonstrating that all of the conditions assumed by Kelejian and Prucha (1995), i.e., their Assumptions 1-5, are satisfied here. Theorem 2 then follows as a direct consequence of Theorem 1 in Kelejian and Prucha (1995). Assumptions 1-3 and 5 in Kelejian and Prucha (1995) are readily seen to hold by comparing them with the assumptions maintained here. We now show that Assumption 4 in Kelejian and Prucha (1995) also holds.

Recall $Z_{n}=\left(X_{n}, \bar{y}_{n}\right)$ with $\bar{y}_{n}=W_{n} y_{n}$, and let $z_{i, n}=\left(x_{i 1, n}, \ldots, x_{i k, n}, \bar{y}_{i, n}\right)$ be the i-th row of Z_{n}. Then via (13) in the text, $\widetilde{u}_{n}=y_{n}-Z_{n} \widetilde{\delta}_{n}=u_{n}+$ $Z_{n}\left(\delta-\widetilde{\delta}_{n}\right)$ and so

$$
\begin{equation*}
\left|u_{i, n}-\widetilde{u}_{i, n}\right| \leq\left\|z_{i, n}\right\|\left\|\delta-\widetilde{\delta}_{n}\right\| . \tag{A.12}
\end{equation*}
$$

Assumption 4 in Kelejian and Prucha (1995) now holds if we can demonstrate that $\left(\delta-\widetilde{\delta}_{n}\right)=O_{p}\left(n^{-1 / 2}\right)$, and that for some $\zeta>0$

$$
\begin{equation*}
n^{-1} \sum_{i=1}^{n}\left\|z_{i, n}\right\|^{2+\zeta}=O_{p}(1) \tag{A.13}
\end{equation*}
$$

The former condition was established by Theorem 1. We now establish that (A.13) holds in particular for $\zeta=1$. By Lemma A. 2 a sufficient condition for this is that there exists some finite constant c_{z} such that for all $1 \leq i \leq n$, $n \geq 1$ and $j=1, \ldots, k+1$

$$
\begin{equation*}
E\left|z_{i j, n}\right|^{3} \leq c_{z} \tag{A.14}
\end{equation*}
$$

For $j=1, \ldots, k$ we have $z_{i j, n}=x_{i j, n}$. Since the $x_{i j, n}$'s are assumed to be uniformly bounded in absolute value (A.14) is trivially satisfied for those $z_{i j, n}$'s. For $j=k+1$ we have $z_{i j, n}=\bar{y}_{i, n}$. To complete the proof we now establish that

$$
\begin{equation*}
E\left|\bar{y}_{i, n}\right|^{3} \leq c_{z} \tag{A.15}
\end{equation*}
$$

for some finite constant c_{z}. From (1) or (4) we have

$$
\begin{equation*}
\bar{y}_{n}=W_{n} y_{n}=W_{n}\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta+W_{n}\left(I-\lambda W_{n}\right)^{-1}\left(I-\rho M_{n}\right)^{-1} \varepsilon_{n} \tag{A.16}
\end{equation*}
$$

Assumptions 3 and 4 imply that the elements of $d_{n}=W_{n}\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta$ are bounded in absolute value and that the row and column sums of $D_{n}=W_{n}(I-$ $\left.\lambda W_{n}\right)^{-1}\left(I-\rho M_{n}\right)^{-1}$ are bounded uniformly in absolute value - compare footnote 7 . Let c_{d} denote the common upper bound. From (A.16) we have

$$
\begin{equation*}
\bar{y}_{i, n}=d_{i, n}+\sum_{j=1}^{n} d_{i j, n} \varepsilon_{j, n} \tag{A.17}
\end{equation*}
$$

and hence

$$
\begin{align*}
\bar{y}_{i, n}^{3}= & d_{i, n}^{3}+3 d_{i, n}^{2} \sum_{j=1}^{n} d_{i j, n} \varepsilon_{j, n}+3 d_{i, n} \sum_{j=1}^{n} \sum_{l=1}^{n} d_{i j, n} d_{i l, n} \varepsilon_{j, n} \varepsilon_{l, n} \tag{A.18}\\
& +\sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} d_{i j, n} d_{i l, n} d_{i m, n} \varepsilon_{j, n} \varepsilon_{l, n} \varepsilon_{m, n} .
\end{align*}
$$

By Assumption 5 the $\varepsilon_{i, n}$'s are distributed identically, and for each n (jointly) independently, with finite fourth moments. Hence there exists some finite constant c_{ε} such that for all indices i, j, l, m, and all $n \geq 1: E\left|\varepsilon_{i, n}\right| \leq c_{\varepsilon}$, $E\left|\varepsilon_{j, n} \varepsilon_{l, n}\right| \leq c_{\varepsilon}, E\left|\varepsilon_{j, n} \varepsilon_{l, n} \varepsilon_{m, n}\right| \leq c_{\varepsilon}$. It now follows from (A.18) and the triangle inequality that

$$
\begin{aligned}
E\left|\bar{y}_{i, n}\right|^{3} \leq & \left|d_{i, n}\right|^{3}+3\left|d_{i, n}\right|^{2} \sum_{j=1}^{n}\left|d_{i j, n}\right| E\left|\varepsilon_{j, n}\right| \\
& +3\left|d_{i, n}\right| \sum_{j=1}^{n} \sum_{l=1}^{n}\left|d_{i j, n}\right|\left|d_{i l, n}\right| E\left|\varepsilon_{j, n} \varepsilon_{l, n}\right| \\
& +\sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{m=1}^{n}\left|d_{i j, n}\right|\left|d_{i l, n}\right|\left|d_{i m, n}\right| E\left|\varepsilon_{j, n} \varepsilon_{l, n} \varepsilon_{m, n}\right| \\
\leq & c_{d}^{3}+3 c_{d}^{2} c_{\varepsilon} \sum_{j=1}^{n}\left|d_{i j, n}\right|+3 c_{d} c_{\varepsilon} \sum_{j=1}^{n} \sum_{l=1}^{n}\left|d_{i j, n}\right|\left|d_{i l, n}\right| \\
& +c_{\varepsilon} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{m=1}^{n}\left|d_{i j, n}\right|\left|d_{i l, n}\right|\left|d_{i m, n}\right| \\
\leq & c_{d}^{3}\left(1+7 c_{\varepsilon}\right)
\end{aligned}
$$

observing that $\left|d_{i, n}\right| \leq c_{d}$ and $\sum_{j=1}^{n}\left|d_{i j, n}\right| \leq c_{d}$. This establishes (A.15), which completes the proof.

Proof of Theorem 3: Proof of part (a). Recall that $\widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)=P_{H_{n}}\left(Z_{n}-\right.$ $\left.\widehat{\rho}_{n} M_{n} Z_{n}\right)$ and $\hat{Z}_{n *}(\rho)=P_{H_{n}}\left(Z_{n}-\rho M_{n} Z_{n}\right)$ with $P_{H_{n}}=H_{n}\left(H_{n}^{\prime} H_{n}\right)^{-1} H_{n}^{\prime}$. We first establish the following preliminary results:

$$
\begin{gather*}
\operatorname{plim}_{n \rightarrow \infty} n^{-1} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\hat{\rho}_{n}\right)=\operatorname{plim}_{n \rightarrow \infty} n^{-1} \widehat{Z}_{n *}(\rho)^{\prime} \widehat{Z}_{n *}(\rho)=\bar{Q} \tag{A.19}\\
n^{-1 / 2} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \varepsilon_{n} \xrightarrow{D} N\left(0, \sigma_{\varepsilon}^{2} \bar{Q}\right) \tag{A.20}\\
\operatorname{plim}_{n \rightarrow \infty}\left(\widehat{\rho}_{n}-\rho\right) n^{-1 / 2} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} M_{n} u_{n}=0 \tag{A.21}
\end{gather*}
$$

where

$$
\begin{equation*}
\bar{Q}=\left[Q_{H Z}-\rho Q_{H M Z}\right]^{\prime} Q_{H H}^{-1}\left[Q_{H Z}-\rho Q_{H M Z}\right] \tag{A.22}
\end{equation*}
$$

is finite and nonsingular.
The result (A.19) follows immediately from Assumption 7 and the consistency of $\widehat{\rho}_{n}$ observing that

$$
\begin{align*}
n^{-1} \widehat{Z}_{n *}\left(\hat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)= & n^{-1}\left(Z_{n}-\widehat{\rho}_{n} M_{n} Z_{n}\right)^{\prime} P_{H_{n}}\left(Z_{n}-\widehat{\rho}_{n} M_{n} Z_{n}\right) \tag{A.23}\\
= & \left(n^{-1} Z_{n}^{\prime} H_{n}-\widehat{\rho}_{n} n^{-1} Z_{n}^{\prime} M_{n}^{\prime} H_{n}\right) \\
& \left(n^{-1} H_{n}^{\prime} H_{n}\right)^{-1}\left(n^{-1} H_{n}^{\prime} Z_{n}-\widehat{\rho}_{n} n^{-1} H_{n}^{\prime} M_{n} Z_{n}\right) .
\end{align*}
$$

To prove result (A.20) observe that

$$
\begin{align*}
n^{-1 / 2} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \varepsilon_{n} & =n^{-1 / 2}\left(Z_{n}-\widehat{\rho}_{n} M_{n} Z_{n}\right)^{\prime} P_{H_{n}} \varepsilon_{n} \tag{A.24}\\
& =\left(n^{-1} Z_{n}^{\prime} H_{n}-\widehat{\rho}_{n} n^{-1} Z_{n}^{\prime} M_{n}^{\prime} H_{n}\right)\left(n^{-1} H_{n}^{\prime} H_{n}\right)^{-1} n^{-1 / 2} H_{n}^{\prime} \varepsilon_{n}
\end{align*}
$$

In light of Assumptions 3, 4 and 6 the elements of H_{n} are bounded in absolute value. Given this and Assumptions 5 and 7 we have from Theorem A. 1 that

$$
\begin{equation*}
n^{-1 / 2} H_{n}^{\prime} \varepsilon_{n} \xrightarrow{D} N\left(0, \sigma_{\varepsilon}^{2} Q_{H H}\right) . \tag{A.25}
\end{equation*}
$$

The result (A.20) now follows from (A.24) and (A.25), Assumption 7 and the consistency of $\hat{\rho}_{n}$.

To prove result (A.21) observe that

$$
\begin{align*}
\left(\widehat{\rho}_{n}-\rho\right) n^{-1 / 2} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} M_{n} u_{n}= & \left(\widehat{\rho}_{n}-\rho\right) n^{-1 / 2}\left(Z_{n}-\widehat{\rho}_{n} M_{n} Z_{n}\right)^{\prime} \tag{A.26}\\
& P_{H_{n}} M_{n} u_{n} \\
= & \left(\widehat{\rho}_{n}-\rho\right)\left(n^{-1} Z_{n}^{\prime} H_{n}-\widehat{\rho}_{n} n^{-1} Z_{n}^{\prime} M_{n}^{\prime} H_{n}\right) \\
& \left(n^{-1} H_{n}^{\prime} H_{n}\right)^{-1} n^{-1 / 2} H_{n}^{\prime} M_{n} u_{n} .
\end{align*}
$$

Note that $E\left(n^{-1 / 2} H_{n}^{\prime} M_{n} u_{n}\right)=0$ and $E\left(n^{-1} H_{n}^{\prime} M_{n} u_{n} u_{n}^{\prime} M_{n}^{\prime} H_{n}\right)=$ $n^{-1} H_{n}^{\prime} M_{n} \Omega_{u_{n}} M_{n}^{\prime} H_{n}$, where $\Omega_{u_{n}}$ is given in (5). Assumptions 3, 4, and 6 imply that the elements of $n^{-1} H_{n}^{\prime} M_{n} \Omega_{u_{n}} M_{n}^{\prime} H_{n}$ are bounded in absolute value and hence $n^{-1 / 2} H_{n}^{\prime} M_{n} u_{n}=O_{p}(1)$. Given this the result (A.21) now follows from (A.26), Assumption 7 and the consistency of $\widehat{\rho}_{n}$.

To prove part (a) of the theorem observe that $\hat{Z}_{n *}\left(\hat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)=$ $\widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} Z_{n *}\left(\widehat{\rho}_{n}\right)$ and hence

$$
\begin{align*}
\hat{\delta}_{F, n} & =\left[\hat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)\right]^{-1} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} y_{n *}\left(\widehat{\rho}_{n}\right) \tag{A.27}\\
& =\delta+\left[\widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\hat{\rho}_{n}\right)\right]^{-1} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} u_{n *}\left(\widehat{\rho}_{n}\right)
\end{align*}
$$

where

$$
\begin{equation*}
u_{n *}\left(\widehat{\rho}_{n}\right)=y_{n *}\left(\widehat{\rho}_{n}\right)-Z_{n *}\left(\widehat{\rho}_{n}\right) \delta=\varepsilon_{n}-\left(\widehat{\rho}_{n}-\rho\right) M_{n} u_{n} \tag{A.28}
\end{equation*}
$$

Consequently

$$
\begin{align*}
\sqrt{n}\left(\widehat{\delta}_{F, n}-\delta\right)= & {\left[n^{-1} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)\right]^{-1} n^{-1 / 2} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \varepsilon_{n} } \tag{A.29}\\
& -\left[n^{-1} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)\right]^{-1}\left(\widehat{\rho}_{n}-\rho\right) n^{-1 / 2} \widehat{Z}_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} M_{n} u_{n} .2
\end{align*}
$$

The second term on the r.h.s. of (A.29) converges to zero in probability in light of (A.19) and (A.21). Applying (A.19) and (A.20) to the first part on the r.h.s. of (A.29) yields $\sqrt{n}\left(\widehat{\delta}_{F, n}-\delta\right) \xrightarrow{D} N(0, \Phi)$ with $\Phi=\sigma_{\varepsilon}^{2} \bar{Q}^{-1}$, which establishes part (a) of the theorem.

Proof of part (b). To prove part (b) of the theorem observe that

$$
\begin{align*}
\widehat{\varepsilon}_{n} & =y_{n *}\left(\widehat{\rho}_{n}\right)-Z_{n *}\left(\widehat{\rho}_{n}\right) \widehat{\delta}_{F, n} \tag{A.30}\\
& =y_{n *}\left(\widehat{\rho}_{n}\right)-Z_{n *}\left(\widehat{\rho}_{n}\right) \delta-Z_{n *}\left(\widehat{\rho}_{n}\right)\left(\widehat{\delta}_{F, n}-\delta\right) \\
& =\varepsilon_{n}-\left(\widehat{\rho}_{n}-\rho\right) M_{n} u_{n}-Z_{n *}\left(\widehat{\rho}_{n}\right)\left(\widehat{\delta}_{F, n}-\delta\right) .
\end{align*}
$$

Consequently

$$
\begin{equation*}
\widehat{\sigma}_{\varepsilon}^{2}=n^{-1} \widehat{\varepsilon}_{n}^{\prime} \widehat{\varepsilon}_{n}=n^{-1} \varepsilon_{n}^{\prime} \varepsilon_{n}+\Delta_{n}^{1}+\Delta_{n}^{2}+\Delta_{n}^{3}+\Delta_{n}^{4}+\Delta_{n}^{5} \tag{A.31}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta_{n}^{1} & =-2\left(\widehat{\delta}_{F, n}-\delta\right)^{\prime}\left[n^{-1} Z_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} \varepsilon_{n}\right] \tag{A.32}\\
\Delta_{n}^{2} & =\left(\widehat{\delta}_{F, n}-\delta\right)^{\prime}\left[n^{-1} Z_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} Z_{n *}\left(\widehat{\rho}_{n}\right)\right]\left(\widehat{\delta}_{F, n}-\delta\right), \\
\Delta_{n}^{3} & =2\left(\widehat{\delta}_{F, n}-\delta\right)^{\prime}\left[n^{-1} Z_{n *}\left(\widehat{\rho}_{n}\right)^{\prime} M_{n} u_{n}\right]\left(\widehat{\rho}_{n}-\rho\right), \\
\Delta_{n}^{4} & =-2\left(\widehat{\rho}_{n}-\rho\right)\left[n^{-1} \varepsilon_{n}^{\prime} M_{n} u_{n}\right] \\
\Delta_{n}^{5} & =\left(\widehat{\rho}_{n}-\rho\right)^{2}\left[n^{-1} u_{n}^{\prime} M_{n}^{\prime} M_{n} u_{n}\right] .
\end{align*}
$$

Assumption 5 and Chebyshev's inequality imply $\operatorname{plim}_{n \rightarrow \infty} n^{-1} \varepsilon_{n}^{\prime} \varepsilon_{n}=\sigma_{\varepsilon}^{2}$. To prove that $\operatorname{plim}_{n \rightarrow \infty} \widehat{\sigma}_{\varepsilon, n}^{2}=\sigma_{\varepsilon}^{2}$ we now demonstrate that $\operatorname{plim}_{n \rightarrow \infty} \Delta_{n}^{j}=0$ for $j=$ $1, \ldots, 5$. Since $\operatorname{plim}_{n \rightarrow \infty} \widehat{\delta}_{F, n}=\delta$ by part (a) of the theorem, and $\operatorname{plim}_{n \rightarrow \infty} \widehat{\rho}_{n}=\rho$ by assumption, it suffices to show that each of the terms in square brackets on the r.h.s. of (A.32) is $O_{p}(1)$. By definition $Z_{n *}\left(\widehat{\rho}_{n}\right)=\left[Z_{n}-\widehat{\rho}_{n} M_{n} Z_{n}\right]=$ $\left[X_{n}, W_{n} y_{n}\right]-\widehat{\rho}_{n}\left[M_{n} X_{n}, M_{n} W_{n} y_{n}\right]$ and thus it suffices to demonstrate that

$$
\begin{align*}
n^{-1} Z_{n}^{\prime} \varepsilon_{n} & =\left[\begin{array}{c}
n^{-1} X_{n}^{\prime} \varepsilon_{n} \\
n^{-1} y_{n}^{\prime} W_{n}^{\prime} \varepsilon_{n}
\end{array}\right]=O_{p}(1), \tag{A.33}\\
n^{-1} Z_{n}^{\prime} M_{n}^{\prime} \varepsilon_{n} & =\left[\begin{array}{c}
n^{-1} X_{n}^{\prime} M_{n}^{\prime} \varepsilon_{n} \\
n^{-1} y_{n}^{\prime} W_{n}^{\prime} M_{n}^{\prime} \varepsilon_{n}
\end{array}\right]=O_{p}(1), \\
n^{-1} Z_{n}^{\prime} Z_{n} & =\left[\begin{array}{cc}
n^{-1} X_{n}^{\prime} X_{n} & n^{-1} X_{n}^{\prime} W_{n} y_{n} \\
n^{-1} y_{n}^{\prime} W_{n}^{\prime} X_{n} & n^{-1} y_{n}^{\prime} W_{n}^{\prime} W_{n} y_{n}
\end{array}\right]=O_{p}(1), \\
n^{-1} Z_{n}^{\prime} M_{n}^{\prime} M_{n} Z_{n} & =\left[\begin{array}{cc}
n^{-1} X_{n}^{\prime} M_{n}^{\prime} M_{n} X_{n} & n^{-1} X_{n}^{\prime} M_{n}^{\prime} M_{n} W_{n} y_{n} \\
n^{-1} y_{n}^{\prime} W_{n}^{\prime} M_{n}^{\prime} M_{n} X_{n} & n^{-1} y_{n}^{\prime} W_{n}^{\prime} M_{n}^{\prime} M_{n} W_{n} y_{n}
\end{array}\right] \\
& =O_{p}(1), \\
& =\left[\begin{array}{cc}
n^{-1} X_{n}^{\prime} M_{n} X_{n} & n^{-1} X_{n}^{\prime} M_{n} W_{n} y_{n} \\
n^{-1} y_{n}^{\prime} W_{n}^{\prime} M_{n} X_{n} & n^{-1} y_{n}^{\prime} W_{n}^{\prime} M_{n} W_{n} y_{n}
\end{array}\right] \\
n^{-1} Z_{n}^{\prime} M_{n} Z_{n} & =O_{p}(1), \\
n^{-1} Z_{n}^{\prime} u_{n} & =\left[\begin{array}{c}
n^{-1} X_{n}^{\prime} u_{n} \\
n^{-1} y_{n}^{\prime} W_{n}^{\prime} u_{n}
\end{array}\right]=O_{p}(1), \\
n^{-1} Z_{n}^{\prime} M_{n}^{\prime} u_{n} & =\left[\begin{array}{c}
n^{-1} X_{n}^{\prime} M_{n}^{\prime} u_{n} \\
n^{-1} y_{n}^{\prime} W_{n}^{\prime} M_{n}^{\prime} u_{n}
\end{array}\right]=O_{p}(1), \\
n^{-1} \varepsilon_{n}^{\prime} M_{n} u_{n} & =O_{p}(1), \\
n^{-1} u_{n}^{\prime} M_{n}^{\prime} M_{n} u_{n} & =O_{p}(1) .
\end{align*}
$$

Recall from (4) that $y_{n}=\left(I-\lambda W_{n}\right)^{-1} X_{n} \beta+\left(I-\lambda W_{n}\right)^{-1}\left(I-\rho M_{n}\right)^{-1} \varepsilon_{n}$ and $u_{n}=\left(I-\rho M_{n}\right)^{-1} \varepsilon_{n}$. Upon substitution of those expressions for y_{n} and u_{n} in (A.33) we see that the respective components are composed of three types of expressions. Those expressions are of the form, $n^{-1} A_{n}, n^{-1} B_{n} \varepsilon_{n}$ or $n^{-1} \varepsilon_{n}^{\prime} C_{n} \varepsilon_{n}$, where A_{n} is a vector or matrix of nonstochastic elements, and B_{n} and C_{n} are matrices of nonstochastic elements. Given Assumptions 3 and 4 it is readily seen that the elements of expressions of the form $n^{-1} A_{n}$ are bounded in absolute value, i.e., $n^{-1} A_{n}=O(1)$. Furthermore it is seen that for expressions of the form $n^{-1} B_{n} \varepsilon_{n}$ and $n^{-1} \varepsilon_{n}^{\prime} C_{n} \varepsilon_{n}$ the elements of the matrices B_{n} are bounded uniformly in absolute value, and the row and column sums of the matrices C_{n} are bounded uniformly in absolute value - compare footnote 7. Now let $c_{b}<\infty$ denote the bound for the absolute values of the elements of B_{n}, then we have

$$
\begin{align*}
E\left|n^{-1} B_{n} \varepsilon_{n}\right| & =E\left|\left[\begin{array}{c}
\vdots \\
n^{-1} \sum_{i=1}^{n} b_{j i, n} \varepsilon_{i, n} \\
\vdots
\end{array}\right]\right| \tag{A.34}\\
& \leq\left[\begin{array}{c}
\\
\vdots \\
n^{-1} \sum_{i=1}^{n}\left|b_{j i, n}\right| E\left|\varepsilon_{i, n}\right| \\
\vdots
\end{array}\right] \leq\left[\begin{array}{c}
\vdots \\
c_{b} E\left|\varepsilon_{1, n}\right| \\
\vdots
\end{array}\right]<\infty .
\end{align*}
$$

Similarly, let $c_{c}<\infty$ be the bound for the row and column sums of the absolute elements of C_{n}, then

$$
\begin{align*}
E\left|n^{-1} \varepsilon_{n}^{\prime} C_{n} \varepsilon_{n}\right| & =E\left|n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j, n} \varepsilon_{i, n} \varepsilon_{j, n}\right| \tag{A.35}\\
& \leq n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|c_{i j, n}\right| E\left|\varepsilon_{i, n}\right|\left|\varepsilon_{j, n}\right| \leq \sigma_{\varepsilon}^{2} c_{c}<\infty
\end{align*}
$$

where we have also used the Cauchy-Schwartz inequality. Using Markov's inequality it now follows from (A.34) and (A.35) that $n^{-1} B_{n} \varepsilon_{n}=O_{p}(1)$ and $n^{-1} \varepsilon_{n}^{\prime} C_{n} \varepsilon_{n}=O_{p}(1)$. We have thus established that all expression in (A.33) are $O_{p}(1)$, which complete the proof of part (b) of the theorem.

References

[1] Amemiya, T. Advanced Econometrics, Cambridge: Harvard University Press, 1985.
[2] Anselin, L. A. "New Look at Statistical Model Identification." IEEE Transactions on Automatic Control AC 19 (1982), 716-723.
[3] Anselin, L. Spatial Econometrics: Methods and Models, Boston: Kluwer Academic Publishers, 1988.
[4] Anselin, L. "Some Robust Approaches to Testing and Estimation in Spatial Econometrics." Regional Science and Urban Economics 20 (1990), 141-163.
[5] Anselin, L., A. Bera, R. Florax, and M. Yoon. "Simple Diagnostic Tests for Spatial Dependence." Regional Science and Urban Economics 26 (1990), 77-104.
[6] Anselin, L. and S. Rey. "Properties of Tests for Spatial Dependence in Linear Regression Models." Geographical Analysis 23 (1991), 110-131.
[7] Bell, K. and N. Bockstael. "Applying the Generalized Method of Moments Approach to Spatial Problems Involving Micro-Level Data." Department of Agricultural and Resource Economics Working Paper 97-03, University of Maryland, 1997.
[8] Bierens, H.J. Robust Methods and Asymptotic Theory in Nonlinear Econometrics, Lecture Notes in Economics and Mathematical Systems 192, New York: Springer Verlag, 1981.
[9] Blommestein, H. "Specification and Estimation of Spatial Econometric Models." Regional Science and Urban Economics 13 (1983), 251-270.
[10] Case, A. "Spatial Patterns in Household Demand." Econometrica 59 (1991), 953-966.
[11] Case, A. "Neighborhood Influence and Technological Change." Regional Science and Urban Economics 22 (1992), 491-508.
[12] Case, A., Hines Jr., J., and H. Rosen. "Budget Spillovers and Fiscal Policy Independence: Evidence from the States." Journal of Public Economics 52 (1993), 285-307.
[13] Horn, R. and C. Johnson. Matrix Analysis, New York: Cambridge University Press, 1985.
[14] Kelejian, H. and D. Robinson. "A Suggested Method of Estimation for Spatial Interdependent Models with Autocorrelated Errors, and an Application to a County Expenditure Model." Papers in Regional Science 72 (1993), 297-312.
[15] Kelejian, H.H. and I.R. Prucha. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model." Department of Economics, University of Maryland, Working Paper 95-03, 1995.
[16] Ord, J. "Estimation Methods for Models of Spatial Interaction." Journal of the American Statistical Association 70 (1975), 120-126.
[17] Pace, R. and R. Barry. "Sparse Spatial Autoregressions." Statistics and Probability Letters 2158 (1996), 1-7.
[18] Pötscher, B.M. and I.R. Prucha. Dynamic Nonlinear Econometric Models, Asymptotic Theory, New York: Springer Verlag, 1997.
[19] Schmidt, P. Econometrics, New York: Marcel Dekker, 1976.
[20] Whittle, P. "On Stationary Processes in the Plane." Biometrica 41 (1954), 434-449.

[^0]: ${ }^{1}$ We would like to thank two anonymous referees for helpful comments. We assume, however, full responsibility for any shortcomings.
 ${ }^{2}$ Department of Economics, University of Maryland, College Park, MD 20742

[^1]: ${ }^{1}$ As an example, in a spatial model explaining property values, the property value at each location could relate to, among other things, the property values of neighboring locations. For empirical studies in which spatial lags of the dependent variable are considered see, e.g., Case (1991,1992), Case, Hines and Rosen (1993), and Kelejian and Robinson (1993).
 ${ }^{2}$ An early procedure which is partially based on maximum likelihood principles and which relates to models which have a spatially autoregressive disturbance term was suggested by $\operatorname{Ord}(1975)$; a more recent procedure for such models which is partially based on a generalized moments approach was suggested by Kelejian and Prucha (1995). An instrumental variable estimator for models which contain a spatially lagged dependent variable is described in Anselin(1982). See also Anselin (1990), and Anselin, Bera, Florax, and Yoon (1996) for a wide variety of tests relating to models which contain either a spatially autoregressive error term, a spatially lagged dependent variable, or both.
 ${ }^{3}$ These "computationally challenging issues" can be moderated by using Ord's (1975) eigenvalue approach to the evaluation of the likelihood function. Further simplifications can be realized by the use of sparse matrix routines if the weighting matrix involved is indeed sparse - see, e.g., Pace and Barry (1996). Our experience is that the computation of eigenvalues for general nonsymmetric matrices by standard subroutines in the IMSL program library may be inaccurate for matrices as small as 400×400. The accuracy

[^2]: improves if the matrix involved is symmetric and that information is used. Bell and Bockstael (1997) report accuracy problems in determining eigenvalues for matrices of, roughly, order 2000×2000, even though sparse matrix routines in MATLAB were used. On the other hand, Pace and Barry (1996) were able to work with matrices of, approximately, order $20,000 \times 20,000$.
 ${ }^{4}$ Given appropriate conditions the maximum likelihood estimator should be consistent and asymptotically normally distributed. However, to the best of our knowledge, formal results establishing these properties for spatial models of the sort considered here under a specific set of low level assumptions do not seem to be available in the literature; cp. Kelejian and Prucha (1995) on this point.

[^3]: ${ }^{5}$ In principle we could have different instrument matrices for the first and third step of the estimation procedure discussed below, but this would further complicate our notation without expanding the results in an essential way.

[^4]: ${ }^{6}$ We note that, in general, the elements of $\left(I-\lambda W_{n}\right)^{-1}$ and $\left(I-\rho M_{n}\right)^{-1}$ will depend on the sample size n, even if the elements of W_{n} and M_{n} do not depend on n. Consequently, in general, the elements of y_{n} and u_{n} will also depend on n, and thus form a triangular array, even in the case where the innovations $\varepsilon_{i, n}$ do not depend on n.

[^5]: ${ }^{7}$ This follows from the following fact: Let A_{n} and B_{n} be matrices which are conformable for multiplication and whose row and column sums are uniformly bounded in absolute value. Then the row and column sums of $A_{n} B_{n}$ are also uniformly bounded in absolute value - see, e.g., Kelejian and Prucha (1995).
 ${ }^{8}$ If all eigenvalues of W_{n} are less than or equal to one in absolute value, then $|\lambda|<1$ implies that all eigenvalues of λW_{n} are less than one in absolute value. This in turn ensures that $\left(I-\lambda W_{n}\right)^{-1}=\sum_{i=0}^{\infty} \lambda^{i} W_{n}^{i}-$ see, e.g., Horn and Johnson (1985, pp. 296-301). The claim that all eigenvalues of W_{n} are less than or equal to one in absolute value, given W_{n} is row normalized, follows from Geršgorin's theorem - see, e.g., Horn and Johnson (1985, p. 344).

[^6]: ${ }^{9}$ While we believe that our suggestion for selecting instruments is reasonable, permitting other instruments would not affect the subsequent analysis in any essential way.

[^7]: ${ }^{10}$ Of course, if no spatially lagged dependent variable is present in (1) we can estimate the model in the first and third steps by ordinary least squares; in this case the estimator computed in the third step would be the feasible generalized least squares estimator.

[^8]: ${ }^{11}$ All sums are taken over $i=1, \ldots, n$.

