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Abstract. In this article, we propose a global assignment theory for encoding state graph transformations. A con- 

straint satisfaction framework is proposed that can guarantee necessary and sufficient conditions for a state graph 

assignment to result in a transformed state graph that is free of critical races. Performing transformations at the 

state graph level has the advantage that the requirements imposed on the initial STG are very weak. Unlike previous 

methods, the initial STG need not be a live, safe, nor a free choice net. The only requirement is that the correspond- 

ing initial state graph is finite, connected, and has a consistent state assignment. Hence, a very broad range of signal 

transition graphs can be synthesized. The transformations achievable using the proposed framework correspond to 

very complex transformations on signal transition graphs. Even transformations that convert a free choice net into 

a correct non-free choice net and a 1-safe net into a correct 2-safe net are feasible. Addition of transitions that do 

not follow the Petri net firing rule is also possible. Even though our method can search a large solution space, we 

will show that it is possible to solve the problem in an exact way in acceptable CPU times in many practical cases. 

1. Introduction 

Automatic synthesis of asynchronous control circuitry 

is rapidly gaining recognition as a pivotal problem. This 

is partly driven by system-level design issues, power 

consumption issues, and recent technological develop- 

ments. The goal in this research is to address the asyn- 

chronous synthesis problem from a general Signal Tran- 

sition Graph (STG) formalism that can model multiple 

transitions, concurrency, conflict (or choices), and se- 

quencing. The STG formalism is a nice specification 

methodology for those types of asynchronous con- 

trollers for which it is natural to reason on signal tran- 

sitions instead of signal levels. Examples are a.o. FIFO- 

controllers [1], controllers in signal processing chips 

and handshake circuits [2]. 

*Research supported by the ESPRIT 2260 (SPRITE) program of 
the EC. 

Current synthesis techniques can be broadly taxono- 

mized into two categories: those that work at the signal 

transition graph level and those that work at the state 

graph level. These techniques are aimed at satisfying 

the so-called complete state coding (CSC) requirement 

[1] so that hazard-free logic may be derived [3], [4]. 

At the signal transition graph level techniques have been 

previously developed for transforming an STG to satisfy 

the state coding requirements [5], [6]. This technique 

is only valid for a limited class of Petri nets (live-safe 

marked graphs [7]). The method proposed in this article 

can handle a much broader class of Petri nets. Transfor- 

mations at STG level currently can only guarantee suf- 

ficient conditions with respect to the state coding. 

Moreover, it is difficult to determine at the signal tran- 

sition graph level how new signals should be added to 

the STG. Consequently it is difficult to come up with 

a solution with a minimal number of newly added 

signals. On the other hand, [5] is able to perform 
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transformations that reduce the concurrency of the ini- 

tial STG. This is currently not possible in our method. 

Lavagno et al. [8] have recently proposed to solve 

the state coding probem at the state graph level by 

mapping an initial state graph into a flow table synthesis 

problem. The state coding problem is then solved by 

using flow table minimization and state assignment 

methods [3], [9]. This method only handles a restricted 

class of Petri nets namely live-safe free choice nets [7]. 

They have shown that the solutions achievable in their 

framework correspond only to a restricted class of sig- 

nal transition graph transformations. Even within these 

restrictions they only guarantee a sufficient condition 

for CSC-satisfaction. [10] also presents a methodology 

to satisfy CSC. This method only handles a restricted 

class of Petri nets (marked graphs) [7]. There are also 

severe limitations on the transformations possible in this 

framework. And finally no exact solution to the prob- 

lem is proposed. They eliminate CSC-violadons 

through iteration of the encoding procedure. 

In this article, we propose a global assignment 

theory for encoding state graph transformations. A 

transformation on the state graph will be represented 

by a generalized assignment on the state graph. We pre- 

sent a constraint satisfaction framework that can guar- 

antee necessary and sufficient conditions for a state 

graph assignment to result in a transformed state graph 

that satisfies the complete state coding requirement. 

Necessary means that within certain restrictions (cfr. 

Section 3.2) any transformation can be performed in 

this framework. Performing Wansformations at the state 

graph level has the advantage that the requirements im- 

posed on the initial STG are very weak. Unlike previous 

methods, the initial STG need not be a live, safe, nor 

a free choice net. The only requirement is that the cor- 

responding initial state graph is finite, connected, and 

has a consistent state assignment (cfr. Section 3.1). 

Hence, a very broad range of signal transition graphs 

can be synthesized. The transformations achievable 

using the proposed framework correspond to very com- 

plex transformations on signal transition graphs. Even 

transformations that convert a free choice net into a cor- 

rect non-free choice net and a 1-safe net into a correct 

2-safe net are feasible. It is also possible to add transi- 

tions that do not follow the Petri net firing rule [11]. 

Even though our method can search a .large solution 

space, we will show that it is possible to solve the prob- 

lem in an exact way in acceptable CPU times in many 

practical cases. 

The STG formalism is not the only specification 

methodology for asynchronous circuits. CSP (commu- 

nicating sequential processes) provides a model for 

asynchronous circuits illustrated with algebraic laws. 

The interpretation of different statements is based on 

trace theory. Concurrent programming languages such 

as CSP generally impose a series/parallel graph struc- 

ture on the description which is sometimes too restric- 

tive for speed-independent circuits. Although the 

synthesis methods are theoretically well-founded, com- 

pleteness of either the requirements to satisfy nor of 

the transformations that satisfy the requirements have 

been shown. The synthesis methods proposed in this 

area are all rnle-based. 

The FSM-model is a well-known model to design 

asynchronous controllers. In our opinion, this model 

has two basic deficiencies. The model dictates that at 

each instant the system must be in only one state. It 

cannot therefore describe concurrent operations in a 

direct and succinct way. The basic items the model 

works with are signal levels. This is not appropriate 

for many applications, especially when time is involved. 

Numerous techniques have been proposed to come up 

with state assignment techniques that guarantee a race- 

free implementation. Each technique has its own limita- 

tions so that only a small part of the solution space is 

covered. 

The remainder of this article is organized as follows. 

In the next section, working notations and terminology 

are explained. In this section, our definition of equiva- 

lent state graphs is explained and a notion of consis- 

tent state assignment is introduced. In Section 3, our 

formulation of the global problem is presented, which 

is based on a generalized state assignment on the state 

graph. A procedure is given for deriving a new encoded 

state graph from a given generalized state assignment. 

In this section, necessary and sufficient conditions are 

given for a generalized state graph assignment to result 

in a new state graph that satisfies the consistent state 

assignment property and the semi-modularity condi- 

tion. These conditions guarantee the existence of a new 

state graph. Additional conditions are required on the 

state assignment to ensure CSC satisfaction. The nec- 

essary and sufficient conditions to ensure the CSC 

property are given in Section 4. In Section 5, several 

examples are shown to illustrate the power of the frame- 

work. In Section 6, we show how the necessary and 

sufficient conditions given in Sections 3 and 4 can be 

solved efficiently using a Boolean constraints satisfac- 

tion framework. Specifically, the conditions can be 

reduced to Boolean constraints where known Boolean 

satisfiability algorithms can be employed. This Boolean 

constraints satisfaction framework is very general in the 
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sense that new constraints can be easily incorporated. 

Experimental results are given in Section 7. Finally, 

concluding remarks are given in Section 8. 

2. Notations and Terminology 

Signal Transition Graphs (STG) [1] are used to specify 

the behavior of asynchronous digital control circuits. 

The vertices of such a graph represent the rising and 

falling transitions of the signals of a control circuit, s + 

denotes an up-transition, s7 denotes a down-transition 

and s~ denotes any transition of si. 

An STG is a Petri net E [7] represented by the 

4-tuple r~ = <p, T, F, m0>. T is the set of transitions 

(as described above), P is the set of places and F is 

called the flow relation F c (p x T) U (T x P). mo 

is the set of tokens which represents the initial state 

of the system. S denotes the set of all signals in the STG. 

SN1 ~ S denotes the set of all non-input signals for 

which logic is to be generated. 

A transition t is said to be enabled in a state (or 

marking) m in an STG if all the input places of t carry 

a token in marking m. This is denoted by re[t>. The 

transformation of m into m' by firing a transition t is 

denoted by m[t>m' or by m' = ~(m, t) with ~ a partial 

function: M s x T -* M s. Ms denotes the set of all 

states (markings). This is done by removing all tokens 

from the input places of t and placing them in the out- 

put places of t. A state graph ~b can be derived from 

r~ by using the firing rule above. �9 is denoted by the 

triple (Ms,  T, 8>. a represents a sequence of transi- 

tions. The transformation ofm into m'  by firing the se- 

quence of transitions a is denoted by m[a>m' or by 

m ' =  ~(m, a). 

A transition t is called semi-modular if and only if 

vm,  m '  E Ms : m[t> A ~t' ~ t : m[t '>m' ~ m'[t> 

Two transitions are said to be concurrent (tl 11 t2) if 

and only if there exists a state, reachable from the ini- 

tial state, in which both transitions are enabled and both 

transitions are semi-modular. 

A binary vector <re(l) . . . . .  re(n)> of signal values 

is assigned to every state in the state graph according 

to the signals {sl, s2 . . . . .  sn}. 

Definition 2.1. (State assignment) m '  = ~(m, t) 

�9 if t = s + then re(i) = 0 and m'(i)  = 1. 

�9 if t = s/- then m(i) = 1 and m'( i )  = O. 

�9 else m'( i )  = m(i) .  

These vectors that are in fact the code assigned to the 

states are used to derive the logic from the STG and 

state graph. 

Definition 2.2. (Consistent state assignmenO If the 

states can be encoded according to the rules given in 

Definition 2.1, the state graph is said to have a consis- 

tent state assignment. 

This intuitively means that up- and down-transitions 

have to alternate in the state graph. 

Chu has proven the following fundamental theorem 

[1]: 

Trmom~r~ 2.1. One can derive logic equations from �9 iff 

Win, m '  E M s : 3k : re(k) ~ m'(k)V 

Vs, E SNt : m[s~> ~ m'[s;> 

The state graph is said to satisfy the Complete State 

Coding (CSC) requirement if and only if the state graph 

satisfies Theorem 2.1. According to Theorem 2.1 the 

CSC requirement is the necessary and sufficient re- 

quirement that should be satisfied before hazard-free 

logic equations may be derived from the state graph. 

Most of the state graphs specifying the behavior of asyn- 

chronous circuits will not satisfy the CSC-property. 

Therefore a transformation should be performed on the 

initial STG in order to satisfy the CSC-requirement. 

So it may be necessary to add new signals to the STG. 

These new signals will be called state signals. The tran- 

sitions of the state signals are not observable for the 

environment. The set of transitions of state signals is 

denoted by Trcobs (the set of non-observable signals). 

2.1. Equivalent State Graphs 

In this section the condition will be defined under which 

two state graphs are equivalent. Two state graphs are 

equivalent if the environment that observes the state 

graphs cannot distinguish them. So from the viewpoint 

of the environment the two state graphs have exactly 

the same behavior. 

The set of transitions T of a state graph cI, can be 

partitioned into three subsets. The set of transitions of 

input signals 7"i, the set of transitions of output signals 

To and the set of transitions of non-observable signals 

Tnob,. For the set {TI U To} (the set of observable 

signals) we will also use the notation Tobs. 

Non-observable signals are signals that are not 

observed by the environment. They are internal signals 
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Fig. 1. Two equivalent state graphs. 

of the circuit which are only there to satisfy certain re- 

quirements like the CSC requirement. So transitions 

of non-observable signals are to be ignored when check- 

ing the equivalency of two state graphs. This will be 

taken into account in the definition of equivalency. 

First the restriction of a firing sequence is defined 

in [12] to be able to filter out non-observable transi- 

tions. Next the language that is accepted by a state graph 

is defined [13]. Finally equivalency of state graphs is 

defined [13]. 

Definition 2.3. (The restriction of  a f iring sequence) 

a ~ T*, T1 C 72. 

(at) ~T 1 = ~[Tl t  if  t ~ T1 

= (tr [T1)t if t E TI 

a IT I is the restriction of tr onto the set T I. 

For example let T1 = {tl, t2, t3}. Then (t3t2t4tlt4) ~T 1 

=- (t3t2tl). 

Definition 2.5. (Equivalent state graphs) ,b and ,b ' are 

said to be equivalent iff 

An example of two equivalent state graphs is shown in 

figure 1. For the first state graph we have: ~3(~) = 

{tit2}. The set of firing sequences accepted by ~ '  is 

{tlt2t3, t3tlt2}. Because t3 is a non-observable transi- 

tion it has to be filtered out. (tlt2t3) [{tlt2} = tg2 and 

(t3tlt2) ['{tlt2} = tit2. So s  = {tit2}. Note that the 

two state graphs are structurally different, so equiva- 

lence of state graphs is not a trivial property. It does 

not reduce to graph-isomorphism. This is known as ex- 

tensional equality. 

3. A Global Assignment Technique for State Graphs 

3.1. The Problem Formulation 

Definition 2.4. (The language accepted by ,b) 

J3(~) = {a E T* : too[a)} 

17"1 = r *  : 

The language accepted by ~ is the set of all firing se- 

quences (also called strings [131 or traces [12]) that start- 

hag from the initial state lead to a valid state. The restric- 

tion operator is also defined for a set of firing sequences 

in the same manner. 

The following definition states that two state graphs 

are equivalent iff they accept the same language when 

it is restricted to the observable transitions. 

Several synthesis-methods have been proposed [5], [6], 

[8], [10]. The method proposed in [5] directly trans- 

forms the initial STG ~ into a new STG r~' without in- 

vestigating the state graph ~. This has the advantage 

that the state graph does not have to be generated. It 

is known that the state graph may explode for even 

moderate sized STGs. 

The method proposed by Lavagno et al. [8] and 

Kondratyev [10] derive information from the initial 

state graph q~ to transform ~ into ~'. In this article we 

propose a method where the initial state graph q~ is 

transformed directly into ~ '  without generating the new 

STG for �9 '. Obviously the new state graph q~' should 
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satisfy a number of requirements. These are stated in 

the following problem formulation: 

Problem 3.1. Given a finite connected state graph �9 = 

(Ms, T, 6) with a consistent state assignment 

(possibly derived from an STG I~), derive a new ~ '  = 

(MJ, T', 8') that satisfies the following requirements: 

�9 ~ '  is equivalent to ~. 

�9 ~ '  has a consistent state assignment. 

�9 ~ '  satisfies the CSC requirement. 

�9 Every transition that is semi-modular in ~ should be 

semi-modular in ~ '  and every newly added transition 

should be semi-modular. 

We assume that �9 only contains observable signals and 

that the signals added to generate ~ '  are all non- 

observable. Every time MJ, T' or 8' is used in this 

article we refer to the new state graph that is to be 

generated. 

Note that the only requirement for the initial state 

graph is to be finite and connected and to have a con- 

sistent state assignment. So the STG from which the 

state graph is derived needs not be a live net, nor a 

safe net nor a free-choice net. 

The procedure to derive a transformed state graph 

�9 ' is the following. First the initial state graph �9 will 

be derived from the STG I;. Then an assignment will 

be done on the state graph ff~. This technique will assign 

for each state signal sk to be added and for each state 

in the original state graph one item out of the set {0, 1, 

up, down} to m(k). Based on that assignment the new 

state graph ~ '  can be derived from ~. For that purpose 

a translation procedure will be defined in Section 3.3. 

With the following example we want to give a flavor 

of the method that is explained in a more theoretical 

way in the next sections. The initial STG is shown in 

figure 2(a) and the state graph derived from the initial 

STG is shown in figure 2(b). The states ms and m5 

violate the CSC-property. They are both assigned the 

same code, but different transitions of output signals 

are enabled in these states. So a new state graph should 

be derived that satisfies the CSC-requirement and the 

other requirements stated in Problem 3.1. So an assign- 

ment has been done on the state graph. Based on that 

assignment a new state graph shown in figure 2(c) is 

derived. For the exact translation procedure we refer 

to Section 3.3. The assignment of down to state ml in- 

tuitively means that there will be two states in the new 

state graph (nl and n[) related to ml. This relation, the 

cover-relation is defined in Section 3.3. All these rela- 

tions are indicated in the figure by the thin lines with 

arcs on both sides. Between the two states nl and n[ 

there will be a down-transition of the state signal that 

will be added to the graph. An assignment of a 0 to 

SO+ Sl + 

, , , / ,  
SO- 

l 

(a) 

(c) 

F/g. 2. The initial STG (a) the state graph with assignment Co) and the new stato graph (c). 
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the state m3 means that all states in the new state graph 

that are related to m3 (n3) will be encoded 0 by the 

state signal. 

Because m 3 and m 5 violate the CSC-property the 

assignment of a 0 to m 3 and of a 1 to m 5 makes sure 

that this problem is circumvented for the new state 

graph. For the necessary and sufficient relations for 

the assignment to produce a new state graph that satis- 

fies CSC, we refer to Section 4. 

It is obvious that not any assignment on the state 

graph will produce a new state graph that satisfies all 

the requirements stated in Problem 3.1. They will be 

presented in Section 3.4. 

3.2. The Restrictions 

The method proposed in this article has two restrictions. 

The first restriction is due to our definition of equiva- 

lency of state graphs. When deriving ~ '  from ~ no con- 

currency may be reduced. Transitions that are concur- 

rent in ~ should also be concurrent in ~', else ~, and 

�9 ' are not equivalent. Reducing concurrency intuitively 

means that certain states, that are present in the original 

state graph, will not have any state in the new state 

graph related to them. Currently we cannot express 

such a situation in our framework. It is the subject of 

current research. 

The second restriction is caused by the method itself. 

If  two transitions of state signals (newly added signals) 

fire directly after each other in the state graph, they 

have to be concurrent. The reason why will be ex- 

plained at the end of Section 3.3. 

Restriction 3.1. 

vt, t ' E T : tl[t' in ~ = tilt '  in ~ '  (1) 

m~[att 'a ' )  with t, t '  E T~obs ~ tilt '  (2) 

Note that the methods presented in [8] and [10] also 

have these restrictions (among other restrictions). 

3.3. The Procedure to Derive ~' f rom 

In this section we formally define the procedure to 

translate the original state graph with assignment into 

a new state graph ~'. 

The number of signals that are present in the original 

state graph �9 will be denoted by n. The number of 

signals that are present in the ~ '  will be denoted by 

q. q equals n augmented with the number of state 

signals added to �9 to generate ~'. Every signal will be 

represented by Sk. If 0 <_ k < n it is a signal present 

in the original state graph. I f  n _< k < q it is a state 

signal. In our formulation we assume that the number 

of state signals to be added is fixed in advance. In Sec- 

tion 7 it is explained how this formulation then can be 

transformed into an optimization problem (minimizing 

the number of state signals). 

m(k) corresponds to the code assigned by signal Sk 

to state m in �9 with 0 < k < n (see Definition 2.1). 

m(k) with n _< k < q corresponds to the assignment 

of an item out of the set {0, 1, up, down} to state m 

for state signal sk. 

State ml in figure 3 is assigned ~00downdown ). 00 

corresponds to the assignment of signals present in the 

initial state graph (So, si). downdown is the assignment 

for the state signals s2 and s3. The state graph will be 

expanded for each state signal. 

First we will present the procedure Expand, shown 

in figure 4, that constructs ~ '  from ~ with an assign- 

ment, if there is only one state signal present. The first 

part of Expand defines the splitting of states when the 

state is assigned an up or a down. The second part 

defines how all the new states are related when firing 

transitions present in the old state graph. 

The procedure Derive-new-state-graph, which 

makes use of procedure Expand, constructs ~,' when 

there is more than one state signal. This is shown in 

figure 5. 

In the first part of the procedure Expand three rela- 

tions will be defined that relate each state in the new 

state graph ~ '  to each state in the old state graph ~. 

These three relations are ~- (the cover relation), after 

and before. The relations before and after are only used 

in the second part of Expand. The cover relation is used 

throughout the article. In procedure Derive-new-state- 

graph the cover-relation is defined when there is more 

than one state signal. 

Definition 3.L (Cover-relation) 

V m E ~ , u  ~ - m i f f { a ~ T * l n [ v ) }  [Tobs= 

{a ~ ~*lm[a>} 

The before and after relations are only valid when only 

one new state signal is added to the state graph. This 

is in fact the cause of the second restriction as will be 

explained at the end of this section. 

Definition 3. 2. (Before-relation) 

Ym E &, Yn E &' :  n = before(m) i f fn  ~- m A "~ ([s~)n) 



A Generalized State Assignment Theory for Transformations on Signal Transition Graphs 107 

sO+ s l +  

\ /  
SO- 

L 

~ ml ~ ,  ~ : w n  down) 

10 m2(downO) 01 m3(O0) 

11 m4 (up O) 

(a) 

~ 1  nl (down) 
' 

101 n2(O) 000 nl' (down) 
/ \ s , §  
/ so§ ,~ 

100 n2' (01 010 n3 (0) 

.\Zo. 
110 n4 (0) 

111 n4' (0) 

~ 1 n5 (up) 

sl- 

(c) 

(b) 

0010 pl' 0001 pl" 

1000 p2 0000 pl" 

1000 p2' 0100 p3 

1100 p4 

1l s2+ 

111o p4' 

01i0 1~ 

s3+ 

otll  ps" 

J sl- 

(d) 

Fig. 3. The STG (a) the state graph with assignment and the expansion steps (c) and (d). 

Definition 3.3. (After-relation) 

Vm E ~,  Vn E ~ '  : n = after(m) iff n ~- m A -'1 (n[s~)) 

An example is presented in figure 3. The initial STG 

is presented together with the initial state graph derived 

from the STG. On this state graph an assignment has 

been done for two state signals (s2 and s3). In figure 

3(c) the state graph is shown after applying the proce- 

dure Expand for the signal s 2. This is what is defined 

in the first part of  Expand. 

m1(2 ) = down ~ n 1 ~- ml and n~ ~- ml 

and n~ = 8 ' (nl ,  s~'). 

m2(2 ) = down = r/2 ~- m 2 and n~ ~- m 2 

and n~ = 8'(n2, s{).  
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Rxpand (O, si) { 
FfREAClt (m E M s )  { 

i (m(i) = { 

add ne. states m',m" to 4'; 

m' = before(m); m" = after(m); 

m' ).- m; m" ).- m; 

m " =  6 ' ( m ' , s + ) ;  m'(k) = 0; m " ( k )  = 1;} 

if ( m ( i ) =  down) { 

add no, states m t , m  # to ~ ' ;  

m' = before(m); m" = af fer(m);  

m' >- m; m" >- m; 

m " =  5 ' (m ' , s~ - ) ;  m'(k) = 1; m"(k)  = 0;}  

if (m(i)  = OVm(i )  = 1) { 

add he. state m' to 4'; 

m' = before(m) = af ter(m);  

m'(k) = re( i ) ;  m' >- m ; }  } 

FOREACH ( m l  6 M s )  { 

FOREACH (m2 = 6 ( m l , t ) )  { 

i f ( m l ( i )  = up A m~(i) = upV 

m l ( i )  -- down A m~.(i) = d o . n )  { 

before(m .) = e(before(m  ),t); 
after(m2) = 6 ' (a f ter(ml) , t ) ;  } 

else 

before(m2) -- 6 ' (a f t e r (ml ) , t ) ; }  } } 

FOREACH ( m  6 M s )  

FOREACH (m ' ) . -  m )  

f o r  ( i = 0 ; i < n ; i + + )  

m'(i) = m(i ) ;  

r e t u r n  (~'); } 

Fig. 4. The Expand algorithm. 

D e r i v e - n e , - s t a t e - g r a p h  ( 0 ,  q){  

dido = 0; 

"for ( i = n ; i < q ; i + + )  { 

~' = Ezpand(old~, sl); 

FOREACH ( m  in old4){  

FOREACII ( m '  i n  4 '  : m '  ).- m i n  oldO){ 

f o r  ( j = i + l ; i <  q ; j + + )  

m'(j )  = re ( j ) ;  

FOREACH (m" in 4 : m >- m" in 0) 

m ' > - m "  i n  4 ; } }  

old~ = ~'  ; } 

r e t u r n  ( ~ ' )  ; } 

Fig. 5. The algorithm for deriving the new stat~ graph. 

This is what is defined in the second part  of  Expand. 

m1(2)-= down A m2(2) = down = n2 = ~ '(nl ,  sd-) 

and n~ = 6 '(n[ ,  s~'). 

m2(2 ) = down A m4(2 ) = Up = n 4 = ~5'(n~, s~-). 

During this first expansion of �9 the assignment for the 

signal s 3 has been transferred to ~'. Every state in O'  

has the same assignment as the state it covers in O. Now 

the second expansion for the signal s 3 can be done 

resulting in figure 3(d). This is the final state graph. 

Derive-new-state-graph also states for instance that 

Pl }- ml, p~ }- ml, p~' }- ml a n d p l  m }- ml. 

Now it also becomes clear why there is the second 

restriction on the method (Section 3.2). Assume that 

So and sl are state signals. We want to express the fol- 

lowing: ml[s~)rn~[s~) in the new state graph, m 1 and 

m2 should cover the same state in the old state graph 

(there is no transition of a signal already present in the 

old state graph in between). Let this state covered by 

m 1 and m2 be m. The only way to express the above 

situation would be m(0) = u p and re(l) = u p. I f  we 

follow the above procedure this means that beside the 

wanted situation ml[sff)m~[s + ) we also have the situa- 

tion ml[s~)m3[s~). So sd- and s~" are concurrent 

under these circumstances. 

3.4. Necessary and Sufficient Requirements for 

Correctness 

The state graph ~ '  derived f rom �9 should satisfy the 

requirements stated in Problem 3.1. The following the- 

orems provide us with the necessary and sufficient 

requirements the assignment on the state graph should 

satisfy in order that 4 '  satisfies the requirements stated 

in Problem 3.1. In all these theorems we assume that 

some assignment is performed on the graph and that 

O '  is derived according to the procedures above. For 

the proofs of  the theorems, we refer to [14]. 

The following theorem states that �9 and ~ '  are 

equivalent. 

THEO~M 3.1. ~ ( O ' )  [Tob s = .~(0) 

Definition 3.4. mi, mj E MS, n <_ k < q 

arc (mi, mj, k) = 0 if  (mi(k) = 0 A mj(k) = 1) 

= 0 if (mi(k) = 0 A mj(k) = down) 

= 0 i f ( m  i(k) = 1 Amj(k) = O) 

= 0 if (mi(k) = 1 A mj(k) = up) 

= 0 if (mi(k) = up A mj(k) = O) 

= 0 if (mi(k) = down A mj(k) = 1) 

= 1 in all other cases (3) 



A Generalized State Assignment Theory for Transformations on Signal Transition Graphs 109 

m2 

rnl ml UP 

UP m2 m3 UP UP m2 3 DOWN 

k'<,t ' ) .  
DOWN 

(hi (el 

Fig. 6. The rules for a valid assignment. 

This definition is introduced because it indicates what 

assignments are not allowed on two states when there 

is an arc between these two states. The ones that are 

not allowed are shown in figure 6(a). Intuitively ml(k) 

= 0 and m2(k) = 1 is not allowed because there has 

to be an up-transition of the signal sk in one of  the 

states covering ml or m 2. The assignment of  0 to ml 

and down to m2 is impossible. Intuitively this would 

mean that the state signal is at level 0 in one state and 

should go down in a next state. This corresponds to 

an inconsistent state assignment. The other cases are 

analogous. 

THROREM 3.2. ~ '  has a consistent state assignment iff (I, 

has a consistent state assignment and Vk, n _< k < q: 

Vm, m '  E Ms : m '  = 8(m, t) ~ arc(m, m' ,  k) (4) 

The transitions of the newly added signals (the state 

signals) should be semi-modular. The following theo- 

rem explains that this is the case if  the conditions of 

the previous theorem are satisfied. 

TH~.oRE~ 3.3. I f  the conditions of the previous theorem 

are satisfied then every transition of every state signal 

is semi-modular. 

The following theorem provides us with the neces- 

sary and sufficient requirements such that all transitions 

that are semi-modular in the old state graph remain 

semi-modular in the new state graph. These rules are 

shown in figure 6(b) and (c). I f  m2 and m3 are assigned 

u p then m 4 should be assigned u p. I f  rn~ and m3 are 

assigned up and down,  then ml and m4 should be 

assigned different items. 

THEOREM 3.4. I f  t is semi-modular in m in �9 and ~ '  

has a consistent state assignment then t is semi-modular 

in each state covering m iffVk, n _< k < q : Yml, m2, 

m 3, m 4 E Ms: 

((mi[tl)rn2) A (ml[t2>m3) A (rr~[t2)m4) A (m3[tl>m4)): 

(m2(k) = up A m3(k) = down) m m4(k) ~ m](k ) 

(5) 

(m~(k) = up A m3(k) = up) m m4(k ) = up (6) 

(ra~(k) = down A m3(k) = down) ~ m4(k ) = down 

(7) 

4. Necessary and Sufficient Relations for 

CSC-Satisfact ion 

In this section the necessary and sufficient requirements 

for an assignment to result in a state graph ~ '  with the 

CSC property will be given. We first need two defini- 

tions to lighten the notational burden. 

Definition 4.L m, m'  E M s, n <_ k < q 

diff(m, m' ,  k) = 1 if (m(k) = 0 A m'(k)  = 1) 

= 1 i f (m(k)  = 1 A m ' ( k )  = O) 

= 0 in all other cases (8) 

diff(m, m', k) expresses that the state signal sk gives 

a code 0 to all the new states that cover m and a code 1 

to all the new states that cover m '  (or vice versa). 

Definition 4.2. m, 

cond(m, m' ,  k) = 

m ' E M s ,  n <_ k < q 

1 if  (m(k) = 0 A m'(k)  = u p) 

1 if (m(k) = 1 A m'(k)  = down) 

1 if  (m(k) = up A m'(k)  = down) 

1 if  (m(k) = up ^ m'(k)  = O) 

1 if  (m(k) = down ^ m'(k)  = 1) 

1 if (m(k) = down A m'(k)  = up) 

0 in all other cases (9) 

cond(m, m', k) expresses that there exists a state m" 

that covers m and a state m '= that covers m '  that satisfy 

the following condition: i f  m" and m "  are assigned the 

same code, then the CSC condition will be violated for 

the state signal Sk (it will have a transition enabled in 

one state and not in the other state). 



110 Vanbekbergen, Lin, Goossens, and de Man 

Definition 4.3. (USC-violation-relation) 

(m, m ' )  E U :  M s • Ms if f  

Vk, O < k < n : m(k) = m'(k)  

Definition 4.4. (CSC-violation-relation) 

(m, m ' )  E E : M s x Ms i f f  

(Vk, 0 < k < n :m(k)  = m'(k))  A 

(:IS k E SNI : m[s k) A -7(m'[s~))) 

Tm~O]U~M 4.1. (CSC-satisfaction) ~ '  will satisfy the 

CSC condition iff 

V(m, m ' )  E E : ~k, n _< k < q : diff(m, m' ,  k) and 

(10) 

V ( m , m ' ) E  U :  ~k ,n_<  k < q : c o n d ( m , m ' , k )  = 

~l # k, n _< l < q : diff(m, m' ,  l) (11) 

Let us look at the example of  figure 7. So is an out- 

put signal and sl is an input signal. In the state graph 

there are two states that should be encoded differently 

according to the CSC-condition, namely m o and m 4. 

m 4 enables a transition of  the output signal So and mo 

does not. So a state signal should be added that encodes 

these two states differently. This is expressed in relation 

10. States mo and m2 should not be encoded differently 

sOs1 s2 

O0 mO 0 

J sl.._~+ 

01 ml  0 

1 s1~. 

O0 m2 up 

I s1. + 

01 m3 1 

O0 m4 1 

J sO+ 

10 m5 1 

i s1. + 

11 m6 down 

sl-- 

10 m7 0 

sOs1 s2 

00~0 nO 

sl+ 

010 nl 

I s1 L" 

000 n2 

I s2+ 

001 n2' 

I s1. + 

011 n3 

[ s1.~- 

001 n4 

I sO+ 

101 n5 

J sl._~+ 

111 n6 

s2- 

110 n6' 

1 sl- 

100 n7 

~ sO- 

sOs1 s2 s3 

0 mO 0 o 

sl+ 

01 ml  0 up 

J sl.~.- 

O0 m2 up 1 

I s1+ 

01 m3 1 down 

[ sl.~.- 

O0 m4 1 0 

sO+ 

10 m5 1 0 

11 m6 

sl-- 

10 m7 

U sO- 

down 0 

0 0 

(a)  (b )  (c)  

F/g. 7. The original state graph with assignment (a), the new state graph Co) and an assignment that satisfies the CSC-requirement. 
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according to the CSC-condition. The assignment on the 

state graph will make sure that the state signal s2 will 

encode all the states covering m 4 and m 0 differently 

(namely no and n4 in figure 70a)). But in figure 7(b), 

a new CSC-violation has been introduced between the 

states no and n2. This violation can also be checked on 

the original state graph with the assignment (figure 

7(a)). A 0 and an up were assigned to two states (m0 

and m2) that were assigned the same code by signals 

in the original STG. I f  this is the case another state 

signal should be added to solve this conflict (not shown 

in the figure). This is expressed in Equation 11. Note 

that this problem is formulated in a global way and that 

the synthesis process will not try to resolve conflicts 

in a step by step manner. This was only done in this 

paragraph for demonstrative purposes. 

The same example, but now fully worked out, is 

shown in figure 7(c). The reader can check that now 

the CSC-requirement is satisfied. It is of course possi- 

ble to add state signals with multiple transitions. An 

example is presented in [14]. 

5. Examples 

The purpose of this section is to show how powerful this 

state assignment technique can be. The examples dem- 

onstrate that transformations can be performed that are 

conceptually difficult to do at STG-level. Free choice 

nets [7] can be transformed into non-free choice nets. 

1-safe marked graphs [7] can be transformed into 2-safe 

marked graphs. Transitions may be added that do not 

follow the Petri net firing rule [ 11]. Still the transforma- 

tions are correct, according to the requirements stated 

in Section 3.1. An example is shown in figure 8. The 

state graph with a valid assignment is shown in figure 

8(b). The new STG that corresponds to this assignment 

is shown in figure 8(c). The transition s + can now be 

fired at the same time when the choice between t 3 and 

t6 is made. So this transformation technique is not 

limited to putting a new transition between two transi- 

tions that belong to the same conditional branch. The 

resulting net is not a free choice net any more. 

An initial 1-safe MG is shown in figure 9(a). The 

state graph with assignment is shown in figure 9(b). 

The STG that corresponds to this assignment is shown 

in figure 9(c). The arc pointing from s + to t 2 may con- 

tain two tokens (fire t3, s - ,  ts, s +). But still the trans- 

formation is correct. For other examples the reader is 

referred to [14]. 

6. Boolean Satisfiability Framework 

In this section, we present a Boolean satisfiability 

approach to the generalized state graph assignment 

t2 p 

t3 t 

t4 t7 

(a) (b) 

F/g. 8. Transforming a free choice net. 
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t4 t5 

,_) k~ 

(a) 

up 

(b) 

Fig. 9. Transforming a 1-safe MG into a 2-safe MG. 

(c) 

problem. Specifically, all the necessary and sufficient 

conditions expressed in Sections 3 and 4 can be trans- 

formed into Boolean constraints. The problem of check- 

ing whether CSC can be satisfied with l state signals 

now reduces to a Boolean satisfiability problem. The 

state graph assignment is obtained as a by-product from 

the satisfying Boolean assignment. 

The mapping to the Boolean satisfiability problem 

is done as follows. For each state m E Ms, l four-value 

variables are introduced. Each four-value variable can 

assume one of four possible assignments, namely {0, 1, 

up, down}. Each four-value variable is then encoded 

using two Boolean variables as follows: 

four-value bl b2 

0 0 0 

1 0 1 

up 1 0 

down 1 1 

Thus, in this formulation there are 2 • l x #M s 

Boolean variables, with l the number of state signals 

and #Ms the number of states in the original state 

graph (I,. The overall problem can be succinctly repre- 

sented using only three sets of constraints, namely 

1. the consistent state assignment constraints, 

2. the semi-modularity preservation constraints, and 

3. CSC-satisfaction constraints. 

Each is explained below. To lighten the equations, we 

will use f = g to mean f + g. It reads f implies g. 

6.1. Formulating the Constraints 

Consistent state assigmnent constraints: Let A = 

{(i, J)l my = ~(mi, t)}. A is simply the set of adjacent 

state pairs in the state graph ~. Let bnk, l and b,k,2 be 

the two Boolean variables encoding the k-th state signal 

of the n-th state in M s. Then the constraints to 

guarantee consistent state assignment, corresponding 

to Theorem 3.2, can be expressed as follows: 

H H (bik,1 + bik,2 + bjk,1 + bjk,2). 
(i,j)EA k=l 

H H (bik, 1 + bik.2 "~ bjk, l "~- bjk,2). 
(i,j)EA k=l  

I-I I'I (bik, l + bik,2 + bjk,1 + bjk,2). 
(i,j)EA k=l 

I I  1-I (bik,1 + bik,2 + ~)jk, l + bjk,2). 
(i,j)EA k= 1 

U H (bik,1 "~- bik,2 "~- bjk, l + bjk,2). 
(i,j)EA k=l 

H H (~gik, l -}- ~9ik,2 + bjk,1 + ~gjk,2)" 
(i,j)~A k= l 

This can be more efficiently rewritten as follows: 

l 

H H (bik,1 + bik,2 + bjk,2)(bik, l + bik,2 + bjk,2)" 
(i,j)EA k= 1 
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l 1 

I1 I1 (b=,, + + bj ., + I I  II  
(i,j)EA k=l (i,,/)EU k=l  

l 

H H (bik, I "~ bik,2 "q- bjk,1 nt- /Tjk,2)" 
(i,j)EA k= 1 

Semi-modularity preservation constraints: Let (p, 

q, r, s) be the set of states with the following relation- 

s h i p :  ((mp[tp)mq) A (mp[tq)mr) A (mq[tq)ms) A 
(mr[tp>ms)). Let I be the set of states satisfying this 

relationship. Then the following constraints must be 

satisfied to ensure the preservation of semi-modularity 

(note that only signal transitions that were semi-modu- 

lar in the original �9 need to be preserved, but semi- 

modularity per se is not required). 

l 

H H (bqk,'bqk,2brkAbrk,2 = (bsk,' (~ bpk, l) 
(p,q,r,s)El k= 1 

-t- (bsk,2 (~ bpk,2)), 

l 

H H (bqk, lbqk,2brk, lbrk,2 =:' bsk, lbsk,2)" 
(p,q,r,s)El k=l  

l 

H H (bqk, lbqk,2brk, lbrk,2 = bsk, lbsk,2)" 
(p,q,r,s)EI k= l  

This essentially corresponds to Theorem 3.4. 

CSC-satisfaction constraints: Let ~r = {(i, j)l(mi, 
my) E U} where U is the USC-violation relation as de- 

fined in Definition 4.3. Let/~ = {(i, j)l(mi, my) s E} 

where E is the CSC-violation relation as defined in 

Definition 4.4. 

The first set of constraints is intended to resolve state 

pairs that originally violated the CSC property. The 

constraints can be written as follows. 

l 

II  Z + 
(io)~F. kfl 

The second set of constraints is intended to resolve state 

pairs that originally violated the USC property. 

((bik, lbik,2bjk, lbjk,2 + bik, lbik,2bjk,lbjk,2 + bik, lf~ik,2bjk,2bjk,1 -I" 

bik, l blk,2bjk.lbjk,2 + bik, l bik,24k, l bjk,2 + bik, l bik,2bjk,2bjk,2) 

p=l,p•k 
( bip.l bip.2bjp.l bjp.2 + f~ip., bip.2bjp.l f~jp.2)) 

These constraints essentially correspond to Theorem 

4.1. 

62. Solving the Boolean Satisfiability Problem 

Given the constraints described above, we have to find 

a Boolean assignment to the variables bik,j that satis- 

fies all the constraints. This problem is known as the 

Boolean satisfiability problem. In [15], a branch-and- 

bound algorithm was proposed to solve the Boolean 

satisfiability problem in an exact way. Though the algo- 

rithm was originally intended for testing, it can also 

be used in this context. A variant of this approach was 

proposed in [16]. We have used this implementation and 

have been able to come up with a solution with over 

200 variables. This is sufficient to find an exact solu- 

tion in many practical cases. For larger examples, 

heuristics are currently being developed to come up 

with optimized solutions. It is known that the satisfia- 

bility problem is NP-hard, but at this moment it has 

not been proven that our problem is also NP-hard. Once 

a satisfying assignment is found, the Boolean assign- 

ments can be mapped back to the four-value set {0, 1, 

up, down}. Then the procedure Derive-new-state- 
graph described in figure 5 can be employed to derive 

the new state graph. 

7. Experimental Results 

Table 1 contains the experimental results. The first six 

examples are from the HP-benchmark [8] the following 

five examples are in-house examples. Not all these ex- 

amples are self-timed. Some of them contain timing 

constraints. The columns labeled n, T and Ms contain 

the number of initial signals, transitions and states. The 



114 Vanbekbergen, Lin, Goossens, and de Man 

Table 1. 

Name n T M s q - n CPU 

alloc-outbound 7 18 17 2 0.2 

mp-forward-pkt 7 14 20 1 0.1 

nak-pa 9 18 56 1 0.6 

rarn-read-sbuf 10 20 36 1 0.2 

sbuf-mm-write 10 20 58 2 1.6 

sbuf-read-ctl 6 12 15 1 0.1 

adfast 6 12 44 2 0.9 

I2C 2 68 90 2 0.5 

count 6 16 29 1 0.2 

postoffice 8 39 62 1 2.2 

column labeled state q - n contains the minimum num- 

ber of state signals needed to find a solution that satisfies 

CSC. The CPU-times for finding a satisfying assign- 

ment are indicated in the last column (in seconds on 

a DEC5000). 

8. Conclusion 

In this article, we proposed a global assignment theory 

for encoding state graph transformations. We presented 

a constraint satisfaction framework that can guarantee 

necessary and sufficient conditions for a state graph 

assignment to result in a transformed state graph that 

satisfies the complete state coding requirement. Neces- 

sary means that within certain restrictions (Section 3.2) 

any transformation can be performed in this framework. 

The initial STG need not be a live net, nor a safe net, 

nor a free choice net. The only requirement is that the 

state graph is finite, connected, and has a consistent 

state assignment (Section 3.1). Transformations that 

convert a free choice net into a non-free choice net and 

a I-safe net into a 2-safe net are feasible. It is even possi- 

ble to add transitions that do not follow the Petri net 

firing rule [11]. Even though our method can search 

a large solution space, we have shown that it is possible 

to solve the problem in an exact way in acceptable CPU 

times in many practical cases. 

The theory can be extended to avoid the current 

restrictions. The assignment set can be extended for 

that purpose. Finally it is known that even for moderate 

sized STGs the state graph may explode. When the state 

graphs become too large heuristics are needed to find 

optimized solutions. 

The technique proposed in this article minimizes the 

number of state signals to be added. Currently tech- 

niques are being developed to do an assignment in such 

a way that the logic derived from the state graph is 

minimized. 

The constraint framework is also being extended in 

such a way that certain timing constraints can be taken 

into account during synthesis. 

Finally the specification methodology is being ex- 

tended such that a broader class of circuits can be 

synthesized. 
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