
Journal of VLSI Signal Processing, 7. 101-115 (1994)
�9 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Generalized State Assignment Theory for Transformations

on Signal Transition Graphs*

PETER VANBEKBERGEN

IMEC Laboratory, Kapeldreef 75, B-3001 Leuven, Belgium

BILL LIN

IMEC Laboratory, Kapeldreef 75, B-3001 Leuven, Belgium

GERT GOOSSENS

IMEC Laboratory, Kapeldreef 75, B-3001 Leuven, Belgium

HUGO DE MAN

ESAT Laboratory, Katholieke Universiteit, K. Mercierlaan 94, B-3001, Leuven, Belgium

Received April 12, 1992; Revised November 23, 1992.

Abstract. In this article, we propose a global assignment theory for encoding state graph transformations. A con-

straint satisfaction framework is proposed that can guarantee necessary and sufficient conditions for a state graph

assignment to result in a transformed state graph that is free of critical races. Performing transformations at the

state graph level has the advantage that the requirements imposed on the initial STG are very weak. Unlike previous

methods, the initial STG need not be a live, safe, nor a free choice net. The only requirement is that the correspond-

ing initial state graph is finite, connected, and has a consistent state assignment. Hence, a very broad range of signal

transition graphs can be synthesized. The transformations achievable using the proposed framework correspond to

very complex transformations on signal transition graphs. Even transformations that convert a free choice net into

a correct non-free choice net and a 1-safe net into a correct 2-safe net are feasible. Addition of transitions that do

not follow the Petri net firing rule is also possible. Even though our method can search a large solution space, we

will show that it is possible to solve the problem in an exact way in acceptable CPU times in many practical cases.

1. Introduction

Automatic synthesis of asynchronous control circuitry

is rapidly gaining recognition as a pivotal problem. This

is partly driven by system-level design issues, power

consumption issues, and recent technological develop-

ments. The goal in this research is to address the asyn-

chronous synthesis problem from a general Signal Tran-

sition Graph (STG) formalism that can model multiple

transitions, concurrency, conflict (or choices), and se-

quencing. The STG formalism is a nice specification

methodology for those types of asynchronous con-

trollers for which it is natural to reason on signal tran-

sitions instead of signal levels. Examples are a.o. FIFO-

controllers [1], controllers in signal processing chips

and handshake circuits [2].

*Research supported by the ESPRIT 2260 (SPRITE) program of
the EC.

Current synthesis techniques can be broadly taxono-

mized into two categories: those that work at the signal

transition graph level and those that work at the state

graph level. These techniques are aimed at satisfying

the so-called complete state coding (CSC) requirement

[1] so that hazard-free logic may be derived [3], [4].

At the signal transition graph level techniques have been

previously developed for transforming an STG to satisfy

the state coding requirements [5], [6]. This technique

is only valid for a limited class of Petri nets (live-safe

marked graphs [7]). The method proposed in this article

can handle a much broader class of Petri nets. Transfor-

mations at STG level currently can only guarantee suf-

ficient conditions with respect to the state coding.

Moreover, it is difficult to determine at the signal tran-

sition graph level how new signals should be added to

the STG. Consequently it is difficult to come up with

a solution with a minimal number of newly added

signals. On the other hand, [5] is able to perform

102 Vanbekbergen, Lin, Goossens, and de Man

transformations that reduce the concurrency of the ini-

tial STG. This is currently not possible in our method.

Lavagno et al. [8] have recently proposed to solve

the state coding probem at the state graph level by

mapping an initial state graph into a flow table synthesis

problem. The state coding problem is then solved by

using flow table minimization and state assignment

methods [3], [9]. This method only handles a restricted

class of Petri nets namely live-safe free choice nets [7].

They have shown that the solutions achievable in their

framework correspond only to a restricted class of sig-

nal transition graph transformations. Even within these

restrictions they only guarantee a sufficient condition

for CSC-satisfaction. [10] also presents a methodology

to satisfy CSC. This method only handles a restricted

class of Petri nets (marked graphs) [7]. There are also

severe limitations on the transformations possible in this

framework. And finally no exact solution to the prob-

lem is proposed. They eliminate CSC-violadons

through iteration of the encoding procedure.

In this article, we propose a global assignment

theory for encoding state graph transformations. A

transformation on the state graph will be represented

by a generalized assignment on the state graph. We pre-

sent a constraint satisfaction framework that can guar-

antee necessary and sufficient conditions for a state

graph assignment to result in a transformed state graph

that satisfies the complete state coding requirement.

Necessary means that within certain restrictions (cfr.

Section 3.2) any transformation can be performed in

this framework. Performing Wansformations at the state

graph level has the advantage that the requirements im-

posed on the initial STG are very weak. Unlike previous

methods, the initial STG need not be a live, safe, nor

a free choice net. The only requirement is that the cor-

responding initial state graph is finite, connected, and

has a consistent state assignment (cfr. Section 3.1).

Hence, a very broad range of signal transition graphs

can be synthesized. The transformations achievable

using the proposed framework correspond to very com-

plex transformations on signal transition graphs. Even

transformations that convert a free choice net into a cor-

rect non-free choice net and a 1-safe net into a correct

2-safe net are feasible. It is also possible to add transi-

tions that do not follow the Petri net firing rule [11].

Even though our method can search a .large solution

space, we will show that it is possible to solve the prob-

lem in an exact way in acceptable CPU times in many

practical cases.

The STG formalism is not the only specification

methodology for asynchronous circuits. CSP (commu-

nicating sequential processes) provides a model for

asynchronous circuits illustrated with algebraic laws.

The interpretation of different statements is based on

trace theory. Concurrent programming languages such

as CSP generally impose a series/parallel graph struc-

ture on the description which is sometimes too restric-

tive for speed-independent circuits. Although the

synthesis methods are theoretically well-founded, com-

pleteness of either the requirements to satisfy nor of

the transformations that satisfy the requirements have

been shown. The synthesis methods proposed in this

area are all rnle-based.

The FSM-model is a well-known model to design

asynchronous controllers. In our opinion, this model

has two basic deficiencies. The model dictates that at

each instant the system must be in only one state. It

cannot therefore describe concurrent operations in a

direct and succinct way. The basic items the model

works with are signal levels. This is not appropriate

for many applications, especially when time is involved.

Numerous techniques have been proposed to come up

with state assignment techniques that guarantee a race-

free implementation. Each technique has its own limita-

tions so that only a small part of the solution space is

covered.

The remainder of this article is organized as follows.

In the next section, working notations and terminology

are explained. In this section, our definition of equiva-

lent state graphs is explained and a notion of consis-

tent state assignment is introduced. In Section 3, our

formulation of the global problem is presented, which

is based on a generalized state assignment on the state

graph. A procedure is given for deriving a new encoded

state graph from a given generalized state assignment.

In this section, necessary and sufficient conditions are

given for a generalized state graph assignment to result

in a new state graph that satisfies the consistent state

assignment property and the semi-modularity condi-

tion. These conditions guarantee the existence of a new

state graph. Additional conditions are required on the

state assignment to ensure CSC satisfaction. The nec-

essary and sufficient conditions to ensure the CSC

property are given in Section 4. In Section 5, several

examples are shown to illustrate the power of the frame-

work. In Section 6, we show how the necessary and

sufficient conditions given in Sections 3 and 4 can be

solved efficiently using a Boolean constraints satisfac-

tion framework. Specifically, the conditions can be

reduced to Boolean constraints where known Boolean

satisfiability algorithms can be employed. This Boolean

constraints satisfaction framework is very general in the

A Generalized State Assignment Theory for Transformations on Signal Transition Graphs 103

sense that new constraints can be easily incorporated.

Experimental results are given in Section 7. Finally,

concluding remarks are given in Section 8.

2. Notations and Terminology

Signal Transition Graphs (STG) [1] are used to specify

the behavior of asynchronous digital control circuits.

The vertices of such a graph represent the rising and

falling transitions of the signals of a control circuit, s +

denotes an up-transition, s7 denotes a down-transition

and s~ denotes any transition of si.

An STG is a Petri net E [7] represented by the

4-tuple r~ = <p, T, F, m0>. T is the set of transitions

(as described above), P is the set of places and F is

called the flow relation F c (p x T) U (T x P). mo

is the set of tokens which represents the initial state

of the system. S denotes the set of all signals in the STG.

SN1 ~ S denotes the set of all non-input signals for

which logic is to be generated.

A transition t is said to be enabled in a state (or

marking) m in an STG if all the input places of t carry

a token in marking m. This is denoted by re[t>. The

transformation of m into m' by firing a transition t is

denoted by m[t>m' or by m' = ~(m, t) with ~ a partial

function: M s x T -* M s. Ms denotes the set of all

states (markings). This is done by removing all tokens

from the input places of t and placing them in the out-

put places of t. A state graph ~b can be derived from

r~ by using the firing rule above. �9 is denoted by the

triple (Ms, T, 8>. a represents a sequence of transi-

tions. The transformation ofm into m' by firing the se-

quence of transitions a is denoted by m[a>m' or by

m ' = ~(m, a).

A transition t is called semi-modular if and only if

vm, m ' E Ms : m[t> A ~t' ~ t : m[t '>m' ~ m'[t>

Two transitions are said to be concurrent (tl 11 t2) if

and only if there exists a state, reachable from the ini-

tial state, in which both transitions are enabled and both

transitions are semi-modular.

A binary vector <re(l) re(n)> of signal values

is assigned to every state in the state graph according

to the signals {sl, s2 sn}.

Definition 2.1. (State assignment) m ' = ~(m, t)

�9 if t = s + then re(i) = 0 and m'(i) = 1.

�9 if t = s/- then m(i) = 1 and m'(i) = O.

�9 else m'(i) = m(i) .

These vectors that are in fact the code assigned to the

states are used to derive the logic from the STG and

state graph.

Definition 2.2. (Consistent state assignmenO If the

states can be encoded according to the rules given in

Definition 2.1, the state graph is said to have a consis-

tent state assignment.

This intuitively means that up- and down-transitions

have to alternate in the state graph.

Chu has proven the following fundamental theorem

[1]:

Trmom~r~ 2.1. One can derive logic equations from �9 iff

Win, m ' E M s : 3k : re(k) ~ m'(k)V

Vs, E SNt : m[s~> ~ m'[s;>

The state graph is said to satisfy the Complete State

Coding (CSC) requirement if and only if the state graph

satisfies Theorem 2.1. According to Theorem 2.1 the

CSC requirement is the necessary and sufficient re-

quirement that should be satisfied before hazard-free

logic equations may be derived from the state graph.

Most of the state graphs specifying the behavior of asyn-

chronous circuits will not satisfy the CSC-property.

Therefore a transformation should be performed on the

initial STG in order to satisfy the CSC-requirement.

So it may be necessary to add new signals to the STG.

These new signals will be called state signals. The tran-

sitions of the state signals are not observable for the

environment. The set of transitions of state signals is

denoted by Trcobs (the set of non-observable signals).

2.1. Equivalent State Graphs

In this section the condition will be defined under which

two state graphs are equivalent. Two state graphs are

equivalent if the environment that observes the state

graphs cannot distinguish them. So from the viewpoint

of the environment the two state graphs have exactly

the same behavior.

The set of transitions T of a state graph cI, can be

partitioned into three subsets. The set of transitions of

input signals 7"i, the set of transitions of output signals

To and the set of transitions of non-observable signals

Tnob,. For the set {TI U To} (the set of observable

signals) we will also use the notation Tobs.

Non-observable signals are signals that are not

observed by the environment. They are internal signals

104 Vanbekbergen, Lin, Goossens, and de Man

p,

(
tl

t2

(a)

)

(
tl

t2 ~ / t 3

(b)

t3 = non-observable

Fig. 1. Two equivalent state graphs.

of the circuit which are only there to satisfy certain re-

quirements like the CSC requirement. So transitions

of non-observable signals are to be ignored when check-

ing the equivalency of two state graphs. This will be

taken into account in the definition of equivalency.

First the restriction of a firing sequence is defined

in [12] to be able to filter out non-observable transi-

tions. Next the language that is accepted by a state graph

is defined [13]. Finally equivalency of state graphs is

defined [13].

Definition 2.3. (The restriction of a f iring sequence)

a ~ T*, T1 C 72.

(at) ~T 1 = ~[Tl t if t ~ T1

= (tr [T1)t if t E TI

a IT I is the restriction of tr onto the set T I.

For example let T1 = {tl, t2, t3}. Then (t3t2t4tlt4) ~T 1

=- (t3t2tl).

Definition 2.5. (Equivalent state graphs) ,b and ,b ' are

said to be equivalent iff

An example of two equivalent state graphs is shown in

figure 1. For the first state graph we have: ~3(~) =

{tit2}. The set of firing sequences accepted by ~ ' is

{tlt2t3, t3tlt2}. Because t3 is a non-observable transi-

tion it has to be filtered out. (tlt2t3) [{tlt2} = tg2 and

(t3tlt2) ['{tlt2} = tit2. So s = {tit2}. Note that the

two state graphs are structurally different, so equiva-

lence of state graphs is not a trivial property. It does

not reduce to graph-isomorphism. This is known as ex-

tensional equality.

3. A Global Assignment Technique for State Graphs

3.1. The Problem Formulation

Definition 2.4. (The language accepted by ,b)

J3(~) = {a E T* : too[a)}

17"1 = r * :

The language accepted by ~ is the set of all firing se-

quences (also called strings [131 or traces [12]) that start-

hag from the initial state lead to a valid state. The restric-

tion operator is also defined for a set of firing sequences

in the same manner.

The following definition states that two state graphs

are equivalent iff they accept the same language when

it is restricted to the observable transitions.

Several synthesis-methods have been proposed [5], [6],

[8], [10]. The method proposed in [5] directly trans-

forms the initial STG ~ into a new STG r~' without in-

vestigating the state graph ~. This has the advantage

that the state graph does not have to be generated. It

is known that the state graph may explode for even

moderate sized STGs.

The method proposed by Lavagno et al. [8] and

Kondratyev [10] derive information from the initial

state graph q~ to transform ~ into ~'. In this article we

propose a method where the initial state graph q~ is

transformed directly into ~ ' without generating the new

STG for �9 '. Obviously the new state graph q~' should

A Generalized State Assignment Theory for Transformations on Signal Transition Graphs 105

satisfy a number of requirements. These are stated in

the following problem formulation:

Problem 3.1. Given a finite connected state graph �9 =

(Ms, T, 6) with a consistent state assignment

(possibly derived from an STG I~), derive a new ~ ' =

(MJ, T', 8') that satisfies the following requirements:

�9 ~ ' is equivalent to ~.

�9 ~ ' has a consistent state assignment.

�9 ~ ' satisfies the CSC requirement.

�9 Every transition that is semi-modular in ~ should be

semi-modular in ~ ' and every newly added transition

should be semi-modular.

We assume that �9 only contains observable signals and

that the signals added to generate ~ ' are all non-

observable. Every time MJ, T' or 8' is used in this

article we refer to the new state graph that is to be

generated.

Note that the only requirement for the initial state

graph is to be finite and connected and to have a con-

sistent state assignment. So the STG from which the

state graph is derived needs not be a live net, nor a

safe net nor a free-choice net.

The procedure to derive a transformed state graph

�9 ' is the following. First the initial state graph �9 will

be derived from the STG I;. Then an assignment will

be done on the state graph ff~. This technique will assign

for each state signal sk to be added and for each state

in the original state graph one item out of the set {0, 1,

up, down} to m(k). Based on that assignment the new

state graph ~ ' can be derived from ~. For that purpose

a translation procedure will be defined in Section 3.3.

With the following example we want to give a flavor

of the method that is explained in a more theoretical

way in the next sections. The initial STG is shown in

figure 2(a) and the state graph derived from the initial

STG is shown in figure 2(b). The states ms and m5

violate the CSC-property. They are both assigned the

same code, but different transitions of output signals

are enabled in these states. So a new state graph should

be derived that satisfies the CSC-requirement and the

other requirements stated in Problem 3.1. So an assign-

ment has been done on the state graph. Based on that

assignment a new state graph shown in figure 2(c) is

derived. For the exact translation procedure we refer

to Section 3.3. The assignment of down to state ml in-

tuitively means that there will be two states in the new

state graph (nl and n[) related to ml. This relation, the

cover-relation is defined in Section 3.3. All these rela-

tions are indicated in the figure by the thin lines with

arcs on both sides. Between the two states nl and n[

there will be a down-transition of the state signal that

will be added to the graph. An assignment of a 0 to

SO+ Sl +

, , , / ,
SO-

l

(a)

(c)

F/g. 2. The initial STG (a) the state graph with assignment Co) and the new stato graph (c).

106 Vanbekbergen, Lin, Goossens, and de Man

the state m3 means that all states in the new state graph

that are related to m3 (n3) will be encoded 0 by the

state signal.

Because m 3 and m 5 violate the CSC-property the

assignment of a 0 to m 3 and of a 1 to m 5 makes sure

that this problem is circumvented for the new state

graph. For the necessary and sufficient relations for

the assignment to produce a new state graph that satis-

fies CSC, we refer to Section 4.

It is obvious that not any assignment on the state

graph will produce a new state graph that satisfies all

the requirements stated in Problem 3.1. They will be

presented in Section 3.4.

3.2. The Restrictions

The method proposed in this article has two restrictions.

The first restriction is due to our definition of equiva-

lency of state graphs. When deriving ~ ' from ~ no con-

currency may be reduced. Transitions that are concur-

rent in ~ should also be concurrent in ~', else ~, and

�9 ' are not equivalent. Reducing concurrency intuitively

means that certain states, that are present in the original

state graph, will not have any state in the new state

graph related to them. Currently we cannot express

such a situation in our framework. It is the subject of

current research.

The second restriction is caused by the method itself.

If two transitions of state signals (newly added signals)

fire directly after each other in the state graph, they

have to be concurrent. The reason why will be ex-

plained at the end of Section 3.3.

Restriction 3.1.

vt, t ' E T : tl[t' in ~ = tilt ' in ~ ' (1)

m~[att 'a ') with t, t ' E T~obs ~ tilt ' (2)

Note that the methods presented in [8] and [10] also

have these restrictions (among other restrictions).

3.3. The Procedure to Derive ~' f rom

In this section we formally define the procedure to

translate the original state graph with assignment into

a new state graph ~'.

The number of signals that are present in the original

state graph �9 will be denoted by n. The number of

signals that are present in the ~ ' will be denoted by

q. q equals n augmented with the number of state

signals added to �9 to generate ~'. Every signal will be

represented by Sk. If 0 <_ k < n it is a signal present

in the original state graph. I f n _< k < q it is a state

signal. In our formulation we assume that the number

of state signals to be added is fixed in advance. In Sec-

tion 7 it is explained how this formulation then can be

transformed into an optimization problem (minimizing

the number of state signals).

m(k) corresponds to the code assigned by signal Sk

to state m in �9 with 0 < k < n (see Definition 2.1).

m(k) with n _< k < q corresponds to the assignment

of an item out of the set {0, 1, up, down} to state m

for state signal sk.

State ml in figure 3 is assigned ~00downdown). 00

corresponds to the assignment of signals present in the

initial state graph (So, si). downdown is the assignment

for the state signals s2 and s3. The state graph will be

expanded for each state signal.

First we will present the procedure Expand, shown

in figure 4, that constructs ~ ' from ~ with an assign-

ment, if there is only one state signal present. The first

part of Expand defines the splitting of states when the

state is assigned an up or a down. The second part

defines how all the new states are related when firing

transitions present in the old state graph.

The procedure Derive-new-state-graph, which

makes use of procedure Expand, constructs ~,' when

there is more than one state signal. This is shown in

figure 5.

In the first part of the procedure Expand three rela-

tions will be defined that relate each state in the new

state graph ~ ' to each state in the old state graph ~.

These three relations are ~- (the cover relation), after

and before. The relations before and after are only used

in the second part of Expand. The cover relation is used

throughout the article. In procedure Derive-new-state-

graph the cover-relation is defined when there is more

than one state signal.

Definition 3.L (Cover-relation)

V m E ~ , u ~ - m i f f { a ~ T * l n [v) } [Tobs=

{a ~ ~*lm[a>}

The before and after relations are only valid when only

one new state signal is added to the state graph. This

is in fact the cause of the second restriction as will be

explained at the end of this section.

Definition 3. 2. (Before-relation)

Ym E &, Yn E &' : n = before(m) i f fn ~- m A "~ ([s~)n)

A Generalized State Assignment Theory for Transformations on Signal Transition Graphs 107

sO+ s l +

\ /
SO-

L

~ ml ~ , ~ : w n down)

10 m2(downO) 01 m3(O0)

11 m4 (up O)

(a)

~ 1 nl (down)
'

101 n2(O) 000 nl' (down)
/ \ s , §
/ so§ ,~

100 n2' (01 010 n3 (0)

.\Zo.
110 n4 (0)

111 n4' (0)

~ 1 n5 (up)

sl-

(c)

(b)

0010 pl' 0001 pl"

1000 p2 0000 pl"

1000 p2' 0100 p3

1100 p4

1l s2+

111o p4'

01i0 1~

s3+

otll ps"

J sl-

(d)

Fig. 3. The STG (a) the state graph with assignment and the expansion steps (c) and (d).

Definition 3.3. (After-relation)

Vm E ~, Vn E ~ ' : n = after(m) iff n ~- m A -'1 (n[s~))

An example is presented in figure 3. The initial STG

is presented together with the initial state graph derived

from the STG. On this state graph an assignment has

been done for two state signals (s2 and s3). In figure

3(c) the state graph is shown after applying the proce-

dure Expand for the signal s 2. This is what is defined

in the first part of Expand.

m1(2) = down ~ n 1 ~- ml and n~ ~- ml

and n~ = 8 ' (nl , s~').

m2(2) = down = r/2 ~- m 2 and n~ ~- m 2

and n~ = 8'(n2, s{).

108 Vanbekbergen, Lin, Goossens, and de Man

Rxpand (O, si) {
FfREAClt (m E M s) {

i (m(i) = {

add ne. states m',m" to 4';

m' = before(m); m" = after(m);

m').- m; m").- m;

m " = 6 ' (m ' , s +) ; m'(k) = 0; m " (k) = 1;}

if (m (i) = down) {

add no, states m t , m # to ~ ' ;

m' = before(m); m" = af fer(m);

m' >- m; m" >- m;

m " = 5 ' (m ' , s~ -) ; m'(k) = 1; m"(k) = 0;}

if (m(i) = OVm(i) = 1) {

add he. state m' to 4';

m' = before(m) = af ter(m);

m'(k) = re(i) ; m' >- m ; } }

FOREACH (m l 6 M s) {

FOREACH (m2 = 6 (m l , t)) {

i f (m l (i) = up A m~(i) = upV

m l (i) -- down A m~.(i) = d o . n) {

before(m .) = e(before(m),t);
after(m2) = 6 ' (a f ter(ml) , t) ; }

else

before(m2) -- 6 ' (a f t e r (ml) , t) ; } } }

FOREACH (m 6 M s)

FOREACH (m ') . - m)

f o r (i = 0 ; i < n ; i + +)

m'(i) = m(i) ;

r e t u r n (~'); }

Fig. 4. The Expand algorithm.

D e r i v e - n e , - s t a t e - g r a p h (0 , q){

dido = 0;

"for (i = n ; i < q ; i + +) {

~' = Ezpand(old~, sl);

FOREACH (m in old4){

FOREACII (m ' i n 4 ' : m ').- m i n oldO){

f o r (j = i + l ; i < q ; j + +)

m'(j) = re (j) ;

FOREACH (m" in 4 : m >- m" in 0)

m ' > - m " i n 4 ; } }

old~ = ~' ; }

r e t u r n (~ ') ; }

Fig. 5. The algorithm for deriving the new stat~ graph.

This is what is defined in the second part of Expand.

m1(2)-= down A m2(2) = down = n2 = ~ '(nl , sd-)

and n~ = 6 '(n[, s~').

m2(2) = down A m4(2) = Up = n 4 = ~5'(n~, s~-).

During this first expansion of �9 the assignment for the

signal s 3 has been transferred to ~'. Every state in O'

has the same assignment as the state it covers in O. Now

the second expansion for the signal s 3 can be done

resulting in figure 3(d). This is the final state graph.

Derive-new-state-graph also states for instance that

Pl }- ml, p~ }- ml, p~' }- ml a n d p l m }- ml.

Now it also becomes clear why there is the second

restriction on the method (Section 3.2). Assume that

So and sl are state signals. We want to express the fol-

lowing: ml[s~)rn~[s~) in the new state graph, m 1 and

m2 should cover the same state in the old state graph

(there is no transition of a signal already present in the

old state graph in between). Let this state covered by

m 1 and m2 be m. The only way to express the above

situation would be m(0) = u p and re(l) = u p. I f we

follow the above procedure this means that beside the

wanted situation ml[sff)m~[s +) we also have the situa-

tion ml[s~)m3[s~). So sd- and s~" are concurrent

under these circumstances.

3.4. Necessary and Sufficient Requirements for

Correctness

The state graph ~ ' derived f rom �9 should satisfy the

requirements stated in Problem 3.1. The following the-

orems provide us with the necessary and sufficient

requirements the assignment on the state graph should

satisfy in order that 4 ' satisfies the requirements stated

in Problem 3.1. In all these theorems we assume that

some assignment is performed on the graph and that

O ' is derived according to the procedures above. For

the proofs of the theorems, we refer to [14].

The following theorem states that �9 and ~ ' are

equivalent.

THEO~M 3.1. ~ (O ') [Tob s = .~(0)

Definition 3.4. mi, mj E MS, n <_ k < q

arc (mi, mj, k) = 0 if (mi(k) = 0 A mj(k) = 1)

= 0 if (mi(k) = 0 A mj(k) = down)

= 0 i f (m i(k) = 1 Amj(k) = O)

= 0 if (mi(k) = 1 A mj(k) = up)

= 0 if (mi(k) = up A mj(k) = O)

= 0 if (mi(k) = down A mj(k) = 1)

= 1 in all other cases (3)

A Generalized State Assignment Theory for Transformations on Signal Transition Graphs 109

m2

rnl ml UP

UP m2 m3 UP UP m2 3 DOWN

k'<,t ') .
DOWN

(hi (el

Fig. 6. The rules for a valid assignment.

This definition is introduced because it indicates what

assignments are not allowed on two states when there

is an arc between these two states. The ones that are

not allowed are shown in figure 6(a). Intuitively ml(k)

= 0 and m2(k) = 1 is not allowed because there has

to be an up-transition of the signal sk in one of the

states covering ml or m 2. The assignment of 0 to ml

and down to m2 is impossible. Intuitively this would

mean that the state signal is at level 0 in one state and

should go down in a next state. This corresponds to

an inconsistent state assignment. The other cases are

analogous.

THROREM 3.2. ~ ' has a consistent state assignment iff (I,

has a consistent state assignment and Vk, n _< k < q:

Vm, m ' E Ms : m ' = 8(m, t) ~ arc(m, m' , k) (4)

The transitions of the newly added signals (the state

signals) should be semi-modular. The following theo-

rem explains that this is the case if the conditions of

the previous theorem are satisfied.

TH~.oRE~ 3.3. I f the conditions of the previous theorem

are satisfied then every transition of every state signal

is semi-modular.

The following theorem provides us with the neces-

sary and sufficient requirements such that all transitions

that are semi-modular in the old state graph remain

semi-modular in the new state graph. These rules are

shown in figure 6(b) and (c). I f m2 and m3 are assigned

u p then m 4 should be assigned u p. I f rn~ and m3 are

assigned up and down, then ml and m4 should be

assigned different items.

THEOREM 3.4. I f t is semi-modular in m in �9 and ~ '

has a consistent state assignment then t is semi-modular

in each state covering m iffVk, n _< k < q : Yml, m2,

m 3, m 4 E Ms:

((mi[tl)rn2) A (ml[t2>m3) A (rr~[t2)m4) A (m3[tl>m4)):

(m2(k) = up A m3(k) = down) m m4(k) ~ m](k)

(5)

(m~(k) = up A m3(k) = up) m m4(k) = up (6)

(ra~(k) = down A m3(k) = down) ~ m4(k) = down

(7)

4. Necessary and Sufficient Relations for

CSC-Satisfact ion

In this section the necessary and sufficient requirements

for an assignment to result in a state graph ~ ' with the

CSC property will be given. We first need two defini-

tions to lighten the notational burden.

Definition 4.L m, m' E M s, n <_ k < q

diff(m, m' , k) = 1 if (m(k) = 0 A m'(k) = 1)

= 1 i f (m(k) = 1 A m ' (k) = O)

= 0 in all other cases (8)

diff(m, m', k) expresses that the state signal sk gives

a code 0 to all the new states that cover m and a code 1

to all the new states that cover m ' (or vice versa).

Definition 4.2. m,

cond(m, m' , k) =

m ' E M s , n <_ k < q

1 if (m(k) = 0 A m'(k) = u p)

1 if (m(k) = 1 A m'(k) = down)

1 if (m(k) = up A m'(k) = down)

1 if (m(k) = up ^ m'(k) = O)

1 if (m(k) = down ^ m'(k) = 1)

1 if (m(k) = down A m'(k) = up)

0 in all other cases (9)

cond(m, m', k) expresses that there exists a state m"

that covers m and a state m '= that covers m ' that satisfy

the following condition: i f m" and m " are assigned the

same code, then the CSC condition will be violated for

the state signal Sk (it will have a transition enabled in

one state and not in the other state).

110 Vanbekbergen, Lin, Goossens, and de Man

Definition 4.3. (USC-violation-relation)

(m, m ') E U : M s • Ms if f

Vk, O < k < n : m(k) = m'(k)

Definition 4.4. (CSC-violation-relation)

(m, m ') E E : M s x Ms i f f

(Vk, 0 < k < n :m(k) = m'(k)) A

(:IS k E SNI : m[s k) A -7(m'[s~)))

Tm~O]U~M 4.1. (CSC-satisfaction) ~ ' will satisfy the

CSC condition iff

V(m, m ') E E : ~k, n _< k < q : diff(m, m' , k) and

(10)

V (m , m ') E U : ~k ,n_< k < q : c o n d (m , m ' , k) =

~l # k, n _< l < q : diff(m, m' , l) (11)

Let us look at the example of figure 7. So is an out-

put signal and sl is an input signal. In the state graph

there are two states that should be encoded differently

according to the CSC-condition, namely m o and m 4.

m 4 enables a transition of the output signal So and mo

does not. So a state signal should be added that encodes

these two states differently. This is expressed in relation

10. States mo and m2 should not be encoded differently

sOs1 s2

O0 mO 0

J sl.._~+

01 ml 0

1 s1~.

O0 m2 up

I s1. +

01 m3 1

O0 m4 1

J sO+

10 m5 1

i s1. +

11 m6 down

sl--

10 m7 0

sOs1 s2

00~0 nO

sl+

010 nl

I s1 L"

000 n2

I s2+

001 n2'

I s1. +

011 n3

[s1.~-

001 n4

I sO+

101 n5

J sl._~+

111 n6

s2-

110 n6'

1 sl-

100 n7

~ sO-

sOs1 s2 s3

0 mO 0 o

sl+

01 ml 0 up

J sl.~.-

O0 m2 up 1

I s1+

01 m3 1 down

[sl.~.-

O0 m4 1 0

sO+

10 m5 1 0

11 m6

sl--

10 m7

U sO-

down 0

0 0

(a) (b) (c)

F/g. 7. The original state graph with assignment (a), the new state graph Co) and an assignment that satisfies the CSC-requirement.

A Generalized State Assignment Theory for Transformations on Signal Transition Graphs 111

according to the CSC-condition. The assignment on the

state graph will make sure that the state signal s2 will

encode all the states covering m 4 and m 0 differently

(namely no and n4 in figure 70a)). But in figure 7(b),

a new CSC-violation has been introduced between the

states no and n2. This violation can also be checked on

the original state graph with the assignment (figure

7(a)). A 0 and an up were assigned to two states (m0

and m2) that were assigned the same code by signals

in the original STG. I f this is the case another state

signal should be added to solve this conflict (not shown

in the figure). This is expressed in Equation 11. Note

that this problem is formulated in a global way and that

the synthesis process will not try to resolve conflicts

in a step by step manner. This was only done in this

paragraph for demonstrative purposes.

The same example, but now fully worked out, is

shown in figure 7(c). The reader can check that now

the CSC-requirement is satisfied. It is of course possi-

ble to add state signals with multiple transitions. An

example is presented in [14].

5. Examples

The purpose of this section is to show how powerful this

state assignment technique can be. The examples dem-

onstrate that transformations can be performed that are

conceptually difficult to do at STG-level. Free choice

nets [7] can be transformed into non-free choice nets.

1-safe marked graphs [7] can be transformed into 2-safe

marked graphs. Transitions may be added that do not

follow the Petri net firing rule [11]. Still the transforma-

tions are correct, according to the requirements stated

in Section 3.1. An example is shown in figure 8. The

state graph with a valid assignment is shown in figure

8(b). The new STG that corresponds to this assignment

is shown in figure 8(c). The transition s + can now be

fired at the same time when the choice between t 3 and

t6 is made. So this transformation technique is not

limited to putting a new transition between two transi-

tions that belong to the same conditional branch. The

resulting net is not a free choice net any more.

An initial 1-safe MG is shown in figure 9(a). The

state graph with assignment is shown in figure 9(b).

The STG that corresponds to this assignment is shown

in figure 9(c). The arc pointing from s + to t 2 may con-

tain two tokens (fire t3, s - , ts, s +). But still the trans-

formation is correct. For other examples the reader is

referred to [14].

6. Boolean Satisfiability Framework

In this section, we present a Boolean satisfiability

approach to the generalized state graph assignment

t2 p

t3 t

t4 t7

(a) (b)

F/g. 8. Transforming a free choice net.

112 Vanbekbergen, Lin, Goossens, and de Man

t4 t5

,_) k~

(a)

up

(b)

Fig. 9. Transforming a 1-safe MG into a 2-safe MG.

(c)

problem. Specifically, all the necessary and sufficient

conditions expressed in Sections 3 and 4 can be trans-

formed into Boolean constraints. The problem of check-

ing whether CSC can be satisfied with l state signals

now reduces to a Boolean satisfiability problem. The

state graph assignment is obtained as a by-product from

the satisfying Boolean assignment.

The mapping to the Boolean satisfiability problem

is done as follows. For each state m E Ms, l four-value

variables are introduced. Each four-value variable can

assume one of four possible assignments, namely {0, 1,

up, down}. Each four-value variable is then encoded

using two Boolean variables as follows:

four-value bl b2

0 0 0

1 0 1

up 1 0

down 1 1

Thus, in this formulation there are 2 • l x #M s

Boolean variables, with l the number of state signals

and #Ms the number of states in the original state

graph (I,. The overall problem can be succinctly repre-

sented using only three sets of constraints, namely

1. the consistent state assignment constraints,

2. the semi-modularity preservation constraints, and

3. CSC-satisfaction constraints.

Each is explained below. To lighten the equations, we

will use f = g to mean f + g. It reads f implies g.

6.1. Formulating the Constraints

Consistent state assigmnent constraints: Let A =

{(i, J)l my = ~(mi, t)}. A is simply the set of adjacent

state pairs in the state graph ~. Let bnk, l and b,k,2 be

the two Boolean variables encoding the k-th state signal

of the n-th state in M s. Then the constraints to

guarantee consistent state assignment, corresponding

to Theorem 3.2, can be expressed as follows:

H H (bik,1 + bik,2 + bjk,1 + bjk,2).
(i,j)EA k=l

H H (bik, 1 + bik.2 "~ bjk, l "~- bjk,2).
(i,j)EA k=l

I-I I'I (bik, l + bik,2 + bjk,1 + bjk,2).
(i,j)EA k=l

I I 1-I (bik,1 + bik,2 + ~)jk, l + bjk,2).
(i,j)EA k= 1

U H (bik,1 "~- bik,2 "~- bjk, l + bjk,2).
(i,j)EA k=l

H H (~gik, l -}- ~9ik,2 + bjk,1 + ~gjk,2)"
(i,j)~A k= l

This can be more efficiently rewritten as follows:

l

H H (bik,1 + bik,2 + bjk,2)(bik, l + bik,2 + bjk,2)"
(i,j)EA k= 1

A Generalized State Assignment Theory for Transformations on Signal Transition Graphs 113

l 1

I1 I1 (b=,, + + bj ., + I I II
(i,j)EA k=l (i,,/)EU k=l

l

H H (bik, I "~ bik,2 "q- bjk,1 nt- /Tjk,2)"
(i,j)EA k= 1

Semi-modularity preservation constraints: Let (p,

q, r, s) be the set of states with the following relation-

s h i p : ((mp[tp)mq) A (mp[tq)mr) A (mq[tq)ms) A
(mr[tp>ms)). Let I be the set of states satisfying this

relationship. Then the following constraints must be

satisfied to ensure the preservation of semi-modularity

(note that only signal transitions that were semi-modu-

lar in the original �9 need to be preserved, but semi-

modularity per se is not required).

l

H H (bqk,'bqk,2brkAbrk,2 = (bsk,' (~ bpk, l)
(p,q,r,s)El k= 1

-t- (bsk,2 (~ bpk,2)),

l

H H (bqk, lbqk,2brk, lbrk,2 =:' bsk, lbsk,2)"
(p,q,r,s)El k=l

l

H H (bqk, lbqk,2brk, lbrk,2 = bsk, lbsk,2)"
(p,q,r,s)EI k= l

This essentially corresponds to Theorem 3.4.

CSC-satisfaction constraints: Let ~r = {(i, j)l(mi,
my) E U} where U is the USC-violation relation as de-

fined in Definition 4.3. Let/~ = {(i, j)l(mi, my) s E}

where E is the CSC-violation relation as defined in

Definition 4.4.

The first set of constraints is intended to resolve state

pairs that originally violated the CSC property. The

constraints can be written as follows.

l

II Z +
(io)~F. kfl

The second set of constraints is intended to resolve state

pairs that originally violated the USC property.

((bik, lbik,2bjk, lbjk,2 + bik, lbik,2bjk,lbjk,2 + bik, lf~ik,2bjk,2bjk,1 -I"

bik, l blk,2bjk.lbjk,2 + bik, l bik,24k, l bjk,2 + bik, l bik,2bjk,2bjk,2)

p=l,p•k
(bip.l bip.2bjp.l bjp.2 + f~ip., bip.2bjp.l f~jp.2))

These constraints essentially correspond to Theorem

4.1.

62. Solving the Boolean Satisfiability Problem

Given the constraints described above, we have to find

a Boolean assignment to the variables bik,j that satis-

fies all the constraints. This problem is known as the

Boolean satisfiability problem. In [15], a branch-and-

bound algorithm was proposed to solve the Boolean

satisfiability problem in an exact way. Though the algo-

rithm was originally intended for testing, it can also

be used in this context. A variant of this approach was

proposed in [16]. We have used this implementation and

have been able to come up with a solution with over

200 variables. This is sufficient to find an exact solu-

tion in many practical cases. For larger examples,

heuristics are currently being developed to come up

with optimized solutions. It is known that the satisfia-

bility problem is NP-hard, but at this moment it has

not been proven that our problem is also NP-hard. Once

a satisfying assignment is found, the Boolean assign-

ments can be mapped back to the four-value set {0, 1,

up, down}. Then the procedure Derive-new-state-
graph described in figure 5 can be employed to derive

the new state graph.

7. Experimental Results

Table 1 contains the experimental results. The first six

examples are from the HP-benchmark [8] the following

five examples are in-house examples. Not all these ex-

amples are self-timed. Some of them contain timing

constraints. The columns labeled n, T and Ms contain

the number of initial signals, transitions and states. The

114 Vanbekbergen, Lin, Goossens, and de Man

Table 1.

Name n T M s q - n CPU

alloc-outbound 7 18 17 2 0.2

mp-forward-pkt 7 14 20 1 0.1

nak-pa 9 18 56 1 0.6

rarn-read-sbuf 10 20 36 1 0.2

sbuf-mm-write 10 20 58 2 1.6

sbuf-read-ctl 6 12 15 1 0.1

adfast 6 12 44 2 0.9

I2C 2 68 90 2 0.5

count 6 16 29 1 0.2

postoffice 8 39 62 1 2.2

column labeled state q - n contains the minimum num-

ber of state signals needed to find a solution that satisfies

CSC. The CPU-times for finding a satisfying assign-

ment are indicated in the last column (in seconds on

a DEC5000).

8. Conclusion

In this article, we proposed a global assignment theory

for encoding state graph transformations. We presented

a constraint satisfaction framework that can guarantee

necessary and sufficient conditions for a state graph

assignment to result in a transformed state graph that

satisfies the complete state coding requirement. Neces-

sary means that within certain restrictions (Section 3.2)

any transformation can be performed in this framework.

The initial STG need not be a live net, nor a safe net,

nor a free choice net. The only requirement is that the

state graph is finite, connected, and has a consistent

state assignment (Section 3.1). Transformations that

convert a free choice net into a non-free choice net and

a I-safe net into a 2-safe net are feasible. It is even possi-

ble to add transitions that do not follow the Petri net

firing rule [11]. Even though our method can search

a large solution space, we have shown that it is possible

to solve the problem in an exact way in acceptable CPU

times in many practical cases.

The theory can be extended to avoid the current

restrictions. The assignment set can be extended for

that purpose. Finally it is known that even for moderate

sized STGs the state graph may explode. When the state

graphs become too large heuristics are needed to find

optimized solutions.

The technique proposed in this article minimizes the

number of state signals to be added. Currently tech-

niques are being developed to do an assignment in such

a way that the logic derived from the state graph is

minimized.

The constraint framework is also being extended in

such a way that certain timing constraints can be taken

into account during synthesis.

Finally the specification methodology is being ex-

tended such that a broader class of circuits can be

synthesized.

Acknowledgment

The authors wish to thank Chantal Ykman for the many

stimulating discussions. We also wish to thank her for

implementing the Boolean satisfiability framework in

a very efficient way. This explains the big improvement

over the results reported in [17].

References

1. T.A. Chu, "Synthesis of self-timed VLSI circuits from graph-

theoretic specifications;' Ph.D. thesis, MIT, June 1987.

2. Teresa H. Meng, Synchronization Design for Digital Systems.

Boston, MA: Kluwer Academic Publishers, 1991.

3. S.H. Unger,/~ynchronous Sequential Switching Circuits. Wiley

Interscience, 1969.

4. L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, "Algo-

rithms for synthesis of hazard-free asynchronous circuits;' Pro-

ceedings of the Design Automation Conference, June 1991.

5. P. Vanbekbergen, "Optimized synthesis of asynchronous control

circuits from graph-theoretic specifications;' Proceedings of the

International Conference on Computer-Aided Design, pp. 184-187,

November 1990.

6. A.V. Yakovlev and A. Petrov, "Petri nets and parallel bus con-

troller design" International Conference on Application and

Theory of Petri Nets, Paris, France, June 1990, pp. 245-263.

7. T. Murata, "Petri nets: Properties, analysis and applications,"

Proceedings of the IEEE, April 1989, pp. 541-580.

8. L. Lavagno, C.W. Moon, R.K. Brayton, and A. Sangiovanni-

V'mcentelli, "Solving the state assignment problem for signal tran-

sition graphs;' Proceedings of the Design Automation Conference,

June 1992.

9. J.H. Tracey, "Internal state assignments for asynchronous sequen-

tial macl~nes;' IEEE Trar~actions on Electronic Computers, vol.

EC-15, 1966, pp. 551-560.

10. M.A. Kishinevsky, A.Y. Kondratyev, and A.R. Taubin, "Formal

method for self-timed design;' Proceedings of the European

Design Automation Conference, 1991.

l l. V.I. Varshavsky, M.A. Kishinevsky, A.Y. Kondratyev, L.Y.

Rosenblum, and A.R. Taubin, "Models for specification and

analysis of processes in asynchronous circuits;' Soviet Journal

of Computer and Systems Sciences, 1989.

12. C.A.R. Hoam, "Communicating se, quential processes;' Commu-

nicatio~ of the ACM, 1978, pp. 666-677.

13. J.E. Hopcroft and J.D. UUman, Introduction to Automata Theory,

Languages and Computation. Reading, MA: Addison-Wesley,

1979.

14. P. Vanbekbergen, "Synthesis of asynchronous control circuits

from graph-theoretic specifications," Ph.D. thesis, Catholic

University of Leuven, ESAT, 1992. To appear.

A G e n e r a l i z e d State A s s i g n m e n t T h e o r y for T rans fo rma t ions o n Signal Trans i t ion G r a p h s 115

15. I". Larrabee, "Test pattern generation using Boolean satisfiability"

IEEE Transactions on CAD, vol. 11, 1992.

16. Paul R. Stephan, Robert K. Brayton, and Alberto L. Sangiovanni-

Vincentelii, "Combinational test generation using satisfiability,"

Technical Report UCB/ERL M92/112, ucb, October 1992.

17. P. Vanbekbergen et al., "A generalized state assignment theory

for transformations on signal transition graphs," Proceedings of

the International Conference on Computer-Aided Design, 1992.

Peter Vanbekbergen received the degree in Electrical Engineering

from the Katholieke Universiteit Leuven, Belgium, in 1987.

Since September 1987 he has been with the VLSI Systems Design

Methodologies Group of the Inter-University Microelectronics Center

(IMEC), Heverlee, Belgium, where he is working on synthesis tech-

niques for asynchronous controllers and interface circuits.

Gert Goossens received the degree in Electrical Engineering and

the Ph.D. degree in Applied Sciences from the Katholieke Univer-

siteit Leuven, Belgium, in 1984 and 1989, respectively.

Since 1984 he has been with the VLSI Design Methodologies

Division of the Interuniversity Micro-Electronics Centre (IMEC),

Leuven, Belgium. Initially he worked as a research assistant, involved

in the development of the CATHEDRAL CAD environment for ar-

chitectural synthesis of ICs for real-time signal processing. From 1989

to 1992 he was heading the medium throughout and interface syn-

thesis group. Since 1992, he has been heading a research group in

embedded microcode systems design.

Dr. Goossens's research interests include architectural synthesis,

communication synthesis and system design, for digital signal proc-

essing systems. He received a best paper award at the 26th ACMflEEE

Design Automation Conference in 1989.

Bill Lin received the B.Sc. degree, the M.S. degree, and the Ph.D.

degree in Electrical Engineering and Computer Sciences from the

University of California, Berkeley, in 1985, 1988, and 1991, respec-

tively. Currently, he is leading a group in the VLSI Systems Design

Methodologies division of IMEC (Leuven, Belgium) working on

various aspects of system-level design technology. His current research

interests include hardvcare/sot~mr co-design, system-level integration

of mixed signal processing and control-intensive systems, design and

synthesis of control-intensive applications and interface modules, and

logic synthesis. He has previously worked at the Hewlett Packard

Corp., the Hughes Aircraft Co., and the Western Digital Corp. In

1987, he received the Best Paper Award at the 24th Design Automa-

tion Conference in Miami. In 1989 and 1990, respectively, he received

a best paper nomination at the IFIP VLSI conference in Munich and

a distinguished paper citation at the ICCAD conference in Santa Clam.

Hugo J. De Man received the electrical engineering degree and the

Ph.D. degree in Applied Sciences from the Katholieke Universiteit

Leuven, Heverlee, Belgium, in 1964 and 1968, respectively.

In 1968 he became a member of the staff of the Laboratory for

Physics and Electronics of Semiconductors at the University of

Leuven, working on device physics and integrated circuit technology.

From 1969 to 1971 he was at the Electronic Research Laboratory,

University of California, Berkeley, as an ESRO-NASA Postdoctoral

Research Fellow, working on Computer-Aided Device and Circuit

Design. In 1971 he returned to the University of Leuven as a Research

Associate of the NFWO (Belgian National Science Foundation). In

1974 he became a Professor at the University of Leuven. During the

winter quarter of 1974-1975 he was a Visiting Associate Professor

at the University of California, Berkeley. He was an Associate Editor

for the IEEE Journal of Solid-State Circuits from 1975-1980 and was

European Associate Editor for the IEEE Transactions on CAD from

1982 to 1985. He received a Best Paper Award at the ISSCC of 1973

on Bipolar Device Simulation and at the 1981 ESSCIRC conference

for work on an integrated CAD system. In 1986 he became fellow

of the IEEE. His actual field of research is the design of Integrated

circuits and Computer-Aided Design.

Since 1984 he has been Vice-President of the VLSI systems design

group of IMEC (Leuven, Belgium).

