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A Generalized Subspace Approach for Mobile Positioning
With Time-of-Arrival Measurements

H. C. So, Member, IEEE, and Frankie K. W. Chan

Abstract—The problem of locating mobile terminals has received con-
siderable attention particularly in the field of wireless communications. In
this correspondence, a simple subspace-based algorithm for mobile posi-
tioning with the use of time-of-arrival measurements deduced from signals
received at three or more reference base stations is derived and analyzed.
It is shown that the proposed approach is a generalization of the mobile
localization method based on multidimensional similarity analysis. Com-
puter simulations are included to contrast the estimator performance with
Cramér–Rao lower bound.

Index Terms—Fast algorithm, mobile terminal, position estimation,
range measurements.

I. INTRODUCTION

Mobile terminal (MT) positioning has been receiving considerable
interest, especially after the Federal Communications Commission in
the United States has adopted rules to improve the Emergency 911
(E-911) services by mandating the accuracy of locating an E-911 caller
to be within a specified range, even for a wireless phone user [1]. Apart
from emergency assistance, mobile position information is also the key
enabler for a large number of innovative applications such as personal
localization and monitoring, fleet management, asset tracking, travel
services, location-based advertising, and billing [2].

Common positioning approaches [3] are based on time-of-arrival
(TOA), received signal strength, time-difference-of-arrival, and/or
angle-of-arrival measurements determined from the MT signal re-
ceived at several reference base stations (BSs) with known locations.
In this correspondence, we focus on two-dimensional (2-D) MT local-
ization given the TOA information. In the TOA method, the one-way
propagation time of the signal travelling between the MT and each of
the BSs is measured. Each TOA measurement then provides a circle
centered at the BS on which the MT must lie. With three or more BSs,
the measurements are converted into a set of circular equations, from
which the MT position can be determined with the knowledge of the
BS geometry.

The optimum TOA-based localization approach involves solving the
nonlinear circular equations in an iterative manner, and commonly used
techniques [4] include linearization via Taylor-series expansion, the
steepest descent method, and Newton-type iteration. However, this ap-
proach is computationally intensive and sufficiently precise initial es-
timates are required to obtain the global solution. On the other hand,
computationally efficient but suboptimum position estimators, which
allow real-time realization as well as ensure global convergence, have
also been proposed in the literature [5]–[9]. In the least-squares (LS)
calibration method [5], the nonlinear equations are reorganized into a
set of linear equations via introduction of an extra variable, which is
a function of the source position, and these linear equations are then
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solved straightforwardly by using LS. Alternatively, the common vari-
able in the linear equations can be eliminated via subtraction of each
equation from all others, and this technique is referred to as the linear
least-squares estimator [6]. Based on a new geometrical formulation,
Caffery has proposed the straight-lines-of-position (SLOP) method [7]
where a generalized set of linear equations is constructed. Instead of
forming linear equations, computationally simple subspace based po-
sitioning algorithms [8], [9] have also been derived using the squared
TOA measurements or, equivalently, the squared distance measure-
ments. In [8], classical multidimensional scaling (MDS) is modified,
while Wan et al. [9] have derived a noise subspace-based algorithm
with a linear constraint for the three-BS case. Inspired by the multidi-
mensional similarity matrix utilized in [9], we develop a new subspace
based localization approach which allows any number of BSs.

The rest of the correspondence is organized as follows. The develop-
ment of the subspace based mobile positioning algorithm is presented
in Section II. When there are three receiving BSs, it is proved that
the proposed method is identical to [9]. The bias and variance for the
position estimate are also derived. Simulation results are included in
Section III to validate our theoretical calculation and to evaluate the
accuracy of the subspace positioning technique. Finally, concluding re-
marks are provided in Section IV.

II. ALGORITHM DEVELOPMENT

Let z = [x y] be the MT position to be determined and the known
coordinates of the ith BS be [xi yi]; i = 1; 2; . . . ;M , where M � 3
is the total number of receiving BSs. The distances between the MT
and BSs are determined from the corresponding TOA measurements,
which are modeled as

ri = (x� xi)2 + (y � yi)2 + qi; i = 1; 2; . . . ;M (1)

where qi is the noise in ri or range error at the ith BS. In our study,
we assume line-of-sight propagation between the MT and all BSs such
that each qi is a zero-mean random process.

Define an M � 2 matrix X of the form

X =

x1 � x y1 � y

x2 � x y2 � y
...

...
xM � x yM � y

(2)

which is parameterized by [x y]. Following [9], we define the multi-
dimensional similarity matrix, namely, D = XX

T , where T denotes
transpose operation, which is a rank-2 symmetric matrix and its (m;n)
entry is given by

[D]m;n = 0:5 d
2
m + d

2
n � d

2
mn (3)

where dm denotes the noise-free version of rm; m = 1; 2; . . . ;M , and
dmn = dnm = (xm � xn)2 + (ym � yn)2 is of known value be-
cause it represents the distance between themth andnth BSs. Although
the exact form ofD is unavailable, we are able to construct its approx-
imate version at sufficient small noise conditions, denoted by D̂, with
the use of the noisy frmg and noise-free fdmng. As a generalization
of [9], the (m;n) entry of D̂ is

[D̂]m;n = 0:5 r
2
m + r

2
n � d

2
mn : (4)

Decomposing the symmetric D̂ by eigenvalue factorization yields

D̂ = U�U
T (5)

where � = diag(�1; �2; . . . ; �M ) is the diagonal matrix of eigen-
values of D̂ with �1 � �2 � � � � � �M � 0; and U = [u1 u2 � � �
uM ] is an orthonormal matrix whose columns are the corresponding
eigenvectors. Since the rank of the ideal D is 2, an LS estimate of X
up to a rotation, denoted by X̂r, can be computed as [8], [10]

X̂
r = argmin

~X
kD̂� ~X ~XT k2F = Us�s (6)

where ~X is the variable matrix for X; kkF represents the Frobenius
norm,Us = [u1 u2] corresponds to the signal subspace, and�(1=2)

s =

diag(�
(1=2)
1 ; �

(1=2)
2 ). It is noteworthy that (6) is an important result in

classical MDS, and interested readers can refer to [10] for its derivation.
The relationship between X̂r and X is then

X � X̂
r
 (7)

where 
 is an unknown rotation matrix to be determined. In the ab-
sence of noise, we have X = X̂

r

. From (7), an optimal estimate of


 in the LS sense is easily shown to be


̂ = (X̂rT
X̂
r)�1

X̂
rT
X = �

�

s U
T
sX: (8)

Substituting (8) into (7), we get

X � UsU
T
sX: (9)

It is observed that there are M linear equations in terms of x and
another M similar linear equations as a function of y, and thus we
can apply the LS technique to solve for the MT position from the
overdetermined system of (9). Alternatively, we can perform the po-
sition estimation based on the noise subspace as follows. Since IM �
UsU

T
s = UnU

T
n , where IM is the M � M identity matrix and

Un = [u3 u4 � � �uM ] denotes the noise subspace, (9) is rearranged
as

UnU
T
n1M [x y] � UnU

T
n

x1 y1

x2 y2
...

...
xM yM

(10)

where 1M denotes an M � 1 vector with all elements equal to unity.
Solving (10) in the LS sense, the position estimate, denoted by ẑ =
[x̂ ŷ], is

ẑ = UnU
T
n1M

y
UnU

T
n

x1 y1

x2 y2
...

...
xM yM

=
1
T
MUnU

T
n

1TMUnU
T
n1M

x1 y1

x2 y2
...

...
xM yM

(11)
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where y represents the pseudoinverse. In particular, when there are only
three BSs, we have Un = u3, and (11) is then simplified to

ẑ =
uT3

uT
3
1M

x1 y1
x2 y2
...

...
xM yM

(12)

which is exactly the solution given by [9]. It is noteworthy that, unlike
[9], which utilizes a linear constraint, we start from the signal subspace,
and we can allow any number of BSs as long as M � 3, while the
former only operates for M = 3.

When 
̂ ! 
, which is reasonably true for a sufficiently small
noise condition, our proposed subspace solution can be approximated
as

[x̂ ŷ] = argmin
~x; ~y

J (13)

where J = kD̂� ~X ~XT k2F such that ~X is now restricted as

~X =

x1 � ~x y1 � ~y

x2 � ~x y2 � ~y
...

...
xM � ~x yM � ~y

: (14)

The biases of x̂ and ŷ in (13) are given by [8]

IEẑ� z � � IE
@2J

@~z~zT

�1

IE
@J

@~z
~z=z

� � IE
@2J

@~z~zT

�1

IE
@J

@~z
~z=z

(15)

where ~z = [~x ~y] and IE is the expectation operator. Note that the in-
terchange of the expectation operator and matrix inverse is valid for
sufficiently high signal-to-noise ratio (SNR) conditions.

On the other hand, the variances of x̂ and ŷ in (13) are given by
the first and second diagonal elements of the following 2� 2 matrix,
respectively [8]:

IE
@2J

@~z~zT

�1

~z=z

IE
@J

@~z

@J

@~z

T

~z=z

IE
@2J

@~z~zT

�1

~z=z

:

(16)

For simplicity but without loss of generality, we consider uncorrelated
fqig with IEfq2i g = �2i ; i = 1; 2; . . . ;M , and the required terms to
compute (15) and (16) have been calculated in the Appendix.

In the following, the computational complexity of the modified
MDS, SLOP, as well as proposed methods is analyzed in terms of
number of floating-point operations (FLOPS). We only investigate the
dominant operations involved, namely, the singular value decomposi-
tion (SVD) and LS computations. The calculation of FLOPS is briefly
described as follows. A dot product of length n involves 2n FLOPS
because there are n multiplications and n additions. Furthermore,
performing SVD of a matrix A 2 IRm�n needs 4m2n + 22n2

FLOPS. Here, QR factorization is utilized to obtain the LS solution of
Ax � b, although other approaches can be considered. In summary,
the LS computation requires 2mn2 FLOPS for the QR factorization
of A = QR; 2mn FLOPS for vector construction of b = QTb,
as well as n2 FLOPS for the backward substitution of Rx = b. As
a result, the numbers of FLOPS in the SLOP, modified MDS, and
proposed methods are 6M2� 6M +4; 4M3+34M2+64M +162;
and 4M3 + 27M2 � 4M � 13, respectively. It is observed that the
SLOP approach is the most computationally efficient with complexity

Fig. 1. Mean-square position error versus number of BSs when z =
[�5000 �500] m.

of O(M2) while the complexity of the remaining two methods is
of O(M3), but their difference will not be significant when the BS
number is small.

III. NUMERICAL EXAMPLES

Computer simulation had been conducted to evaluate the perfor-
mance of the proposed TOA-based positioning approach. We com-
pared the mean square position errors (MSPEs) of the subspace es-
timator with the modified MDS [8], the SLOP method [7], as well as
Cramér–Rao lower bound (CRLB) in MT localization. For presentation
simplicity, the SNR in each range measurement was assigned identical
with SNR = d2i =�

2

i where �2i was the variance of the zero-mean white
Gaussian range error qi. All results were averages of 10 000 indepen-
dent runs.

In the first scenario, the MT was fixed at [�5000 � 500] m,
and we started with three BSs with coordinates [0 0] m, [0 6000]
m and [6000 6000] m. The BSs with coordinates [6000 0] m,
[6000 � 6000] m, [�6000 0] m, [�6000 � 6000] m, [�6000 0] m,
and [�6000 6000] m were then added successively. Fig. 1 shows the
MSPEs versus number of BSs when the SNR was kept at 30 dB. It is
seen that the proposed algorithm had similar MSPEs with the modified
MDS but it outperformed the SLOP method for 3 � M � 7, and all
of them were suboptimal estimators since their performance could not
attain the CRLB. We also observe that the theoretical mean-square
error, which was computed as the sum of variance and squared bias
based on (15) and (16), agreed with the simulation results. Fig. 2
shows the MSPEs versus SNR when M = 9 with the BS geometry
equalled to the previous test. We see that for SNR � 15 dB, the
MSPEs of the subspace method were close to those of the modified
MDS and SLOP methods and decreased with the CRLB. However,
for smaller SNR conditions, the proposed method was inferior to the
SLOP technique, which is a common phenomenon for subspace-based
approaches. The theoretical mean-square error development was also
confirmed for sufficiently small noise conditions, namely, SNR > 10
dB. It is worthy to point out that the variance dominated the squared
bias for sufficiently high-SNR conditions, and thus we may ignore the
bias of (15) in the computation for simplicity.

The above two tests were repeated when the position of the MT was
uniformly distributed within the square bounded by [�3000 � 3000]
m, [�3000 3000] m, [3000 � 3000] m, and [3000 3000] m in each
trial. In Fig. 3, it is seen that the proposed algorithm outperformed the
SLOP method for 3 � M � 6, and all had comparable performance
for 7 � M � 9. While in Fig. 4, we observe that for SNR � 15 dB,
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Fig. 2. Mean-square position error versus SNR when z = [�5000 � 500] m.

Fig. 3. Mean-square position error versus number of BSs for randomly dis-
tributed MT.

Fig. 4. Mean-square position error versus SNR for randomly distributed MT.

the MSPEs of the proposed estimator were more or less the same as
the modified MDS algorithm but were a bit smaller than those of the
SLOP method.

IV. CONCLUDING REMARKS

A novel subspace-based approach has been devised for mobile ter-
minal localization using distance measurements. It is shown that the
proposed approach, which can be used with at least three receiving base
stations, is a generalized version of the mobile localization method [9]
based on multidimensional similarity analysis. Theoretical positioning
accuracy of the subspace estimator is produced and verified by com-
puter simulations.

APPENDIX

The required terms for computing (15) and (16) are determined as
follows. First, we notice that

J = ~X ~XT � D̂
2

F

= trf ~X ~X
T ~X ~X

T
� 2 ~X ~X

T
D̂+ D̂T

D̂g (A1)

where tr denotes the trace operator. Then, we have

@ ~X ~XT

@~x
= Kx

~XT + ~XKT
x (A2)

@ ~X ~XT

@~y
= Ky

~XT + ~XKT
y (A3)

@ ~X ~XT ~X ~XT

@~x
=

@ ~X ~XT

@~x
~X ~XT + ~X ~XT @ ~X ~XT

@~x
(A4)

@ ~X ~XT ~X ~XT

@~y
=

@ ~X ~XT

@~y
~X ~XT + ~X ~XT @ ~X ~XT

@~y
(A5)

@2 ~X ~XT

@~x2
= 2KxK

T
x = 21M1

T
M (A6)

@2 ~X ~XT

@~x@~y
= KxK

T
y +KyK

T
x = 0M�M (A7)

@2 ~X ~XT

@~y2
= 2KyK

T
y = 21M1

T
M (A8)

@2 ~X ~XT ~X ~XT

@~x2
= 21M1

T
M

~X ~XT

+ 2 ~X ~XT
1M1

T
M + 2(

@ ~X ~XT

@~x
)2 (A9)

@2 ~X ~XT ~X ~XT

@~x~y
=

@ ~X ~XT

@~x

@ ~X ~XT

@~y
+

@ ~X ~XT

@~y

@ ~X ~XT

@~x
(A10)

and

@2 ~X ~XT ~X ~XT

@~y2
= 21M1

T
M

~X ~XT

+ 2 ~X ~XT
1M1

T
M + 2(

@ ~X ~XT

@~y
)2 (A11)

where Kx = [�1M 0M�1];Ky = [0M�1 � 1M ] and 0i�j
stands for the i � j zero matrix. By using (A2) to (A11), we get
(@J=@~x); (@J=@~y); (@2J=@~x2); (@2J)=(@~x@~y); (@2J=@~y2), and
their corresponding expected values, which are shown as follows:

@J

@~x
= 2tr ( ~X ~X

T
� D̂)

@ ~X ~X
T

@~x

) IE
@J

@~x
= tr 1

T
M + 1M

T

Kx
~XT + ~XKT

x

) IE
@J

@~y
= tr 1

T
M + 1M

T

Ky
~XT + ~XKT

y :
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On the other hand

IE
@J

@~x

2

~x=x

= 4IE tr2 Q
@XXT

@x

= 4IE tr2 0:5q1TM + 0:51Mq
T @XXT

@x

= 4IE 1
T
M

@XXT

@x
q

2

= 4 1
T
M

@XXT

@x
�

2

+ 4
@XXT

@x
1M �

@XXT

@x
1M

T

� (2���+ 4r��)

where � denotes the Schur product, Q = D̂ � XXT , q =

[2r1q1+q21 2r2q2+q22 � � � 2rMqN+q2N ]T ;� = [�21 �22 � � �

�2M ]T ; and r = [r21 r22 � � � r2N ]T . Similarly, we have

IE
@J

@~y

2

~y=y

= 4
@XXT

@y
1M

T

�

2

+ 4
@XXT

@y
1M �

@XXT

@y
1M

T

� (2���+ 4r��)

and

IE
@J

@~x

@J

@~y
~x=x;~y=y

= 4
@XXT

@x
1M

T

�
@XXT

@y
1M

T

�

+ 4
@XXT

@x
1M �

@XXT

@y
1M

T

� (2���+ 4r��) :

For the second-order derivatives, we have

@2J

@~x2

= 2tr 2 ~X ~X
T
1M1M

T +
@ ~X ~X

T

@~x

2

� 2D̂1M1M
T

)
@2J

@~x2
~x=x

= 2tr
@XXT

@x

2

� 2Q1M1M
T

) IE
@2J

@~x2
~x=x

= 2tr
@XXT

@x

2

� 4M1
T
M�:

By similar derivation, we obtain

IE
@2J

@~y2
~y=y

= 2tr
@XXT

@y

2

� 4M1
T
M�

and

IE
@2J

@~x@~y
~x=x;~y=y

= 2tr
@XXT

@x

@XXT

@y
:
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