
J. Parallel Distrib. Comput. 65 (2005) 583–594
www.elsevier.com/locate/jpdc

A generalized target-driven cache replacement policy for mobile
environments

Liangzhong Yin, Guohong Cao∗, Ying Cai1

Department of Computer Science & Engineering, The Pennsylvania State University, University Park, PA 16802, USA

Received 2 November 2003; received in revised form 10 November 2004; accepted 19 December 2004

Abstract

Caching frequently accessed data items on the client side is an effective technique to improve the system performance in wireless
networks. Due to cache size limitations, cache replacement algorithms are used to find a suitable subset of items for eviction from the
cache. Many existing cache replacement algorithms employ a value function of different factors such as time since last access, entry time
of the item in the cache, transfer time, item expiration time and so on. However, most of the existing algorithms are designed for WWW
environment under weak consistency model. Their choices of value functions are based on experience and on a value function which only
works for a specific performance metric.

In this paper, we propose a generalized value function for cache replacement algorithms for wireless networks under a strong consistency
model. The distinctive feature of our value function is that it is generalized and can be used for various performance metrics by making the
necessary changes. Further, we prove that the proposed value function can optimize the access cost in our system model. To demonstrate
the practical effectiveness of the generalized value function, we derive two specific functions and evaluate them by setting up two different
targets: minimizing the query delay and minimizing the downlink traffic. Compared to previous schemes, our algorithm significantly
improves the performance in terms of query delay or in terms of bandwidth utilization depending on the specified target.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Cache replacement; Cost model; Value function; Mobile computing; Cache invalidation; Cache consistency model

1. Introduction

With the explosive growth of wireless techniques and
mobile devices such as laptops, personal digital assistants,
people with battery powered mobile devices wish to ac-
cess various kinds of services at any time any place. How-
ever, existing wireless services are limited by the constraints
of wireless networks such as narrow bandwidth, frequent
disconnections, and limitations of the battery technology.
Thus, mechanisms to efficiently transmit information from
the server to a massive number of clients (running on mobile
devices) have received considerable attention[4,7,9,14,19].

∗ Corresponding author. Fax: +1 814 865 3176.
E-mail addresses:yin@cse.psu.edu(L. Yin), gcao@cse.psu.edu

(G. Cao),yingcai@cs.iastate.edu(Y. Cai).
1Ying Cai is with Department of Computer Science at Iowa State

University.

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2004.12.002

Caching frequently accessed data items on the client side
is an effective technique to improve performance in a mobile
environment[4]. Average data access latency is reduced as
some data access requests can be satisfied from the local
cache thereby obviating the need for data transmission over
the scarce wireless links. Due to the limitations of the cache
size, it is impossible to hold all the accessed data items in the
cache. As a result, cache replacement algorithms are used to
find a suitable subset of data items for eviction.

Cache replacement algorithms have been extensively
studied in the context of operating system virtual memory
management and database buffer management[11]. In this
context, cache replacement algorithms usually maximize
the cache hit-ratio by attempting to cache the items that are
most likely to be accessed in the future. However, these
algorithms may not be suitable for wireless networks due
to a number of reasons[10]: First, the data items may have

http://www.elsevier.com/locate/jpdc
mailto:yin@cse.psu.edu
mailto:gcao@cse.psu.edu
mailto:yingcai@cs.iastate.edu

584 L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594

different sizes and then theleast recently used(LRU) pol-
icy needs to be extended to handle items of varying sizes.
Second, data items may be constantly updated at the server
side. Thus the consistency issue shall be considered. That is,
data items that tend to be inconsistent earlier should be re-
placed earlier. Third, the cost to download data items from
the server may vary. As a result, the cache hit-ratio may
not be the best measurement for evaluating the quality of a
cache replacement algorithm.

Aggarwal et al.[3] classifies the existing cache replace-
ment policies into three categories:direct-extension, key-
based, and function-based. In the direct-extension category
[17], traditional policies such as LRU or FIFO are extended
to handle data items of non-homogeneous size. The diffi-
culty with such policies in general is that they fail to pay
sufficient attention to the data size. In the key-based policies
[21], keys are used to prioritize some replacement factors
over others; however, such prioritization may not always be
ideal.

Recently, function-based replacement policy has received
considerable attention[3,5,18,22,24]. The idea in function-
based replacement policies is to employ a function of the
different factors such as time since last access, entry time
of the data item in the cache, transfer time, data item expi-
ration time and so on. For example, the algorithm[5] pro-
posed by Bolot and Hoschka first explicitly considers the
delay to fetch web documents in cache replacement. Their
value function employs a weighted function of the trans-
fer time, the document size, and the time since last access.
However, the choice of the value function is not justified
and there are many unspecified weights. The Hybrid Al-
gorithm (HYB) [22] addresses both latency and bandwidth
issues. Their value function employs a weighted exponen-
tial function of the access frequency, the size, the latency
to the server and the bandwidth to the server. Several con-
stants are used, but exactly how to set these constants to get
better performance is not given. The LNC-R-W3-U algo-
rithm, proposed by Shim et al.[18], aims to minimize the
response time. Their value function employs a rational of
the access frequency, the transfer time, the document size,
and the validation rate. The author proved that their cache
replacement algorithm could find the document subsets that
satisfy the value function. However, the author did not prove
that this algorithm could minimize the response time. The
algorithms mentioned above are designed for WWW envi-
ronment where weak cache consistency model is adopted.
These algorithms may not be suitable if strong cache con-
sistency model is needed. The Min-SAUD algorithm[24] is
designed for strong cache consistency model. It uses an op-
timal value function that can minimize the metricstretch. 2

Although the authors proved that their value function is op-

2 The ratio of the access latency of a request to its service time, where
the service time is defined as the ratio of the item size to the broadcast
bandwidth.

timal, they did not show how to get such an optimal value
function.

These function-based policies are valuable in that they ad-
dress various aspects of cache replacement. However, these
algorithms are designed for a specific metric (target). When
the target changes, they have to come up with another func-
tion. Furthermore, these functions may not even be optimal.
In this paper, we propose a novel approach for cache replace-
ment. We first present a cache access cost model for wire-
less networks and show how to break-down the data access
cost and how to use caching to improve the system perfor-
mance. Based on the cost model, we propose a generalized
value function, and prove that the proposed value function
can minimize the access cost in ideal situations. Since our
value function is general, it can be used for various kinds
of performance metrics by making the necessary changes.
To demonstrate the practical effectiveness of the generalized
value function, we derive two specific functions by setting
up two different targets: minimize the query delay and min-
imize the downlink traffic. Extensive simulations are pro-
vided and used to justify the analysis. The simulation results
show that for both targets, our cache replacement policy can
significantly improve the performance compared to existing
policies under various cache sizes, update time, query gen-
erate time, and access patterns.

The rest of the paper is organized as follows. Section 2
presents the system model. In Section 3, we present the gen-
eralized value function and the cache replacement algorithm.
The optimal proof is also provided. Some implementation
issues are discussed in Section 4. Section 5 evaluates the
performance of the proposed cache replacement algorithm
under two different targets. Section 6 concludes the paper.

2. The system model

2.1. Mobile computing model

In a mobile computing system, the geographical area is
divided into small regions, called cells. Each cell has abase
station(BS) and a number ofmobile terminals(MTs). Inter-
cell and intra-cell communications are managed by the BSs.
The MTs communicate with the BS by wireless links. An
MT can move within a cell or between cells while retaining
its network connection. An MT can either connect to a BS
through a wireless communication channel or disconnect
from the BS by operating in thedoze(power save) mode.

The mobile computing platform can be effectively de-
scribed under theclient/serverparadigm. A data item is the
basic unit for update and query. MTs only issue simple re-
quests to read the most recent copy of a data item. There
may be one or more processes running on an MT. These pro-
cesses are referred to as clients (we use the terms MT and
client interchangeably). In order to serve a request sent from
a client, the BS needs to communicate with the database
server to retrieve the data items. Since the communication

L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594 585

between the BS and the database server is through wired
links and is transparent to the clients (i.e., from the client
point of view, the BS is the same as the database server),
we use the terms BS and server interchangeably.

2.2. The cache invalidation model

Frequently accessed data items are cached on the client
side. To ensure cache consistency, a cache management al-
gorithm is necessary. Classical cache invalidation strategies
may not be suitable for wireless networks due to frequent
disconnections and high mobility of mobile clients. It is dif-
ficult for the server to send invalidation messages directly
to the clients because they often disconnect to conserve bat-
tery power and are frequently on the move. For the clients,
querying data servers through wireless links for cache in-
validation is much slower than wired links because of the
latency of the wireless links. As a solution, we use the in-
validation report-based cache invalidation approach[4] to
maintain cache consistency. In this approach, the server pe-
riodically broadcasts aninvalidation report(IR) in which the
changed data items are indicated. Rather than querying the
server directly regarding the validation of cached copies, the
client can listen to these IRs over wireless channels and use
the information to invalidate its local cache. More formally,
the server broadcasts an IR everyL seconds. The IR consists
of the current timestampTi and a list of tuples(dx, tx) such
that tx > (Ti − w ∗ L), wheredx is the data itemid, tx is
the most recent update timestamp ofdx , andw is the inval-
idation broadcast window size. In other words, IR contains
the update history of the pastw broadcast intervals. How-
ever, any client who has been disconnected longer thanw

IR intervals cannot use the report, and it has to discard all
cached items even though some of them may still be valid.
Many solutions[14,16,23]are proposed to address the long
disconnection problem, and Hu et al.[14] has a good survey
of these schemes.

In the IR-based cache invalidation model, every client, if
active, listens to the IRs and invalidates its cache accord-
ingly. To answer a query, the client listens to the next IR and
uses it to decide whether its cache is valid or not. If there
is a valid cached copy of the requested data item, the client
returns the item immediately. Otherwise, it sends a query
request to the server through the uplink. Hence, the average
latency of answering a query is the sum of the actual query
processing time and half of the IR interval. If the IR inter-
val is long, the delay may not be able to satisfy the require-
ments of many clients. In order to reduce the query latency,
Cao [9] proposed to replicate the IRsm times; that is, the
IR is repeated every(1

m
)th of the IR interval. To reduce the

packet size, the invalidation report replica, which is called
UIR, only contains the invalidation information since last IR
report. A client only needs to wait at most(1

m
)th of the IR

interval before answering a query. Hence, latency can be re-
duced to(1

m
)th of the latency in the previous schemes (when

v

f

 ui

 ui

Access data

N
P

P

Y

Y
c

Consistent?

N

Get updated data

Fetch data

 i

i

ai

(1- P)

Return data

Data in cache ?

Fig. 1. The cache access cost model.

query processing time is not considered). In this paper, we
will apply the UIR-based approach to reduce the query de-
lay of the IR-based cache invalidation model. Although our
algorithm is based on this cache invalidation model, it can
also work under other models, such as those in[4,14,16].

Similar to other researchers, we assume that data ac-
cesses/updates follow Poisson distribution and the indepen-
dent reference model[11]. The Poisson arrivals are usually
used to model data access and update processes[15]. The
independent reference model has been adopted by many re-
searchers[6,24]and it explains the access behavior well[6].

3. A generalized target-driven cache replacement
algorithm

To facilitate our discussion, the following notations are
used. Fig.1 further explains the use of these notations.

• n: the number of data items in the database.
• fi : the cost of fetching data itemi to the cache.
• c: the mean cost of validating the consistency of data item

in cache.
• vi : the cost of getting updated data itemi from the server.
• ai : the mean access rate to data itemi.
• ui : the mean update rate of data itemi.
• si : the size of data itemi.
• Pai : the probability of referencing data itemi.
• Pui : the probability of invalidating cached data itemi.
• V: the set of all the cached data items.

Based on the above notations, the cache replacement pol-
icy should optimize the following expression:

max
∑
i∈V

value(i),

where

value(i) = Pai (fi − c − Pui ∗ vi). (1)

586 L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594

This value function can be explained by the cache access
cost model shown in Fig.1. If data itemi is not in the cache,
it will take fi to fetch data itemi into the cache. In other
words, if i is in the cache, we can save the access cost by
fi . However, it also takes(c + Pui ∗ vi) to validate it and
get the updated data if necessary. Thus, caching the data
can save the cost by(fi − c − Pui ∗ vi) per access. Since
the access possibility isPai , we can conclude that the value
Pai ∗ (fi − c − Pui ∗ vi) reflects the value of caching data
item i.

Based on this value function, we can build our cache
replacement policyGeneral_Opt. Let V denote the set of
all the cached data items. Suppose we need to replace data
items of sizes in order to add a new data item to the cache,
our policy finds the set (V ∗) of items to be replaced which
satisfies the following two conditions:

(a)
∑
i∈V ∗

si�s,

(b) ∀Vk

Vk ⊆ V ∧

∑
i∈Vk

si�s


 ,

∑
i∈Vk

value(i)�
∑
i∈V ∗

value(i). (2)

Intuitively V ∗ is the least valuable subset ofV whose total
size is at leasts.

Theorem 1. The General_Opt algorithm replaces the set of
items that minimize the total access cost.

Proof. SupposeA is the set that theGeneral_Opt algorithm
found. B is an arbitrary set whose total size

∑
i∈B si�s.

A
⋂
B is assumed to be an empty set∅: otherwise, we can

remove the intersecting elements since their values are equal
under both algorithms. According to the algorithm∑

i∈A
value(i)�

∑
j∈B

value(j).

LetC = V −A−B. Letd denote the data item to be brought
into the cache. LetCost(C) andCost(d) denote the cost of
accessingC andd, respectively. After replacingA from the
cache, the cost of accessingA (not in cache) is∑

i∈A
Pai ∗ fi

and the cost of accessingB (still in cache) is∑
j∈B

Paj ∗ (c + Puj ∗ vj).

Thus the total access cost after replacingA is

TA =
∑
i∈A

Pai ∗ fi +
∑
j∈B

Paj ∗ (c + Puj ∗ vj)

+ Cost(C)+ Cost(d).

Similarly the total access cost after replacingB is

TB =
∑
i∈B

Pai ∗ fi +
∑
j∈A

Paj ∗ (c + Puj ∗ vj)

+ Cost(C)+ Cost(d).

So,

TA − TB =

∑
i∈A

Pai ∗ fi +
∑
j∈B

Paj ∗ (c + Puj ∗ vj)



−

∑
i∈B

Pai ∗ fi +
∑
j∈A

Paj ∗ (c + Puj ∗ vj)



=

∑
i∈A

Pai ∗ fi −
∑
j∈A

Paj ∗ (c + Puj ∗ vj)



−

∑
i∈B

Pai ∗ fi −
∑
j∈B

Paj ∗ (c + Puj ∗ vj)



=
∑
i∈A

value(i)−
∑
j∈B

value(j)�0.

Thus, theGeneral_Opt algorithm replaces a set of data
times which can minimize the total access cost.�

Based on the generalized value function, we can derive
specific value function for a specific metric. For example,
suppose we want to minimize the query delay,fi will be
the delay to fetch itemi after the query is generated;c is
the delay to validate the cached item;vi is the delay to get
the updated itemi from the server after cache validation.
We can also derived other specific value functions such as
minimizing the downlink traffic as shown in Section5.

4. Implementation issues

In the General_Opt algorithm, the optimization problem
defined by Eq. (2) is essentially the 0/1 knapsack problem,
which is known to beNP-hard. Although there is no optimal
solution to the problem, when the data size is relatively small
compared to the cache size[18], we can use heuristics to
obtain sub-optimal solutions. The heuristic we will use is:

throw out the cached data itemi with the minimumvalue(i)
si

value until the free cache space is sufficient to accommodate
the incoming data.

4.1. Parameter estimation

In the actual implementation,fi, vi, Pai , andPui are usu-
ally not constant. We have to estimate these parameters ac-
curately to capture the temporal locality of data access. In

L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594 587

the following, we provide techniques to estimate the value
of these parameters.

We use the exponential aging method, which has been
adopted in TCP[20] to estimate the round trip delay, to es-
timatefi andvi . It combines both the history data and the
current observed value to estimate the parameters. When-
ever an access or validation is completed,fi andvi are re-
calculated as following:

fi = � ∗ f new
i + (1 − �) ∗ f old

i ,

vi = � ∗ vnew
i + (1 − �) ∗ vold

i .

Pai andPui can be derived fromai andui . SincePai is
proportional toai , Pai can be replaced byai directly. Let
Tai be the time of access andTui be the time of invalidation.
Since we assume the data accesses and updates follow Pois-
son distribution, the probability that the cache invalidation
happens before the next data access is[24]:

Pui = Pr(Tui < Tai)
=

∫ ∞

0

∫ Tai

0
aie

−aiTai uie−uiTui dTui dTai = ui

ai + ui .

So, the value function of Eq. (1) can be replaced by the
following:

value(i) = ai ∗
(
fi − c − ui

ai + ui ∗ vi
)
. (3)

We cannot simply use the above aging technique to es-
timate ai andui since the access rate and the update rate
should still be “aged” in the absence of access to a data item.
We apply similar techniques used by Shim et al.[18] to es-
timateai andui . This method usesK most recent samples
to estimateai andui as follows

ai = K

T − Tai (K)
, (4)

ui = K

T − Tui (K)
, (5)

whereT is the current time,Tai (K) andTui (K) are the time
of theKth most recent accesses and updates. If less than
K samples are available, all the available samples are used.
Shim et al.[18] showed thatK can be as small as 2 or 3 to
achieve the best performance. Thus, the spatial overhead of
storing recent accesses and updates is relatively small.

One concern about implementing the algorithm is the
computational overhead. Eqs. (4) and (5) imply that the value
for each item in the cache needs to be recalculated whenever
a cache replacement is necessary. This computational over-
head it very high. To reduce the computational overhead, we
propose the following approximation method. Whenever a
cache replacement is necessary, instead of recalculating the
value of every data item, we only recalculate the values of
the first 2� − 1 items in the heap (The heap structure will

be described in the following section.) For data items in the
heap, this can guarantee that the value of the� least valu-
able items will be recalculated. Most likely, the items to be
replaced will be among them because their values are rela-
tively small. Simulation results (Fig.3 (a)) verifies that� =
3 can provide satisfying performance and the computational
overhead is very small.

4.2. Cache insertion and removal

A priority queue is needed so that the data item with the
least value(i)/si can be quickly found and removed. We
implement the priority queue based on a heap. With heap,
remove and insert operations can be performed inO(logN),
whereN is the total number of cached items. Due to data
access and parameter re-evaluation, the key value of the data
item within the heap maybe changed, and its position should
be changed to reflect its current value. A pointer is used to
record its position in the heap. In case of a value change,
the item can be found through this pointer inO(1) time and
O(logN) time is needed to adjust its position.

4.3. The client management algorithm

The client-side cache management algorithm is shown in
Fig. 2.

5. Performance evaluations

In this section, we evaluate the performance of the pro-
posed methodology. To compare with other algorithms, we
use two specific targets and apply them to our generalized
function. The first target is to minimize the query delay;
whereas the second is to minimize the downlink traffic.

5.1. The simulation model

In the simulation, a single server maintains a collection
of n data items and a number of clients access these data
items. The UIR cache invalidation model is adopted for data
dissemination.

5.1.1. The client model
The client query model is similar to what have been used

in our previous studies[8,25]. Each client generates a sin-
gle stream of read-only queries. The mean query generate
time for each client isTquery. The access pattern followsZipf
distribution[26], which has been frequently used[6,12] to
model non-uniform distribution. In the Zipf distribution, the
access probability of theith (1� i�n) data item is repre-
sented as follows

Pai = 1

i�
∑n
k=1

1

k�

,

588 L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594

(A) When a client generates a query for data item i:
 updates ai;
 if i is valid in the cache then
 wait for the validation report, UIR or IR;
 listen–invalidation–report();
 if i was not updated in the last cache invalidation then
 adjust the position of i in the heap;
 return i from the cache;
 else
 go to step (B);
 else
 go to step (B);

(B) When there is a cache miss for item i:
 send out a request and wait for the next IR;
 listen–invalidation–report();
 get i from the broadcast channel;
 if i is already in the cache then //data was updated at the server
 update data i in the cache;
 adjust the position of i in the heap;
 else if there is enough free space then
 insert item i into the cache and the heap;
 else
 while there is not enough space do
 // remove the item with the least value/s value
 remove the top item from the heap and clear the related data from the cache;
 insert i into the cache and the heap;

(C) listen_invalidation_report()

 listen to the IR or UIR from the server;
 for any item i that has been updated since last invalidation report
 update the mean update rate ui;
 change the cached item to be invalid if i is in cache.

Fig. 2. The client cache management algorithm.

where 0���1. When� = 1, it is the strict Zipf distribution.
When� = 0, it becomes the uniform distribution. Large�
results in more “skewed” access distribution.

Similar to [2], we partition the data items into disjoint
regions ofRegionSizeitems each. The access possibility of
any item within a region follows uniform distribution. The
Zipf distribution is applied to these regions.

5.1.2. The server model
The server broadcasts cache invalidation information (IR

and UIR) periodically. If the server receives requests from
clients, it serves the requests during the next IR interval on a
FCFS (first-come-first-service) basis. There aren data items
at the server side. The data size varies fromsmin to smax,
which follows the following two types of distributions:

• Random: The distribution of the data size falls randomly
betweensmin andsmax.

• Increase: The size (si) of the data item (i) grows linearly
as i increases; i.e.si = smin + (i − 1) ∗ smax−smin

n−1 .

The combination of data size distribution and Zipf ac-
cess pattern defines the joint distribution of access frequency
and data size. The choices of the data size distributions are
based on previously published trace analyses. Some analy-

ses[12,13] showed that small data items are accessed more
frequently than large items; while a recent web trace anal-
ysis [6] showed that the correlation between data item size
and access frequency is weak and can be ignored.

The server generates a single stream of updates separated
by an exponentially distributed update interarrival time with
mean value ofTupdate. The data items in the database are
divided into hot (frequently accessed) data subset and cold
data subset. Within the same subset, the update is uniformly
distributed, where 80% of the updates are applied to the hot
data subset. In the experiment, we assume that the server
processing time is negligible, and the broadcast bandwidth
is fully utilized for broadcasting IR and UIR, and serving
clients’ data requests. Most of the system parameters are
listed in Table1. The second column lists the default values
of these parameters. In the simulation, we may change the
parameters to study the impact of these parameters, and the
ranges of these parameters are listed in the third column.

Experiments are run using different workloads and sys-
tem settings. The performance analysis presented here is de-
signed to compare the effects of different workload parame-
ters such as mean update arrival time, mean query generate
time, and system parameters such as cache size and Zipf pa-
rameter� on the performance of our and other algorithms.

L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594 589

Table 1
Simulation parameters and their default values

Parameter Default value Range

Database size (n) 3000 items
Region size 50 items
Number of clients 100
smin 0.5k
smax 20k
Mean update time (Tupdate) 100 s 10–10000 s
Hot update prob. 0.8
Hot subset percentage 0.2
Broadcast interval (L) 20 s
Broadcast window (w) 10 interval
Broadcast bandwidth 144 kb/s
Relative cache size 10% of total 1–50%

database size
Mean query generate time (Tquery) 100 s 30–300 s
Zipf distribution parameter� 0.9 0–1

Since the client caches are only partially full at the initial
stage, the effectiveness of the different algorithms may not
be truly reflected. In order to get a better understanding of
the true performance for each algorithm, we collect the result
data only after the system becomes stable, which is defined
as the time when the client caches are full. For each workload
parameter (e.g., the mean update arrival time, or the mean
query generate time), the mean value of the measured data is
obtained by collecting a large number of samples such that
the confidence interval is reasonably small. In most cases,
the 95% confidence interval for the measured data is less
than 10% of the sample mean.

5.2. The evaluated algorithms

Four cache replacement algorithms are compared in our
simulations.
• LRU: Keep removing the item that was used the least

recently until there is enough space in the cache.
• LRU-MIN [1]: Suppose the incoming data size isS and

there is not enough space in the cache. The algorithm
finds the list of items in the cache with size at least S and
remove the least recently used items from the list. If the
list is empty, the algorithm finds the list of items with size
at leastS/2 and keep removing items in the list according
to the LRU order. Similarly, if more space is needed, try
the items of size at leastS/4. This algorithm is shown to
perform very well when the data size is different.

• OPT: This is our algorithm. It keeps removing the item
with leastvalue(i)/si value where the value function is
defined by Eq. (3).

• OPT (IDL): We also simulate an ideal case, where the
access rate and the update rate are known asa priori. This
defines an upper bound for our algorithm.

5.3. Simulation results: minimizing the query delay

Suppose our target is to minimize the query delay. As
shown in Eq. (3), fi is the delay to fetch itemi after the

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Cache size (% of total database size)

LRU
LRU-MIN

OPT (delta=2)
OPT (delta=3)
OPT (delta=4)

OPT (IDL)

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Cache size (% of total database size)

LRU
LRU-MIN

OPT_delay
OPT_traffic

OPT_delay (IDL)

(b)

(a)

Fig. 3. The average query delay as a function of the cache size: (a)
Increase; (b) Random.

query is generated;c is the delay to validate the cached item;
vi is the delay to get the updated itemi from the server after
cache validation.

In the simulation results, we show the average query delay
as a function of different factors such as cache size, mean
query generate time, etc. The average query delay is the total
query delay divided by the number of queries.

5.3.1. The average delay under different cache size
Fig. 3 shows the average query delay as a function of the

cache size. The total database size is fixed. We change the
relative cache size from 1% of total database size to 50% of
total database size to study the effect of cache size on the
average delay.

To study the effect of�, we compare the simulation results
of OPT when� is 2, 3 and 5 in Fig.3(a). As described in
Section4.1, for � is 2, 3 or 5, our algorithm will recalculate
the value of the first 3, 7 or 31 items, respectively, in the
heap. It is obvious that our algorithm with bigger� will
get better performance at the cost of more computational
overhead. As shown in Fig.3(a), OPT (� = 3) has similar
performance to OPT (� = 5). The computational overhead

590 L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594

of OPT (� = 3) is about 3/4 less. This shows that satisfying
performance can be achieved with small� value such as
3. Therefore, in the following of the paper, we will choose
� = 3, and refer the OPT (� = 3) algorithm as OPT.

In Fig. 3 (b), we also include the average delay of the
algorithm (discussed in Section5.4) whose target is to min-
imize the downlink traffic. Here, this algorithm is denoted
as OPT_traffic. As we have derived two algorithms for two
different metrics: the delay and the downlink traffic, we
want to cross-compare each algorithm under the other algo-
rithm’s target metric. Fig.3(b) shows that the performance
of OPT_traffic is not as good as OPT when the performance
metric is delay. See Section5.4.1for further discussion about
the cross-comparison.

The “Increase” distribution favors small data items. A
large number of data items can still be saved in the cache
even when the cache size is small. As a result, the cache
hit-ratio is higher and the query delay is lower. This can be
verified by Fig.3, where the query delay under “Increase”
size pattern is smaller than that under “Random” pattern.

Generally speaking, the average query delay drops as the
cache size increases. However, our algorithms always out-
perform LRU and LRU-MIN. For the “Random” size distri-
bution (Fig.3(b)), OPT (IDL) can outperform LRU by 28%
when the relative cache size is 10% and 33% when the rela-
tive cache size is 30%. Although OPT is not as good as OPT
(IDL), its average query delay is still 21% less than that of
LRU and 17% less than that of LRU-MIN when the relative
cache size is 10%.

For the “Increase” distribution, there are correlation be-
tween access rate and data size. Thus, the algorithms that
consider data size will have better performance than those
that do not. For example, in Fig.3 (a), the difference be-
tween LRU and other algorithms is much larger than that in
Fig. 3 (b).

5.3.2. The average delay under different update arrival time
The mean update arrival time (Tupdate) determines how

frequently the server updates its data items. As shown in Fig.
4, our algorithms are much better than LRU and LRU-MIN.
For example, in Fig.4(b), when the update arrival time is
10 s, the average query delay of OPT is 18% less than that
of the LRU-MIN algorithm. When the update arrival time
is in the range of 1000–10,000 s, the performance of OPT
is about 16% better than that of LRU-MIN. Of course, OPT
(IDL) performances better. On average, it is about 25% better
than LRU-MIN. Similar results can be found in Fig.4(a).

5.3.3. The average delay under different query generate
time

Fig. 5 shows the average query delay as a function of
Tquery. As explained before, each client generates queries
according to the mean query generate time. The generated
queries are served one by one. If the queried data is in the
local cache, the client can serve the query locally; otherwise,

4

6

8

10

12

14

10 100 1000 10000

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Mean update arrival time (seconds)

LRU
LRU-MIN

OPT
OPT (IDL)

4

6

8

10

12

14

10 100 1000 10000

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Mean update arrival time (seconds)

LRU
LRU-MIN

OPT
OPT (IDL)

(a)

(b)

Fig. 4. The average query delay as a function of the mean update time
arrival time: (a) Increase; (b) Random.

the client has to request the data from the server. If the
client cannot process the generated query due to waiting for
the server reply, it queues the generated queries. Since the
broadcast bandwidth is fixed, the server can only transmit a
limited amount of data during one IR interval. If the server
receives more queries than it can broadcast during one IR
interval, some queries are delayed to the next IR interval. If
the server receives more queries than it can broadcast during
each IR interval, many queries may not be served, and the
query delay may be out of bound. As we can see from Fig.
5, the delay of OPT and OPT (IDL) is much less than that
of LRU and LRU-MIN. This is due to the reason that OPT
and OPT (IDL) use the cache space more effectively and
the number of queries sent to the server can be reduced, and
hence, the server is less likely to be overwhelmed by the
clients’ requests.

For the “Increase” distribution, the average delay is much
less than the “Random” distribution for the same reason
mentioned in Section5.3.1. As Tquery increases, the average
query delay decreases since less queries are generated and
the server can serve the queries more quickly. As shown in
Fig. 5(a), the average delay increases slightly whenTquery
is larger than 150 s. This is because the chance that cached
items are invalid increases asTquery increases. As mentioned

L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594 591

4

6

8

10

12

14

 50 100 150 200 250 300

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Mean query generate time (seconds)

LRU
LRU-MIN

OPT
OPT (IDL)

 4

 6

 8

 10

 12

 14

 50 100 150 200 250 300

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Mean query generate time (seconds)

LRU
LRU-MIN

OPT
OPT (IDL)

(a)

(b)

Fig. 5. The average query delay as a function of the mean query generate
time: (a) Increase; (b) Random.

before, the average query delay is the total delay divided
by the number of queries. Thus, the average query delay
increases asTquery is larger than 150 s. The same trend exists
in the OPT of Fig.5(b) although it is less obvious. The
reason is as following. There are two conflicting factors that
affect the average query delay whenTquery increases: (1)
the server receives less number of requests and the average
query delay tends to decrease. (2) the chance of a cached
item being invalid increases, and the average query delay
tends to increase. In the “Random” distribution, the server
receives more requests than in the “Increase” distribution.
WhenTquery increase, the effect of the first factor is bigger
than that of the second factor. As a result, the increasing
trend in Fig.5 (b) is less obvious or does not exist.

5.3.4. The average delay under different access pattern (�)
The Zipf parameter� determines the “skewness” of the

access distribution. Fig.6 shows the effect of the access pat-
tern on the system performance. When� = 0, the “Random”
and “Increase” distribution almost generate the same result.
This is because the access is uniform and the size of data
items does not matter. As� grows, the average delay of the
“Increase” distribution drops faster than the “Random” dis-

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Zipf parameter θ

Zipf parameter θ

LRU
LRU-MIN

OPT
OPT (IDL)

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

LRU
LRU-MIN

OPT
OPT (IDL)

(a)

(b)

Fig. 6. The average query delay as a function of Zipf parameter�: (a)
Increase; (b) Random.

tribution since more items can be cached in the “Increase”
distribution.

As shown in Fig.6, OPT and OPT (IDL) constantly out-
perform LRU and LRU-MIN. In Fig.6(a), on average, OPT
outperforms LRU by 22% and outperforms LRU-MIN by
11%. In Figure6(b), on average, OPT outperforms LRU by
18% and outperforms LRU-MIN by 12%.

5.4. Simulation results: minimizing the downlink traffic

The downlink bandwidth determines the amount of data
that the server can broadcast in one IR interval. If we reduce
the downlink traffic, the server can handle more requests,
and hence, the server can serve more clients or clients can
make more requests. In order to minimize the downlink traf-
fic, we change the generalized value function to meet this
specific requirement as follows:fi will be all the downlink
bandwidth needed to fetch itemi to cache,c is the down-
link bandwidth needed for cache invalidation, andvi is the
downlink bandwidth needed to download the data.

Similar to Section5.3, we compare the performances of
four algorithms, LRU, LRU-MIN, OPT and OPT (IDL). Due

592 L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 d
ow

nl
in

k
tr

af
fic

 (
by

te
s)

Cache size (% of total database size)

LRU
LRU-MIN

OPT
OPT (IDL)
OPT_delay

Fig. 7. The average downlink traffic as a function of the cache size.

to space limitation, we only show the results of the “Ran-
dom” distribution due to the similarity between the “Ran-
dom” distribution and the “Increase” distribution. The per-
formance is measured by the average downlink traffic, which
is the overall downlink traffic divided by the number of
queries.

5.4.1. The average downlink traffic under different cache
sizes

We also include the simulation results of the delay-optimal
algorithm (denoted as OPT_delay in Fig.7) used in Section
5.3. As can be seen, although OPT_delay is good at reducing
the query delay, it is outperformed by our OPT algorithm
in term of downlink traffic, because OPT is specifically de-
signed to minimize the downlink traffic. Another interesting
thing is that the LRU-MIN algorithm does not show its ad-
vantage over LRU. These results, together with the results
shown in Fig.3 (b), show that it is possible for one specific
algorithm to work better than others in terms of one specific
metric, but not others.

Fig. 7 shows that our algorithm always outperforms other
algorithms. The OPT (IDL) outperforms LRU or LRU-MIN
by more than 26% on average. The OPT is not as good at
OPT (IDL), but it still outperforms LRU or LRU-MIN by
more than 21% on average. For simplicity, we will not show
OPT_delay in later presentations.

5.4.2. The average downlink traffic under different update
arrival time

Fig. 8 shows the average downlink bandwidth as a func-
tion of the update arrival timeTupdate. The trend here is sim-
ilar to that in Fig.4. Compared to LRU or LRU-MIN, OPT
(IDL) can reduce the downlink traffic by 2.3k per query
(29%) on average, whereas the OPT algorithm can reduce
the download traffic by about 1.8k per query (22%).

5500

6000

6500

7000

7500

8000

8500

9000

10 100 1000 10000

A
ve

ra
ge

 d
ow

nl
in

k
tr

af
fic

 (
by

te
s)

Mean update arrival time (seconds)

LRU
LRU-MIN

OPT
OPT (IDL)

Fig. 8. The average downlink bandwidth as a function of the update
arrival time.

5500

6000

6500

7000

7500

8000

8500

50 100 150 200 250 300

A
ve

ra
ge

 d
ow

nl
in

k
tr

af
fic

 (
by

te
s)

Mean query generate time (seconds)

LRU
LRU-MIN

OPT (IDL)
OPT

Fig. 9. The average downlink traffic as a function of the query generate
time.

5.4.3. The average downlink traffic under different query
generate time

Fig. 9 shows the relationship between the downlink traffic
and the query generate timeTquery. As can be seen, the av-
erage downlink traffic increases whenTquery increases. This
can be explained by the following two reasons: (1) when
Tquery increases, the possibility that a cached item is inval-
idated increases; (2) whenTquery decreases, fewer queries
are generated in the same IR interval, and hence, the chance
that two or more clients generate the same query decreases.
Note that if several clients request for the same data item
during the same IR interval, the server only broadcasts the
data item once. As less broadcasting data is shared, the av-
erage downlink traffic increases. Not surprisingly, OPT out-
performs LRU and LRU-MIN while OPT (IDL) always per-
forms the best.

L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594 593

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
ow

nl
in

k
tr

af
fic

 (
by

te
s)

Zipf parameter θ

LRU
LRU-MIN

OPT
OPT (IDL)

Fig. 10. The average downlink traffic as a function of�.

5.4.4. The average downlink traffic under different access
pattern (�)

Fig. 10shows the impact of data access pattern on the av-
erage downlink traffic. When� is small, the access pattern
is uniformed distributed. The performance of these four al-
gorithms is similar because the cache hit-ratio is very low
and there is less room for performance improvement. When
� increases, more accesses are focused on few items. As a
result, it became important to cache the right data and hence
the performance difference among these four algorithms in-
creases. When� = 1, compared to LRU (which now per-
forms better than LRU-MIN), OPT can reduce downlink
traffic by about 21% and OPT (IDL) can reduce the traffic
by about 27%.

6. Conclusions

In this paper, we proposed a generalized value function for
cache replacement algorithms in wireless networks. Based
on this generalized value function, we derived two value
functions to satisfy two specific targets: minimize the query
delay and minimize the downlink traffic. Detailed experi-
ments have been carried out to evaluate the effectiveness of
these value functions. In both simulations, our cache replace-
ment policy can significantly improve the system perfor-
mance compared to existing algorithms under various cache
sizes, update time, query generate time and access patterns.

Our algorithm solves the problem ofhow to provide cache
replacement algorithm given an optimization target. There
are still some existing problems to be solved, for example,
how to set the optimization target? There may be several
optimization targets, and it is a challenge to find a way
to balance these optimization targets. As future work, we
will address these issues and propose cache replacement
algorithms when multiple optimization targets exist.

Acknowledgments

We would like to thank the editor and the anonymous
referees whose insightful comments helped us to improve
the presentation of the paper. This work was supported in
part by the National Science Foundation (CAREER CNS-
0092770 and ITR-0219711).

References

[1] M. Abrams, C. Standridge, G. Abdulla, S. Williams, E. Fox, Caching
proxies: limitations and potential, Fourth International World-Wide
Web Conference, December 1995.

[2] S. Acharya, M. Franklin, S. Zdonik, Prefetching from a Broadcast
Disk, IEEE, (1996) 267–285.

[3] C. Aggarwal, J. Wolf, P. Yu, Caching on the World Wide Web, IEEE
Trans. Knowledge Data Eng. 11 (January/February 1999).

[4] D. Barbara, T. Imielinski, Sleepers and workaholics: caching
strategies for mobile environments, ACM SIGMOD, 1994, pp. 1–12.

[5] J. Bolot, P. Hoschka, Performance engineering of the World
Wide Web: application to dimensioning and cache design, Fifth
International World-Wide Web Conference, 1996.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching
and zipf-like distributions: evidence and implications, The 18th
Annual Joint Conference of the IEEE Computer and Communications
Societies, 1999.

[7] G. Cao, On Improving the performance of cache invalidation
in mobile environments, ACM/Baltzer Mobile Networks and
Application (MONET) 7 (4) (August 2002) 291–303.

[8] G. Cao, Proactive power-aware cache management for mobile
computing systems, IEEE Trans. Comput. (June 2002).

[9] G. Cao, A scalable low-latency cache invalidation strategy for
mobile environments, IEEE Trans. Knowledge Data Eng. 15
(5) (September/October 2003) 1251–1265 (a preliminary version
appeared in ACM MobiCom’00).

[10] P. Cao, S. Irani, Cost-Aware WWW proxy caching algorithm,
Proceedings of the Usenix Symposium on Internet Technologies and
System, 1997.

[11] E. Coffman, P. Denning, Operating System Theory, Prentice-Hall,
Englewood Cliff, NJ, 1973.

[12] C. Cunha, A. Bestavros, M. Crovella, Characteristics of WWW client-
based traces, Technical Report TR-95-010, Boston University, June
1995.

[13] S. Glassman, A caching relay for the World Wide Web, Comput.
Networks ISDN Systems 27 (1994).

[14] Q. Hu, D. Lee, Cache algorithms based on adaptive invalidation
report for mobile environments, Cluster Comput. (February 1998)
39–48.

[15] R. Jain, The Art of Compute System Performance Analysis, Wiley,
New York, 1991.

[16] J. Jing, A. Elmagarmid, A. Helal, R. Alonso, Bit-Sequences:
an adaptive cache invalidation method in mobile client/server
environments, Mobile Networks Appl. (1997) 117–129.

[17] J. Pitkow, M. Recker, A simple yet robust caching algorithm based
on dynamic access patterns, Proceedings of the Second International
World Wide Web Conference, 1994.

[18] J. Shim, P. Scheuermann, R. Vingralek, Proxy cache algorithms:
design, implementation, performance, IEEE Trans. Knowledge Data
Eng. 11 (July/August 1999).

[19] H. Song, G. Cao, Cache-miss-initiated prefetch in mobile
environments, IEEE International Conference on Mobile Data
Management (MDM), January 2004 (an enhanced version accepted
by Computer Communications).

594 L. Yin et al. / J. Parallel Distrib. Comput. 65 (2005) 583–594

[20] W.R. Steven, TCP/IP Illustrated, vol. 3, Addison-Wesley, Reading
MA, 1996.

[21] S. Williams, M. Abrams, C. Standridge, G. Abdulla, E. Fox,
Removal policies in network caches for World-Wide Web documents,
Proceedings of the ACM Sigcomm, 1996.

[22] R. Wooster, M. Abrams, Proxy caching that estimates page load
delays, Proceedings of the Sixth International World-Wide Web
Conference, 1997.

[23] K. Wu, P. Yu, M. Chen, Energy-efficient caching for wireless mobile
computing, The 20th International Conference on Data Engineering,
February 1996, pp. 336–345.

[24] J. Xu, Q. Hu, W. Lee, D. Lee, Performance evaluation of an optimal
cache replacement policy for wireless data dissemination under cache
consistency, 2001 International Conference on Parallel Processing,
September 2001.

[25] L. Yin, G. Cao, Adaptive power-aware prefetch in wireless networks,
IEEE Trans. Wireless Commun. 3 (5) (September 2004) 1648–1658
(a preliminary version appeared in ICDCS’02).

[26] G. Zipf, Human Behavior and the Principle of Least Effort, Addison-
Wesley, Reading, MA, 1949.

Liangzhong Yin received the B.E. degree
and the M.E. degree in computer science
and engineering from the Southeast Univer-
sity, Nanjing, China, in 1996 and 1999, re-
spectively. He received his Ph.D. degree in
the Department of Computer Science & En-
gineering at the Pennsylvania State Univer-
sity in 2004. He currently works for Mo-
torola Inc. His research interests include
wireless/ad hoc networks and mobile com-
puting.

Guohong Caoreceived his B.S. degree from
Xian Jiaotong University, Xian, China. He
received the M.S. degree and Ph.D. degree
in computer science from the Ohio State
University in 1997 and 1999 respectively.
Since then, he has been with the Department
of Computer Science and Engineering at
the Pennsylvania State University, where he
is currently an Associate Professor. His re-
search interests are mobile computing, wire-
less networks, and distributed fault-tolerant
computing. His recent work has focused
on data dissemination, cache management,

network security and resource management in wireless networks. He is
an editor of the IEEE Transactions on Mobile Computing and IEEE
Transactions on Wireless Communications, has served as a co-chair of the
workshop on Mobile Distributed Systems, and has served on the program
committee of numerous conferences. He was a recipient of the Presidential
Fellowship at the Ohio State University in 1999, and a recipient of the
NSF CAREER award in 2001.

Ying Cai received his Ph.D. in computer
science from the University of Central
Florida in 2002. While studying at this uni-
versity, Dr. Cai was the chief architect at
nStor/StorLogic leading the effort to develop
network storage technology. He developed
the first remote RAID management system
back in 1996 and the product was licensed
by several major companies including SGI,
Adaptec, and NEC. Currently, Dr. Cai is
an assistant professor in the Department of
Computer Science at Iowa State University.
His research interests include wireless

networks, mobile computing, and multimedia systems.

	A generalized target-driven cache replacement policy for mobile environments
	Introduction
	The system model
	Mobile computing model
	The cache invalidation model

	A generalized target-driven cache replacement algorithm
	Implementation issues
	Parameter estimation
	Cache insertion and removal
	The client management algorithm

	Performance evaluations
	The simulation model
	The client model
	The server model

	The evaluated algorithms
	Simulation results: minimizing the query delay
	The average delay under different cache size
	The average delay under different update arrival time
	The average delay under different query generate time
	The average delay under different access pattern (theta)

	Simulation results: minimizing the downlink traffic
	The average downlink traffic under different cache sizes
	The average downlink traffic under different update arrival time
	The average downlink traffic under different query generate time
	The average downlink traffic under different access pattern (theta)

	Conclusions
	References

