

CERIAS Tech Report 2003-23

A GENERALIZED TEMPORAL ROLE

BASED ACCESS MODEL

FOR DEVELOPING SECURE SYSTEMS

by James B. D. Joshi

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

A GENERALIZED TEMPORAL ROLE BASED ACCESS CONTROL MODEL FOR

DEVELOPING SECURE SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

James B. D. Joshi

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2003

ii

This thesis is dedicated to my parents, to Bhairab and Ganesh, and to my wife.

iii

ACKNOWLEDGMENTS

I would like to sincerely thank my PhD advisor Prof. Arif Ghafoor for his

invaluable guidance and support at each step of my graduate studies at Purdue University.

I would also like to express my gratitude to Professors Mary P. Harper, Eugene H.

Spafford and Hong Z. Tan for their participation in my PhD committee. Their guidance

and suggestions have been very valuable. In particular, Prof. Spafford provided several

stimulating ideas.

I am highly indebted to Center of Education and Research in Information

Assurance and Security (CERIAS) at Purdue University for the unfettered support

provided throughout my doctoral studies. Without such support my PhD studies would

not have been possible. I would like to thank all my colleagues in the Distributed

Multimedia Systems Lab at Purdue University for their cooperation and help. In addition,

I would like to acknowledge the support provided by the National Science Foundation

through the Grant# IIS-0209111.

I am forever indebted to Prof. Elisa Bertino for her unequivocal help. I relied

heavily on her feedback throughout my research.

Finally, nothing would have been possible without the love and support of my

family.

iv

TABLE OF CONTENTS
 Page

LIST OF TABLES ... vii

LIST OF FIGURES... ix

ABSTRACT.. xiii

1 INTRODUCTION...1

 1.1 Research Motivation and Problem Statement...1
 1.2 Summary of Contributions..4
 1.3 Outline of Dissertation 6

2 RELATED WORK. ..7

 2.1 Traditional Access Control Models ..7
 2.1.1 Discretionary Access Control (DAC)..............7
 2.1.2 Mandatory Access Control (MAC)...10
 2.2 Role Based Access Control ...11
 2.2.1 The NIST RBAC model..14
 2.2.2 Role Hierarchy............... ...15
 2.2.3 Constraints in RBAC. ...16
 2.3 Time-based Access Control.......... .. 17
 2.3.1 Periodic Expression............... ...18
 2.3.2 Temporal Access Control Models. ...19

3 THE GTRBAC MODEL..21

 3.1 Temporal Constraints in GTRBAC.. 21
 3.1.1 Temporal Constraints on Role Enabling and
 Assignment..23
 3.1.2 Temporal Constraints on Role Activation...23
 3.1.3 Run-time Requests, Triggers, and Constraint Enabling......................24
 3.2 Formal Syntax and Semantics of the GTRBAC Model25
 3.3 GTRBAC Conflict Resolution and Execution Semantics31
 3.3.1 Conflicts in GTRBAC...31
 3.3.2 The GTRBAC Execution Model...37

v

 Page

 3.3.3 Safe Temporal Constraints and Activation Base (TCAB)43
 3.4 Authentication and Clock Synchronization Issues..46
 3.5 Conclusions...47

4 ROLE HIERARCHIES IN GTRBAC...48
 4.1 Temporal Role Hierarchy..49
 4.1.1 Unrestricted Hierarchies..50
 4.1.2 Enabling Time Restricted Hierarchies ..53
 4.2 Uniquely Activable Set (UAS) of Role Sets ...63
 4.2.1 Computing UAS of a Hierarchy..65
 4.2.2 Acquisition Equivalent Hierarchies..75
 4.3 Derived Hierarchical Relations...76
 4.3.1 Inference Rules for Hybrid Hierarchies.. 78
 4.3.2 Soundness and Completeness of the Inference Rules80
 4.4 Hierarchy Transformations...83
 4.4.1 Role Addition..83
 4.4.2 Role Deletion ..87
 4.4.3 Role Partition ..90
 4.5 Conclusions...93

5 CARDINALITY, DEPENDENCY AND SEPARATION OF DUTY
 CONSTRAINTS ...94

 5.1 Generalized Cardinality Constraint Expression..95
 5.1.1 Predicate Evaluation Function and Projection Operator.....................96
 5.1.2 Time-based Cardinality Constraints..98
 5.2 Extended Trigger and Control Flow Dependency Constraints100
 5.2.1 Extended GTRBAC Trigger ...100
 5.2.2 Control Flow Dependency Constraints ...103
 5.3 Time-Based Separation of Duty Constraints...106
 5.3.1 Enabling Time SoD Constraints ...108
 5.3.2 Assignment Time SoD Constraints...108
 5.3.3 Activation Time SoD Constraints...110
 5.3.4 Possibilistic Activation SoD Constraints..113
 5.3.5 Possibilistic Permission Acquisition SoD Constraints115
 5.3.6 Comparison with other SoD Constraints ..120
 5.3.7 Various Interpretations of Time-based SoD Constraints120
 5.4 Conclusions...122

6 MINIMALITYOF GTRBAC CONSTRAINTS AND DESIGN ISSUES................123

 6.1 Activity-Equivalent Family of GTRBAC Models ..124

vi

 Page

 6.1.1 Minimality of GTRBAC ...124
 6.1.2 Operations on Periodicity Expressions ...129
 6.2 Complexity of Specification and Design Issues..136
 6.2.1 Role Enabling vs. Role Assignment Constraints138
 6.2.2 Per-role vs. Per-user-role Activation Constraints145
 6.3 Conclusions...149

7 X-GTRBAC- AN XML BASED GTRBAC POLICY SPECIFICATION

LANGUAGE.................................... ..150

 7.1 Motivation for an XML Based Policy Specification Language150
 7.2 Overview of X-GTRBAC Language Features ..152
 7.3 X-GTRBAC Syntax ..155
 7.4 X-GTRBAC System Architecture...167
 7.4.1 XML Processor ...168
 7.4.2 GTRBAC Processor..168
 7.5 Conclusions...170

8 CONCLUSIONS AND FUTURE WORK....................................171

 8.1 Research Contributions...171
 8.2 Future Work ..172

REFERENCES.. .174

APPENDICES

 APPENDIX A: Proofs of Theorems of Chapter 3 ..184
 APPENDIX B: Proofs of Theorems of Chapter 4 ..188
 APPENDIX C: Proofs of Theorems of Chapter 6 ..200

VITA ...214

vii

LIST OF TABLES

Table Page

3.1: Temporal constraint expressions ... 22

3.2: Prioritized event expressions ... 25

3.3: Status predicates .. 26

3.4: Example GTRBAC access policy for a medical information system................ 30

3.5: Type 1 conflicts: conflicts between events of same category 32

3.6: Type 2 conflicts: conflicts between events of different categories 33

3.7: Type 3 conflicts: conflicts between constraints ... 33

3.8: Constraint parameters of u-snapshot and r-snapshot .. 38

4.1: Inheritance semantics of enabling time restricted hierarchy.............................. 54

4.2: Supporting functions for algorithm in Fig.4.8 ... 73

4.3: The inference rules for derived hierarchical relations 79

4.4: Application of inference rules over the hierarchy of Fig. 4.9 80

4.5: Criteria for hierarchy transformations.. 84

4.6: Scenarios for hierarchy transformations .. 84

4.7: Transformation with criteria satisfied for different scenarios............................ 85

4.8: Deletion of a role using approaches 2 and 3 .. 88

4.9: Transformation characteristics for different approaches to role partitioning..... 91

viii

Table Page

5.1: Various status predicates ... 95

5.2: Relations among predicates ... 96

5.3: Examples of cardinality constraints ... 98

5.4: Enabling time and assignment SoDs ... 107

5.5: Activation time SoDs... 111

5.6: Possibilistic role activation SoDs ... 114

5.7: Possibilistic permission acquisition SoDs .. 117

5.8: Comparison with SoDs proposed in the literature .. 119

5.9: Time-based SoD constraints ... 121

6.1: Complexity parameters and notation used.. 137

6.2: GTRBAC Family of models ... 137

ix

LIST OF FIGURES

Figure Page

2.1: An access control matrix and its access control list and capability list
 representations ... 8

2.2: Constraints and hierarchy in RBAC .. 12

2.3: Proposed NIST RBAC model.. 14

3.1: States of a role.. 22

3.2: Periodicity constraint on user-role assignment .. 26

3.3: Constraint enabled (a) for a specified duration (b) in specified intervals
 (c) at all times... 28

3.4: Algorithm ComputeST .. 40

3.5: Algorithm SafetyCheck ... 45

3.6: Example dependency graphs.. 46

4.1: Hierarchy examples ... 52

4.2: Inheritance through disabled roles ... 57

4.3: Example of hierarchy types.. 58

4.4: An example hybrid hierarchy... 63

4.5: Horizontal partition of a hybrid linear path ... 67

4.6: Computing UAS of a hybrid linear hierarchy.. 70

4.7: Computing UAS of a general hierarchy... 72

x

Figure Page

4.8: Algorithm for computing the uniquely activable set ... 74

4.9: A hybrid hierarchy for a medical department .. 77

4.10: Example of authorization consistent hierarchies; H1 ≈ H2, H1 � H3,

 and H2 � H3.. 81

4.11: Addition of a new role r between roles s and j ... 86

4.12: Deletion of role r when (r tj)... 89

4.13: Partitioning a role r into three roles r1, r2 and r3... 90

5.1: User-assignment SoDs with �={u1,u2} and �={r1,r2} 109

5.2: Activation time SoDs for U = {u1, u2} and R = {r1, r2} 112

5.3: Session time SoD examples... 113

5.4: Implication of possibilistic activation SoDs in presence of A-hierarchy......... 114

5.5: Implication of permission acquisition SoDs in presence of I-hierarchy 116

5.6: Possibilistic permission acquisition for U = {u1, u2}, P = {p1, p2}
 and R = {r1, r2} .. 118

6.1: Algorithm TransformPR ... 126

6.2: Algorithm TransformUR .. 127

6.3: Temporal relations between a pair of periodic expressions............................. 130

6.4: Algorithms PairMDS and ComputeMDS.. 132

6.5: Algorithm TransformMDS .. 136

6.6: GTRBAC family of models ... 138

6.7: Access requirements of Example 6.2.1 using (a) GTRBAC1,U representation
 (b) GTRBAC0

1 representation and (c) GTRBAC0
2 representation..................... 140

xi

Figure Page

6.8: Requirements of Example 6.3.3 using (a) GTRBAC1,A

s representation
 (b) GTRBAC0

 s representation (algorithm TransformUR)on a
 GTRBAC1,A

s configuration ... 146

6.9: Constraints of Example 6.3.3 (a) using GTRBAC0 representation
 (b) using GTRBAC1,A representation .. 148

7.1: An XML instance document.. 151

7.2: An XML schema for document in Fig. 7.1 .. 151

7.3: X-GTRBAC policy sheet ... 155

7.4: XUS syntax .. 156

7.5: XPS syntax... 157

7.6: XRS syntax .. 158

7.7: Schema for temporal and logical expression ... 159

7.8: Trigger syntax .. 162

7.9: Separation of duty expression.. 162

7.10: User-role and role-permission assignments .. 163

7.11: Schema for metapolicy specification ... 164

7.12: Metapolicy example... 165

7.13: X-GTRBAC policy specification for metapolicy of Fig. 7.12....................... 166

7.14: X-GTRBAC system architecture ... 167

7.13: XAS and XSS sheets.. 169

B.1: Derived hierarchical relation for two consecutive types (rule R2)................. 191

B.2: Derived relations in a general linear Hierarchy using rules R3 with set
 B is empty.. 192

xii

Figure Page

B.3: Derived relations in a general linear hierarchy using rules R3 with set
 B is non-empty .. 193

B.4: Derived relations for rules R4.3 ... 195

B.5. Derived relations for rules R4.4 ... 196

xiii

ABSTRACT

James B. D. Joshi. Ph.D.. Purdue University, August 2003. A Generalized Temporal
Role Based Access Control Model for Developing Secure Systems. Major Professor:
Arif Ghafoor.

A key issue in computer system security is to protect information against

unauthorized access. Emerging workflow-based applications in healthcare,

manufacturing, the financial sector, and e-commerce inherently have complex, time-based

access control requirements. To address the diverse security needs of these applications, a

Role Based Access Control (RBAC) approach can be used as a viable alternative to

traditional discretionary and mandatory access control approaches. The key features of

RBAC include policy neutrality, support for least privilege, and efficient access control

management. However, existing RBAC approaches do not address the growing need for

supporting time-based access control requirements for these applications.

This research presents a Generalized Temporal Role Based Access Control

(GTRBAC) model that combines the key features of the RBAC model with a powerful

temporal framework. The proposed GTRBAC model allows specification of a

comprehensive set of time-based access control policies, including temporal constraints

on role enabling, user-role and role-permission assignments, and role activations. The

model provides an event-based mechanism for supporting dynamic access control

policies, which are crucial for developing secure workflow-based enterprise applications.

In addition, the temporal hierarchies and separation of duty constraints facilitated by

GTRBAC allow the development of security policies for commercial enterprises. The

thesis provides various design guidelines for managing complexity and building secure

systems based on this model. X-GTRBAC, an XML-based policy language has been

developed to allow specification of GTRBAC policies.

1

1. INTRODUCTION

1.1 Research Motivation and Problem Statement

The rapid proliferation of the Internet and the cost effective growth of its key

enabling technologies such as the World Wide Web, database systems, storage and end-

systems, and networking are revolutionizing information technology and have created

unprecedented opportunities for developing large scale distributed applications. The

emerging trend indicates that information systems are increasingly being interconnected

for sharing data and applications. Applications such as workflow management systems

(WFMSs) are expected to play a critical role in many distributed applications, including

e-commerce, finance and banking, manufacturing, corporate databases, on-line services

and businesses, on-line health care services and many others. Such workflow-based

applications are subject to time-based constraints [Alt96, Att93, Ber99b, Ede99, Tho97].

Information systems security refers to the protection of information systems

against unauthorized access to or modification of information, whether in storage,

processing or transit, and against denial of service to authorized users, including measures

necessary to detect, document, and counter such threats. This is achieved by

accomplishing the following set of security goals [Jos01b]:

Confidentiality: The goal of confidentiality is to ensure that an unauthorized person does

not access information while it is in data storage, during processing and in transit.

Integrity: The goal of information integrity is to protect information from unauthorized

modification done either intentionally or accidentally.

Availability: Information availability ensures that information is available when needed

and is not made inaccessible by malicious data denial activities.

Accountability: Information accountability ensures that every action of an entity can be

uniquely traced back to it.

Assurance: Security assurance is the degree of confidence in the security of the system

with respect to predefined security goals.

2

Authentication, access control, and auditing have been traditionally considered as

the key security services providing the foundation for information and system security

[San96b]. Each access request is usually mediated by a reference monitor. Several models

of access control have been proposed in the literature to address diverse security needs of

information systems; however, these models have been found inadequate in addressing

the complex security requirements of the emerging applications [Jos01b, San94, San96b].

In this research, we focus on the temporal access control requirements in large

organizations and emerging applications.

Security models that support efficient security management and enforcement, and

capture a wide range of time-based, dynamic access control requirements of applications,

can provide an important framework for developing secure systems [Bac02, Ber01a,

Cla87, Fer93]. Such a need has been highlighted by several surveys and reports, and

technological needs of the e-commerce environments [Bar97, Gar96, Gar97]. We briefly

discuss some of these issues that have motivated the research reported in this dissertation.

1. In large corporate information systems, the insider-attack is a growing security

concern. A joint study on computer crimes conducted by the Computer Security

Institute (CSI) and the FBI indicates that the most serious losses in enterprises occur

through unauthorized access by insiders, and 71% of the respondents had detected

unauthorized access by insiders [Pow00, Gho98]. The challenge is in developing new

security models or extending existing ones that allow efficient access control

management and administration of organizational information assets.

2. The Auditing Report published in November, 2001, by the US General Accounting

Office for 24 of the largest federal agencies indicated that security management and

access control were the most significant weaknesses in all these agencies [Gao02].

This report has a significant bearing in the need for a robust national defense in the

light of growing threat to critical infrastructures of the country.

3. As mentioned earlier, many emerging applications have time-based access control

requirements as they employ workflow management systems (WFMSs) where tasks

have a temporal dimension [Ede99]. Furthermore, the size and complexity of these

applications are increasing rapidly. Flexible security models that support viable

security administration are essential to protect the organizational information assets.

The traditional access control models such as Discretionary and Mandatory Access

Control (DAC and MAC) models have several limitations when applied to emerging

applications, in terms of supporting both security management and a wide range of

3

access requirements [Jos01b, San94, San96b]. Bhavani et. al. enlist the following

crucial requirements for secure e-commerce and web based applications [Thu01].

a. Tools and mechanisms to support access control policy specification and

enforcement

b. Secure workflows that have time constrained security requirements

c. Secure federations of collaborating organizations.

In other words, there is a crucial need for models that can express flexible access

control policies and can be used in time-constrained application environments such as

WFMSs. Such models should be able to provide support in environments supporting

federations of organizations. While such a comprehensive model is yet to be developed,

role based access control models have been perceived as the most promising approaches

for addressing these challenges.

Role based access control (RBAC) models are receiving increasing attention as a

generalized approach to access control [Fer01, Giu95, Giu97, Jos01a, Jos01b, Ker02,

Nya93, Nya99, Osb00a, San95, San96a, San97, San98a, Tar97b]. A survey conducted by

NIST [Fer93] shows that in many organizations the access control decision is based on a

person’s role and responsibilities within the organization, making role-based approaches

suitable for expressing security requirements. In [Cla87], Clark et. al. show that the

traditional DAC and MAC policies do not adequately address the diverse security needs

of many organizations. RBAC approach can greatly simplify security administration. For

example, if a user moves to a new function within the organization, he/she can simply be

assigned to the new role and removed from the earlier role, whereas in the absence of an

RBAC model, his/her old privileges need to be revoked, and new privileges need to be

granted. An authorization constraint relevant and well known in commercial application

environments is the separation of duty (SoD) constraint [Ahn00, Ber99b, Bew89, Kun99,

Nya99, San91, Sim97, Tid98]. SoD constraints aim at reducing the risk of fraud by not

allowing any individual to have sufficient authority within the system to single-handedly

perpetrate a fraud. RBAC models allow expressing a wide variety of SoD constraints that

are beneficial to many applications. Roles can be organized into hierarchies to capture

organizational functional hierarchies and to define a role’s permissions inherited by other

roles. A role hierarchy can significantly reduce explicit permission assignments to a role

and hence can considerably reduce the administration overhead. Furthermore, RBAC

models are policy-neutral [Jos01b, San98b]. In particular, by appropriately configuring a

role-based system, one can support different policies, including both DAC and MAC

policies [Nya95, Osb00b]. Such flexibility of RBAC models is extremely significant, as

4

the can be adapted to support the access control needs of enterprise-wide security

administration and enforcement.

Although RBAC modeling is now a mature field of research, no existing RBAC

models can handle fine-grained time-based access control requirements. Examples of

time-based RBAC policies abound. For instance, a part-time staff member in a company

may be authorized to work within the company only on working days between 9am and

1pm. If a part-time staff member is represented by a role, enforcing such rules requires

that the part-time employee assume the role in that interval only. Similarly, an external

auditor may need access to organizational financial resources for the assigned period of

three months. Such requirements can be supported by specifying times when the role can

be enabled so that a legitimate user can activate it. Roles can thus be enabled/disabled at a

certain time. A part-time staff member or an external auditor role may be further

restricted to only pre-specified hours of active time in one session. Development of such a

temporal RBAC model is highly desirable in order to address the comprehensive security

requirements of organizations and applications.

1.2 Summary of Contributions

In this research, we address the need for a powerful and flexible time-based access

control model, pointed out in the earlier section. Our main objectives are:

1. to develop a model that can express a wide range of time-based access control

requirements of organizations,

2. to develop a user friendly policy specification language and enforcement mechanism

that can be used in a wide range of applications.

The contributions of the research reported in this thesis can summarized as

follows:

1. We propose a Generalized Temporal Access Control (GTRBAC) model that extends

the basic RBAC model by introducing a comprehensive set of temporal constraints.

These constraints include periodicity and duration constraints on role enabling and

assignments, as well as duration and cardinality constraints on role activation. The

event-based framework of GTRBAC allows modeling run-time events and triggers,

which can be used to express dynamic access control requirements.

2. In this research, we investigate the issue of how permission inheritance and role

activation semantics can be captured when the hierarchically related roles have

5

temporal constraints. Contribution with respect to our work in role hierarchy include

the following:

a. We introduce various types of role hierarchies and provide their permission-

inheritance and role-activation semantics in the presence of various temporal

constraints on the hierarchically related roles. We identify various scenarios where

hierarchical structure can play an important role.

b. A hybrid role hierarchy consisting of different hierarchy relations among roles can

induce different types of derived hierarchical relations among roles that are not

directly related. We propose a set of inference rules for the derived hierarchical

relations and prove that these rules are sound and complete. A security

administration tool can use these rules to identify possible flaws in the policy

specification of an enterprise. Such flaws may be induced by complex hierarchical

relations among roles.

c. Given a complex hybrid hierarchy, we provide a mechanism for generating the

sets of roles that a user can activate within a session simultaneously. Sessions in

RBAC, in which the users activate one or more roles, correspond to subjects in

traditional access control models [Osb97, Osb00b, San96c, San98b]. Hence,

generating such sets of roles for a user in a session is of crucial importance to

capture policies that are defined with respect to the traditional notion of subject.

d. Role hierarchies evolve with time. New roles may be added and existing ones

deleted or modified. We present rules for handling such hierarchy evolution.

3. An open issue for a model with a constraint language is its expressiveness and

minimality. In other words, it is important to determine whether the set of constraints

for the model is minimal. If the model is not minimal, an important issue is to

determine whether the non-minimal model provides any practical benefits over the

minimal model. It is thus possible a non-minimal model or a model with all the

constraints can be more flexible in terms of complexity and usability than the minimal

model. Given the large variety of such languages that have been recently proposed,

issues concerning expressive power and minimality for RBAC constraint languages

are extremely relevant [Ahn00, Cra03, Neu03].

In this dissertation, we show that there exists a minimal model that has a subset of

constraint types defined in the GTRBAC model and yet has the same expressive

power as the GTRBAC model. In addition, we show that the sets of different

constraint types can be used to generate a family of GTRBAC models having the

6

same expressive power. We show that the GTRBAC model, although is not minimal,

has several advantages in terms of complexity of specification and usability.

4. Constraints have been considered as a very important aspect of policy specifications.

In this thesis, we investigate the cardinality, dependency and SoD constraints within

the framework of GTRBAC. In particular, we incorporate the following constraints in

our model.

a. We introduce a generic framework for expressing a wide range of time-based

cardinality constraints. The cardinality constraint expression framework provides

specifying cardinality control with respect to all the GTRBAC states.

b. We develop an elaborate trigger expression that can capture complex

dependencies among events and conditions. In particular, we define control flow

dependency (CFD) constraints that can be used to express access control

requirements that are typical in workflow types of applications. Furthermore, we

show that the trigger-based framework and the CFD constraint expressions can be

easily extended to provide an elaborate time-based RBAC model for context-

based access control.

c. We identify a comprehensive set of SoD constraints for using the GTRBAC

framework. These SoDs subsume the SoDs that have been identified earlier in the

RBAC literature, and provide a modeling capability at a finer level of granularity.

1.3 Outline of Dissertation

The dissertation is organized as follows. In Chapter 2, we present the related work

in information system security. In Chapter 3, we present the GTRBAC model, and discuss

various temporal constraints and their execution semantics. In Chapter 4, we first

introduce various types of temporal role hierarchies and then present detailed analysis and

techniques to compute sets of roles users can activate in a session, to derive induced

hierarchical relations using inference rules and to handle hierarchy evolution efficiently.

In Chapter 5, we present a comprehensive set of the time-based cardinality, dependency

and separation of duty constraints. In Chapter, 6, we present the minimality results and

discuss constraint design issues. Chapter 7 will present the X-GTRBAC policy

specification language and discuss its syntax. Finally, in Chapter 8, we provide our

conclusions and future work.

7

2. RELATED WORK

In this chapter, we briefly review work related to information system security. In

particular, we present background on access control models and then describe work

related to authorization constraints, role hierarchies and time-based access control.

2.1 Traditional Access Control Models

Traditional access control approaches are broadly categorized as discretionary

access control (DAC) [Gra72, Har76, Jaj97, Lam71, San94] and mandatory access

control (MAC) [Bel76, Bib77, Den761, Lam73, Mcl90]. In the following sections, we

briefly overview these approaches.

2.1.1 Discretionary Access Control (DAC)

In DAC, the basic premise is that subjects have ownership over objects of the

system and subjects can grant or revoke access rights on the objects they own to other

subjects at the original subject’s discretion [Har76, San94]. Subjects can be users, groups,

or processes that act on behalf of other subjects. DAC policies are flexible and the most

widely used [San96b]. However, these policies do not provide high security assurance.

For example, DAC allows copying of data from one object to another, which can result in

allowing access to a copy of data to a user who does not have access to the original data.

Such risks can propagate to the entire interconnected environment, causing a serious

violation of security goals. This allows a Trojan horse program to easily leak confidential

information without the knowledge of the subject accessing the object. A Trojan horse

program is one that appears to be doing one thing on the surface but is actually doing

something else without the knowledge of the person using it. The Trojan horse problem

has been considered the main reason that has led to a distinction between DAC and MAC

[Mcl94].

8

The genesis of DAC is generally considered to be the access control matrix

(ACM) model of confidentiality formulated by Lampson [Lam71] and refined by Graham

and Denning [Gra72]. Structurally, the model is a state machine with each triple (S, O, M)

defining a state [Mcl94], where S is a set of subjects, O is a set of objects, and M is an

access matrix. M has |S| rows and |O| columns, and the content of M[s, o] indicates the

rights that s has over o. Fig. 2.1, shows an access matrix that contains the permissions

that subjects s1, s2 and s3 have on the six different file objects.

s3 r

s1

f1 f2 f3 f4 f5 f6

s2

s3

o, r, w

o, r, w

o, r, w o, r, w

o, r, w

o, r, w

r

r

r r

w

f1

f2

f3

f4

f6

s2

s1 o, r, w s2 r

s1 o, r, w s3 r

s3 o, r, w

f5 s2 o, r, w s3 r s1 w

s3 o, r, w

f5 w s1 f2 o, r, w f3 o, r, w

f2 r s2 f1 o, r, w f5 o, r, w

f3 r s3 f4 o, r, wf2 r

f5 r f6 o, r, w

o: own
r: read
w:write

Access Matrix

Access Control ListCapabilities

o, r, w

Fig. 2.1. An access control matrix, and its access control list and capability list
representations

The HRU Access Control Model and Derivatives

Harrison, Ruzzo and Ullman [Har76] used the concept of the access matrix

proposed by Lampson for the purpose of decidability analysis. The HRU access matrix

9

model uses a set of commands to construct an authorization scheme, which is of the

following form.
If

 a1 in M[s1, o1] and

 …

 am in M[sm, on]

then

 op1

 …

 opn

where each opi is of form:

enter a into M[s, o], delete a from (s, o), create subject s,

create object o, destroy subject s, destroy object o.

Each command has a body part that contains primitive operations opis and the

condition part as shown above. The body part is allowed to execute if the rights specified

in the conditions exist in the ACM. HRU’s formulation of the safety problem is [Har76]:

(Safety Problem) Is there a reachable state in which a particular subject possesses

a particular privilege, which it did not previously possess?

In [Har76], researchers show that the safety in HRU is, in general, undecidable.

For the mono-operational case, where the body part consists of a single primitive

operation, they further show that safety is decidable.

Resembling HRU closely is the Schematic Protection Model (SPM) by Sandhu et.

al. [Amm92 San88] that introduces the notion of security types - subject types and object

types. It has been shown that SPM is formally equivalent to monotonic HRU. Every

subject or object is created to be of a particular type. The SPM has been shown to be

flexible and able to formulate policies ‘in between’ the MAC and DAC policies. Another

similar HRU extension can be found in Typed Access Matrix (TAM) [San92a] where

again, the subjects and objects are strongly typed.

Yet another model closely related to the HRU access matrix model is the

Dynamically Typed Access Control (DTAC) model by Tidswell et. al. [Tid98, Osb00a].

DTAC addresses the security issues in a highly dynamic environment. In DTAC, subjects

and objects have no distinction and the access decisions are based on the security types.

Subjects are grouped into security types representing the subsystem to which they

belong. Objects are grouped into security types, which encode the format of the

10

information contained within the objects. DTAC uses dynamic typing, unlike the TAM

and SPM models. A safety invariant is maintained by static analysis and the dynamic

checks. Some benefits of DTAC include its use in modeling task-based security because

of its ability to handle dynamic environments and the reduced size of configuration that

can be achieved by grouping entities into types. These models are still in the theoretical

stage of development.

An access matrix implementation in a large system often results in a big matrix

with many empty entries [San94]. Because of this, an access matrix is rarely implemented

in the actual form of a matrix. Two approaches commonly used to represent the

information contained in an access matrix include [San94]:

• Access Control List (ACLs) and

• Capabilities

ACL is a popular implementation form of an access matrix. In this

implementation, an ACL is associated with each object and it contains information about

the rights each subject has on the object. It is easy to determine the access rights a subject

has on an object using ACLs. Revoking access rights of a subject on an object is easy as it

simply involves removing the entry in the ACL of the object. However, the disadvantage

of this approach is that it is difficult to determine all the rights a particular subject has. To

do this, one must check all the ACLs in the system. Similarly, if all the rights of a subject

need to be revoked, again all the ACLs need to be traversed.

The dual approach of ACL is the Capabilities. In this approach, each subject is

associated with a list, called a Capability list, which contains the information about the

rights the subject has on each object of the system. Whereas ACL corresponds to storing

the columns of access matrix with objects, Capabilities correspond to storing rows of the

access matrix with the subjects. It is easy to check the total set of access rights of a

subject using this approach. However, determining the subjects that have access rights to

a particular object is difficult as this necessitates checking all the Capability lists in the

system. Fig. 2.1 shows the ACL and Capabilities representations of an access control

matrix.

2.1.2 Mandatory Access Control (MAC)

In MAC, all subjects and objects are classified based on some predefined

sensitivity levels that are used in an access decision [Bel76, Bib77, Mcl90,, San94].

These levels generally form a lattice structure, and hence a MAC policy is sometimes

11

known as a lattice-based policy [San92b, San93]. An important goal of MAC is to control

information flow in order to ensure confidentiality and integrity of information, which

DAC does not do. For example, to ensure information confidentiality in defense

applications, Bell-LaPadula (BLP) model [Bel76], also known as multilevel model, can

be used. BLP model is the best-known model for MAC [Mcl90]. It controls information

flow by enforcing the no read-up and no write-down rules given as:

• Simple security property: a subject s is allowed to read an object o iff ls ≥ lo (no-

readup property) where ls and lo are clearance and classification levels of s and o.

• *property: a subject s is allowed to write an object o iff ls ≤ lo (no-writedown

property)

To achieve information integrity, the access rules can be formulated as no read-

down and no write-up [Bel76, San93] as first proposed by Biba [Bib77]. Biba’s integrity

model follows along the line of the BLP model in that its aim is to control flow of lower-

integrity information to higher-integrity objects but allow the flow in the opposite

direction [San93]. It is possible to combine the BLP model and the Biba model to get a

composite model that provides both confidentiality and integrity using lattices [Bib77,

San93].

Unlike DAC, MAC provides protection for data that is more robust, and deals

with more specific security requirements, such as information flow control policy.

However, enforcement of MAC policies is often a difficult task, and in particular, for

many commercial organizations [Cla94], they do not provide viable solutions because

they lack adequate flexibility. Furthermore, organizational security needs are often a

mixture of policies that may need to use both DAC and MAC, which necessitates seeking

solutions beyond those provided by DAC and MAC only [San94]. An example of such a

policy is the Chinese wall policy [Bew89]. The Chinese wall policy has been proposed to

mainly address access control requirements in conflict of interest situations that occur in

commercial sectors such as in consulting firms. For example, a firm is providing a

consulting service to two companies that are competitors e.g., banks A and B. A

consultant should not be able to access confidential information of both the banks.

Sandhu et. al. show that a lattice structure can be used to represent such a policy [San93].

2.2 Role-based Access Control

Role based access control (RBAC) is a flexible approach that has generated great

interest in the security community [Fer01, Giu95, Giu97, Jos01a, Jos01b, Ker02, Nya93,

12

Nya99, Osb00a, San95, San96a, San97, San98a, Tar97b]. In RBAC, users are assigned

memberships to roles and these roles are in turn assigned permissions as shown in Fig.

2.2. A user can acquire all the permissions of a role of which he is a member. Role-based

approach naturally fits into organizational contexts as users are assigned organizational

roles that have well-defined responsibilities and qualifications [Fer93].

Users

User Role
Assignment

Role Permission
Assignment

Constraints

Roles Permissions

Roles Hierarchies

Administrator

Employee

Engineer

Senior
Engineer

Senior
Administrator

Manager

Fig. 2.2. Constraints and hierarchy in RBAC

According to a survey conducted by the U.S. National Institute of Standards and

Technology (NIST) [Fer93], RBAC has been found to address many needs of the

commercial and government sectors. This study showed that access control decisions in

many organizations are based on “the roles that individual users take on as part of the

organization.” Many surveyed organizations indicated that they had unique security

requirements and the available products did not have adequate flexibility to address them.

RBAC approach has several advantages, the key among which include [Jos01b,

San94, San96a]:

• Security management: The role in the middle approach to access control removes the

direct association of the users from the objects. This logical independence greatly

simplifies management of authorization in RBAC systems. For example, when a user

changes his role, all that needs to be done is to remove his membership from the

current role and assign him to the new role. In case authorizations were specified in

terms of direct associations between the user and the individual objects, this change

would require revoking permissions granted to all the objects and explicitly granting

permissions to the new set of objects. Using a role-based approach, the number of

assignments of users to permissions is considerably reduced. Generally, a system has

a very large number of subjects and objects, and hence, using RBAC has benefits in

terms of managing permissions.

13

• Role hierarchy: Natural role hierarchies exist in many organizations based on the

principle of generalization and specialization [San96c]. For example, there may be a

general Employee role in a Consulting Firm as shown in Fig. 2.2: Employee,

Engineer, Senior Engineer, Administrator, Senior Administrator and Manager. Since

everyone is an employee, the Employee role models the generic set of access rights

available to all. A Senior Engineer role will have all the permissions that an Engineer

role will have, who in turn will have the permissions available to the Employee role.

Thus, permission inheritance relations can be organized in role hierarchies. This

further simplifies management of access permissions. Fig. 2.2 shows a simple

hierarchy.

• Principle of Least Privilege: RBAC can be configured to assign the least set of

privileges from a set of roles assigned to a user when that user signs on. Using least

privilege set minimizes the damage incurred to a system if someone not assigned to a

role acquires its permissions through other means, or if someone masquerades as

another user [Jos01b, San94, san96a].

• Separation of Duties: Separation of duties (SOD) has been considered a very

desirable organizational security requirement [Ahn00, Ber99b, Bew89, Kun99,

Nya99, San91, Sim97, Tid98]. SOD constraints are enforced mainly to avoid possible

fraud in organizations. RBAC can be used to enforce such requirements easily – both

statically and dynamically. For example, a user can be prevented from being assigned

to two roles to prevent possible fraud by using a static SOD which says that a user

cannot be assigned to two roles, one of which prepares a check and the other

authorizes it.

• Grouping Objects: Roles classify users according to the activity or the access needs

based on the organizational functions they carry out. Similar classifications can also

be possible for objects. For example, a secretary generally has access to all the

memos and letters in his/her office, whereas an accountant has access to all the bank

accounts belonging to his/her organization. Thus when permissions are assigned to

roles, it can be based on object classes instead of individual objects [San96a]. This

further increases the manageability of authorizations.

• Policy-neutrality: Role-based approach is policy-neutral and is a means for

articulating policy [Jos01b, San96a]. Role-based systems can be configured to

represent many useful DAC, MAC policies [Nay95, Osb97, Osb00b] and user-defined

and organizational security policies.

14

2.2.1 The NIST RBAC Model

Recently, Ferrailo et. al. have proposed the NIST-RBAC (National Institute for

Science and Technology RBAC) [Fer01] as a standard reference model. Depicted in Fig.

2.3, NIST-RBAC uses a four-level system in which each higher level includes the

functional capabilities of all the levels below it. The levels correspond to four RBAC

models: flat, hierarchical, constrained, and symmetric.

The flat RBAC model provides the minimal features essential for any RBAC

mechanism. These include roles, user-role assignment, and role-privilege assignment.

Hierarchical RBAC includes as a requirement role hierarchies that define relationships

among roles in a domain. Constrained RBAC requires SOD.

Flat RBAC
Basic features, user-role assignment view

Symmetric RBAC
Permission-role review with performance

Constrained RBAC
Separation of Duty

Hierarchical RBAC
Role Hierarchies

Fig. 2.3. Proposed NIST RBAC Model

The symmetric RBAC model adds a permission-role review requirement. As a

result, the model allows identification of the permissions assigned to existing roles and

vice versa. RBAC approach is an attractive candidate for use in a multidomain

environment because of its flexibility, generality and easy manageability.

The NIST RBAC model as proposed by Ferraiolo et. al. consists of four basic

components: a set of users Users, a set of roles Roles, a set of permissions

Permissions, and a set of sessions Sessions [Fer01]. A user is a human being or

an autonomous agent. A role is a collection of permissions needed to perform a certain

function within an organization. A permission refers to an access mode that can be

exercised on an object in the system and a session relates a user to possibly many roles. In

each session, a user can request to activate some subset of roles he is authorized to

15

assume. Such a request is granted only if the corresponding role is enabled at the time of

the request and the user is entitled to activate the role at that time. Several functions are

defined for the sets Users, Roles, Permissions, and Sessions. The user role

assignment (UA) and the role permission assignment (PA) functions model the

assignment of users to roles and the assignment of permissions to roles, respectively. The

user function maps each session to a single user, whereas the role function establishes a

mapping between a session and a set of roles activated by the corresponding user in the

session. On Roles, a hierarchy is denoted by ≥. For roles ri, rj ∈ Roles, if ri ≥ rj, then ri

inherits the permissions of rj. In such a case, ri is a senior role and rj a junior role.

The GTRBAC model proposed in this dissertation is an extension of the NIST

RBAC model. The extensions are essentially with respect to the temporal constraints.

2.2.2 Role Hierarchy

Many researchers have highlighted the importance and use of role hierarchies in

RBAC models [Giu95, Giu97, Mof98, Mof99, Nya99, San96c, San98]. A properly

designed role hierarchy allows efficient specification and management of access control

structures of a system. When two roles are hierarchically related, one is called the senior

and the other the junior. The senior role inherits all the permissions assigned to the junior

roles. The inheritance of permissions assigned to junior roles by a senior role significantly

reduces assignment overhead, as the permissions need only be explicitly assigned to the

junior roles.

Even though the notion of role hierarchy has been widely investigated, to our

knowledge, no earlier work has addressed the implication of the presence of temporal

constraints on role hierarchies, which is the focus of our work. In particular, in this

dissertation, we present a detailed analysis of role hierarchy in the presence of various

temporal constraints with respect to the GTRBAC model and show that there are various

distinctions that need to be made about the inheritance semantics of a role hierarchy.

It is important to point out that Sandhu [San98] and Moffet [Mof98] have already

recognized the limitations of the pure inheritance semantics proposed in the RBAC96

family of models [San96a]. Sandhu [San98] has proposed the ER-RBAC96 model that

incorporates a distinction between two types of role hierarchy: usage hierarchy that

applies permission-inheritance semantics and activation hierarchy that uses activation-

inheritance semantics. In a usage hierarchy, the activation of a senior role allows a user

to acquire all the permissions of all of its junior roles but no user assigned only to the

16

senior role is allowed to activate the junior roles. An activation hierarchy extends

“permission inheritance hierarchy to roles that are stipulated to have dynamic separation

of duty (SoD)” [San98]. Our analysis further strengthens his arguments and shows that, in

the presence of timing constraints on various entities, the separation of the permission-

inheritance and the activation-inheritance semantics provides a basis for capturing

various inheritance semantics of a hierarchy. We show that these hierarchies can further

be divided into sub-types, to account for the subtle effects of temporal constraints. In

another important work related to role hierarchies, Moffet et al. [Mof98, Mof99] have

identified the need for three types of hierarchies – isa hierarchy, activity hierarchy and

supervision hierarchies – in order to address the needs of control principles in an

organization, which include separation of duty, decentralization and supervision and

review [Mof99]. They show that the complete inheritance within a hierarchy can limit a

hierarchy from achieving organizational control needs. Clearly, our temporal hierarchies

as well as Sandhu’s hierarchies provide a basis for limiting such complete inheritance in a

hierarchy, making it possible to support separation of duty and restricted inheritance in a

hierarchy. Furthermore, Moffett et. al. [Mof99] point out that the commercial

organizations’ demand for a dynamic access control model that can support dynamic

authorization states as well as dynamic propagation of access rights has largely been

neglected. As we show in this dissertation, the proposed GTRBAC’s temporal framework

and the trigger mechanism along with the temporal hierarchies provide a strong basis for

such dynamic features in an access control model.

Nyanchama et. al. address the transformation of hierarchies in terms of the

addition, deletion and partitioning of roles in the context of access rights administration

[Nya94]. However, the analysis is limited to hierarchies that contains only one type of

hierarchy among roles and does not indicate how the transformations are affected by the

presence of other constraints on hierarchical roles. We analyze the transformation of a

role hierarchy in the presence of multiple hierarchy types and constraints on hierarchically

related roles.

2.2.3 Constraints in RBAC

Mainly two kinds of cardinality constraints are often mentioned in the literature -

user cardinality and role cardinality [Ahn00, Atl96, Fer01]. In this dissertation, we

introduce status predicates to capture all the states of a GTRBAC systems and present a

set of functions to capture complex cardinality control on these states.

17

Several papers in the literature deal with separation of duty constraints, with

efforts focused on identifying various forms of SoDs as well as to categorize them

[Ahn00, Ber99b, Bew89, Kun99, Nya99, San91, Sim97, Tid98]. Simon and Zurko

[Sim97] discuss informally a wide variety of SoD constraints that are required in systems.

Gligor et. al. [Gli98] provide a formalism for these SoDs. One limitation of this work,

however, is that it does not consider the session-based dynamic SoDs needed for

simulating lattice-based access control and Chinese Wall policy in RBAC [Bew89,

San17, San92b]. Another limitation is that the SoDs defined do not capture the

hierarchical semantics. Improvements along these lines can be seen in the SoDs listed by

Ahn et. al. [Ahn00]. Unlike these approaches, we follow a predicate-based definition of

general exclusion and inclusion of various kinds of assignments and activations to define

the SoD properties in GTRBAC. This approach, while subsuming the SoDs defined in the

above-mentioned literature, also identifies the overall capability of an RBAC model to

capture the separation of duty constraints that may exist.

Dependency constraints form a less explored aspect in RBAC. While some form

of dependency is implied by role triggers, also used in GTRBAC, the control flow

dependency constraints, where strict dependencies are implied, have not been included

within an RBAC framework. Such control flow dependencies are typically used in

workflow types of systems to define inter-dependencies between workflow tasks [Att93,

Tho97]. We believe that using such dependency constraints, GTRBAC can better handle

access control requirements in time-sensitive, workflow types of applications by

providing a much broader framework for mapping tasks into roles and using these

constraints to capture the interdependencies between these tasks.

No earlier work has addressed the issue of time-based cardinality, SoD, and

dependency constraints. Applying periodicity/duration constraints for these SoDs is more

suitable for supporting the access control needs of dynamically evolving systems that are

prevalent today. We further show that when intervals, durations or periodicity expressions

are associated with these constraints, different interpretations are possible.

2.3 Time-based Access Control

The importance of time-based access control requirements has only recently been

recognized. The need for time-based access control requirement can be attributed to the

growing importance of workflow-based applications, particularly in e-commerce and web

based application environments. Furthermore, the humongous volumes of data available

18

over the Internet based applications may have temporal characteristics which attach

varying security risks or importance to the available data. Such applications require

support for time-based authorization policies.

Few access control models have been proposed to address such requirements. In

particular, Bertino et. al. propose a time-based access control model in [Ber01a]. In

[Ber01a], Bertino et. al propose a Temporal RBAC model that extends the NIST RBAC

model with periodicity expressions used in [Ber98, Nie92]. Atluri et. al have recently

proposed a Temporal Data Access Model (TDAM) for addressing access control based on

the temporal characteristics of data being accessed, such as the valid time and transaction

time.

In the following sections, we briefly overview these models and compare with the

proposed GTRBAC model. As GTRBAC is a generalization of limited temporal

constraints introduced in the TRBAC model, the GTRBAC model borrows the periodic

time expression used in the TRBAC model. We briefly overview the periodic time

expression before discussing the time-based access control models.

2.3.1 Periodic Expression

Periodic time is represented through a symbolic formalism and is expressed as a

tuple �[begin, end], P�, where P is a periodic expression denoting an infinite set of

periodic time instants, and [begin, end] is a time interval denoting the lower and upper

bounds imposed on instants in P [Ner98, Nie92]. The periodic time uses the notion of

calendar defined as a countable set of contiguous intervals representing their indices. A

sub-calendar relationship can be established among calendars. Given two calendars C1

and C2, C1 is said to be a sub-calendar of C2, written as C1 C2, if each interval of C2 is

covered by a finite number of intervals of C1. A set of calendars containing the calendars

Hours, Days, Weeks, Months, and Years is assumed where Hours is the calendar that has

the finest granularity. Calendars can be combined to represent more general periodic

expressions denoting periodic intervals such as the set of Mondays or the set of the third

hour of the first day of each month. A periodic expression is defined as: P = � =

n

i 1
Oi.Ci

x.Cd, where Cd, C1, …, Cn are calendars and O1 = all, Oi ∈ 2
�

 ∪ {all}, Ci Ci-1 for i =

2,.., n, Cd Cn, and x ∈ Symbol separates the first part of the periodic expression

that distinguishes the set of starting points of the intervals, from the specification of the

duration of each interval in terms of calendar Cd. For example, {all.Years + {3,

19

7}.Months 2.Months} represents the set of intervals having a duration of 2 months with

their starting times synchronized with the same instant as the third or seventh month of

every year. In practice, Oi is omitted if its value is all. In case Oi is a singleton, it is

represented by its unique element. Similarly, x.Cd is omitted when x is equal to 1. A set of

time instants corresponding to a periodic expression P is denoted by Sol(I, P). Similarly,

the set of intervals in (I, P) is denoted by ∏(P). For simplicity, in this dissertation the

bounds begin and end, constraining a periodic expression, will be denoted by a pair of

date expressions of the form mm/dd/yyyy:hh. The end point end can also be ∞. For

instance, [1/1/2001, 12/31/2001] denotes all the instants in 2001.

2.3.2 Temporal Access Control Models

Bertino et. al. propose a time-based access control model that supports temporal

authorization and derivation rules in a non-RBAC environment [Ber01a]. The periodicity

constraint expression introduced earlier is used to describe how subjects are allowed time

constrained access to resources. Their model also introduces high level operators such as

WHENEVER, ASLONGAS and UPON to show temporal relations between temporal

authorizations. However, the proposed model is not role based and hence does not

provide the benefits of RBAC.

Atluri et. al. have recently proposed a Temporal Data Authorization Model

(TDAM) that can express access control policies based on the temporal characteristic of

data, such as valid and transaction time [Atl01]. The GTRBAC model proposed in this

dissertation can capture this aspect of authorization by using dynamic role-permission

assignments through periodicity and duration constraint, as well as triggers, although we

do that at the abstraction of a permission, which is defined as a permitted operation on an

object. As TDAM focuses on the temporal characteristic of data and not on the overall

aspect of an authorization system, it again lacks benefits of an RBAC model. We believe

that TDAM’s capability to capture fine-grained temporal characteristics of data in an

authorization decision, it can be used to supplement, at a more concrete level, the

dynamic aspects of role-permission assignments in GTRBAC.

The Temporal-RBAC (TRBAC) model proposed by Bertino et. al. is the first

model that extends an RBAC model with temporal constraints [Ber01a]. The TRBAC

model, however, supports temporal constraints on role enabling only. The main features

of the TRBAC model include periodic enabling of roles and dependencies among roles

expressed by means of triggers. Priorities are associated with role events for handling

20

potential conflicts. Precedence rules are used to resolve conflicts among events. The

TRBAC model also allows an administrator to issue run-time requests for enabling and

disabling a role.

The TRBAC model, however, cannot handle several other important temporal

constraints. First, the model does not include temporal constraints for the user-role and

role-permission assignments. It assumes that only roles are enabled and disabled at

different time intervals. In this dissertation, we show that in some applications, roles are

static in that they are enabled at all times, while users and permissions assigned to them

can be transient. Second, the TRBAC model only handles the temporal constraints on role

enabling and does not include any constraints on the actual activations of roles by the

users. Thus, the TRBAC model does not support well-defined, separate notions of role

enabling and role activation. Therefore, the TRBAC model cannot handle many

constraints that are related to the activations of a role such as the constraints on the

maximum active duration allowed to a user, the maximum number of activations of a role

by a single user within a particular interval of time, etc. In this dissertation, a role is said

to be enabled, if it can be assumed by a user. On the other hand, a role is active if there is

at least one user who has assumed that role. Third, as the TRBAC model does not

consider duration constraints as well as constraints on the actual activations of roles, it

does not support the notion of enabling and disabling of constraints. The activation

constraints need to be clearly defined with respect to the enabled time of a role. We,

therefore, introduce the notion of constraint enabling/disabling. Finally, the TRBAC

model does not address the time-based semantics of role hierarchies and SoD constraints.

In this dissertation, we illustrate the importance of the constraints mentioned

above and accordingly propose a Generalized TRBAC (GTRBAC) model that subsumes

TRBAC and can handle all the issues mentioned above. To incorporate various

constraints regarding role activations, we distinguish between the notions of role

activation and role enabling.

21

3. THE GTRBAC MODEL

In this chapter, we propose the Generalized TRBAC (GTRBAC) model that

allows expressing a wide range of temporal constraints. We first discuss various types of

temporal constraints relevant to role-based systems. In particular, we show how temporal

constraints can be meaningfully applied to various components of RBAC systems. To

incorporate various constraints regarding role activations, we distinguish between the

notions of role activation and of role enabling. The proposed GTRBAC model provides

duration and periodicity constraints, as well as other forms of specialized activation

constraints. We present the syntax and semantics of these constraint expressions. In the

subsequent sections, we discuss conflicts that may arise in a GTRBAC system and show

to handle them to provide an execution model. We also use a notion of safeness to argue

that the safe constraint sets ensure that certain undesirable or ambiguous execution

semantics do not occur.

3.1 Temporal Constraints in GTRBAC

A key aspect of the proposed GTRBAC model is that it distinguishes between the

notions of role enabling and role activation states. Such distinction leads to the notion of

states of a role, as depicted in Fig. 3.1. In the proposed model, a role can assume one of

the three states: disabled, enabled and active. The disabled state indicates that the role

cannot be used in any user session, i.e., a user cannot acquire the permissions associated

with the role. A role in the disabled state can be enabled. The enabled state indicates that

users who are entitled to use the role at the time of the request may activate the role.

Subsequently, if a user activates the role, the state of the role becomes active. A role in

the active state implies that there is at least one user who has activated the role. Once in

active state, further activations of the same role do not change its state. When a role is in

active state, upon deactivation, the role transitions to the enabled state if there is only one

session in which it is active, otherwise it remains in the active state. A role in enabled or

active state transitions to the disabled state if a disabling event occurs.

22

Disabled

Enabled Active

enable

disable disable

deactivate

deactivate

activate

activate

Fig. 3.1 States of a role

Table 3.1

Temporal constraint expressions

Categories Constraints Expression Set/
Type

User-role assignment (I, P, pr:assignU/deassignU r to u) CUrp

Role enabling (I, P, pr:enable/disable r) CRp
Periodicity
Constraint

Role-permission assignment (I, P, pr:assignP/deassignP p to r) CPRp

User-role assignment ([(I, P)| D], DU, pr:assignU/deassignU r to u) CUrd

Role enabling ([(I, P)| D], D R, pr:enable/disable r) CRd
Duration

Constraints
Role-permission assignment ([(I, P)| D], D P, pr:assignP/deassignP p to r) CPRd

Per-role ([(I, P)| D], Dactive, [Ddefault], pr:activeR_total r) Ca
dr Total active

duration Per-user-role ([(I, P)| D], Duactive, u, pr:activeUR_total r) Ca
dur

Per-role ([(I, P)| D], Dmax, pr:activeR_max r) Ca
mr

Duration
Constraints
(activation) Max role dur.

per activation Per-user-role ([(I, P)| D], Dumax, u, pr:activeUR_max r) Ca
mur

Per-role ([(I, P)| D], Nactive, [Ndefault], pr:activeR_n r) Ca
nr Total no. of

activations Per-user-role ([(I, P)| D], Nuactive, u, pr:activeUR_n r) Ca
nur

Per-role ([(I, P)| D], Nmax, [Ndefault], pr:activeR_con r) Ca
nnr

Cardinality
Constraint
(activation) Max. no. of

con. activations Per-user-role ([(I, P)| D], Numax, u, pr:activeUR_con r) Ca
nmur

Constraint
Enabling

enable/disable c

where c ∈ {(D, Dx, pr:E), (C) , (D, C)}
Cc

Users’ activation request (s:(de)activate r for u after � t)) Cu

(pr:assignU/de-assignU r to u after � t) Cadmin

(pr:enable/disable r after � t) Cadmin
Administrator’s run-time

request
(pr:assignP/de-assignP p to r after � t) Cadmin

Run-time
request

 (pr:enable/disable c after � t) Cadmin

Trigger E1 ,…, En , C1 ,…, Ck → pr:E after � t Ctr

23

The proposed model allows the specification of the following types of constraints:

(1) temporal constraints on role enabling, user-role and role-permission assignments, (2)

activation constraints, (3) run-time events, (4) constraint enabling expressions, and (5)

triggers. Table 3.1 summarizes the constraint types and expressions of the GTRBAC

model, which are discussed in the following section.

3.1.1 Temporal Constraints on Role Enabling and Assignment

An important feature of the proposed GTRBAC model is that periodicity and

duration constraints can be applied to various components of RBAC. Specifically, by

constraining the times when roles are enabled or active, these constraints can be applied

to roles themselves, as well as to user-role and role-permission assignments. Depending

on the requirements, role enabling and assignments can be restricted to particular

intervals or to a specified duration.

Periodicity constraints are used to specify the exact intervals during which a role

can be enabled or disabled, and during which a user-role assignment or a role-permission

assignment is valid. Duration constraints, on the other hand, are used to specify durations

for which enabling or assignment of a role is valid. When an event occurs, the duration

constraint associated with the event validates the event for the specified duration only. In

case no duration constraint exists for the event, the event remains valid until it is disabled

by some other means, e.g., by a trigger.

3.1.2 Temporal Constraints on Role Activation

Role activations are the result of granting users’ requests to activate roles. Such

requests are made at the discretion of a user at arbitrary times and hence periodicity

constraints on role activations should not be imposed. However, duration constraints can

be imposed on role activations. In the proposed model, duration constraints on role

activations can be classified into two types: total active duration constraint and maximum

duration per activation constraint. The total active duration constraint on a role restricts

the span of the role’s activation duration in a given period to a specified value. After the

users have utilized the specified total active duration for a role, the role cannot be

activated again, even though it may still be enabled. It can be noted that the total active

duration allowed for a role may span a number of intervals in which the role is enabled.

The total active duration may be specified on per-role and per-user-role basis. Per-role

24

constraint restricts the total active duration for a role. Once the sum of all activation

durations of the role reaches the maximum allowed value, no further activation of the role

is allowed. Per-user-role constraint restricts the total active duration for a role by a

particular user. Once a user utilizes the total active duration of the role specified for him,

he cannot activate the role further, whereas other users may still activate the role.

The maximum duration constraint per activation restricts the maximum duration

for each activation of a role. Once such a duration expires for a user, the role activation

for that user becomes void. However, there may still be other activations of the same role

in the system, including one by the same user in some other session. This constraint can

also be specified on per-role or per-user-role basis. The per-role constraint restricts the

maximum active duration for each activation of a role for any user, unless there is a per-

user-role constraint specified for that user. The per-user-role constraint restricts the

maximum active duration allowed for each activation of a role by a particular user.

In some applications, restrictions on the number of concurrent activations of a role

may be required for controlling access to critical objects or resources. For example, we

may want to ensure that a single user does not access all the resources while others are

denied the access. Such a cardinality restriction on role activation can be categorized into

two types: total n activations constraint, and maximum n concurrent activations

constraint. In the first category, a role is limited to a total of n activations. This constraint

may also be specified on a per-role or per-user-role basis. The per-role constraint allows

at most n activations of a role in a given period of time, irrespective of whether these

activations occur simultaneously in different sessions or at different times. Similarly, the

per-user-role constraint restricts a total of n activations of a role by a specified user.

In the second category a role is restricted to n concurrent activations at any time.

Constraint on a per-role basis may be specified to restrict the number of concurrent

activations of a role to a maximum value. The activation of these roles may be associated

with the same or different users. On the other hand, the per-user-role constraint restricts

the total number of concurrent activations of a role by a particular user to a given value.

Different users may have different permissible upper limits on the number of concurrent

activations of the same role.

3.1.3 Run-time Requests, Triggers, and Constraint Enabling

As mentioned earlier, a user’s request to activate a role is made at his discretion.

In GTRBAC, a user’s role activation request is modeled as a run-time event. Similarly,

25

the administrators’ run-time requests to initiate events that may override any existing

valid events are also modeled. Such events can be used to override a pre-defined policy to

make useful changes in the policy. For example, an administrator may initiate events to

disable roles found to be in use by some malicious users. A relevant requirement in many

application domains is the need of automatically executing certain actions as an

occurrence of an event, such as the enabling or disabling of a role. In GTRBAC, we

model such dependencies among events by using triggers. In addition, the duration

constraints on role enabling and assignments and role activation constraints can be

enabled for a pre-specified interval or duration. GTRBAC includes constraint enabling

expressions to enable or disable such constraints.

3.2 Formal Syntax and Semantics of the GTRBAC Model

In this section, we discuss the formal syntax and semantics for the constraint

expressions used in the GTRBAC model. Basic event expressions used by the GTRBAC

constraint language are depicted in Table 3.2. Priorities are associated with each event in

the proposed model. We define (Prios,) as a totally ordered set of priorities and

assume that Prios contains two distinct elements ⊥ and such that, for all x ∈ Prios,

⊥ x . We use x y, if x y and x ≠ y. Status predicates, listed in Table 3.3, are

used to capture the state information associated with roles. In GTRBAC, event

expressions, priorities and status predicates are used to express the constraints listed in

Table 3.1. Next, we present the syntax and semantics of the constraint expressions listed

in Table 3.1 and illustrate their use in expressing an access control policy in a medical

application domain.

Table 3.2

Prioritized event expressions

Simple Event (r ∈ Roles, u ∈ Users, and p ∈ Permissions)

enable r or disable r

assignU r to u or de-assignU r to u,

assignP p to r or de-assignP p to r,

enable c or disable c,

Prioritized Events

pr:E, where pr ∈ Prios and E is a simple event expression

26

Periodicity Constraints (I, P, pr:E)

As shown in Table 3.1, the periodicity constraint expressions have the general

form (I, P, pr:E). The pair (I, P) specifies the intervals during which an event E takes

place. E can be a role enabling event: “enable/disable r”, or either of the

assignment events: “assignU/deassignU p to r” or “assignP/deassignP u

to r”.

Table 3.3

Status predicates

u 1

u 2

u 3

u 4

t1 t2 t3 t4 t5 t6 t7 t8 t1 0 t1 1 t1 2

s 1

s 2

s 3

s 4

Fig. 3.2. Periodicity constraint on user-role assignment

Fig. 3.2 shows an example of periodicity constraints on user-role assignments.

The two thick lines at the time axis represent the intervals (t3, t6) and (t8, t11) in which role

r is enabled. The lines above the axis indicate intervals in which users are assigned to role

r. The dotted portions of these lines indicate intervals in which user-role assignments are

Status Predicate (C) Status Predicate with time (C
t
) Semantics [for time]

enabled(r) enabled(r, t) r is enabled [at time t]

u_assigned(u, r) u_assigned(u, r, t) u is assigned to r [at time t]

p_assigned(p, r) p_assigned(p, r, t) p is assigned to r [at time t]

active(r) active(r, t) r is active [at time t]

u_active(u, r) u_active(u, r, t) r is active in u’s session [at time t]

s_active(u, r, s) s_active(u, r, s, t) r is active in u’s session s [at time t]

acquires(u, p) acquires(u, p, t) u acquires p [at time t]

27

valid, although their assignment may not be in effect because the role is disabled in these

intervals. For example, when user u1 is assigned to role r in interval (t1, t5), he can

activate role r only in the interval (t3, t5), as the role is disabled in the remaining part of

interval (t1, t5). Similarly, user u2 is assigned to r in interval (t4, t10) but can activate the

role only in intervals (t4, t6) and (t8, t10). User u3 is assigned to r in interval (t2, t7) but can

assume r only in interval (t3, t6).

Duration Constraints ([(I, P,)|D], Dx, pr:E)

 The general form of the duration constraint expressions for role enabling and

assignment is ([(I, P,)|D], Dx, pr:E), where x is either R,U, or P, corresponding to events,

respectively:

“enable/disable r”,

“assignU/deassignU r to u” and

“assignP/deassignP p to r”.

D and Dx refer to the durations such that D � Dx. The symbol “|” between (I, P)

and D indicates that either (I, P) or D is specified. The square bracket in [(I, P,)|D]

implies that this parameter is optional. Accordingly, we have three types of duration

constraints: (I, P, Dx, pr:E), (D, Dx, pr:E) and (Dx, pr:E).

The expression (I, P, Dx, pr:E) indicates that event E is valid for the duration Dx

within each valid periodic interval specified by (I, P). (Dx, pr:E) implies that the

constraint is valid at all times. Therefore, if event E is caused at any time, it is restricted

to duration Dx. The constraint c = (D, Dx, pr:E) implies that there is a valid duration D

within which the duration restriction Dx applies to event E. In other words, the constraint

c is enabled for duration D. The constraint enabling expressions as shown in Table 3.1

can be used to enable such constraints and the activation constraints discussed later. The

constraint enabling/disabling event has the expression of the form “enable/disable

c”, where c is a constraint expression (D, Dx, pr:E). A constraint enabling event

corresponds to either a run-time request or a triggered event. The duration constraint

expression has the same general form as that of the activation constraint expression.

Hence, the semantics of the duration constraints on role enabling and assignments is

similar to that of the activation constraints. The example about activation constraints in

Fig. 3.3 also illustrates how duration constraints mentioned here are imposed.

28

Activation Constraints ([(I, P,)|D], C):

Activation constraints have the general form ([(I, P)| D], C), where C represents

the restriction applied to a role activation. For example, C = (Dactive, [Ddefault],

activeR_total r) corresponds to the total active role duration per-role constraint. [(I,

P)| D] is an optional temporal parameter and has the same meaning as given by the

duration constraints. Therefore, similar to the duration constraints, an activation

constraint assumes one of the three forms: (I, P, C), (D, C) or (C). The first two

expressions are semantically similar to those for duration constraints. Constraint (C)

implies that the activation restriction specified by C applies to each enabling of the

associated role. If C is a per-role constraint, it has an optional default parameter that can

be used to specify the default value corresponding to the per-user-role restriction. For

example, if C = (Dactive, [Ddefault], activeR_total r) then Ddefault indicates that the default

per-user-role active duration value is applied to all the users assigned to the role. In case

Ddefault is not specified, it is assumed to be equal to the per-role value, Dactive. Parameters

of other activation constraints can be similarly interpreted.

enable c

Triggered or run-time

t2 t3 t4 t5 t6t1

c =(D, Nactive, activer-total r)

Duration = D
(a)

t2 t3 t4 t5 t6t1

c = (I, P, Nactive, activer-total r)

t8t7

(t2, t3), (t6, t3) ∈ Π (I, P)

(b)

c = (Nactive, activer-total r)

r enabled using (D, enable r)
Duration = D

(c)

t1 t2 t3 t4 t
5

t6 t7 t8

Fig. 3.3. Constraint enabled (a) for a specified duration (b) in specified intervals (c) at all

times

29

Fig. 3.3 illustrates the three different forms of an activation cardinality constraint

C. In Fig. 3.3(a), the constraint c is of form (D, C). In this case, the role is enabled in the

intervals (t1, t3) and (t4, t6). A trigger or a run-time request can enable this constraint at

time t2 (i.e., event “enable c” occurs). Subsequently, c becomes valid for duration D,

which in this case corresponds to interval (t2, t5). However, within interval (t2, t5), a

subinterval (t3, t4) can exist in which role r is not enabled. The cardinality constraint c

implies that the total number of activations of role r in the intervals (t2, t3) and (t4, t5)

combined should not exceed Nactive.

Fig. 3.3(b) illustrates an activation constraint of the form c = (I, P, C). Here, (t2,

t3) and (t6, t7) are intervals in (I, P) and hence, during each of these intervals the total

number of activations of role r is restricted to Nactive. Fig. 3.3(c) shows a constraint of the

form c = (C), where, for each enabling period of r, constraint (C) is valid. For example,

role r is enabled by a periodicity constraint in the intervals (t1, t2), (t3, t4) and (t7, t8).

During each of these intervals, at most Nactive activations of role r are allowed.

Furthermore, role r can also be enabled in interval (t5, t6) because of the duration

constraint (D, enable r). The activation constraint c is then also applicable to this

interval, for which only Nactive activations of role r are allowed.

Run-time Requests and Triggers:

As shown in Table 3.1, a user’s run-time request to activate or deactivate a role

can be expressed as: (1) s:activate r for u after � t, and (2) s:deactivate r

for u after � t. The priority associated with this request is assumed to be the same as

that of event “assign r to u” that authorizes the activation of role r by user u.

Similarly, an administrator's run-time request expression, written as pr:E after � t is

a prioritized event that occurs � t time units after the request. In case the priority and the

delay need to be omitted, we set pr = , where represents the highest priority, and t =

0.

The trigger expression has the form E1 ,…, En , C1 ,…, Ck → pr:E after t,

where Ei’s are simple event expressions or run time requests, Ci’s are status predicates,

pr:E is a prioritized event expression with pr , E is a simple expression such that E ∉

{s:activate r for u}, and t is a duration expression. It can be noted that because

an activation request is made at a user’s discretion, the event E should not be

“s:activate r for u”. However, event “s:activate r for u” can trigger other

events and hence can be a part of the body of a trigger. Note that the event “s:de-

30

activate r for u” is allowed to appear in the head of a trigger as it can be used to

enforce system controls. We illustrate the GTRBAC specification of an access control

policy through the following example for a medical information system.

Example 3.2.1: Consider the GTRBAC access control policy of Table 3.4,

from a medical information system. In row 1a, the enabling times of DayDoctor and

NightDoctor roles are specified as a periodicity constraint. The (I, P) forms for

DayTime (9am-9pm) and NightTime (9pm-9am) are as follows: DayTime =

([12/1/2003, ∞], all.Days, + 10.Hours 12.Hours), and NightTime = ([12/1/2003, ∞],

all.Days, + 12.Hours 12.Hours).

Table 3.4.

Example GTRBAC access policy for a medical information system

A (DayTime, enable DayDoctor), (NightTime, enable NightDoctor)

B
((M, W, F), assignU Adams to DayDoctor), ((T, Th, S, Su), assignU Bill to
DayDoctor),

1

C (Everyday between 10am - 3pm, assignU Carol to DayDoctor)

A (assignU Ami to NurseInTraining); (assignU Elizabeth to DayNurse)
2

B c1 = (6 hours, 2 hours, enable NurseInTraining)

A (enable DayNurse → enable c1)

B (activate DayNurse for Elizabeth → enable NurseInTraining after 10 min) 3

C
(enable NightDoctor → enable NightNurse after 10 min); (disable NightDoctor

→ disable NightNurse after 10 min)

A (10, activeR_n DayNurse);

B (5, activeR_n NightNurse); 4

C (2 hours, activeR_total NurseInTraining)

In 1b, Adams is assigned to role DayDoctor on Mondays, Wednesdays and

Fridays, whereas Bill is assigned to it on Tuesdays, Thursdays, Saturdays and Sundays.

The assignment in 1c indicates that Carol can assume the DayDoctor role everyday

between 10am and 3pm. In 2a, users Ami and Elizabeth are assigned roles

NurseInTraining and DayNurse respectively, without any periodicity or duration

constraints. In other words, their assignments are valid at all the times. 2b specifies a

31

duration constraint of 2 hours on the enabling time of the NurseInTraining role, but

this constraint is valid for only 6 hours after the constraint c1 is enabled. Consequently,

once the NurseInTraining role is enabled, Ami will be able to activate the

NurseInTraining role at the most for two hours.

Trigger 3a indicates that constraint c1 is enabled once the DayNurse is enabled.

As a result, the NurseInTraining role can be enabled within the 6 hours. Trigger 3b

indicates that 10 minutes after Elizabeth activates the DayNurse role, the

NurseInTraining role is enabled for a period of 2 hours. As a result, a nurse in training

can then have access to the system only if Elizabeth is present in the system. In other

words, once the roles are assumed, Elizabeth acts as a training supervisor for a nurse in

training. It is possible that Elizabeth activates the DayNurse role a number of times

within 6 hours after the DayNurse role is enabled. The activation constraint 4c limits

the total activation time associated with the NurseInTraining role to 2 hours. The

constraint set 4 shows additional activation constraints. For example, constraint 4a

indicates that there can be at most 10 users activating DayDoctor role at a time,

whereas 4b shows that there can be at most 5 users activating the NightDoctor role at a

time.

3.3 GTRBAC Conflict Resolution and Execution Semantics

In this section, we address issues related to conflicts that may arise in the

GTRBAC model and propose an approach for conflict resolution and generating an

execution model. We define set Γ consisting of all the event expressions, constraints and

triggers in a GTRBAC system as the Temporal Constraint and Activation Base (TCAB).

The set Γ is essentially a set of constraints of the types listed in Table 3.1. Furthermore,

we assume users’ and administrators’ run-time requests as a sequence RQ = �RQ(0),

RQ(1),…, RQ(t), …�. Note, RQ(t) ∈ RQ is a set of run-time requests at time t and may be

empty.

3.3.1 Conflicts in GTRBAC

Various types of conflicts may arise in a GTRBAC system. A clear semantics is

needed to capture such conflicting scenarios. For example, a role enabling event caused

by a periodicity constraint, and a role disabling event caused by the firing of a trigger, can

correspond to the same role and may occur at the same time. Such a scenario gives rise to

32

conflicts. Essentially, there are three categories of conflicts that may occur for a given Γ

and a request sequence RQ, as depicted in tables 3.5-3.7. These include:

1. Conflicts between events of the same category (type 1 conflicts): Events in the same

category are associated with the same pair of states of a role or assignment. For

example, event “enable r” results in changing the disabled state of role r to an

enabled state whereas event “disable r” corresponds to changing the enabled state

of a role to the disabled state. Similarly, events “assign r for u” and “de-

assign r for u” are of the same category. The entries in Table 3.5 refer to conflicts

among the same category of events. A pair of events E1 and E2 in a row is said to

conflict (written as E2 = Conf (E1)) if the corresponding condition C holds.

Table 3.5

 Type 1 conflicts: conflicts between events of same category

2. Conflicts between events of different categories: (type 2 conflicts): Conflicts may also

arise between events of different categories. For instance, an activation request

“activate u for r” and a role disabling event “disable r” are conflicting events

if they attempt to occur simultaneously, as a disabled role cannot be active. Similarly,

an activation event “activate u for r” and a user-role de-assignment event “de-

Conflicting

Events
E1 E2 = Conf (E1) Condition (C)

enable r Disable r’ Role Enabling

conflicts disable r enable r’

(r = r’)

assignU r to u de-assignU r’ to u’

de-assignU r to u assignU r’ to u’

(r = r’ and u = u’)

assignP p to r de-assignP p’ to r’

Assignment

conflicts

de-assignP p to r assignP p’ to r’

(r = r’ and p = p’)

s:deactivate r for u s':activate r’ for u’ (s = s’, r = r’ and u = u’)
Activation

conflicts s:activate r for u
s’:deactivate r’ for

u’
(s = s’, r = r’ and u = u’)

enable c disable c’ Constraint

enabling

conflicts
disable c enable c’

(c = c’)

33

assign r to u” cannot occur at the same time as a user may activate a role only if

he is assigned to the role. We also note that events “enable r ” and

“s:deactivate r for u” do not conflict even if both occur simultaneously.

Table 3.6

 Type 2 conflicts: conflicts between events of different categories

3. Conflicts between constraints (type 3 conflicts): Conflicts may also occur between

two constraints defined for role enabling or role assignment (type 3a shown in Table

3.7). For example, a duration constraint on role enabling, (DR, enable r) and a

duration constraint on role disabling (DR, disable r) may occur at the same time, if

both “enable r” and “disable r” events are valid at the same time. It can be noted

that such conflicts occur because of the underlying conflicting events.

Table 3.7

 Type 3 conflicts: conflicts between constraints

Conflicting Events E1 E2 = Conf (E1) Condition (C)

Activation vs. role

disabling
s:activate r for u disable r’ (r = r’)

Activation vs.

deassignment
s:activate r for u De-assign r’ to u’ (r = r’ & u = u’)

Conflicting

Constraints
C1 C2 = Conf (C1) Condition (C)

 Type 3a (X1, d1, E1) (X2, d2, E2)

E2 = Conf (E1) &

occurrence of d1 and

d2 overlap

(da, dd, activeR_total

r)
(dua, u, activeUR_total r’)

(r = r’) and (da � dua or

dd � dua)

(dmax, activeR_max r) (dumax, u, activeUR_max r’)
(r = r’) and (dmax �

dumax)

(na, nd, activeR_n r) (nu, u, activeUR_n r’)
(r = r’) and (na � nua or

na � nua)

 Type 3b

(nmax, activeR_max r) (numax, u, activeUR_max r’)
(r = r’) and (nmax �

numax)

34

A conflict can occur between the per-user activation constraint and the per-role

activation constraint (type 3b) as shown in Table 3.7. For example, consider the per-

role constraint (Dactive, [Ddefault], activeR_total r) and the per-user-role constraint

(Duactive, u, activeUR_total r). The first constraint indicates that role r is allowed for

an activation duration of Duactive, whereas the second constraint specifies that user u is

allowed to assume role r for the total activation duration of Dua. If duration Ddefault is

specified, then all the users are restricted to a total activation time of Ddefault. There is

an inherent ambiguity whether the user u should be allowed a total activation time of

Duactive or Ddefault. Note, in the per-user constraint if ddefault is not specified then we

assume Ddefault = Dactive. In other words, any single user may activate role r for the

entire activation duration of Dactive. Therefore, the per-user-role constraint will again

conflict with the per-role constraint.

The GTRBAC model uses the notion of blocked events to resolve conflicts of

types 1 and 2, as defined below. When priorities cannot resolve conflicts, the model uses

a negative-takes-precedence principle to resolve type 1 conflicts. According to this

principle, disabling of a role takes precedence over enabling the role and the deactivation

of a role takes precedence over the activation of the role. Similarly, for type 2 conflicts,

we prefer the role disabling and user-role deassignment event over the activation event, as

an enabled role and a valid assignment are prerequisites for a role activation. The

following definition states these conflict resolution rules.

Definition 3.3.1 (Conflict resolution for Type 1 and Type 2) Let S be a set of

prioritized event expressions and constraints. Let pr:E be a prioritized event expression,

where E is an event and pr ∈ Prios. pr:E is said to be blocked by S, if the following

conditions hold:

1. if there exists a q ∈ Prios, such that q:Conf(E) ∈ S and the following holds

a. If pr:E and q:Conf(E) result in a type 1 conflict, then either

i. E corresponds to E1 or in Table 3.5, and pr q, or

ii. E corresponds to E2 in Table 3.5 and pr q;

b. If pr:E and q:Conf(E) result in a type 2 conflict, and E = s:activate r for u

2. if there exists a valid constraint ([(I, P)| D], X) that does not permit event pr:E to

occur.

The set of non blocked events in S is denoted by Nonblocked(S). Furthermore,

if both type 1 and type 2 conflicts occur, events blocked by type 1 conflicts are removed

prior to removing events blocked by type 2 conflicts. In addition, if S has valid

35

constraints of the form ([(I, P)| D], X), events blocked by these constraints are evaluated

last.

In definition 3.3.1, 1(a)(i) implies that event “q:disable r” blocks “pr:enable r” if

pr � q. If, however, pr q then according to condition 1(b)(ii), the event “q:enable r”

would instead block the event “pr:disable r”. Condition 1(a) applies to all the conflicts

of type 1. Rule 1(b) applies to type 2 conflicts depicted in Table 3.6. According to this

rule, events associated with role disabling or user-role de-assignment events override the

role activation events, as role activation by a user depends on both the role enabling and

user-role assignments. It is important that a role disabling or user-role de-assignment

event is not blocked if either one aims to block an activation event. By resolving the type

1 conflicts first, we ensure that an activation event is blocked by a role disabling or user-

role de-assignment that has not been blocked. Parts (b) and (c) of Example 3.3.1

presented below illustrate the necessity of handling type 1 conflicts prior to handling type

2 conflicts. The second part of the definition indicates that an event may also be blocked

by the duration constraints on role enabling and assignments, and activation constraints

on roles. When several activation requests for a role are present, some of these activation

requests may need to be blocked to enforce an activation constraint. For example, assume

that there is a cardinality constraint that says only five activations of role r are to be

allowed at a time. If, at a particular time, multiple requests associated with role r are

present, the cardinality constraint on the role will block two of these events. In such cases,

a predefined selection criterion is needed to select the activation requests that are to be

blocked. Such a selection criterion may depend, for example, on the priority of the

activation requests, or the duration for which the activation has existed, or their

combinations. Furthermore, note the general form of the activation request is “activate r

for u after �t”, which indicates that a user may request role activation in advance. The

selection criteria can use the value of �t to determine activation requests that should be

blocked. Furthermore, once the type 1 and type 2 conflicts have been resolved, events

blocked by constraints following the resolution rule defined for the type 3b conflicts are

selected. The following example further illustrates the notion of the blocked events.

Example 3.3.1: Assume a system with two priorities H = High and VH

= Very High with H < VH. Now, consider the following three cases of increasing

complexity.

(a) Let S = {H:enable r0,H:disable r0,VH:enable r1,

H:disable r1}. Thus, by condition 1(a)(i) of Definition 3.3.1, Nonblocked(S) =

36

{H:disable r0, VH:enable r1}, since event “H:enable r0” is blocked by event

“H:disable r0”. Similarly, according to condition 1(a)(i), event “H:disable r1”

is blocked by “VH:enable r1.”

(b) Next, we consider a more complex case for S = {H:enable

r0,H:disable r0, VH:enable r1, H:disable r1 VH:(s:activate r1

for u)}. Assume we first resolve type 2 conflicts and then type 1 conflicts. In this

case, event “VH:(s:activate r1 for u)” is removed first as it is blocked by the

event “H:disable r1” as per condition 1(b)(i). We then encounter the case where

Nonblocked(S) = {H:disable r0, VH:enable r1}. Note, event “H:disable

r1,” that blocks event “VH:(s:activate r1 for u)”, which itself is a blocked

event. Hence, blocking of event VH:(s:activate r1 for u) by H:disable r1

is not correct.

Alternatively, assume we first remove type 1 conflicts, which results in

Nonblocked(S) = {H:disable r0, VH:enable r1, H:(s:activate r1 for

u)}. In the next step, we remove any type 2 conflicts. As event “H:(s:activate r1

for u)” is not blocked by any event, the final result is Nonblocked(S) =

{H:disable r0, VH:enable r1, H:(s:activate r1 for u)}.

(c) S can be further extended as follows: S ={H:enable r0, H:disable

r0, VH:enable r1, H:disable r1, VH:(s:activate r1 for u1),

H:(s:activate r1 for u2), enable c}, where c= (1, H:activeR_Total r1).

After resolving type 1 and type 2 conflicts, we generate Nonblocked(S) =

{H:disable r0, VH:enable r1, VH:(s:activate r1 for u1), H:enable c,

H:(s:activate r1 for u2)}. Note that constraint c implies that only one

activation of r1 is permitted. Thus, one of the activation requests must be blocked.

Because of the low priority event “H:(s:activate r1 for u2)” is blocked. Hence,

the final set of non-blocked events generated is Nonblocked(S) = {H:disable r0,

VH:enable r1, VH:(s:activate r1 for u1)}.

It can be noted that type 3a conflicts associated with constraints are mainly due to

the underlying conflicting events associated with the constraint expressions. Hence, the

resolution of type 1 conflicts in Definition 3.3.1 is applicable to type 3a conflicts as well.

To resolve type 3b conflicts, we us a combination of the “per-role-takes-precedence over

the per-user-role constraint” and the “more-specific constraint takes precedence” rules.

These rules are formally defined below:

37

Definition 3.3.2 (Conflict resolution for Type 3b conflicts): Let (dna, [dndefault,]

pr:activeR_x r) be a per-role constraint and (dnua, u, activeUR_x r) be a per-user-role

constraint defined for the same role r, and R_x ∈ {R_Total, R_Max, R_n, R_con}.

Then the following rules apply:

1. If there exist the same type of activation constraints for a role, the highest priority

constraint blocks the others as per definition 3.3.1.

2. With respect to the per-role parameter dna and the per-user-role parameter dnua, the

per-role constraint overrides the later one.

3. With respect to the default parameter dndefault and the per-user-role parameter dnua,

the more-specific per-user-role constraint overrides the later. In other words, when

per-role activation constraint (dna, dndefault, pr:activeR_x r) and per-user-role

activation constraint (dnua, u, activeUR_x r) are both specified, user u has

constraint dnua, but not dndefault.

4. The following conditions hold: (1) da ≥ dua, and (2) da = n.dua, for some n > 0. In

other words, the value of per-user-role parameter should not exceed the value of per-

role parameter.

3.3.2 The GTRBAC Execution Model

Based on the rules for conflict resolution defined in the previous section, we now

discuss the execution semantics of the GTRBAC model. In this section, we define system

states and traces, and construct an execution model for GTRBAC. We also provide a

definition to capture events that are caused at each instant of time, and present a state

generation algorithm for constructing new states from the existing states based on the

current set of the valid constraints.

The dynamics of occurrences of events and various states of role enablings and

activations in GTRBAC are represented as a sequence of snapshots. Each snapshot

provides the current set of prioritized events and the status of role, user-role and role-

permission assignments as well as that of the activation constraints. To efficiently

represent status information in the form of snapshots, we first define the following two

structures, called u-snapshot and r-snapshot:

Definition 3.3.3 (u-snapshot/ r-snapshot): We define:

1. a u-snapshot for user u with respect to a role r as a tuple (u, r, dua, nua, dm, nm, Su,

Du), where r ∈ Roles, u ∈ Users such that u is assigned to r, and the constraint

parameters are as defined in Table 3.8.

38

2. an r-snapshot for a role r as a tuple (r, dra, nra, drm, nrm, status, Pr, Ur) where, r ∈

Roles and the other constraint variables are as defined in Table 3.8.

In particular, these structures are used to model events, various role and

assignment status, and the status of constraints obtained by two distinct sequences EV,

and ST, respectively. The model in the form of a system trace is defined below.

Table 3.8.

Constraint parameters of u-snapshot and r-snapshot

u-snapshot parameter r-snapshot parameter

dua remaining total duration for which
u can activate r

dra
remaining total active duration for r,

nua remaining number of times that u
can activate r,

nra
remaining total number of activations of r,

dm maximum duration for which u can
activate r at one time

drm
remaining maximum active duration for r,

nm maximum number of concurrent
activations of r that u can have

nrm
remaining maximum number of activations of r,

status current status of r

Pr is the set of permissions that are assigned to r.
Su

Su = (s1, s2, ... , sk) is the list of
sessions in which u is currently
using r and Du = (d1, d2, ... , dk) is
the list of durations of activations
of r by u in each of these sessions.

Ur
is the set of u-snapshots such that, for all ut ∈
Ur , ut.r = r; where ut.r refer to the element r of
the u-snapshot ut.

Definition 3.3.4 (System Trace) A system trace - or simply a trace – consists of

infinite sequences of EV and ST, such that for all integers t ≥ 0:

• the tth element of EV, denoted as EV(t), is a set of prioritized event expressions.

Intuitively, this is the set of events which occur at time t;

• the tth element of ST, denoted as ST(t), is a set of r-snapshots corresponding to

existing roles at time t. Algorithm ComputeST in Fig. 3.4 is used to compute ST(t)

for each t.

A trace is called canonical if ST(0) = set of r-snapshots of the form (r, ∞, ∞,, ∞,,

∞,, disabled, ∅ , ∅) for all roles r in the system, i.e., all r-snapshots are initialized to

(r, ∞,, ∞,, ∞,, ∞,, disabled, ∅ , ∅). We assume that a system starts from an initial state

where all the roles are disabled and there are no user-role assignments, role-permission

assignments or valid activation constraints. Such a state exists at time t = 0. As the time

progresses, the events listed in Table 3.2 take place thus changing various role and

39

assignment states. The notion of a GTRBAC trace with such an initial state is represented

by a canonical trace.

The above definition of a trace enforces the intended semantics of events. The set

Nonblocked(EV(t)) contains the maximal priority events that occur at time t. We note

that Γ and RQ determine a unique state. It can also be noted that the state information

contained in ST(t) concerning the active state of roles depends on activation constraints

enabled at time t. A duration constraint or role activation constraint (c) is valid if event

“enable c” is in Nonblocked(EV(t)). Therefore, given a previous state, event set and

the valid activation constraint set, the following proposition holds.

Proposition 3.1 [7]. Given a sequence EV, and an initial status S0, a unique trace

(EV, ST) is generated with ST(0)=S0.

The proposition implies that a procedure to generate a unique trace can be

developed. Accordingly, we describe an algorithm ComputeST, shown in Fig. 3.4 that,

based on a given set of events and valid constraints, computes the next state from an

existing state. Based on the unblocked events and the current set of valid constraints, the

algorithm updates the state information contained in r-snapshots and u-snapshots. All the

events in Nonblocked(EV(t)) happen at time t. The state information ST(t) contains the

effect of the events in Nonblocked(EV(t)) on state ST(t-1).

In step 1, all non-blocked assignment/de-assignment and deactivation events are

processed. In step 2, the role disabling events are processed. Note, when a role is

disabled, the role-specific and the user-specific parameters are reset to ∞, which indicates

that if there are no per-role or per-user-role constraints then the activation duration and

number of concurrent activations are unlimited.

Note, the conflict resolution rules for type 2 conflicts indicate that the role

disabling and the user-role de-assignment events affect the active sessions related to

corresponding roles and users. Hence, it is important to first process these events and then

update the information related to active roles that remain active for the next unit duration.

In step 3, the values of per-role parameters in r-snapshots are reverted to the initial value

∞ corresponding to those activation constraints that become invalid. In step 4, per-role

constraint variables in r-snapshots of the newly enabled roles are initialized. In step 5,

new activations of roles are processed. In this process, first, the cardinality variables per-

role and per-user-role are decremented to find the remaining number of activations

allowed after this activation request has been granted. Next, users’ constraint variables

are initialized and session information is entered to the session list.

40

Algorithm ComputeST
 Input : t, EV, ST, CT;
 Output : ST(t);
/ * Initially ST(0) = (r, ∞, ∞, ∞, ∞, disabled, ∅ , ∅). For each
 pair (r, u) we use the associated snapshots rt and ut ∈ Ur.
 Assume that CT (t) = {c| enable c ∈ Nonblocked(EV(t))*/
Step 1: Handle assignments */
FOR each E ∈ Nonblocked(EV(t)) DO
 Case (E) of de-assign r to u : Ur = Ur - {ut};
 de-assign p to r : Pr = Pr - {p};
 assign p to r : Pr = Pr ∪ {p};
 assign r to u : Ur = Ur ∪ {(u, ∞, ∞, ∞, ∞, ∅ ,∅)};
 a: deactivate r for u : remove(s, Su, Du)
/* Step 2: Handle role disabling event */
FOR each (disable r) ∈ Nonblocked(EV(t)) DO
 rt.status = disabled;
 IF (Cx ∈ CT (t)) THEN
 Set per-role parameters of rt to ∞
 FOR each ut ∈ Ur DO
 Set (Su, Du) to (∅ ,∅);
 IF (Cx ∈ CT (t)) OR (Cx-1 ∈ CT (t)) THEN
 Set per-user-role parameters of rt to ∞
/* Step 3: Handle valid constraints */
FOR each ((X, C) ∈ CT (t-1) and (X, C) ∉ CT (t))
where X ∈ {(I, P), D} & C is a per-role activation constraint DO
 IF (C = Cx) THEN
 Set per-role parameters of the corresponding rt to ∞
/* Step 4: Handle role enabling events */
FOR each (enable r) ∈ Nonblocked(EV(t)) DO
 IF (rt.status � enabled) /* role is being enabled */
 rt.status = enabled;
 FOR each ([(I, P)|D], C) ∈ CT (t)) Set the per-role parameter of rt to per-role value specified in C
/* Step 5: Handle valid activation requests*/
FOR each (s:activate r for u) ∈ Nonblocked(EV(t)) DO /* assume rt for r and ut for u in rt * /
 rt.nra = rt.nra - 1; ut.nua = ut.nua –1; /* decrement the values */
 FOR each ([(I, P)|D], C) ∈ CT (t)) such that C is a constraint on r DO
 IF (C is per-user-role constraint) THEN
 Set the per-user-role parameter of the corresponding ut to that in C.
 ELSE /* C is a per-role constraint */
 IF (per-user-role default value is specified in C)
 Set the per-user-role parameter of the ut to default value;
 ELSE /* per-user-role default value is not specified in C*/
 Set the per-user-role parameter of ut to the per-role value in C;
 d = min(dua, dm); /* update the remaining role value */
 add(s, d, Su, Du);
/* Step 6: Process constraint variables for the currently active roles and user-role activation*/
FOR each r-snapshot DO
 IF status = enabled THEN
 decrement (durations(r)); dra = dra - |sessions(r)|;
 ELSE
 dra = dra –1;
 FOR each user assigned to r DO dua = dua –1;

Fig. 3.4. Algorithm ComputeST

Functions used are defined as
follows:

remove(s, S, D), where, s is a
session id, S = {s1, s2, ... , sk}
and D = {d1, d2, ... , dk} is a
procedure that computes (S, D)
such that S = S – {s} and D = D
– {d}, where d corresponds to s.

add(s, d, S, D), where, s is a
session id, d is the duration of
activation related to s, S = {s1, s2,
... , sk} and D = {d1, d2, ... , dk};
after processing, we get S = S ∪
{s} and D = D ∪ {d}.

decrement(D), where D = {d1,
d2, ... , dk} is a set of integers;
after processing we get D =
{d1-1, d2-1, ... , dk-1 }.

sessions (r) returns a set of
sessions {s1, s2, ... , sk }in which
role r is currently activated.

durations(r) returns a set of
active durations {d1, d2, ... ,
dk}that corresponds to the
sessions in sessions(r)

41

In step 6, the remaining active duration of each role is decremented. The total role

duration is also adjusted accordingly. For disabled roles, the duration constraint variables,

for both roles and users assigned to them, are decremented. Decrementing duration

constraint variables takes care of any activation constraint that is valid at the time the

associated role is disabled. The following theorem shows that the algorithm terminates

correctly. Also, the theorem provides the complexity of the algorithm.

Theorem 3.1 (Correctness and complexity of ComputeST): Given EV(t),

CT(t), ST(t-1) and Γ, the algorithm ComputeST:

1. produces ST(t) such that the updated status of r-snapshots and u-snapshots in ST(t)

satisfies all the constraints in Γ and the valid activation constraints for the interval (t,

t+1).

2. terminates, and has complexity O(nR (nU + nP+ nSm)), where nR, nP, nU and nSm

represent the number of roles, permissions, users, and the maximum allowable

number of sessions, respectively, in a system.

Proof of the theorem is presented in the appendix A.

Given a Γ and a request stream RQ, we need to identify events in EV. Intuitively,

each event should be caused by some element of Γ or RQ. When a trigger causes a

prioritized event, the event expressions in the body of the trigger should not be blocked.

Events in EV are formally defined as follows.

Definition 3.3.5 (Caused Events) Given a trace, a Γ and a request sequence RQ,

the set of caused prioritized events at time t, is the least set Caused(t, EV, ST, Γ, RQ)

(in short, written as CSet(t) below) that satisfies the following conditions:

C1. If (I, P, pr:E) and t ∈ Sol(I, P) then pr:E = CSet(t) (for periodicity constraint)

C2. If (pr:E after t) ∈ RQ(t- t) t ≤ t) then (for run-time request)

 pr:E = CSet(t);

C3. If [E1 ,…, En , C1 ,…, Ck → p:E after t] ∈ Γ and the following

 conditions hold then pr:E ∈ CSet(t); (for triggers)

a. 0 ≤ t ≤ t &

b. ∀ Ci, such that (1 ≤ i ≤ k), Ci holds (Ci is C or Ct as shown in Table 4.1 &

c. ∀ Ei, such that (1 ≤ i ≤ n), pr:Ei ∈ EV(t - t) not blocked by EV(t - t)

C4. a. If c = (I, P, X) ∈ Γ and t ∈ Sol(I, P) & (for duration/activation constraints)

i. 0 ≤ t = (t- t1) ≤ Dx &

42

ii. [B → pr:E after t] ∈ Γ or a run-time request pr:E∈ RQ(t- t1),

as a result of which pr:E ∈ CSet(t - t1) not blocked (EV(t - t1)))))

then pr:enable c ∈ CSet(t);

b. If c = (D, X) ∈ Γ where x ∈ {U, R, P}, and if there exists a pair t1, t2 such

that

i. t1 ≤ t2 & t1 = (t- t1) ≤ D &

ii. (∃ [B → pr:enable c after t1] ∈ Γ OR pr:enable c ∈ RQ(t-

t1) as a result of which enable c ∈ CSet(t- t1) and is not blocked

by EV(t- t1))

 then pr:enable c ∈ CSet(t);

Furthermore, in addition to (a) and (b), If X = (Dx, pr:E) ∈ Γ is a duration

constraint such that x ∈ {U, R, P}, and the following condition holds

i. (∃ [B → pr:E after t2] ∈ Γ OR pr:E∈ RQ(t- t2), as a result of

which pr:E ∈ EV(t– t2) and is not blocked by EV(t – t2)

 then pr:enable c ∈ CSet(t) and q:enable c ∈ CSet(t) where q is the priority

specified for c;

Condition C1 implies that all events scheduled via a periodic event are added into

the set Caused(t, EV, ST, Γ, RQ). Condition C2 shows that all the explicit run-time

requests are added into the set Caused(t, EV, ST, Γ, RQ). Similarly, condition C3

implies that all the events scheduled through a trigger are added to Caused(t, EV, ST, Γ,

RQ), provided that the conditions Cis specified in the body of the trigger are satisfied and

each of the events Ei’s occurs at time t- t. Furthermore, it is necessary that events Ei’s

are not blocked by any other concurrent event, as indicated by condition C3(c).

Condition C4 implies that all the events not blocked by valid duration or

activation constraints are added to Caused(t, EV, ST, Γ, RQ). C4(a) defines the condition

that must be satisfied by caused events associated with either a duration or activation

constraint. Note that events restricted by a duration or activation constraint are caused by

either the run-time requests or by the triggers and are not activated by any periodicity

constraints. Furthermore, such events must not be blocked by any concurrent event. These

conditions are ensured by condition C4(a)(ii).

Condition C4(a)(i) ensures that an event is still valid only if the duration Dx

associated with the event has not expired. Similarly, C4(b) implies that all events that are

associated with the duration or activation constraints of the form c = (D, X) are

considered. Note, as the start time of D is not known, semantically we require that c itself

43

be enabled for a duration D. In other words, “enable c” is a caused event for D duration.

Furthermore, “enable c” should not be blocked by any concurrent event at that time. The

condition C4(b)(ii) ensures that these conditions hold. Condition C4(b)(iii) defines those

events which are restricted by the constraint c.

It can be noted that the TCABs and request streams determine changes in system

state at each time instant. Next, we define the system behavior induced by TCABs and

request streams and address the safeness issue. Intuitively, safeness implies that for each

event in EV(t), there is a definite and known cause.

Definition 3.3.6 (Execution Model) A trace (EV, ST,) is an execution model of a

TCAB Γ and a request stream RQ, if for all t ≥ 0, EV (t) = Caused(t, EV, ST, Γ, RQ) .

It is possible that some specifications may yield no execution model, whereas

some ambiguous specifications may admit two or more such models [Ber01a]. For

instance, if an event in EV(t), say enable r, triggers another event which in turn causes

event disable r to occur, the later one is added in EV(t). By the conflict resolution rule,

event disable r blocks enable r. Such a situation is undesirable as the event enable r that

is the cause of event disable r is itself being blocked by the event disable r. However, if

such cases are excluded, the GTRBAC specifications yield exactly one model for all

possible run-time requests. There are simple syntactic conditions that prevent undesirable

behavior as a result of conflicting events. Such syntactic conditions - called safeness – are

introduced next.

3.3.3 Safe Temporal Constraint and Activation based (TCAB)

We use a safeness condition that can be verified in polynomial time and that

guarantees that a given TCAB has one and exactly one execution model. The notion of a

dependency graph is essential to analyze the safeness of the execution model. Each

TCAB Γ can be represented as a directed labeled dependency graph DGR = �N, ED�

where N, a set of nodes, represents the set of all prioritized event expressions pr:E that

occur in the head of a trigger [B→pr:E]∈ Γ; and ED (the set of edges) consists of the

following triples, for all triggers [B → pr:E] ∈ Γ, for all events E’ in the body B, and for

all nodes q:E’ ∈ N,

1. �q:E’, +, pr:E� and

2. �r:Conf(E’), - , pr:E�, for all [r:Conf(E’)] ∈ N such that q r.

44

Each triple (N1, l, N2) represents an edge from node N1 to N2, labeled by l. Given

the initial status of the roles and assignments, safeness of Γ implies that the system's

behavior is unambiguously determined by Γ, and RQ. Accordingly, Γ is safe if its

dependency graph DGR contains no cycles in which some edge is labeled ‘-’ [Ber01a].

Based on this notion of safeness of Γ, we extend the formal results of TRBAC to

GTRBAC, stated as follows:

Theorem 3.2: If a Γ is safe, then for a given RQ and ST(0), there exists exactly

one execution model <EV, ST>.

As the GTRBAC model essentially extends the TRBAC model with a large set of

events, and the safeness of these models is determined with respect to the event

dependencies through the triggers in Γ, the formal proof of this theorem follows directly

from that of the theorem applied to the TRBAC model, as the rule based semantics of the

TRBAC model can be easily extended to capture that of the GTRBAC model by simply

incorporating the new events [Ber01a].

It can be noted that safeness is a sufficient condition for predictable system

behavior. Although it is difficult to find the necessary conditions, even if found, they

offer little practical help, because such syntactic properties fail to recognize that the ill-

formed portions of a program may be harmless because they can never be activated.

Furthermore, checking the existence and uniqueness of a model are, in general, NP-hard

problems [Ber01a]. Accordingly, if Γ is safe then for a given RQ, there exists exactly one

execution model [Ber01a].

Next, we present algorithm SafetyCheck to determine the safety of a given Γ,

as shown in Fig. 3.5. The first part of the algorithm builds the dependency graph

associated with Γ, and the second part checks for cycles with a negative edge. The

correctness of the algorithm can be proven from the results reported in [Ber01a]. If Γ is

found to be unsafe then we need to remove a trigger to ensure that a cycle with a negative

edge does not exist in the dependency graph of Γ.

Algorithm SafetyCheck illustrated in Fig. 3.5 is used for the safeness

verification of a TCAB. The first part of the algorithm builds the dependency graph

associated with Γ, and the second part checks for cycles with a negative edge. The

correctness of the algorithm can be simply proven from the results reported in [Cor90].

We note the following with respect to the labeled dependency graph:

45

• Dependency graph construction takes polynomial time. Such complexity can be

reduced to O(|Γ|.|N|) by representing the graph as an ordered vector, which can be

sorted in time O(|N|.log|N|).

• The strongly connected components of the graph can be determined in O(|N| + |ED|)

time (cf. [Co90]). As the total number of edges is bounded by |E|, the second phase of

the algorithm has a cost of O(|N| + |ED|).

• As each node must occur in some trigger’s head, |N| = |Γ | and |ED| is in O(|Γ |2).

From this, we see that the algorithm’s complexity is in O(|Γ |2). We note that the

number of iterations of the innermost loop of the graph construction phase is bounded by

a constant (i.e., |Prios|) for a fixed set of priorities. Hence, for a given set of priorities,

the cost of the safeness verification is O(|Γ |. log|Γ |).

Algorithm SafetyCheck

Input:: a TCAB Γ
Output: true if Γ is safe, false otherwise
/* construction of the dependency graph */
N := 0; ED:= 0;
FOR all [B → pr:E] ∈ Γ DO
 IF (E = activate r for u) THEN return false;

 N := N ∪ {pr:E};
FOR all [B → pr:E] ∈ Γ DO
 FOR all E’ ∈ B such that ∃ q; q:E’ ∈ N DO
 ED:= ED ∪ {�q:E’, +, pr:E� };
 FOR all r:conf(E’) ∈ N such that q � r DO
 ED:= ED ∪ {�r:conf(E’), - , pr:E�}
/* cycle generation and checking */
SCC :=strongly connected components of �N, ED�
FOR all �N’, ED’� ∈ SCC DO
 FOR all �X, l, Y� ∈ ED’ DO
 IF l = ‘-‘ THEN return false;

return true;

Fig. 3.5. Algorithm SafetyCheck

The examples presented below illustrate the working of algorithm

SafetyCheck.

Example 3.3.2: First, let Γ = {enable r1 → enable r2; enable r2 →

disable r1} and RQ(t) = {enable r1}. Hence, initially, EV(t) = {enable r1}.

Because of event “enable r1” the first trigger fires resulting in EV(t) = {enable r1,

enable r2}. Next, because of event “enable r2” the second trigger fires resulting in

46

EV(t) = {enable r1, enable r2, disable r1}. Here, event “disable r1” blocks

event “enable r1” (assuming the same priority). As event “disable r1” was caused

by event “enable r1” such blocking is undesirable or ambiguous. Algorithm

SafetyCheck detects such unsafe cases by detecting a cycle shown in Fig. 3.6(a).

 (a) (b)

Fig. 3.6. Example dependency graphs

Next, consider Γ = {t1: enable r1 → disable r2; t2:enable r2 → disable

r1} and initial EV(t) = {enable r1, enable r2}. Now, for the firing of the triggers

there are two alternatives:

1. First, the trigger t1 fires. In this case, we get, EV(t) = {enable r1, enable

r2, disable r2}. Assuming equal priorities, once the trigger t1 fires, we get

Nonblocked(EV(t)) = {enable r1, disable r2}. As a result, trigger t2

does not fire.

2. First, the trigger t2 fires. In this case, we get, EV(t) = {enable r1, enable

r2, disable r1}. Assuming equal priorities, after the trigger t2 fires, we get

Nonblocked(EV(t)) = {enable r2, disable r1}. As a result, trigger t1

cannot fire.

Such ambiguous system behavior is captured by the algorithm by indicating the

cycle shown in Fig. 3.6 (b).

3.4 Authentication and Clock Synchronization Issues

An important issue related to access control is the authentication of users. In

practice, authentication is a prerequisite for access control [Jos01b, San96a]. A

comprehensive access control solution requires an authentication mechanism which

ensures that the users are who they claim to be. In this chapter, although we have not

explicitly addressed this issue, whenever we address an activation of a role by a user, we

have implicitly assumed that the user has been properly authenticated. This assumption is

made throughout this dissertation. In practice, several mechanisms can be used for

authenticating users [And01, Sch96].

-
disable r1

enable r2
+

-
disable r1

disable r2
-

47

Another assumption for the enforcement of the temporal constraints that has been

made in this chapter is also the granularity and accuracy of the underlying clock. For the

purpose of modeling, we have assumed that the temporal constraints are specified at the

granularity of the smallest calendar – hours. Ensuring accurate time to support the

GTRBAC system can be a challenging issue. By manipulating the system clock used by

the GTRBAC framework, attacks on the system security may be possible. Existing

techniques to ensure clock accuracy can be used to augment the existing implementation

of the GTRBAC framework to provide secure time for practical applications. For

example, in a networked system, a clock synchronization mechanism such as Network

Time Protocol (NTP) can be used. The NTP provides a moderate amount of protection

with clock voting and authentication of time servers and is dependable enough for many

applications [And01]. In case the GTRBAC system is used in a database application, the

database clock can be used to provide the basic timing support for the GTRBAC system.

When the proposed model is employed in an open internet environment, the issue of how

the users’ time and the system time are synchronized can provide a daunting challenge. In

this dissertation, we assume that such synchronization problem in such distributed

environment has been properly addressed [Lam77].

3.4 Conclusions

In this chapter, we have presented a generalized temporal role based access

control model that can handle a comprehensive set of temporal constraints. The model

allows temporal constraints on role enablings and role activations, as well as triggers to

specify dependencies among GTRBAC events. Various temporal restrictions can be

specified on user-role and role-permission assignments. We have also presented various

time-based semantics of hierarchies and SoD constraints. We have described a notion of

safeness that has been used to generate a safe execution model for a GTRBAC system.

48

4. ROLE HIERARCHIES IN GTRBAC

Many researchers have highlighted the importance and use of role hierarchies in

RBAC models. A properly designed role hierarchy allows the efficient specification and

management of access control policies of a system. When two roles are hierarchically

related, one is called the senior and the other the junior. The senior role inherits all the

permissions assigned to the junior roles. The inheritance of permissions assigned to junior

roles by a senior role, i.e., permission-inheritance, significantly reduces assignment

overhead, as the permissions need only be explicitly assigned to the junior roles. Even

though the notion of role hierarchy has been widely investigated, no earlier work has

addressed the implication of the presence of temporal constraints on role hierarchies.

Sandhu [San98] distinguishes a role hierarchy into two types: usage hierarchy and

activation hierarchy. Sandhu’s usage hierarchy allows only permission-inheritance,

whereas the activation hierarchy allows role-activation semantics as well, allowing a user

assigned to the senior role to activate its junior roles also. In particular, he shows that the

distinction allows capturing dynamic SoD constraints that may exist between

hierarchically related roles. Our analysis further strengthens his arguments and shows

that, in the presence of timing constraints on various entities, the separation of the

permission-inheritance and the role-activation semantics provides a basis for capturing

the various inheritance semantics of a hierarchy.

Moffet et al. [Mof99] have identified the need for three types of hierarchies: isa

hierarchies, activity hierarchies and supervision hierarchies. These hierarchies are needed

to address the needs of control principles in an organization, principles which include

separation of duty, decentralization and supervision and review [Mof98]. They show that

combining permission-inheritance and role-activation within a hierarchy can its ability to

achieve organizational control needs. Clearly, hierarchies that capture temporal

characteristics of roles presented in this chapter provide a basis for limiting such

complete inheritance in a hierarchy, making it possible to support separation of duty and

restricted inheritance. Furthermore, Moffet et. al. [Mof99] point out that the commercial

organizations’ demand for a dynamic access control model that can support a dynamic

49

authorization state as well as a dynamic propagation of access rights has largely been

neglected. The GTRBAC model’s temporal framework and the trigger mechanism along

with the temporal hierarchies presented in this chapter provide a strong basis for such

dynamic features in an access control model.

In this chapter, we formally define the various types of temporal hierarchies and

then analyze the effects of various temporal constraints on them. We show that the

different types of hierarchies need to be further divided into subtypes in order to capture

the complete inheritance semantics introduced due to different temporal properties

associated with the roles of the hierarchies. We then present an analysis of hybrid

hierarchies and inference rules for derived hierarchical relations among roles. Finally we

present the transformation rule for hybrid hierarchies when roles are added, deleted, or

modified in an existing hierarchy.

4.1 Temporal Role Hierarchy

Here, we take a slightly different approach than in [San98]. We explicitly define

the hierarchy that allows only permissions to be inherited as an inheritance-only

hierarchy or I-hierarchy (same as the usage hierarchy in [San98]) and the one that allows

only the activation-inheritance semantics as activation-only hierarchy or A-hierarchy. We

further refer to a hierarchy combining both the inheritance and activation semantics as a

general inheritance or Inheritance-Activation hierarchy (IA-hierarchy for short). Finally,

we extend the notion of hierarchical relations with respect to a time instant t in order to

capture the fact that such semantics are time dependent. We use the predicate status

expressions introduced in the previous chapter (refer to Table 3.3). In order to define the

semantics of the hierarchies, we first introduce the following axioms to capture the key

relationships among various status predicates:

Axioms: For all r∈ Roles, u∈ Users, p∈ Permissions, s∈ Sessions,

and time instant t ≥ 0, the following implications hold:

1. assigned(p, r, t)→ canbe_acquired(p, r, t)

2. assigned(u, r, t) → can_activate (u, r, t)

3. can_activate (u, r, t) ∧ canbe_acquired(p, r, t) → can_acquire (u, p, t)

4. active(u, r, s, t) ∧ canbe_acquired(p, r, t) → acquires(u, p, s, t)

50

Axiom (1) states that if a permission is assigned to a role, then it “can be

acquired” through that role. Axiom (2) states that all users assigned to a role can activate

that role. Axiom (3) states that if a user u can activate a role r, then all the permissions

that can be acquired through r can be acquired by u. Thus, for the simple case where user

u and permission p are assigned to r, the axioms indicate that u can acquire p. Similarly,

axiom (4) states that if there is a session in which a user u has activated a role r, then u

acquires all the permissions that can be acquired through role r. We note that axioms (1)

and (2) indicate that permission-acquisition and role-activation semantics are governed by

explicit user-role and role permission assignments.

4.1.1 Unrestricted Hierarchies

Semantically, the purpose of a role hierarchy is to extend the possibility of

permission-acquisition and role-activation beyond the explicit assignments, as we shall

show next. Below, we define the formal semantics of the time-dependent role hierarchies.

The following definitions do not consider the enabling times of the hierarchically related

roles, and hence are termed unrestricted hierarchies. The restricted forms will be

introduced in later sections.

Definition 4.1.1 (Unrestricted inheritance-only hierarchy or I-hierarchy): Let x

and y be roles such that (x≥ty), that is, x has an inheritance-only relation over y at time t.

Then the following holds:

∀ p, (x≥ty) ∧ canbe_acquired(p, y, t)→ canbe_acquired(p, x, t) (c1)

x is said to be a senior role of y, and conversely y is said to be a junior role of x, with

respect to the inheritance-only hierarchy.

The condition characterizing the inheritance-only relation provides a new way of

acquiring a permission through a role by using its relation with other roles. Its semantics

indicates that a permission can be acquired through a role by direct inheritance of all the

permissions of junior roles. Thus if (x≥ty), the permissions that can be acquired through x

include all the permissions assigned to x (by axiom (1)) and all the permissions that can

be acquired through role y (by c1), which in turn include all the permissions assigned to y

as well as all the permissions that can be acquired through y’s juniors (by axiom (1) and

condition c1). This shows that the I-hierarchy is transitive. Note that the axioms and

51

condition c1 do not allow u to activate y. Hence, the hierarchical relation ≥t is restricted to

the permission-inheritance semantics only.

Definition 4.1.2 (Activation hierarchy or A-hierarchy): Let x and y be roles such

that (x ty), that is, x has an activation-only relation over y at time t. Then the following

holds:

∀ u, (x ty) ∧ can_activate (u, x, t) → can_activate (u, y, t) (c2)

x is said to be a senior role of y, and conversely y is said to be a junior role of x, with

respect to the activation inheritance.

Here, the activation-only semantics introduces a new “can activate” semantics

between a user and a role . Axiom (2) states that a user is able to activate a role through

explicit assignment, whereas the A-relation allows such activation through relations

between roles, without a need for explicit user-role assignment. Condition (c2) states that

if user u can activate role x, and x has an A-relation over y, then s/he can activate role y

too, even if u is not explicitly assigned to y. However, note that an explicit assignment of

u to y, while possible, would be redundant here. The set of axioms and condition c2

together allow a user u assigned to role x to activate all of y’s juniors. However, as

condition c1 does not apply to an A-hierarchy, if (x ty), then u cannot acquire y’s

permissions just by activating x. Note that the can_activate (u, x, t) predicate makes

A-hierarchy transitive the same way the canbe_aquired (p, y, t) makes an I-hierarchy

so.

Definition 4.1.3 (General inheritance hierarchy or IA-hierarchy): Let x and y be

roles such that (x ty), that is, x has a general inheritance relation over y at time t. Then

the following holds

(x ty) → (x≥ty) ∧ (x ty)

The IA-hierarchy is the most common form of hierarchy and contains both

permission-inheritance and activation-inheritance aspects of a hierarchy. In particular, a

user assigned to a role can acquire the permissions of its junior roles without activating

them. At the same time, s/he may activate the junior roles even though he is not explicitly

assigned to them. Note that the definitions do not account for the enabling times of the

roles that are hierarchically related.

52

On a given set of roles, there may be various inheritance relations. Therefore, we

require that the following consistency property be satisfied in a role hierarchy:

Property (Consistency of hierarchies): Let <f> ∈ {≥t, t, t} and <f’> ∈ {≥t, t,
t}/{<f>}. Let x and y be distinct roles such that x<f>y; then the condition ¬ (y<f’>x)

must hold.

The main purpose of a hierarchical relation is the acquisition of permission of

junior roles by a senior role using of any of the three hierarchy types. The consistency

property ensures that a senior-junior relation between two roles in one type of hierarchy is

not reversed in another type of hierarchy.

�✂✁☎✄ ✆ ✝✟✞✡✠ ☛
☞✍✌✏✎✡✑ ✌ ☛✒☛✓✠

✔ ✠ ✁ ✎ ✠ ✞✓✕✖✕✖☛✡✠ ✔ ✠ ✁ ✎ ✠ ✞✓✕✗✕✖☛✡✠

(a) IA Hierarchy (c) I Hierarchy

✔ ✠ ✁ ✎ ✠ ✞✓✕✘✕✖☛✡✠

τ1
τ2

�✂✁☎✄ ✆ ✝✙✞✡✠ ☛
☞✍✌✏✎✓✑ ✌ ☛✒☛✡✠

�✂✁✏✄ ✆ ✝✙✞✡✠ ☛
☞✍✌✚✎✡✑ ✌ ☛✒☛✡✠

(i) (ii)

Combination of roles that
can be activated ✛✜✣✢ �✂✁☎✄ ✆ ✝✙✞✓✠ ☛ ☞✍✌✚✎✡✑ ✌ ☛✒☛✡✠ ✤ ✥

Combination of roles that can be
activated

✜ ✢ �✂✁☎✄ ✆ ✝✟✞✡✠ ☛ ☞✍✌✏✎✡✑ ✌ ☛✒☛✡✠ ✤✧✦
✢ �✂✁✏✄ ✆ ✝✟✞✡✠ ☛ ☞✍✌✏✎✡✑ ✌ ☛☎☛✡✠★✦ ✔ ✠ ✁ ✎ ✠ ✞✓✕✗✕✖☛✓✠ ✤✩✦
✢ ✔ ✠ ✁ ✎ ✠ ✞✓✕✗✕✖☛✓✠ ✤✪✥

(d) Enabling intervals of
�✂✁✏✄ ✆ ✝✟✞✡✠ ☛ ☞✍✌✏✎✡✑ ✌ ☛☎☛✡✠

and
✔ ✠ ✁ ✎ ✠ ✞✓✕✗✕✫☛✡✠

roles

u
✞☎✬✭✬ ✑ ✎✡✌ ☛☎✮✖✆ ✁

✔ ✠ ✁ ✎ ✠ ✞✓✕✗✕✖☛✡✠

�✂✁☎✄ ✆ ✝✙✞✓✠ ☛
☞✍✌✏✎✡✑ ✌ ☛✒☛✡✠

(b) A Hierarchy

u
✞☎✬✚✬ ✑ ✎✓✌ ☛✒✮✖✆ ✁

u
✞☎✬✭✬ ✑ ✎✓✌ ☛✒✮✖✆ ✁

IA-Hierarchy

A-Hierarchy

I-Hierarchy

LEGEND

Fig. 4.1. Hierarchy examples

Examples of the three hierarchies are given in Fig. 4.1, where the Software

Engineer role is senior to the Programmer role. In Fig. 4.1(a) and 4.1(b), the

combination of roles that a user u, assigned only to the Software Engineer role, can

activate is {(Software Engineer), (Software Engineer, Programmer)

53

(Programmer)}. However, the permissions associated with the same combinations in the

two cases are not the same. For example, if u activates the Software Engineer role, the

permissions acquired by u under an IA-hierarchy (see Fig. 4.1(a)) is maximal, that is, both

the roles’ permissions are acquired. On the other hand, only the permissions assigned to

the Software Engineer role are acquired in the case of an A-hierarchy (see Fig. 4.1(b)).

Furthermore, the activation of the combination (Software Engineer, Programmer) is

redundant in an IA-hierarchy in terms of what permissions are acquired, while it is

significant in an A-hierarchy.

Under the I-hierarchy reported in Fig. 4.1(c), the user can activate only the

Software Engineer role (unless of course, the user is also explicitly assigned to the

Programmer role). However, he acquires maximal permissions, that is, permissions

assigned to both roles.

4.1.2 Enabling Time Restricted Hierarchies

A hierarchy in the presence of various temporal constraints becomes dynamic as

permissions and users can be assigned or de-assigned to any junior roles at times when a

senior role is enabled. Furthermore, there are activation constraints that need to be

accounted for when either of the hierarchy types is considered. Here, we consider the

effect of the presence of temporal assignment constraints on both inheritance and

activation hierarchies.

Inheritance-only hierarchy (I-hierarchy)

As we can see, in an I-hierarchy, the permissions of a junior role are implicitly

assigned to the senior role itself. However, in the presence of temporal constraints, we

need to be able to capture various dynamic aspects of the hierarchy.

Let us revisit the I-hierarchy of Fig. 4.1(c). Fig. 4.1(d) shows two possible

intervals associated with the enabling times of the two roles. In Fig. 4.1(d)-(i), we see that

the enabling interval of the Software Engineer role is a subset of that of the

Programmer role. In this case, the I-hierarchy has the semantics similar to the non-

temporal RBAC; that is, whenever u activates the Software Engineer role s/he also

acquires the permissions of the Programmer role, because at that time the Programmer

role is also enabled. Thus, in interval τ1, u cannot acquire any permissions of the

Programmer role even if this role is enabled, as the Software Engineer role is disabled

54

at that time. It is also possible that there is a temporal interval in which the Software

Engineer role is enabled but the Programmer role is not, as indicated by interval τ2 in

Fig. 4.1(d)-(ii). In such a case, we can see that the following two approaches can be used

to capture the inheritance semantics:

1. Weakly restricted approach (Iw): The permissions of the Programmer role are

inherited by the Software Engineer role in interval τ2,

2. Strongly restricted approach (Is): The permissions of the Programmer role are not

inherited by the Software Engineer role in interval τ2.

Under the weakly restricted approach, every permission that can be acquired

through a junior role can also be acquired through its senior roles under an I-hierarchy,

irrespective of whether the junior role is enabled or disabled. Under the strongly

restricted approach, each permission that can be acquired through a junior role can also

be acquired through its senior roles only in intervals where the junior role is also enabled.

Table 4.1 summarizes the inheritance semantics of an I-hierarchy in the presence

of temporal constraints. Iw refers to the I-hierarchy that adopts the weakly restricted

approach above, whereas Is refers to adopting the strongly restricted approach. Note that

the two types of hierarchy act differently only in intervals where the senior role is enabled

while the junior role is disabled.

Activation-only hierarchy (A-hierarchy)

We see that when we have an A-hierarchy, it is natural to just use the second

approach given above. That is, there is no activation-inheritance allowed in interval τ2.

This is because of an explicit need for activating a junior role by a user assigned to its

senior role in order to acquire the junior role’s permissions, and in τ2, the junior role

cannot be activated. If we also try to enforce the first possibility mentioned above then it

will conflict with the semantics of an enabled role, as only enabled roles can be activated.

However, as an activation hierarchy needs a user who is assigned to the senior

role to activate a junior role in order to acquire the junior role’s permissions, the issue of

the propagation of temporal user-role assignment down the A-hierarchy needs to be

considered. For example, consider the roles Software Engineer and Programmer

forming the A-hierarchy in Fig. 4.1(b). Consider again the same enabled times of the two

roles as in Fig. 4.1(d). We need to determine whether the user is to be allowed to activate

the junior role at the time when the senior role he is assigned to is not enabled, as

55

indicated by the interval τ1 in Fig. 4.1(d)-(i). For such a case, we can again delineate the

following two approaches:

1. Weakly restricted approach (Aw): The user u is allowed to activate Programmer role in

the A-hierarchy at any time the Programmer role is enabled.

2. Strongly restricted approach (As): The user u is allowed to activate the Programmer

role only if both the Software Engineer and Programmer roles are enabled (note that

he does not need to activate the Software Engineer role).

In both approaches, when a user tries to activate a role in an activation hierarchy,

additional checks need to be carried out. The first check is to determine if the user is

assigned to any role, up the hierarchy, starting from the role it is attempting to activate.

The second check is required to determine if the senior role that a user is assigned to is

also enabled. If the senior role is disabled, we then need to deactivate all activations of

junior roles by the user assigned to the senior role.

In Table 4.1, Aw refers to the activation hierarchy that adopts the weakly restricted

approach, whereas As refers to that adopting the strongly restricted approach. We note

that the two types of hierarchy act differently only in intervals where the senior role is

disabled whereas the junior role is enabled.

Table 4.1.

 Inheritance semantics of enabling time restricted hierarchy

r1 is senior of r2→

↓Hierarchy Type

τ
r1 disabled, r2 enabled

τ
r1 enabled’r2 disabled

Iw No inheritance in τ Permission-inheritance in τ (by activating r1) I-hierarchy
Is No inheritance in τ No inheritance in τ

Aw
Activation-inheritance in τ

(by activating r2)
No inheritance in τ A-hierarchy

As No inheritance in τ No inheritance in τ

IAw
Activation-inheritance in τ

(by activating r2)
Permission-inheritance in τ (by activating r1) IA-hierarchy

IAs No inheritance in τ No inheritance in τ

General inheritance hierarchy (IA-hierarchy)

As general inheritance embodies both the permission inheritance and role-

activation semantics of a role hierarchy, it is simply a combination of the two. In other

words, in interval τ1, the general hierarchy can benefit from the use of role-activation

semantics and activate the junior role using the weakly restricted semantics. Similarly, in

56

interval τ2 , the inheritance-only semantics can be used and inheritance through the senior

role using weakly restricted semantics can be utilized. This is shown in Table 4.1.

We now formally define the weakly restricted and strongly restricted forms of

each hierarchy type discussed in the previous section.

Definition 4.1.4 (Weakly restricted inheritance-only hierarchy or Iw-hierarchy):

Let x and y be roles such that (x ≥w,t y); that is, x has a weakly restricted inheritance-only

relation over y at time t. Then the following holds:

∀ p, (x ≥w,t y) ∧ enabled(x, t) ∧ canbe_acquired(p, y, t) →

canbe_acquired(p, x, t)

We note that for a x ≥u,t y relation, only role x needs to be enabled at time t. Role y

may or may not be enabled at that time. Similarly, for the weakly restricted A-hierarchy,

x w,ty, only role y needs to be enabled as shown in the following definition.

Definition 4.1.5 (Weakly restricted activation hierarchy or Aw-hierarchy): Let x

and y be roles such that (x w,t y); that is, x has a weakly restricted activation-only

relation over y at time t. Then the following holds

∀ p, (x w,t y) ∧ enabled (y, t) ∧ can_activate(u, x, t) → can_activate(u, y, t)

Definition 4.1.6 (Weakly restricted general inheritance hierarchy or IAw-

hierarchy): Let x and y be roles such that (x w,t y); that is, x has a weakly restricted

general inheritance relation over y at time t. Then the following holds:

∀ p, (x w,t y) → (x ≥w,t y) ∧ (x w,t y)

The strongly restricted forms of the hierarchies allow inheritance semantics to be

valid only when both the hierarchically related roles are enabled. The following

definitions formalize these hierarchies.

Definition 4.1.7 (Strongly restricted inheritance-only hierarchy or Is-hierarchy):

Let x and y be roles such that (x ≥s,t y); that is, x has a strongly restricted inheritance-

only relation over y at time t. Then the following holds:

∀ p, (x ≥s,t y) ∧ enabled(x, t) ∧ enabled(y, t) ∧ can_be_acquired(p, y, t) →

can_be_acquired(p, x, t)

57

Definition 4.1.8 (Strongly restricted activation hierarchy or As -hierarchy): Let x

and y be roles such that (x s,t y); that is, x has a strongly restricted activation-only

relation over y at time t. Then the following holds:

∀ p, (x s,t y) ∧ enabled(x, t) ∧ enabled(y, t) ∧ can_activate(u, x, t) →

can_activate(u, y, t)

Definition 4.1.9 (Strongly restricted general inheritance hierarchy or IAs-

hierarchy): Let x and y be roles such that (x s,t y); that is, x has a strongly restricted

general inheritance relation over y at time t. Then the following holds:

(x s,t y) → (x ≥s,t y) ∧ (x s,t y)

The weakly restricted and strongly restricted forms of hierarchies deal with the

cases where at least one of the two roles is enabled. The hierarchies defined in section

4.1.1 do not consider the enabling times of the related roles. In this sense, the weakly

restricted and strongly restricted hierarchies are specializations of the unrestricted

hierarchy types with an additional requirement that one or both roles be enabled for the

inheritance semantics to be valid.

Fig. 4.2. Inheritance through disabled roles

It is important to note that if the inheritance between two roles is defined just by

using one of the unrestricted types, the inheritance semantics applies even when the roles

are not enabled. The benefit of such a case is in the propagation of the inheritance

semantics along the hierarchy, as illustrated in Fig. 4.2. Assume that the hierarchy is an

unrestricted A-hierarchy, and consider an interval τ in which only roles r1 and r4 are

enabled. We can see that Definition 4.1.2 applies to each pair and the result is that any

user assigned to r1 can also activate r4. Now suppose it is a weakly restricted A-hierarchy.

Enabled in τ

Enabled in τ

Disabled in τ

Disabled in τ

r1

r2

r3

r4

58

As r2 and r3 are both disabled, the activation-inheritance semantics does not apply

between them. And hence, it blocks the activation-inheritance semantics between r1 and

r4 also. Thus, no user assigned to r1 will be able to activate role r4.

We illustrate with the examples reported in Fig. 4.2 the practical uses of the

various kinds of restricted hierarchies.

Example 4.1.1: Consider the Iw-hierarchy in Fig. 4.3(a). Note, the

SeniorSecurityAdmin role is enabled only in interval (8pm, 11pm). Neither of the

junior roles is enabled in the entire interval (8pm, 11pm). But the Iw relation allows a

user who activates the SeniorSecurityAdmin role to acquire all the permissions of the

junior roles too. This may be desirable if the SeniorSecurityAdmin role is designed to

perform special security operations for checking and maintenance. In such a case, it is

reasonable to think that the user assigned to the SeniorSecurityAdmin role will need

all the administrative privileges of the junior roles. The temporal restrictions on

SecurityAdmin1 and SecurityAdmin2 restrict the users assigned to them in carrying

out corresponding system administration activities only in the specified intervals.

However, here, the user assigned to SeniorSecurityAdmin cannot assume the role of

the junior roles SecurityAdmin1 and SecurityAdmin2. To remove this limitation, we

can use the IAw-hierarchy instead.

�✂✁☎✄☎�✂✆✞✝✠✟ ✆☛✡
☞ ✌☎✁✞✍✏✎ ✌✞✑☛✍✓✒

✔✂✕ ✖✘✗✙✟ �✂✆✞✝✠✟ ✆☛✡
☞ ✌✞✑☎✍✚✎ ✌✞✁☛✍✚✒

✛✜✁✞✡ ✟ ✢✣✕ ✍✥✤✞�✂✆☎✝✦✟ ✆✘✡
✧ ☞ ★✘✑✙✍✏✎ ✩✞✑☛✍✓✒✫✪☛☞ ✬☛✁☎✍✏✎✫✭✯✮☛✁☛✍✚✒ ✰

Ir Ir

✱✲✤✞✝✙✳☛✡ ✕ ✟ ✄✠✴✶✵☎✍✷✕ ✸✜✭
☞ ✌✞✁☎✍✏✎ ✌✞✑☛✍✚✒

✱✣✤✘✸☎✕ ✆✘✡ ✴✣✹☎✤☎✝✙✳☛✡ ✕ ✟ ✄✦✴✂✵☛✍✥✕ ✸
✧✺☞ ✻✞✑✙✍✏✎✫✭✞✭✯✑☎✍✚✒ ✰

✱✣✤☛✝✙✳☎✡ ✕ ✟ ✄✦✴✂✵✞✍✏✕ ✸✯✼
☞ ✽☛✁✞✍✚✎ ✽☛✑☎✍✏✒

Iu

�✾✁☎✄☛�✾✆☛✝✦✟ ✆✞✡
☞ ✌☛✁✞✍✚✎ ✌☛✑☎✍✚✒

✔✂✕ ✖✞✗✙✟ �✾✆✞✝✠✟ ✆✞✡
☞ ✌✞✑☎✍✚✎ ✌☛✁☛✍✏✒

Au Au

✿❀✤✘✸☎✤☛✡ ✁✞❁ �✾✆☛✝✦✟ ✆✞✡
✧ ✰

�✾✁☎✄☛�✾✆☛✝✦✟ ✆✘✡
☞ ✌☛✁☛✍✚✎ ✌✞✑☎✍✏✒

✔✶✕ ✖☛✗☎✟ �✾✆☛✝✦✟ ✆✞✡
☞ ✌✘✑☎✍✚✎ ✌✞✁☎✍✏✒

A r Ar

✱✾✳☛✑☛✤☛✡ ❂☎✕ ✹✙✆✞✡ �✂✆☛✝✠✟ ✆✞✡
✧ ☞ ✭✯✮☛✁☎✍✏✎✫✭✦✼✘✸✙✆✞✆✞✸☎✒ ✪☛☞ ✬☛✁☎✍✏✎ ✌✞✁☛✍✚✒ ✰

(a)

(c) (d)

(b)

Iu

Fig. 4.3. Examples of hierarchy types

59

The hierarchy in Fig. 4.3(b), on the other hand, is of type Is. The senior role is the

PartTimeDoctor role, which has two intervals in which it can be enabled, (3pm, 6pm)

and (7am, 10am). If a user activates the PartTimeDoctor role in the first interval,

according to the Is relation, he essentially gets all the privileges of only the DayDoctor

role, as the NightDoctor role is disabled at that time. Now, consider the second

interval. We see that it overlaps with the enabling times of the two junior roles. Hence,

if the user activates the PartTimeDoctor role in the second interval, he acquires the

privileges of only the NightDoctor role in the sub-interval (7am-9am) and that of only

the DayDoctor role in the interval (9am, 10am). Thus, we see that the two different

semantics of an inheritance hierarchy can be used to achieve different needs. Again, a

part time doctor cannot work as a DayDoctor or a NightDoctor, although, he can

acquire the permissions assigned to them. If a user is also to be allowed to use the

junior roles, we can use IAs-hierarchy instead.

Now, consider Fig. 4.3(c). Note that in this case, there is no interval in which the

GeneralDoctor role can be enabled. However, since the activation hierarchy is of type

Aw, any user assigned to the GeneralDoctor role can activate either of the junior roles

when they are enabled. In effect, any one assigned to the GeneralDoctor role can

activate both the DayDoctor and the NightDoctor roles whenever they are enabled.

Fig. 4.3(d) illustrates the use of an activation hierarchy of type As. Here, a doctor

supervisor can assume the SupervisorDoctor role in intervals (10am, 12noon) and (7am,

9am). In the first interval, the supervisor will be able to acquire all the privileges of the

DayDoctor role by activating it, and in the second interval, he will be able to acquire all

the privileges of the NightDoctor role by activating it along with the SupervisorDoctor

role. The SupervisorDoctor role may simply contain some extra privileges that are

required for the supervision task during day and night.

Activation Constraints and Enabling Time Restricted Role Hierarchies

Each individual role in a hierarchy may have its own activation constraints. These

constraints provide a way of limiting resource use by limiting access to resources. In

either of the inheritance or activation hierarchies, the question of whether such activation

constraints have any effect on the permission-inheritance becomes an issue. Next, we

consider a hierarchy in the presence of cardinality constraints and then generalize the

discussion to the other activation constraints.

60

Assume that the Programmer role has a permission set, say P, associated with a

licensed software package. Suppose that there are five user licenses for the package

indicating that only five users can concurrently execute any program of the package. Such

a constraint could be directly expressed as a cardinality constraint on the Programmer

role. Software Engineer, being senior to Programmer, can inherit P. However, at any

time the number of concurrent executions of any particular program by users assigned to

the Software Engineer role and Programmer role needs to be restricted to five. If we

adopt an I or IA- hierarchy, we observe that correctly enforcing such a constraint is not

straightforward:

• As the cardinality constraint is applied on the Programmer role, it cannot capture the

use of the permission set P by the Software Engineer role. Hence, there may be five

concurrent activations of the Programmer role and some activations of the Software

Engineer role at any time, allowing more than five users to have access to the

programs. In such a situation extra measures need to be taken to enforce the

cardinality constraint.

• An alternative solution may be to develop a constraint expression on the combination

of roles, such as the one that says “the number of concurrent activations of Software

Engineer and Programmer roles should be at most five”. However, this introduces

other problems because of the fact that P could be only a subset of the permission set

associated with the Software Engineer role. In such a case, the constraint will

enforce the same cardinality constraint on all the permissions assigned to the

Software Engineer role and not only to P. For example, six concurrent activations

of the Software Engineer role will not be permitted and therefore permissions other

than P assigned to it cannot be used, which may not be what we want.

We note that the cardinality constraint on a role is aimed at controlling the

concurrent use of permissions and, hence, we say that the cardinality constraint is

permission-oriented.

Now suppose that the role hierarchy is an A-hierarchy. As users need to explicitly

activate junior roles in order to acquire its permissions, the above problems do not arise.

Hence, in the example, if we use the activation hierarchy rather than the inheritance

hierarchy, the intended cardinality control on the use of P is easily enforced. Furthermore,

if there is another role Programmer2 that is also a junior to the Software Engineer role

and that has a permission set P2 and cardinality constraint (permission-oriented as in

Programmer) of n, the simple overall activation hierarchy is an effective solution.

61

As another example, suppose we want at the most five nurses and three doctors on

active duty at a time, and we create two roles, Doctor and Nurse, such that Doctor is

senior to Nurse. Here, the cardinality constraints are user-oriented rather than being

permission-oriented in that, by imposing the cardinality constraint of three on the Doctor

role and five on the Nurse role, we want to restrict scheduling at the most three doctors

and five nurses at a time. We can assume that there is no need to control the permission

distribution associated with the Doctor and Nurse roles, as in the previous case.

Now assume that we use an A-hierarchy. This means, when there are three doctors

and five nurses in active duty, the doctors do not have permissions that are associated

with the Nurse role, as they cannot activate the Nurse role. If we want each doctor to

also be able to use permissions associated with the Nurse role every time s/he is active,

by making her/him activate both the roles, then only two nurses will be able to activate

the Nurse role. This is not what we intend to enforce. However, if we adopt an I-

hierarchy or an IA-hierarchy, the problem does not arise, because, the permissions

associated with the Nurse role are implicitly assigned to the Doctor role too. There is no

need to explicitly enable the Nurse role by a user assigned to the Doctor role.

Note that an I-hierarchy or an IA-hierarchy can capture any activation constraint

on roles when the cardinality control implies the control on the number of users. An A-

hierarchy, on the other hand, captures any activation constraint on roles when the

activation control implies control on the distribution of permissions.

Similar to the cases in cardinality constraint, an I-hierarchy or an IA-hierarchy is

appropriate when other activation constraints imply a user-oriented control, whereas an

A-hierarchy is appropriate when the activation constraints imply a permission-oriented

control. Furthermore, the prevalent concept of a role as a “set of permissions” implies that

the permission-oriented activation control is a phenomenon that is closer to the RBAC

concepts than the user-oriented activation control.

Periodicity and Duration Constraint Expression

A hierarchical relation between two roles is essentially a constraint on them.

Hence, the GTRBAC model’s constraint enabling/disabling expression can be used to

enable or disable a hierarchical relation. Thus, if h is a hierarchical relation (rs f r), its

enabling/disabling can be done by the event “enable/disable h”. This allows

administrators to dynamically change the hierarchical relationships on a set of roles

through predefined periodicity constraints, run-time requests, and triggers.

62

For specifying the periodicity constraints on a hierarchy, we simply use the

GTRBAC model’s periodicity expression framework. Thus, we use (I, P,

enable/disable h) to mean that the enabling or disabling of hierarchical relation h is

constrained by the interval expression (I, P); i.e., for all t ∈ Sol(I, P), h is

enabled/disabled, where Sol(I, P) is the set of valid time instants denoted by (I, P).

Similarly, we use the constraint expression cd = (Dh, enable/disable h) to

define the duration constraint on a hierarchy h. Dh indicates how long the hierarchical

relation h may hold. In other words, if Dh = tend - tstart , where tstart is the time at which h

becomes valid, then for all t ∈ (tend, tstart), the relation h holds. Note that tstart is not

known in advance and is therefore determined by the firing of the event

enable/disable h by a trigger or a run-time request. For example, suppose we have

the following trigger and a duration constraint on a hierarchical relation:

enable r → enable h after 10 min

(1 Hour, enable h)

Here, only 10 minutes after role r is enabled will role rs become the senior of r.

Furthermore, the duration constraint allows rs to remain senior of r for only 1 hour.

We also note that the duration constraint can also be of forms (I, P, Dh,

enable/disable h) and (D, Dh, enable/disable h). Constraint c = (I, P, Dh,

enable/disable h) implies that the enabling/disabling of h can be done for duration

Dh only within the intervals defined by (I, P). Now, suppose that constraint (c) above is

replaced by ([Mondays, Fridays], Dh, enable/disable h). In that case, if the trigger tr

is fired, then, on the days other than Mondays and Fridays, role rs is not the senior of r.

But on Mondays and Fridays, the firing of tr makes rs the senior of r for 1 hour.

If the duration constraint (c) is (D, Dh, enable/disable h), it needs to be first

enabled by a constraint enabling expression “enable c”. If tr fires after constraint (c)

has been enabled, then the hierarchical relation is enabled and rs becomes the senior of r.

Compared to this, constraint cd = (Dh, enable/disable h) indicates that the duration

constraint cd is enabled at all times.

A practical use of such a dynamically changing hierarchical relation is in the case

where a senior (acting as a supervisor) is allowed to inherit the read-only permissions of

its juniors. For example, a particular end of the week period can be specified when the

supervisor can read all his juniors’ documents, by enabling the senior-junior hierarchical

relations. This will allow her/him to carry out a progress review of the project as well as

the weekly progress of each individual team member that he is supervising. Moffet et. al.

63

[Mof99] have identified such a supervision-review capability as an important

organizational control principle.

4.2 Uniquely Activable Set (UAS) of Role Sets

In a role hierarchy containing multiple hierarchy types, referred to as a hybrid

hierarchy, a user may be able to activate different sets of junior roles in a session. Sets of

roles that can be activated or permissions that can be acquired by a user at a particular

time indicate the overall access capabilities of the user. From the perspective of the

principle of the least privilege, it may be necessary to ensure that such activable sets of

roles do not result in giving a user unnecessary access capabilities. Determining such sets

can become very complex in a hybrid hierarchy. Furthermore, we may want to know what

indirect relations may exist between roles that are not directly related so that when

modifications are made to the hierarchy, original relations are not violated. For example,

consider the relatively simple hybrid hierarchy of Fig. 4.4. Here, determining sets of roles

that can be activated in a single session by a user assigned only to role, say r3, is not

straightforward. Similarly, when we delete a role, say s1, we need to make sure that

desirable relations between r3 and t1, r3 and s2 or r3 and x1 are retained.

r 1

r 2

r 3

t1 s 2

s 3

s 1

t1

t2

x 1

x 2

t0

Fig. 4.4 An example hybrid hierarchy

A flexible model, such as GTRBAC, needs formal tools to analyze hierarchies in

order to determine such activation and permission acquisition capabilities of users who

are assigned to the roles in a hierarchy. The model also needs to identify how roles are

related to each other indirectly through the permission-inheritance and role-activation

semantics in the presence of different hierarchical relations between roles. Such tools are

64

very essential for an efficient security administration and management function. In this

section, we present an extensive analysis of hybrid temporal role hierarchies. The results

provide a formal basis for developing support tools for analyzing hybrid temporal

hierarchies in GTRBAC.

In this section, we present the following:

• We define the notion of the uniquely activable set of a hierarchy that can be used by

security administrators for determining the access capabilities that a user can obtain

from a role hierarchy in a single session. We also show formally how the set can be

determined in a hybrid temporal role hierarchy.

• We introduce a set of inference rules that allows inferring the hierarchical

relationships between pairs of roles that are not directly related and show that the

inference rule set is sound and complete.

• We develop a set of hierarchy transformation algorithms to assist in administering

role hierarchies when the roles are added, deleted or modified.

We introduce the notion of a uniquely activable set (UAS) and present formal

results for characterizing it for a hierarchy. The UAS associated with a hierarchy is

essentially the set of role sets that can be activated by a user assigned to a role of the

hierarchy. In a hierarchy that allows the coexistence of the multiple hierarchy types, the

permission-inheritance and role-activation semantics can be complex, thus making

administration and management of large hierarchies difficult. As UAS gives the role

combinations that can be activated by a user in a single session, it helps in determining

the granularity of permission sets that can be acquired by users through a role in a

hierarchy. Thus, UAS is mainly relevant from the perspective of the principle of the least

privilege. Here, we first determine the UAS characteristics of a monotype hierarchy with

only one type of hierarchical relation over the roles, followed by that of a hybrid linear

path and then formalize the results for the more general role hierarchy. We then introduce

the notion of acquisition equivalence to characterize equivalent hierarchies in order to

address the usefulness of a hybrid hierarchy. Here onwards we will only use the

unrestricted forms of hierarchies. The results can be extended easily to restricted forms

by considering additional requirements associated with them. Furthermore, although we

consider unrestricted forms of temporal hierarchies, the results directly apply to the non-

temporal case with the same three different hierarchy types, as non-temporal cases are

simply the special cases of temporal hierarchies in which the hierarchical relations apply

at all times.

65

4.2.1 Computing UAS of a Hierarchy

We represent by UAS(H, t) the UAS associated with a user assigned to the senior-

most role of a hierarchy H at time instant t. For a given role set X = {x1, x2, , xn} and a

set of hierarchy relations [f] ⊆ {≥t, t, t}, we represent a general hierarchy H over X as

(X, [f]). If [f] = {<f>} is a singleton set with hierarchy relation <f>, then we call H a

monotype hierarchy and write (X, <f>), else we call H a hybrid hierarchy. Furthermore, H

is a linear path over X if (X, [f]) = {xi <fi, j>xj | i = 1 to n-1, j = i+1, and <fi,j> ∈ [f]}, and

we represent it as LH (i.e., LH = H). LH may be either monotype, represented as L = (X,

<f>), or a hybrid type, represented as Lh = (X, [f]). We use Roles(H) to indicate the set of

roles in a hierarchy H. In this dissertation, we assume that

(a) the set of permissions assigned to each role in Roles(H) is distinct, and

(b) for each hierarchy H, there is only one senior-most role, indicated by SH. The

results can be easily extended to deal with a general hierarchy. We use JH to

denote the set of junior-most roles of H.

We use notation P(r, t) to refer to the set of permissions assigned to role r at time

t. Similarly, given a set X of roles, we use P(X, t) to denote� Xr
trP

∈
),(. Now, we

formally define the UAS of a hierarchy as follows:

Definition 4.2.1 (Uniquely Activable Set of a Hierarchy H): Let H = (X, [f]) be a

hierarchy. Then, UAS(H, t) = {Y1, Y2, , Ym}, where ∅ ⊂ Yi ⊆ Roles(H) for each i ∈ {1,

2, …, m}, is the uniquely activable set of role sets for a user assigned only to role SH at

time t, if the following conditions hold:

i. i, j ∈ {1, 2, …, m} and i ≠ j, P(Yi, t) ≠ P(Yj, t), and

ii. ∀ Z ⊆ Roles(H) s.t. Z ∉ UAS(H, t), if P(Y, t) = P(Z, t) for a Y ∈ UAS(H, t),

then (|Y| < |Z|);

where |A| is the cardinality of set A.

Note that each element Yi is a subset of Roles(H). As condition (i) indicates,

UAS(H, t) is unique because for any pair of role sets of UAS(H, t), the permission sets

associated with them are not the same as per assumption (a). Condition (ii) considers the

possibility of different role sets associated with the same set of permissions. In such a

case UAS(H, t) contains the role set that has the least number of roles. In conjunction with

assumption (b), condition (ii) prevents a pair of senior and junior roles, e.g. of an IA-

hierarchy, to be in a role set of UAS(H, t). For instance, if relation (x ty) is in H, then the

66

set {x} and not {x, y} will be in UAS(H, t), as P({x}, t) = P({x, y}, t). The UAS values for

I, A and IA-hierarchy can differ significantly because of the difference in permission-

inheritance and role-activation semantics associated with them.

As a hybrid linear path may have different types of hierarchical relations it can be

decomposed into a set of monotype linear paths. We term such a decomposition of a

hybrid linear path into a set of monotype components as a horizontal partition. The

following definition formalizes these concepts.

Definition 4.2.2 (Horizontal Partition) Let Lh = (X, [f]) be a hybrid linear path

over role set X. Then Lh can be represented by an ordered set of monotype linear paths,

that is, Lh = {L1, L2, …, Ln} with X = X1 ∪ X2 ∪ ..∪ Xn, provided that the following

conditions hold:

1. for all i ∈ {1, .., n-1}, (i) if Li = (Xi, <fi>) then <fi> ≠ <fi+1>, (ii) Xi ∩ Xi+1 =

{JLi}={SL (i+1)}, and

2. for all i ∈ {1, .., n} and (i +1 < j ≤ n) or (1 ≤ j < i -1), Xi ∩ Xj = ∅ ,

Here, we say that {L1, L2, …, Ln} is the complete horizontal partition of Lh. Lh

can also be written as {L1, Lh’}, {Lh”, Ln}, {Lhx, Lhy}, etc., each of which is a

horizontal partition of L, not necessarily complete. We denote the senior-most and the

junior-most roles of a hybrid hierarchy Lh as SLh and JLh. It is easy to see that SLh = SL1,

and JLh = JLn.

As indicated, we will use L to represent a monotype linear path, Lh to represent a

hybrid linear path, and LH to mean either of them. H represents any hierarchy, which may

simply be a linear path. As indicated by definition 4.2.2, we can break a hybrid linear path

into an ordered set of monotype linear paths. Such a horizontal partition of a hybrid path

into its monotype components allows us to use the UAS of the monotype linear paths to

determine the UAS of a hybrid linear path. Note that a complete horizontal partition

consists of monotype linear paths that are maximal in the sense that combining any

consecutive pair of component linear paths will give a hybrid linear path, as indicated by

condition (a) of the definition. The use of horizontal partitions that are not complete

allows expressing a hybrid linear path as a combination of smaller linear paths that may

be of hybrid type. Furthermore, the complete horizontal partitioning of a hybrid linear

path allows us to determine its UAS by using the UASs of the component monotype

67

linear paths. Example 4.2.1 illustrates partitioning of a hybrid linear path into its

components.

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2 2

3 3

4 4

5

66

7

88

9

L 1

L 2

L 3

L 4

L 5

L 6

(a) (b) (c)

h 1

h 2

h 3

h 4

h 5

Fig. 4.5 Horizontal partition of a hybrid linear path

Example 4.2.1: Consider the role hierarchy of Fig. 4.5. The complete

horizontal partition of the hybrid linear path is {L1, L2, L3, L4, L5, L6}. We note that if L4

is split into L4,1 = ({4, 5}, IA-type) and L4,2 = ({5, 6}, IA-type), then {L1, L2, L3, L4, 1, L4,

2, L5, L6} is not a complete horizontal partition, as L4, 1 and L4, 2 do not satisfy condition

(1) of definition 4.2.2.

In this dissertation, we also use functions ���L(LH) and ���U(LH) that return the

lower and upper parts of a linear path LH That is, if L = ({x1, x2, , xn}, <f>), then,

• ���L(L) = ({x2, , xn}, <f>); ���U(L) = ({x1, x2, , xn-1}, <f>); For L = ({x, y},

<f>), ���L(L) = ���U(L) = ∅ ;

• ���L(Lh)={���L(L1), L2, …, Ln} and ���U(Lh)={L1, L2, …, ��� U(Ln)}, where Lh =

{L1, L2, …, Ln} is the complete horizontal partition of Lh.

Here, ���L(LH) and ���U(LH) return the lower and the upper sub-paths of LH.

���L(x<f>y) = ���U(x<f>y) = ∅ indicates that path (x<f>y) has no sub-paths. Because of

the different activation semantics associated with each hierarchy type, the UAS associated

with each type is also different. The following theorem formally characterizes the UAS of

a monotype linear hierarchy:

Theorem 4.1: Let H = (X, <f>) be a monotype hierarchy on role set X = {x1, x2,

…, xn} and the hierarchy relation <f>∈ {≥t, t, t}. Then,

68

where SubHi(H) represents the ith subhierarchy of H.

The theorem basically states that for a monotype linear hierarchy over an I-

relation, the UAS only contains the senior-most role. For a monotype hierarchy with an

A-relation, the UAS contains the power set of the role set X without the empty element;

i.e., a user assigned to the senior-most role can activate every combination of the roles in

the hierarchy. For a monotype hierarchy with an IA-relation, the UAS contains set

elements containing individual roles of the hierarchy and the combinations of roles that

occur in the different sub-hierarchies of the seniormost role. The proof for the theorem

follows directly from the transitive properties of the hierarchical relations and the

permission inheritance-only and/or role activation-only semantics of the three hierarchies.

Example 4.2.2 illustrates the use of the results of Theorem 4.1.

Example 4.2.2: Consider the monotype hierarchies of Fig. 4.3. In each of the

monotype hierarchies in figures 4.3(i)(a) and 4.3(i)(b), the UAS only contains the set

with the senior-most role of the hierarchy, as each of them has the senior-most role

related to its junior(s) by I-relation(s). For hierarchies in figures 4.3(i)(c) and 4.3(i)(d),

assuming unrestricted forms in both the cases, instead of the restricted forms indicated

in the figure, the UASs are as follows:

In the hierarchy of Fig. 4.3(c), UAS = {{GeneralDoctor}, {DayDoctor},

{NightDoctor}, {GeneralDoctor, DayDoctor}, {GeneralDoctor, NightDoctor},

{DayDoctor, NightDoctor},{GeneralDoctor, DayDoctor, NightDoctor}}. However,

GeneralDoctor is never enabled. Furthermore, if we take the periodicity constraints on

the roles, we have, in interval (9am – 9pm), UAS = {{DayDoctor}}, and in interval

(9pm – 9am), UAS = {{NightDoctor}}.

In the hierarchy of Fig. 4.3(c), UAS = {{SupervisorDoctor}, {DayDoctor},

{NightDoctor}, {SupervisorDoctor, DayDoctor}, {SupervisorDoctor,

NightDoctor}, {DayDoctor, NightDoctor}, {SupervisorDoctor, DayDoctor,

NightDoctor}}. However, the effective UAS, because of the temporal constraints,

differ. Hence, in intervals (9am – 10am) and (12noon-9pm), UAS = {{DayDoctor}};

in interval (10am - 12noon), UAS = {{DayDoctor}, {SupervisorDoctor},

{SupervisorDoctor, DayDoctor}}; in interval (7pm–9am), UAS = {{NightDoctor},

{

{{SH}} = {{x1}} if (<f> = ≥t)

 2X /∅ if (<f> = t)

{{x1}}∪ {2Z | Z=�
i

iz ; zi ∈ UAS(SubHi (H), t)}/∅ if (<f>= t)

UAS(H, t) =

69

{SupervisorDoctor},{SupervisorDoctor, NightDoctor}}; in interval (9pm–7am),

UAS= {{NightDoctor }}.

Next, we present a formal basis for characterizing the UAS for a hybrid linear

path. We first present the results for a hybrid linear path consisting of only two monotype

linear components in the following Lemma and then use it to characterize arbitrary hybrid

linear paths.

Lemma 4.1: Let Lh = {L1, L2} be a hybrid linear path Lh such that L1 = (X1,

<f1>) and L2 = (X2, <f2>), where X = {x1, x2, , xn} = X1 ∪ X2, and <f1> ≠ <f2>. Then for

a user u assigned only to SL1, we have:

where, L2L= ���L(L2), L2U= ��� U(L2)) and (A ⊗ B) = { {x ∪ y} | x ∈ A and y ∈ B}.

Note that, in the computation involving UAS(Lh, t), the components on the right

side are disjoint with respect to each other and hence |UAS(Lh, t)| is simply the sum of the

cardinalities of the components on the right side. Theorem 4.2 determines the UAS for an

arbitrary hybrid linear path.

Theorem 4.2: Let Lh = {L1, LH2} be a hybrid linear path such that L1 = (X1,

<f1>), LH2 is a linear path over X2, and X = X1 ∪ X2, where X1 and X2 are role sets.

Furthermore, let LH2 = {Lx, LH’}, where Lx = (Xx, <fx>) over role set Xx such that <fx> ≠

<f1> and LH’ is a linear path, possibly empty. Then, we have the following:

1. if <f1> = ≥t then UAS(Lh, t) = UAS(L1, t)

2. if <f1> = t then

3. if <f1> = t then

{

UAS(L1, t) if (<fx> = ≥)

UAS(L1, t)
 ∪ UAS(LH2L, t)∪ (UAS(L1, t)⊗ UAS(LH2L, t)) if (<fx> = t) UAS(Lh, t) =

UAS(L1,t), if ≥t ∈ {<f1>, <f2>}

UAS(L1U,t)∪ UAS(L2,t)∪ (UAS(L1U,t) ⊗ UAS(L2,t)) if (<f1>,<f2>)=(t, t)

UAS(L1,t)
 ∪ UAS(L2L,t)∪ (UAS(L1,t) ⊗ UAS(L2L,t)) if (<f1>,<f2>)=(t t) {UAS(Lh, t) =

{

UAS(L1, t) if (<fx> = ≥)

UAS(L1U, t) ∪ UAS(LH2, t)∪ (UAS(L1U, t)⊗ UAS(LH2, t)) if (<fx> = t)

UAS(Lh, t) =

70

The next example illustrates the use of the above theorem and refers to Fig. 4.6.

Example 4.2.3: Consider Fig. 4.6. We note that the hierarchy in (a) is part of

the hierarchy in (b), which in turn is a part of the hierarchy in (c). We look at each

case separately.

Case (a): Here L1 = r3
t r2, and L2 = r2

t r1. Hence, (<f1>,<f2>)= (t t)

applies. Therefore, by Lemma 4.1, we have, UAS(Lh, t) = UAS(L1, t),
 ∪ UAS(L2L, t) ∪

(UAS(L1, t) ⊗ UAS(L2L, t)) = {{r1}} ∪ {{ r2}, {r3}} ∪ ({{ r2}, {r3}} ⊗ {{ r1}}) =

{{r1}, { r2}, { r3}, { r1, r2}, { r1, r3}}.

r3

r2

r1

r3

r2

r1

r5

r4

r3

r2

r1

r5

r4

r7

r6

L1

L2

LH2

L1

LH2

Set UA =
L1 : {{r5}, {r6}, {r7}}
LH2L: {{r1, r4}, {r2 , r4}, {r3 , r4},
{r1, r3 , r4}, {r1, r3 , r4}}
Rest: UA of L1 ⊗ UA of LH2’

(a) (b) (c)

LH2L

L2L

L1U
L1

Set UA =
L1 :{{r2}, {r3}}
L1L:{{r1}},
Rest: UA of L1 ⊗ UA of LH2’
= {{r1, r2}, {r1, r3}}

Set UA =
L1U: {{r4},{r5},{r4, r5}}
LH2 : {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}}
Rest: UA of L1 ⊗ UA of LM2’

Fig. 4.6. Computing UAS of a hybrid linear hierarchy

Case(b): Here L1 = r5
t r4

t r3, and LM2 is the hierarchy in (a). Now, we apply

Theorem 4.1. As <f1> = t, case (2) of the theorem applies. Thus, UAS(Lh, t) =

UAS(L1U, t), ∪ UAS(LH2, t) ∪ (UAS(L1U, t) ⊗ UAS(LH2, t)) = {{r4}, {r5}, {r4, r5}} ∪

{{r1}, { r2}, { r3}, {r1, r2}, { r1, r3}} ∪ ({{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}} ⊗ {{r4},

{r5}, {r4, r5}}}) = {{r1}, { r2}, { r3}, {r1, r2}, {r1, r3}, {r4}, {r5}, {r4, r5}, {r1, r4}, {r1,

r5}, {r1, r4, , r5}, {r2, r4}, {r2, r5}, {r2, r4, , r5}, {r3, r4}, {r3, r5}, {r3, r4, , r5}, {r1, r2,

71

r4}, {r1, r2, r5}, {r1, r2, r4, r5}, {r1, r3, r4}, {r1, r3, r4}, {r1, r3, r4, r5}} . Thus, the total

number of elements is 23.

Case(c): Here L1 = r7
t r6

t r5, and LH2 is the hierarchy in (a). Again, we apply

Theorem 4.1. Computation can be carried out similarly using UAS(Lh, t) = UAS(L1, t),

∪ UAS(L2L, t) ∪ (UAS(L1, t) ⊗ UAS(L2L, t)) as depicted in Fig. 4.2(c). Note that the

computation of UAS(Lh, t) involves computing UAS(L2L, t), which can be done as in

case(b).

A hybrid general hierarchy can have complex inheritance and activation

semantics. We note that each hierarchical structure can be broken down, or vertically

partitioned, into a list of linear paths. In the following, we consider a general hierarchy

rooted at a role and represent it using a vertically partitioned set of linear components. A

vertical partition, defined next, represents a general hierarchy as an ordered list of its

component linear paths.

Definition 4.2.3 (Hybrid Hierarchy rooted at a role as a set of linear paths): Let

H = (X, [f]) be a hierarchy over role set X rooted at role SH with relation set [f] ⊆ {≥t, t,
t}. We say that H is representable by an ordered set of linear paths (hybrid or

monotype), that is, H = {LH1, LH2, …, LHm}, if, for i , j ∈ {1, 2, …, m}, i ≠ j and LHi is a

linear path over Xi, the following conditions hold

1. SLHi = SH; JLHi ⊆ JH,

2. Xi ≠ Xj ; X =�
m

i 1=

 Xi

3. for all J ∈ JH, there exists no linear path LH = ({SH, xπ1, xπ2, xπi, J},

[f’]), where [f’] ⊆ [f] and {xπ1, xπ2, xπi} ⊆ X/{SH, J}, such that LH

∉ {LH1, LH2, …, LHm}.

We say that {LH1, LH2, …, LHm} is the complete vertical partition of H. H can

also be written as {LH1, H’}, {H”, LHm}, {Hx, Hy}, etc., each of which is (simply) a

vertical partition of H.

Based on the notion of vertical partitioning of a general hybrid hierarchy, the

following theorem shows how we can formally determine UAS of a general hybrid

hierarchy that is not a simple linear path.

72

Theorem 4.3: Let H = (X, [f]) = {LH1, H1} be a hierarchy such that the following

condition holds: ∃ x, y, z ∈ X, (x<f>y) ∧ (x<f>z). Then, UAS(H, t) = I/C, where

• I = (UAS(LH1, t) ∪ UAS(H1, t) ∪ (UAS(LH1, t)/B ⊗ UAS(H1, t)/B)),

• B = (UAS(LH1, t) ��UAS(H1, t)) = {X, Y | X ∈ UAS(LH1, t) , Y∈ UAS(H1, t) and X ∩Y

≠ ∅ }, and

• C = {Z | Z ∈ I, such that ∃ x, y ∈ Z, x
t y}.

The theorem determines the UAS of a general hierarchy that has at least one role

having multiple juniors, hence making it different from the linear paths. The computation

is based on the partition of the hierarchy into two components, in which one is a linear

component and the other is the remaining part of the hierarchy. This allows us to compute

the UAS recursively once we have the linear components. The next example illustrates

the working of Theorem 4.3.

Example 4.2.3: Consider the hierarchy in Fig. 4.7. The linear components of the

hierarchy are shown in (a)-(d). Each component’s UAS computed using Theorem 4.3 is

shown in Fig. 4.7. Now, we apply Theorem 4.3 to generate the UAS of the overall

hierarchy. We will write H12 to mean the hierarchy formed by components L1 and Lh2,

H13 to mean the hierarchy formed by components L1, Lh2 and Lh3, and H14 to mean the

overall hierarchy.

r 1

r 2

r 3

t 1 s 2

s 3

s 1
r 3

s 1

t 1

s 2

s 3

r 3

s 1

(a) (b) (c) (d)

r 3

r 2

t 1

r 3

r 2

r 1

L 1 L m 2 L m 3

L m 3

Fig. 4.7. Computing UAS of a general hierarchy

Step 1: Consider components L1 and Lh2. Here, B = UAS(L1, t) ��UAS(Lh2, t) =

{{r3}, {r2}, {t1, r2}, {t1, r3}}. Therefore, (UAS(L1, t)/B) ⊗ (UAS(Lh2, t)/B) = {{r1}} ⊗

L1 = {{r3}, {r2}, {r1}}
Lh2 = {{t1}, {r2}, {r3}, {t1, r2}, {t1, r3}}
Lh3 = {{r3}, {s1}, {t1}, {s1, r3}, {r3, t1}}
Lh4 = {{r3}, {s1}, {s2}, {s3} , {r3, s1},{r3, s2}, {r3, s3},{s1, s2} ,{s1, s3} ,{r3,

73

{{t1}} = {{r1, t1}}. Note that C is empty. Thus, UAS(H12, t) = I/C = I = {{r3}, {r2},

{r1}, {t1}, {r1, t1}, {r3, t1}, {t1, r2}}.

Step 2: Consider component H12 (result from Step 1) and Lh3. Here, B = UAS(H12,

t) ��UAS(Lh3, t) = {{r3}, {t1}, {r1, t1}, {r3, t1}, {t1, r2}}.Therefore, (UAS(H12, t) -B) ⊗

(UAS(Lh3, t) -B) = {{r2}, {r1}} ⊗ {{s1}} = {{r2, s1}, {r1, s1}}. Hence I = {{r3}, {r2},

{r1}, {t1}, {r1, t1}, {r3, t1}, {t1, r2}, {s1}, {r2, s1}, {r1, s1}}. Note that Lh3 introduces the

IA-relation between r3 and t1, but we have {r3, t1} ∈ I. Thus we need to remove {r3, t1}.

Therefore, UAS(H13, t) = I/C = {{r3}, {r2}, {r1}, {t1}, {r1, t1}, {t1, r2}, {s1}, {r2, s1},

{r1, s1}}.

Step 3: Consider component H13 (result from Step 2) and Lm4. Here, B =

UAS(H13, t) �� UAS(Lm4, t) = {{r3}, {s1}, {r2, s1}, {r3, s2}, {s1, s2}}. Therefore,

(UAS(H13 -B) ⊗ (UAS(Lm4, t) -B) = {{r2}, {r1}, {t1}, {r1, t1}, {t1, r2}} ⊗ {{ s2}} =

{{r2, s2} {r1, s2}, {t1, s2}, {r1, t1, s2}, {t1, r2, s2}}. We also note that C is empty. Hence,

UAS(H13, t) = I/C = I = {{r3}, {r2}, {r1}, {t1}, {r1, t1}, {t1, r2}, {s1}, {r2, s1}, {r1, s1},

{s2}, {r3, s2}, {s1, s2}, {r2, s2} {r1, s2}, {t1, s2}, {r1, t1, s2}, {t1, r2, s2}}.

Table 4.2

Supporting functions for algorithm in Fig.4.8

ComputeI(UAStail, UAShead) Compute I according to theorem 4.3

ComputeC(I, H Compute C according to theorem 4.3

isLinear(H) if (there is a x in Roles(H) s. t. x is senior of two other roles in
Roles(H)) then returns FALSE else returns TRUE

isEmpty(H) if (Roles(H) is empty) then returns TRUE else returns FALSE

isMonotypeLinear(LH) if (there are two relations in H) then returns FALSE else returns
TRUE

Type(L)
returns the type of linear hierarchy L (returns I, A or IA)

hHead(Lh)
if {L1, L2, …, Ln} is the complete horizontal partition of Lh then it
returns {L2, …, Ln}

vHead(H)
if {LH1, LH2, …, LHn} is the complete vertical partition of H then it
returns LH1

vTail(H)
if {L1, L2, …, Ln} is the complete horizontal partition of Lh then it
returns {L2, …, Ln}}(returns ∅ if n = 1).

74

Algorithm ComputeUASHierarchy(H)

1. if (isMonotype(H)) then return ComputeUASMonotype(H)
2. else if (isLinear(H)) then return ComputeUASLinear(H)
3. UAStail = ComputeUASHierarchy(vTail(H))
4. UAShead = ComputeUASLinear(vHead(H))
5. I = ComputeI(UAStail, UAShead); C = ComputeC(I, H)
6. return (I – C) // Refer to Theorem 4.3
End ComputeUASHierarchy

Algorithm ComputeUASLinear(LH)

1. if (isEmpty(LH)) then return ∅ ;
2. if (isMonotype(hTail(LH))) then

return Compute2MonotypeLinear(hHead (LH), hTail(LH))
3. f1 = Type(hHead(LH))
4. fx = Type(hHead(hTail(LH)))
5. UAShead = ComputeUASLinear(hHead(LH)) // Refer to Theorem 4.2
6. Case: (f1 = ‘I’) or (f1 = ‘A’, fx = ‘I’) or (f1 = ‘IA’, fx = ‘I’)

return ComputeUASLinear(hHead(LH))
7. Case: (f1 = ‘A’, fx = ‘IA’)

return (ComputeUASMonotype(subU(hHead(LH)))∪ ComputeUASLinear(hTail(LH))

 (ComputeUASMonotype(subU(hHead(LH)))⊗ ComputeUASLinear(hTail(LH))))
8. Case: (f1 = ‘IA’, fx = ‘A’)

return (ComputeUASMonotype(hHead(LH))∪ ComputeUASLinear(subL(hTail(LH)))

 (ComputeUASMonotype((hHead(LH)))⊗ ComputeUASLinear(subL(hTail(LH))))
End ComputeUASHierarchy

Algorithm Compute2MonotypeLinear(L1, L2)
1. f1 = Type(L1); f2 = Type(L2)
2. Case: (f1 = ‘I’) or (f2 = ‘I’) // Refer to Lemma 4.1

return ComputeUASMonotype(L1)
3. Case: (f1 = ‘A’, f2 = ‘IA’)

return (ComputeUASMonotype(subU(L1)) ∪ ComputeUASMonotypeLinear(L2)

 (ComputeUASMonotype(subU(L1)) ⊗ ComputeUASMonotypeLinear(L2))
4. Case: (f1 = ‘IA’, f2 = ‘A’)

return (ComputeUASMonotype(L1) ∪ ComputeUASMonotypeLinear(subL(L2))

 (ComputeUASMonotype(L1) ⊗ ComputeUASMonotypeLinear(subL(L2)))
End Compute2MonotypeLinear

Algorithm ComputeUASMonotype(H)
1. f = Type(H)
2. Case: (f1 = ‘I’) return {{SH}} // Refer to Theorem 4.3
3. Case: (f1 = ‘A’) return (2

Roles(L) /∅)
4. Case: (f1 = ‘IA’) return {{x1}, {x2}, …, {xn}} where, Roles(L) = {x1, x2, …, xn}
End ComputeUASMonotypeLinear

Fig. 4.8 Algorithm for computing the uniquely activable set.

75

Based on the theorems, we derive the algorithms depicted in Fig. 4.8 for

generating the UAS of a hierarchy rooted at a role. ComputeUASHierarchy

essentially implements Theorem 4.3 and constructs UAS recursively. For this, it uses

algorithm ComputeUASLinear which recursively constructs the UAS of linear paths.

Algorithm ComputeUASLinear, on the other hand, implements Theorem 4.2 and

makes use of algorithm Compute2MonotypLinear that implements Lemma 4.1.

Theorem 4.1 is implemented by algorithm ComputeUASMonotypeLinear.

4.2.2 Acquisition Equivalent Hierarchies

In earlier sections, we have characterized the UAS of a general hierarchy. An

important issue is whether or not we can use a hierarchy of one type to achieve what a

hierarchy of another type allows. To address such an issue, we need an appropriate notion

of equivalence between different hierarchies, as they are structurally and semantically

different. We note that central to the use of hierarchies in a GTRBAC system is the

efficient management of permission acquisition by users assigned to various roles in the

hierarchy. Thus, a notion of equivalence between two types of hierarchy can be

established if we show that the maximum set of permissions that can be acquired by a

user in the two hierarchies is the same. The significance of using the maximum set of

permissions is that within the equivalent hierarchies, the user can carry the same accesses,

even though, in each hierarchy, the user may have to activate a different set of roles. Here,

we introduce the notion of acquisition-equivalence between two hierarchies. We say that

two hierarchies are acquisition-equivalent if they allow the same maximum set of

permissions to be acquired by a user assigned to the senior-most role. We use Pmax(H, t)

to refer to the maximum set of permissions that a user can acquire through the senior-

most role of the hierarchy H in a session at time instant t. The notion of acquisition-

equivalence is formally defined as follows:

Definition 4.2.4 (Acquisition equivalence or AC-equivalence of two hierarchies):

Let H1 and H2 be two hierarchies over role set Roles. Then we say that H1 and H2 are

acquisition-equivalent or AC-equivalent (written as H1 =AC H2), if Pmax(H1, t)=Pmax(H2, t).

The following theorem provides the formal characteristics of an AC-acquisition -

equivalent set of hierarchies

Theorem 4.4 (AC-equivalent hierarchies): Let H1= (X, [f1]) = (LH1, LH2,… ,

LHn) and H2 = (X,<f2>) be two hierarchies over role set X. If, for roles x, y ∈ X and a

76

relation <f> ∈ [f1], the condition (x<f>y ∈ H1 iff x<f2>y ∈ H2) holds, then H1=AC H2 (i.e.

H1 and H2 are AC-equivalent) provided the following holds

• for all i ∈ {1, 2, …, n}, and hierarchies LH’, LHmid, LH”, each possibly empty, the

following is satisfied

¬∃ Lx, Ly such that LHi = (LH’, Lx, LHmid, Ly, LH”), where <fx> = ≥t and <fy> = t

The condition LHi = (LH’, Lx, LHmid, Ly, L”) implies that in the linear component

LHi, there is an I-relation that precedes (not necessarily immediately, as LHmid may not

be empty) an A-relation. All hierarchies that do not have such a component are AC-

equivalent to a monotype hierarchy. As a consequence, first, the theorem implies that any

two monotype hierarchies are AC-equivalent, as the condition LHi = (LH’, Lx, LHmid, Ly,

L”) cannot occur in a monotype hierarchy. Furthermore, the theorem says that every

hierarchy that does not contain such a linear component is AC-equivalent to a monotype

hierarchy and hence to each other. This is because if an I-relation precedes an A-relation

in the hierarchy, then the permissions associated with the roles below the A-hierarchy

cannot be acquired by any user assigned to the senior-most role, thus, reducing the

permissions that can be acquired. The significance of this result is that, in systems where

the principle of least privilege is not of much concern, any monotype hierarchy can be

used instead of a more complex hybrid hierarchy.

4.3. Derived Hierarchical Relations

In a hierarchy where all three types of hierarchies can co-exist, a hierarchical

relation between a pair of roles that are not directly related may be derived. While most

derived relations fall into the three hierarchy types discussed earlier, we introduce a

special derived type called a conditioned derived relation, written as (x[A](B)<f>y), and

defined as follows:

Definition 4.3.1 (Conditioned Derived relation): Let H be a role hierarchy, x, y ∈

Roles(H) and A, B ⊆ Roles(H). Then x[A](B)<f>y is called a Conditioned Derived

Relation (also read as “the derived relation x<f>y is conditioned on roles in A and B”), if,

for all a ∈ A and b ∈ B, the following holds:

for all a ∈ A, b ∈ B, (x ta) ∧ (a<f>y) ∧ ((x b) ∨ (x tb)) ∧ (b ty),

where <f> ∈ {≥t, t}, |A| >0, |B| ≥ 0, and (b ty) is a direct relation.

Here, the condition indicates that x is related to each a ∈ A, directly or through a

derived relation, by an A-relation, whereas each a is related to y by the <f> relation. This

77

implies that a permission that can be acquired through role y can be acquired by a user

assigned to role x, without activating y, if he activates any of the roles in A. We note that

B may be empty, in which case, the conditioned derived relation is simply written as

x[A]<f>y. If B is not empty then for each b ∈ B, there is an A-path from x to y through b.

If C = A ∩ B then, for all c ∈ C, both (c≥ty) and (c ty) hold; i.e., for all c ∈ C, we have

(c ty). It is possible that x[A]({x})<f>y, which means x[A]<f>y, and (x ty) is a direct

relation. As we shall see, it is not necessary that the hierarchical path from x to each a ∈

A contain all A-relations; it is only required that a user who is assigned to or can activate x

can also activate a. This, however, implies that the hierarchical path from x to each a does

not contain any I-relation as it prohibits activation of a junior role by users assigned to the

senior. Furthermore, we note that in x[A](B)<f>y, <f> is either ≥t or t

SD

�✂✁☎✄✆�✞✝✠✟☛✡ ✝✌☞
✍✏✎ ✁✆✑✓✒ ✎✌✔ ✑✖✕ ✗✙✘ ✚✌✛ ✡✜�✂✝✠✟☛✡ ✝✢☞

✍✏✎✌✔ ✑✓✒ ✎ ✁✆✑✖✕

✣✂✤✠✔✦✥ ☞★✧ ✘ ✩ ✝✌☞✪�✫✝✠✟☛✡ ✝✆☞
✬✭✍✯✮✱✰ ✁✆✑✓✒ ✮✳✲✆✴ ✝✠✝ ✴ ✕✶✵

✍✏✷ ✁✆✑✓✒ ✎ ✁✆✑✖✕★✸
✹✺✁✌☞★✡ ✻ ✘ ✑ ✥ �✫✝☎✟☛✡★✝✆☞

✍✏✼✾✽ ✝ ✤ ☞ ✩ ✕

PD

N

NDDD

✿❀✑ ✥ ☞ ✚ ✥✆✴ ✟☛✄✆�✞✝✠✟☛✡ ✝✌☞
✬✏❁ ✡ ❁❃❂ ❂ ✻ ✘ ✑ ✥ ✸

ED

✗ ✤ ☞ ✩ ✥
✬✏❁ ✡ ❁❃❂ ❂ ✻ ✘ ✑ ✥ ✸

✽✂✥ ✁✠❄❅�✂✝☎✟☛✡ ✝✌☞
✬★❁ ✡ ❁✙❂ ❂ ✻ ✘ ✑ ✥ ✸ HD

r

Short forms of the role names are
given inside the circle, e.g.,

✹✞�
stands for

✹✺✁✆☞ ✡★✻ ✘ ✑ ✥ �✫✝☎✟☛✡ ✝✢☞
I-hierarchy between

✹✂�
and

�❃�
is

restricted; all others are
unrestricted.

Fig. 4.9 A hybrid hierarchy for a medical department

Example 4.3.1: Consider the hierarchy of Fig. 4.9, representing a medical

department. PD can be enabled for three hours only. Since it has restricted-inheritance

over DD, a user assigned to PD can acquire DD’s permissions only in daytime. SD’s

relation to DD and ND are as discussed in Fig. 4.3(d). N can be I-inherited by DD and

ND. ED is enabled at all times. The A-relation between ED and N allows a user

assigned to ED to explicitly act as a nurse besides inheriting N’s permissions through

DD or ND. Assume that the HD role represents the head doctor of the medical

78

department, which is enabled at all times. HD can act as the supervisor role of doctors,

because of the unrestricted relations through SD. Two conditioned derived relations are

as follows.

1. SD[DD, ND]≥t N: This is because users assigned to SD can acquire permissions

of N only by activating SD or ND.

2. HD[DD, ND, ED](ED) ≥t N: This is because users assigned to HD can acquire

permissions of N by activating SD, ND or ED, without activating N.

Furthermore, the users can directly activate N (because of the A-path through ED).

4.3.1 The Inference Rules for Hybrid Hierarchies

We now introduce the inference rules that allow the derivation of indirect

relations between roles from explicitly specified relations between roles. Such derived

relations can be used to determine the permissions that can be acquired through the

activation of a role in a hierarchy by a user. We use I���(y) = {x| x ty is a direct

relation} to denote the set of immediate seniors of role y through A-relation. The

inference rules are as follows:

Inference Rules: Let H be a role hierarchy, x, y, z ∈ Roles(H), and A, A1, A2,

B1, B2 ⊆ Roles(H). Then the inference rules for deriving indirect relations are as shown

in Table 4.3.

R1 is a trivial case of transitivity using a single hierarchy type. Thus, if <f> is t,

then from the two relations x ty and y tz, relation x tz is inferred. R2 applies to all the

pairs of relations x<f>y and y<f>z that may not be direct relations. This can result in a

conditioned derived relation of the form x[A]<f>z. R3 deals with each of the cases in

which an unconditioned relation follows a conditioned derived relation. In a hierarchy,

there may be more than one relation between a pair of roles. Such a situation arises when

there are multiple hierarchical paths between a given pair of roles. R4 deals with such

cases. Rule R4.1 is a trivial case in which both the hierarchical paths are the same

unconditioned relation (derived or direct). Rule R4.2 captures all the possible

combinations of two different hierarchical unconditioned relations between the same pair.

Similarly, rule R4.3 captures all the possible combinations of two different hierarchical

relations between the same pair in which one is an unconditioned derived relation. Lastly,

R4.4 are for capturing all the possible combinations of two different hierarchical

conditioned derived relations between a pair of roles. Example 4.3.2 illustrates the

application of rules to determine derived relations for the hierarchy in Fig. 4.9.

79

Table 4.3
The inference rules for derived hierarchical relations

Rule Case Inference Rule

(Monotype hierarchy)
R1

 (x<f>y) ∧ (y<f>z) → (x<f>z) for all <f>∈ {≥t, � t, ✁ t}

(Hybrid hierarchy with unconditioned relations)

1 (x<f1>y) ∧ (y<f2>
 z) → (x≥tz) for all <f1>, <f2>∈ {≥t, ✁ t }, such that <f1> ≠ <f2>

2 (x ✁ ty) ∧ (y � tz) → (x � tz);

R2

3 (x � ty) ∧ (y<f>z) → (x[{y}]<f>z) for <f>∈ {≥t, ✁ t }

(Hybrid hierarchy with one unconditioned derived relation)

for <f>∈ {≥t, � t, ✁ t} such that <f1 >≠<f2>;

a. (x[A](B)≥ty) ∧ (y≥t z) → (x[A∪ C]≥t z), where C={y} if |B| > 0 , else C=∅ ; 1

b. (x[A](B)≥ty) ∧ (y ✁ tz) → (x[A∪ C](C)≥tz) where C={y} if |B| > 0, else C=∅

for <f>∈ {≥t, � t, ✁ t} such that <f1 >≠<f2>

a. (x[A](B) ✁ ty) ∧ (y≥tz) → (x[A∪ C]≥tz) where C={y} if |B| > 0 , else C=∅ 2

b. (x[A](B) ✁ ty) ∧ (y ✁ tz) → (x[A] ✁ tz);

R3

3 for <f>∈ {≥t, ✁ t} (x[A](B)<f>y) ∧ (y � tz) → (x � tz)

 (Hierarchy with multiple paths between two roles; subscripts indicate the path number)

1 (x<f>y)1 ∧ (x<f>y)2 → (x<f>y) for all <f>∈ {≥t, � t, ✁ t}

2 (x<f1>y)1 ∧ (x<f2>y)2 → (x ✁ t y) for all <f1>, <f2>∈ {≥t, � t, ✁ t} such that <f1> ≠ <f2>

for all <f>,<f1>, <f2>∈ {≥t, ✁ t} such that <f1>≠<f2>

a (x[A](B)<f>y)1 ∧ (x<f>y)2 → (x<f> y)

b. (x[A](B)<f>y)1 ∧ (x � ty)2 → x[A](I���(y))<f>y)

3

c. (x[A](B)<f1>y)1 ∧ (x<f2>y)2→ (x ✁ ty)

for all <f>,<f1>, <f2>∈ {≥t, ✁ t} such that <f1>≠<f2>

a. (x[A1](B1)<f>y)1 ∧ (x[A2](B2)<f>y)2 → (x[A1∪ A2](B1∪ B2)<f> y)

R4

4

b.
(x[A1](B1)<f1>y)1∧ (x[A2](B2)<f2>y)2→(x[A1∪ A2](A∪ B1∪ B2) ≥ty) s.t. A= A1 if

<f1>= ✁ t else A=A2

80

Table 4.4

Application of inference rules over the hierarchy of Fig. 4.9
Rule

applied
Derive relations

R1 (PD ≥t N), (HD � t N)

1 (ED ✁ t ND) ∧ (ND ≥t N) implies(ED ≥t N)

2 (HD ✁ t SD) ∧ (SD � t DD) implies (HD � t DD)

(SD � t DD) ∧ (DD ≥t N) implies (SD[{DD}] ≥t N)

(HD � t ED) ∧ (ED ✁ t ND) implies (HD[{ED}] ✁ t ND)

R2

3

(HD � t DD) ∧ (DD ✁ t N) implies (HD[{DD}] ✁ t ND)

(HD[{ED}} ✁ t DD) ∧ (DD ≥t N) implies (HD[{ED}] ≥t N)

R3 2a
(HD[{ED}} ✁ t ND) ∧ (ND ≥t N) implies (HD[{ED}] ≥t N)

1 (ED ≥t N) (one through DD, another through ND)

2 (ED ≥t N) ∧ (ED � t N) implies (ED ✁ t N)

3b
(HD[{ED}] ≥t N) ∧ (HD � t N) implies (HD{ED} ≥t N) (which is same as
(HD[{ED}] ✁ t N)

4a (HD[{DD}] ≥t N) ∧ (HD[{ND}] ✁ t N) implies (HD[{DD, ND}] ≥t N)

R4

4b (HD[{DD, ND}} ≥t N) ∧ (HD[{ED}] ✁ t N) implies (HD[{DD, ND, ED}] ≥t N)

Example 4.3.2: Applications of the rules over the hierarchy of Fig. 4.9 is

illustrated in the Table 4.4.

4.3.2 Soundness and Completeness of the Inference Rules

In this section, we show that the set of inference rules introduced above is sound

and complete, using the notion of authorization consistent hierarchies, which is defined

below. In the definition, we use predicate can_activate (u, r, t, H) to mean that u can

activate role r using role-activation semantics in role hierarchy H at time t. Similarly, we

use the predicate can_be_acquired (p, r, t, H) to mean that permission p can be

acquired through role r at time t using permission-inheritance semantics in hierarchy H.

Let UAH(H) and PAH(H) be sets of all the user-role and role-permission assignments

related to roles in Roles(H).

Definition 4.3.1 (Authorization consistent hierarchies): Let H1 and H2 be two

hierarchies such that Roles(H1) = Roles(H2), UAH(H1) = UAH(H2) and PAH(H1) =

81

PAH(H2). Then, we say that H1 and H2 are authorization consistent (written as H1 ≈ H2) if

for all r ∈ Roles(H1), the following conditions hold:

1. ∀ u ∈ Users, can_activate (u, r, t, H1) iff can_activate (u, r, t, H2),

2. ∀ p ∈ Permissions, can_be_acquired (p, r, t, H1) iff can_be_acquired

(p, r, t, H2).

r 2
r 3

r 1

r 5
r 4

r 2
r 3

r 1

r 5
r 4

r 2
r 3

r 1

r 5
r 4

h 1 h 3h 2

H 1 H 2 H 3

Fig. 4.10. Example of authorization consistent hierarchies; H1 ≈ H2, H1 � H3 and H2 � H3

Here, we note that the two hierarchies considered have the same role set, user-role

assignments and role-permission assignments. Condition (1) implies that if a user u can

activate a role r in Roles(H1) under hierarchy H1, then s/he can activate it even if H1 is

replaced by H2 (and vice versa). Similarly, the second condition says that the set of

permissions that can be acquired through a role under H1 is also the same set of

permissions that can be acquired through that role in H2 for any given user. This signifies

that if two hierarchies are authorization consistent then a user assigned to a role can

activate exactly the same set of roles and acquire the same set of permissions under the

two hierarchies. This means the permission-inheritance and role-activation semantics in

the two hierarchies are the same even if the sets of hierarchical relations in the two

hierarchies are different. Fig. 4.10 depicts an example of the notion of authorization

consistency. Here, the hierarchy relation h1 in H2 can be inferred from the hierarchical

relations (r1≥tr3) and (r3
tr5), whereas, h2 can be inferred from the two hierarchical paths

from role r1 and r4. Hence, H1 adds no new access capability compared to H1. However,

h3 in H3 is not inferred from the hierarchical relations (r1≥tr3) and (r3
tr5). In H3, a user

assigned to r3 can activate r5 also, which is not possible in H1 or H2. Hence, H1 � H3, and

82

H2 � H3. We use this notion of authorization consistency between two hierarchies to

show that the set of rules presented above is sound; i.e., each new derived relation that

can be deduced from a given set of hierarchical relations using the rules produces the

same inheritance and activation semantics that is already present in the original hierarchy.

Within a hierarchy H, we use hxz to represent (x<f>z) for <f>∈ {≥t, t, t} or x[A](B)<f>z

for <f>∈ {≥t, t}, where x, z ∈ Roles(H) and A, B ⊆ Roles(H). The following theorem

formally states this result.

Theorem 4.5 (Soundness of rules R1-R4): Given a role hierarchy H, if a new

hierarchical relation hxz is derived from hierarchical relations in H as per rules R1-R4,

and H’ = H ∪ {hxz}, then H and H’ are authorization consistent, i.e. H ≈ H’.

The theorem implies that the new relations derived using the rules do not allow a

user to inherit more (or less) permissions than was allowed to him before the derived

relation is added. Similarly, the new derived relation does not allow a user to be able to

activate more (or less) number of roles than was allowed before the derived relation is

introduced. Next, we present the completeness theorem for the rules R1-R4. We write

H[R1-R4] � hx,z to indicate that the relations in H can logically derive relation hx,z using

rules R1-R4.

Theorem 4.6 (Completeness of rules R1-R4): Given a role hierarchy H, rules

R1-R4 are complete; That is, if ¬ H[R1-R4] � hx,z, for any pair of roles x, z ∈ Roles(H),

then H � H ∪ {hx,z}, i.e., the hierarchies H and H’ = H ∪ {hx,z} are not authorization

consistent.

The theorem indicates that if a relation, say <f>, between any two roles, say x and

z, of Roles(H) cannot be derived from the hierarchical relations in H, then any role

hierarchy containing such a relation is not authorization consistent with H. In other

words, we can take every pair of roles (x, z) of Roles(H) and every possible hierarchical

relation between them, including conditioned derived relations, and extend H by adding it

to get H’. If we get H ≈ H’, the theorem implies that the rules R1-R4 are able to derive it.

Hence, this shows that the rules are complete. Using the transitivity of the hierarchical

relations and considering all the cases of the rules, we can easily construct the proofs. The

proofs for both the theorems are provided in appendix B.

83

4.4. Hierarchy Transformations

In an organization, roles evolve with time, affecting the existing role hierarchies.

New roles may need to be added and old ones deleted or modified. Permission sets of

existing roles or their temporal properties may need to be altered. Making such changes

may require restructuring the hierarchies to avoid undesirable situations. In this section,

we analyze transformations of a role hierarchy when a role is added, modified, or deleted

that best maintain the permission inheritance and role activation semantics of the original

hierarchy.

4.4.1 Role Addition

Typically, a new role is added to an existing hierarchy to distribute a unique set of

new permissions among the already existing roles in the hierarchy. Before we add a new

role to a hierarchy, we need to properly define its permissions and identify the existing

sets of roles that can be its seniors and juniors. Furthermore, we need to account for other

existing temporal, separation-of-duty and activation constraints in the hierarchy.

Let rn be the new role to be added in the original hierarchy Ho. Suppose rn is to be

added between roles s and j, and s<f>j ∈ Ho. By adding the new role, assume we obtain

the new hierarchy Hn. Then, it is easy to see that Hn= Ho/(s<f>j) ∪ {(s<f1>rn), (rn<f2>j)}

for some hierarchy relations <f1> and <f2>.

Table 4.5 lists various criteria for hierarchy transformations. Criteria C1 states that

the roles of the original hierarchy Ho can be activated by a user in the new hierarchy Hn if

and only if the user can activate it in Ho. Similarly, criteria C2 states that the permissions

associated with the roles of the original hierarchy Ho can be acquired by a user in the new

hierarchy Hn if and only if the user can acquire it in Ho. It may also be possible that the

addition of a new role actually results in a conditioned derived relation between roles s

and j, when originally s≥tj or s tj. Semantically, it means that in Hn, instead of acquiring

the permissions of j by activating role s, which is originally allowed in Ho, now a user u

assigned to s or its senior needs to activate the new role to acquire j’s permission. In such

a case, the “can be acquired” semantics is not completely lost as u still does not have to

explicitly activate j to acquire its permission. However, the original “can be acquired”

semantics also is not entirely retained. Hence, we say that such a scenario results in a

restricted transformation. We represent such a scenario as criteria C2r indicating that

criteria C2 has been satisfied in a restricted sense.

84

Table 4.5

 Criteria for hierarchy transformations

Criteria

1
C1:

∀ u∈ Users, r ∈ Roles(Ho)

can_activate (u,r,t,Ho) ↔ can_activate (u,r,t,Hn)

C2
∀ p∈ P(Roles(Ho), t), r∈ Roles(Ho),

can_be_acquired (p,r,t,Ho) ↔can_be_acquired (p,r,t,Hn).

 2

C2r
∀ LH = ({x1, x2,…, xi s, j}, [fLH]),r∈ {x1, x2,…, xi, s},

(r<f>j) ∈ Ho ↔ (r[rn]<f>j) ∈ Hn, where {x1, x2,…, xi s, j} ⊆ Roles(Ho), [fLH] ⊆ {≥t, � t,
✁ t} and <f>∈ {≥t, ✁ t}.

Table 4.6

Scenarios for hierarchy transformations

Scenarios for role addition

S1 No extra constraint is added with respect to the new role rn;

S2 A permission-centric activation constraint is added for the new role rn

S3 A user-centric activation constraint is added for the new role rn;

S4 (s, rn) is considered to be in DSoD

S5 (rn, j) is considered to be in DSoD

When a new role is added, various new constraints related to the new role may

need to be added as well. It is important to note that the above criteria may not be

satisfied if we introduce new constraints along with the new role. We consider the five

scenarios (S1 through S5), shown in Table 4.6 to describe the addition of constraints

related to the new role and describe with regards to them various transformations that

satisfy criteria C1 and C2 or C1 and C2r, as shown in Table 4.7. Here, √ indicates that the

transformation satisfies the indicated criteria under the given scenario and × indicates

otherwise. Note that the static separation of duty (SSoD) constraint between

hierarchically related roles is not appropriate [Gav98]. However, an A-hierarchy allows

dynamic SoD (DSoD) to be defined on a role [Jos02]. Hence, we only consider DSoD

between roles as a scenario.

85

Table 4.7

Transformation with criteria satisfied for different scenarios

(s<f>j)

∈ Ho
(s<f1>rn), (rn<f2>j) ∈ Hn Criteria

Satisfied
S1 S 2 S 3 S 4 S 5

i s � trn, rn � tj √ √ × √ √

ii s ✁ trn, rn � tj √ × √ × √ a

iii

s � tj

s<f>rn, rn≥tj, for any <f>

C1, C2

× × × × ×

i s � trn, rn≥tj C1, C2r √ √ × √ ×

ii (s≥trn, rn≥tj);(s ✁ trn,rn≥tj);(s≥trn, rn ✁ tj) C1, C2 √ × √ × ×
b

iii

s≥tj

(s � trn,rn≥tj); (s ✁ rn, rn ✁ j); (s<f>rn,

rn � tj,) for any <f>

C1, C2 × × × × ×

i s � trn, rn ✁ tj C1, C2r √ √ × √ ×

ii s ✁ trn, rn ✁ t j √ × √ × ×
c

iii

s ✁ tj
(s<f>rn, rn ✁ tj);(s<f>rn,, rn≥tj,) or
(s<f>rn,, rn � tj), for any <f>

C1, C2
× × × × ×

Various transformation cases for role addition indicated in Table 4.7, which are

depicted in Fig. 4.11, can be easily explained by applying the inference rules to infer the

derived rules between s and j in Ho. Note that DSoD constraints are allowed among roles

that are only A-hierarchically related. Similarly, permission-centric activation constraints

are appropriate when A-hierarchy is used whereas the user-centric activation constraint is

appropriate in an I or IA-hierarchy.

Fig. 4.11(a) depicts the addition of role rn when (s tj) for case (a) of Table 4.7.

As Fig. 4.11(a) shows, only cases (i) and (ii) satisfy C1 and C2 under some scenarios.

Case (i) allows defining a permission-centric activation time constraint on role rn (S2)

because of the new relation (s trn). Defining a DSoD constraint between roles s and r,

and r and j (S4 and S5) is allowed by the A-relations between them. Case (ii) allows a

user-centric activation-time constraint on role rn because of the relation (s trn), (rn
tj).

Cases depicted in (iii) do not retain original hierarchical properties, not even when no

constraint is added for the new role (S1). The main reason is the introduction of an I-

relation that removes the original activation semantics.

86

s

j
r

Role to be added

s

j

s

r

j

s

r

j

s

r

j

r

(i) (ii) (iii)

S1, S2, S2 S3

s

j
r

Role to be added

s

j

s

r

j

s

r

j

r

s

r

j

(i) (ii) (iii)

s

r

j

s

r

j

S1, S2, S2 S3

 (a) (b)

s

j
r

Role to be added

s

j

s

r

j

s

r

j

s

r

j

r

s

r

j

(i) (ii) (iii)

S1, S2, S2 S3

 (c)

Fig. 4.11. Addition of a new role r between roles s and j

Fig. 4.11(b) depicts the addition of role rn when (s≥tj) is in Ho. Because of the new

relation (s trn) for case (i), we see that C2r is satisfied for some scenarios as s and j are

related by an I-relation in Ho only. Furthermore, (s trn) allows the permission-centric

activation constraint on rn and DSoD constraints on s and rn (S 4 and S5). Cases depicted

in Fig. 4.11(b)(ii) maintain the original derived relation (s≥tj). These choices allow

defining a user-centric activation time constraint on role rn (S3). Cases depicted in Fig.

4.11(b)(iii) either introduce an A-relation between s and j, which is not present in the

original hierarchy, or makes them hierarchically unrelated, removing the original I-

relation between s and j. Hence, such transformations do not satisfy any criteria.

(a)

87

Fig. 4.11(c) depicts the addition of role rn when (s trn) is in Ho. Choice (i)

introduces an A-relation between s and rn, removing the I-relation between s and j; thus,

only C2r instead of C2 can be satisfied for some scenarios. Choice (ii) retains the original

relation between s and j and hence is the most accurate transformation. However, there is

more restriction on choice (ii) in terms of what constraints can be defined for rn than in

choice (i). In the choices depicted in (iii), the I-relation between s and j is completely

removed, hence no transformation is possible.

4.4.2 Role Deletion

When a role is deleted from a hierarchy, the crucial issue is what to do with the

permissions associated with it and the users assigned to it. Generally, we can expect to

require that the permissions be retained in the system, and thus making them available

through other roles in the hierarchy. This requires redistributing the permissions

associated with the deleted role to other roles in the hierarchy, and reassigning the users

originally assigned to the deleted role. We identify the following three approaches for a

deletion of a role from a hierarchy: (1) the first approach is to reassign the permissions of

the deleted role to its immediate seniors; (2) the second approach is to reassign the

permissions of the deleted roles to its immediate juniors; and (3) the third approach is to

reassign the permissions of the deleted role to each of the senior roles through which the

permissions of the deleted role can be acquired within the original hierarchy. One key

problem with these approaches is the reassignment of the users who were originally

assigned to the deleted role. Any reassignment will result in a privilege escalation of

some users assigned to roles in the hierarchy. The third approach is ad-hoc and defeats the

purpose of a hierarchy structure. In practice, this approach may be applicable when the

whole hierarchy needs to be restructured. We do not discuss the third approach further.

Let Ho be the original hierarchy and Hn the new hierarchy obtained by deleting

role r. Furthermore, let Ur and Pr be the sets of users and permissions explicitly assigned

to role r. For each immediate junior j of r, let Uj be the set of users assigned to j. Let s be

an immediate senior of r. Table 4.8 depicts different cases of transformations for the first

and the second approaches that attempt to meet the criteria C1 and C2 introduced earlier.

As shown in the table, privilege escalation of users in Ur occurs in the first

approach as they are assigned to senior roles, whereas that of users in Uj occurs in the

second approach, as the permissions associated with the senior role are assigned to role j.

88

The table further shows what the appropriate transformations are for different sets of

relations between s and r, and r and j in Ho.

Table 4.8

Deletion of a role using approaches 2 and 3

 The First Approach The Second Approach

For r<f>j∈ Ho,
<f> is

For s<h>r∈ Ho,
<h> is

For s<f>j∈ Hn,
<f> is

(for appropriate
transformation)

For s<f>r∈ Ho,

<h> is

For s<f>j∈ Hn, <f> is

(for appropriate
transformation)

I-hierarchy (≥t) no relation I-hierarchy (≥t) none appropriate

A-hierarchy � � t ✁ A-hierarchy � � t ✁ A-hierarchy � � t ✁ A-hierarchy � � t ✁ A-hierarchy � � t ✁
IA-hierarchy � ✁ t) A-hierarchy � � t ✁ IA-hierarchy � ✁ t) A-hierarchy � � t ✁

(restrictive)

I-hierarchy (≥t) any I-hierarchy (≥t) any I-hierarchy (≥t)

IA-hierarchy � ✁ t) for any <h> <h> for any <h> <h>

Reassignments→ Ur and Pr are assigned to role s Ur and Pr are assigned to role j

Result of
reassignment →

Privilege escalation for users in Ur Privilege escalation for users in Uj

Fig. 4.12 depicts various transformations when (r tj)∈ Ho under the first

approach. Note that s may be related to its immediate senior by any of the three

hierarchical relations. To show the overall picture, we include roles x, y, and z as seniors

of s with respect to I, A and IA-relations, respectively. Let <h> be the original relation

between s and r. When <h> is an I-hierarchy, s and j are not hierarchically related, as s

does not inherit j’s permissions. Neither is any user assigned to s or its seniors able to

activate j in Ho. Hence, case (i) in Fig. 4.12(a) (i.e., “no relation” between s and j) retains

the original derived relation between s and j, also indicated in the table. The choices (ii),

(iii) and (iv) in Fig. 4.12(a) result in undesirable situations as each one makes something

possible that was not originally possible. Similarly, when <h> is an A or IA-hierarchy, s

and j have a derived relation (s tj). Hence, as shown in figures 4.12(b) and 4.12(c), after

the deletion of role r, we can introduce the direct relation (s≥tj) or (s tj). We note that

after the deletion of role r, if we have (s tj), it makes the inheritance of j’s permissions

by s possible, something that was not originally allowed.

89

P rs

j

yx z

P r s

j

yx z

s

j

yx z

P rs

j

yx z

P r

(a) h is an I-hierarchy

s

j

r

yx z

P r

h s

j

yx z

P r s

j

yx z

P r

(b) h is an A-hierarchy (c) h is an IA-hierarchy

(i)

(ii) (iii) (iv)

Original

 Fig. 4.12. Deletion of role r when (r tj)

The cases for (r≥tj) or (r tj) in Ho can be similarly explained. When (r≥tj) ∈ Ho, for all

relations between s and r, the resulting relation between s and j will be (s≥tj) as shown in

the table. It is straightforward to see that it is so when h is an I-relation. If <h> is an IA-

relation, then (s≥tj) is the derived relation in Ho; hence after the transformation, the

relation is maintained. However, if <h> is an A-relation, then the original relation

between s and j would be (s{r}≥tj). If in the transformed hierarchy we use relation (s≥tj),

then users who can activate s still cannot activate j, but still can acquire j’s permission,

now by activating s in place of the deleted role r. Hence, the semantics about a user not

being able to activate it but acquire its permission by activating some senior role is still

present in the hierarchy with the new relation (s≥tj). It is, however, to be noted that this

transformation affects the original relations between j and role s or those above it. The

change is in terms of what needs to be activated to acquire j’s permission.

Various cases for the second approach can be similarly explained. The key

difference is when (r tj) ∈ Ho. Here, if (s≥tr) ∈ Ho, no hierarchical relation between s

and j can be derived in Ho; hence, we cannot have any relation between s and j. However,

“no relation” between s and j means that the permission set Pr, now assigned to j, cannot

be used by any user who can activate s. Note that in Ho, a user who can activate s can also

90

activate r and hence acquire Pr. For this case, therefore, there is no appropriate

transformation. Similarly, if (s tr) ∈ Ho, the only possible new relation is (s tj).

However, it is somewhat restrictive in the sense that, in Ho, a user, u, who can activate s

need not explicitly activate j to acquire its permission. But in Hn, u needs to activate j to

acquire its permission.

4.4.3 Role Partition

Sometimes it is essential that an existing role be simply partitioned to change the

semantics of the hierarchy. In particular, partitioning may indicate the requirement for

separating the role’s permissions into different subsets. We identify the following three

ways to partition a role: (1) vertical partitioning: here a role is partitioned into a set of

new roles that form a linear path with the permission set of the old role distributed among

the new roles; (2) horizontal partitioning: here the role’s permission set is partitioned into

a number of disjoint sets, each of which is assigned to a new role; the new roles do not

have any hierarchical relations between them; and (3) hybrid partitioning: here both

vertical and horizontal partitioning are applied on the role resulting in an arbitrary

hierarchy over the new roles. Fig. 4.13 illustrates these partitions.

s

j

r

s

r2

r1

j

r3

s

r2r1

j

r3

s

r2r1

j

r3

Vertical Partition Hybrid Partition

Horizontal Partition

Fig. 4.13. Partitioning a role r into three roles r1, r2 and r3

In each case, the set of new roles replaces the partitioned role in the hierarchy.

Once a role is partitioned, it is possible that an administrator completely redefine the

hierarchical relationships in the part of the hierarchy above the partitioned role. Such a

case requires offline redesign of the system. However, it may be required that the original

hierarchical semantics as defined by criteria C1 and C2 (see Table 4.5) do not change.

91

Table 4.9 lays out various transformation characteristics of the three approaches. Here,

role r of the original hierarchy Ho is partitioned into a set of new roles RP = {x1, x2, ...,

xn}. As usual, let s and j represent a senior and a junior of r.

Table 4.9

Transformation characteristics for different approaches to role partitioning

Role r ∈ �����	(Ho)
is partitioned into

RP = {x1, x2, ..., xn}
⊂ ����	(Hn)

Vertical Partition
Horizontal
Partition

Hybrid Partition

L = (RP, <f>)
(i.e. forms linear path)

if then

(s≥tr),
(r<h>j)∈ Ho,

or (s ✁ tr),
(r≥tj)∈ Ho

<f>∈ {≥t, ✁ t}

(s ✁ tr),
(r ✁ tj)∈ Ho or

(s ✁ tr),
(r � tj)∈ Ho

<f>= ✁ t

1
Hierarchy

characteristics

(s � t r),
(r<h>j)∈ Ho

<f>∈ { � t, ✁ t}

No pair is
hierarchically

related

H = (RP, [f]) = {LH1,
LH2, ..., LHn} for n >

1(i.e. a hierarchy which i s
not a linear path) such that

����	(LHi)⊂ RP

Condtion:

if s<f>j is a derived
relation in Ho then at

least one linear path LHi
must allow deriving
relation s<h>j in Ho.

2
Reassignment

of Ur
For all u∈ Ur,

u is assigned to x1

For all x∈ RP,
u∈ Ur, u is

assigned to x

For all x∈ {SLH1, SLH2, ...,
SLHn }, u∈ Ur,

 u is assigned to x

3
Relation with s

where
(s<f>r)∈ Ho

s<f>x1
For all x∈ RP,

s<f>x

For all x∈ {SLH1, SLH2, ...,
SLHn },
 s<f>x

4
Relation with r

where
(r<f>j)∈ Ho

xn<f>j
For all x∈ RP,

x<f>j

For all x∈ {JLH1, JLH2, ...,
JLHn },
x<f>j

Row 1 shows various hierarchy characteristics associated with the roles in RP. As

already indicated above, in vertical partitioning, the new roles form a linear path. The

linear path can be a monotype in order to retain original hierarchy semantics. As shown in

the table, if originally (s≥tr), (r<f>j)∈ Ho, or (s tr), (r≥tj)∈ Ho, then in the new hierarchy

Hn, the monotype hierarchy over the roles in RP should be of type ≥t or t. This is

necessary to retain the original derived relation (s≥tj) in the transformed hierarchy. If

(s tr), (r tj)∈ Ho or (s tr), (r tj)∈ Ho, then the new linear path over the roles in RP

92

should be of type t or t. Similarly, if (s tr), (r<h>j)∈ Ho, then the new linear path over

the roles in RP should be of type t.

The original semantics as defined by criteria C1 and C2 are ensured in the vertical

partitioning by these transformations and by the new relations defined in rows 3 and 4.

For horizontal partitioning, the roles in RP are not hierarchically related. For hybrid

partitioning, the roles in RP form multiple linear paths. The condition for the hybrid

partitioning states that at least one linear path must allow inferring the derived relation

s<f>j of Hn. For the linear path that maintains the original derived relation s<f>j, we can

use the transformations outlined for vertical partitioning in the if-then columns.

Entries in row 2 indicate the reassignments of the users in Ur originally assigned

to role r, to new role(s) in RP. The reassignments shown here are defined on the basis that

the original access capabilities of the users are to be retained, although privilege

escalation for some user may result from the process. In practice, this may not be the

actual case, and the relations among roles in the partition shown in row 1 may need to be

accordingly adjusted. Rows 3 and 4 indicate how the roles s and j are related to the new

roles in the partition. For a vertical partitioning approach, the original relation between s

and j is used between s and x1 (xn and j) as indicated. Note that x1 and xn are the senior-

most and the junior-most roles of the new linear path created by the roles in RP. In case

of horizontal partitioning, s and j are made senior and junior of each of the roles in RP.

The case for hybrid partitioning is similar to that of the horizontal partitioning except that

the role s is made senior to the senior-most roles of each of the linear paths formed over

the roles in RP, whereas j is made the junior of each of junior-most roles of these linear

paths.

As indicated above, the need for such partitioning is primarily to restructure or

redistribute permission sets in a hierarchy. Another reason for doing such partitioning

may be because of the temporal properties. For example, a role may need to be vertically

partitioned to arrange the temporal properties in such a way that the intervals associated

with a senior role contain the interval associated with the junior roles. Similarly, a

horizontal partition may need to be done to create roles with distinct nonoverlapping

intervals. Furthermore, a hybrid partitioning may be needed to properly structure very

complex temporal properties. An analysis of such partitioning based on temporal

properties will be considered in detail in a slightly different context in Chapter 7.

93

4.5 Conclusions

In this chapter, we have presented an analysis of hybrid temporal role hierarchies

for the GTRBAC model. We have introduced the notion of a uniquely activable set of a

hierarchy that identifies access capabilities of a user assigned to a role in a hierarchy in a

single session. The formal results we have presented allow determining uniquely

activable sets for hybrid temporal role hierarchies and provide a basis for controlling

privilege distribution to the users by restricting activable sets associated with the roles

they are assigned to. The results related to the AC-equivalence between different role

hierarchies also show that, in cases where the principle of least privilege is not a concern,

a monotype hierarchy may be used. Furthermore, as an A-hierarchy does not allow direct

permission-inheritance, the results show that the A-hierarchy provides the most needed

flexibility. In particular, an A-hierarchy allows DSoD constraints to be defined on

hierarchically related roles. Furthermore, the inherit-all-permission semantics of I-

hierarchy as well as IA-hierarchy has several pitfalls in terms of their ability to handle

many organizational control principles [Mof98].

We have also introduced a set of inference rules which can be employed to infer

hierarchical relationships between pairs of roles that are not directly related. We have

formally showed that the set of inference rules is sound and complete. In a complex

hybrid hierarchy, these rules provide a formal basis for analyzing the permission

acquisition and role activation semantics. We have also introduced the notion of

conditioned derived relation which augments the three hierarchies (I, A and IA-

hierarchies) and facilitates capturing much fine-grained derived permission acquisition

and activation semantics within a hierarchy.

We have also addressed the issue of hierarchy transformation with respect to role

addition, deletion, and partitioning. These transformations essentially form the basis for

policy evolution in an organization. It is to be noted that transformations that retain

original hierarchical semantics in a hybrid hierarchy need to be based on what type of

additional role constraints exist or will be added in the hierarchy.

The results presented in this chapter provide a formal basis for developing

administrative tools for the management of GTRBAC systems. Such security

administrative functions are crucial for a well-planned, timely control of unauthorized

accesses as well as for distributing least access capabilities to users in order to allow them

to carry out their activities and at the same time minimize damage that may be caused by

misuse of privileges.

94

5. CARDINALITY, DEPENDENCY AND SEPARATION OF DUTY

CONSTRAINTS

Cardinality and SoD constraints are crucial for securing many applications in a

commercial environment. Many researchers have highlighted the importance and use of

cardinality and SoD constraints in RBAC models. However, no one has addressed the

time-based cardinality and SoD constraints. Use of a particular constraint for a period of

time or duration is important for emerging applications as access requirements frequently

change with time. Dependency constraints are relevant to role based systems as roles

often embody organizational functions that may be inter-dependent. For instance, a doctor

in training may be allowed to work only if some senior doctor who can supervise him is

also on duty. Some aspect of dependency constraints, such as history based access

control, operational SoD, etc., have been mentioned in general access control literature

[Sim97], but they have not been adequately addressed for general RBAC systems. Such

dependency constraints have been well-recognized in workflow systems where workflow

tasks have inherent dependencies.

In this chapter, we focus on these constraints within the GTRBAC modeling

framework. The key contributions of this chapter are as follows:

• We introduce a generic framework for expressing a wide range of time-based

cardinality constraints with the help of GTRBAC status predicates, a function to

evaluate these predicates, and a projection operator that extracts a set of elements

from the evaluation of the predicates.

• We develop an elaborate trigger expression that can capture complex dependencies

among events and conditions. In particular, we define CFD constraints that can be

used to express stricter control flow dependencies. Furthermore, we show that the

trigger framework and the CFD constraint expressions can be easily extended to

provide an elaborate time-based RBAC model for context-based access control.

• We identify a large set of possible SoD constraints using the GTRBAC status

predicates. These SoDs subsume the SoDs that have been identified in the RBAC

literature, and at the same time provide a much finer modeling capability. In

95

particular, extended with a temporal dimension, these SoDs can provide various

forms of semantics generating a richer set of fine grained SoD constraints.

5.1 Generalized Cardinality Constraint Expression

In this section we develop a framework for expressing cardinality constraints with

respect to all states of GTRBAC systems including role states, assignments states as well

as user sessions. First, we revisit the status predicates introduced in Chapter 3.

Table 5.1.

Various status predicates

Predicate(st) Evaluation

Domain(DOM)

Semantics

P:permission set, R:role set, U:user set, S:set of sessions, T:time instants, r∈ R, p∈ P, u∈ U, s∈ S, t∈ T

enabled(r, t)
R × T r is enabled at time t

u_assigned(u, r, t) U ×R × T u is assigned to r at time t

p_assigned(p, r, t) P × R ×T p is assigned to r at t

can_activate (u, r, t) U ×R × T u can activate r at t

can_acquire (u, p, t)
U ×P × T u can acquire p at t

r_can_acquire (u,p, r, t) U ×P × R ×T u can acquire p through r at t

can_be_acquired(p, r,t) P × R ×T p can be acquired through r at t

active(r, t) R ×T r is active in at t

u_active(u, r, t) U × R ×T r is active in u’s session at t

us_active(u, r, s, t) U ×R × S ×T r is active in u’s session s at t

acquires(u, p, t) U ×P ×T u acquires p a timet t

r_acquires(u, p, r, t) U ×P × R ×T u acquires p through r at t

s_acquires(u, p, s, t) U ×P × S ×T u acquires p in session s at t

rs_acquires(u, p, r, s, t) U ×P × R × S ×T u acquires p through r in session s at t

96

Table 5.1 lists all the possible GTRBAC status predicates. The non-temporal

counterparts of each predicate can be simply obtained by removing the time parameter. A

non-temporal predicate s simply indicates that its corresponding temporal predicate st

applies at all times, i.e., s →∀ t, st. Inversely, st means that status predicate s holds at

time t. The second column of Table 5.1 specifies the evaluation domain for the predicates

in the first column. The third column describes the semantics of the predicate. The

axioms, as introduced in Chapter 4, capture the key relationships among various

predicates in Table 5.2 and provide the basis for defining precisely the permission-

acquisition and role-activation semantics of a GTRBAC system.

Table 5.2.

Relations among predicates

1 can_acquire (u, p, t) ↔ ∃ r ∈ R, r_can_acquire (u, p, r, t)

2 active (r, t) ↔ ∃ u ∈ U, u_active (u, r, t)

3 u_active (u, r, t) ↔ ∃ s ∈ S, us_active (u, r, s, t)

4 acquires (u, p, t) ↔ ∃ r ∈ R, r_acquires (u, p, r, t)

5 acquires (u, p, t) ↔ ∃ s ∈ S, s_acquires (u, p, s, t)

6 acquires (u, p, r, t) ↔ ∃ s ∈ S, rs_acquires (u, p, r, s, t)

7 acquires (u, p, s, t) ↔ ∃ r ∈ R, rs_acquires (u, p, r, s, t)

5.1.1 Predicate Evaluation Function and Projection Operator

Next, we formulate a general framework for expressing cardinality constraints by

using the status predicate. This allows us to define cardinality constraints with respect to

any state of a GTRBAC system. For this purpose, we use a predicate evaluation function

and a projection operator over the result of the evaluation function to extract information

about users, roles, permissions, sessions, and time. The predicate evaluation function �
��

returns the subset of the evaluation domain of the predicate specified as its argument. The

projection operation Ππ1, π2, .., πm projects over the specified set of elements from the

evaluated domain. Ππ1, π2, .., πm is similar to the projection operator in relational calculus.

The two functions are defined as follows:

Definition 5.1.1(�
����Πi): Let st(alist) be a status predicate, where alist is a list

of arguments a1, …, ai, …, an associated with domains D1, …, Di, …, Dn, respectively

97

(∀ j∈ {1, ..n}, Dj ∈ {R, P, U, S, T}) . If DOM is the evaluation domain of st(alist), then we

define evaluation function �
�� and projection operator Ππ1, π2, .., πm as follows:

• �
��(st(alist))={(x1, …, xi, …, xn) | ((x1, …, xi, …, xn) ∈ DOM) ∧ st(x1, …, xi, …, xn)}

• Ππ1, π2, .., πm�
��(st(alist))={(xπ1, xπ2 .., xπm) | {π1, π2, …, πm} ⊆ {1, 2, …, n}; ∀ xπi∈ Dπi,;

and for all pairs (x1, x2… , xn), (y1, y2… , yn) ∈ �
��(st(a1, … ai-1, ai, ai+1,…, an)), xj =

yj for all j ∈ {1, 2, …, n}/{π1, π2, …, πm};

moreover, for all such j we replace the argument by its constant value in quotes; i.e.,

we denote a constant value x∈ D by “x” in the argument list}.

Evaluation function �
�� returns the subset of the evaluation domain

corresponding to the predicate that it evaluates. For instance, �
�� (enabled(r, t)) is a

subset of domain (R × T). Similarly, Ππ1, π2, .., πm allows us to project the evaluation of a

predicate over a particular argument indexed by i. For instance, Π1�
��(enabled(r,

“t”)) returns the set of all roles that are enabled at time “t”. Similarly,

Π2�
��(enabled(“r”, t)) returns the set of all time instants at which role “r” is enabled.

Let us denote the set of all projection functions over the predicates defined in Table 5.2 as

Π. Note that we can also have evaluation of the negation of the predicates of Table 5.2,

for instance, Π1�
�� (¬enabled(r, “t”)). Π-1 denotes the set of projection operators

over negated predicates. Based on these projection operators and the original set of set

elements
���={R, U, P, S, T}, we build a framework for expressing an exhaustive set of

cardinality constraints as follows. Let
� ∈ {∪ , ∩, ⁄ } be a set operation; then we have a

generic set function f as follows:

�� f ∈ (Π�∪ Π-1���

�� f = (f
� X), where X ⊆ E ∈ �
���;�

3. f = (f1
� f2), where f1 and f2 are generic set functions.

We can express a cardinality constraint as (|f| ��� n), where |f| is the number of elements

in set f, ��� ∈ {=, ≠, <, >, ≥, ≤} is a comparator operator, and n is a positive number.

Some examples of the cardinality constraint expressions are shown in Table 5.3. It is to

be noted that while projection operators in Π make sense in a general context (as shown

in Table 5.3), those in Π-1 may not have a clear meaning. Therefore, care should be taken

in constructing cardinality constraints based on them. For example, the function

Π2�
��(¬u_active(“u”, r, “t”)) refers to a set of roles that are not active in any of

user u’s sessions at time t. Hence, |Π2�
��(¬u_active(“u”, r, “t”))| ≤ n states that

the number of roles not active in any of user u’s sessions at time t cannot be more than n.

98

However, it is not clear whether it is n out of those that u can activate or out of those in R.

Depending upon the application, a distinction may need to be made a priori. For instance,

we can say that, “by default, out of those that u can activate”. Furthermore, we note that

some cardinality constraints of type C = (|Ππ1, π2, .., πm�
��(st(plist))| ��� n) may not have

direct application in a general RBAC framework. For example, Π1�
��(s_active(u,

“r”, “s”, “t”)) (set of users that have activated r in session s at time t) associates

multiple users with the same session. Such cases may be useful if we consider a

collaborative system where a session is created with multiple active users.

Table 5.3.

Examples of cardinality constraints

1 |Π1�
��(enabled(r, “t”)| ≥ n
Number of roles enabled at time

“t” cannot be less than n

2 |Π1�
��(¬enabled(r, “t”)| ≤ n
Number of roles disabled at time

“t” cannot be more than n.

3 |Π2�
��(u_assigned(“u”, r, “t”))| ≤ n
Number of roles assigned to “u” at

time “t” cannot be more than n

4 |Π2�
��(can_activate(“u”, r,"t”))| ≤ n)
Set of roles that u can activate at

time t cannot be more than n.

5 (Daytime,|Π1�
��(u_assignedSet(u,“Nurse”, t)| ≤
n)

Number of users assigned to Nurse
role in Daytime cannot exceed n

5.1.2 Time Based Cardinality Constraints

Periodicity and duration constraints on a cardinality constraint C = (|f| ��� n) can

be simply defined using the GTRBAC temporal framework as (I, P, C), which indicates

that the cardinality constraint is valid for each instant in intervals defined by (I, P), and as

([I, P,| D], Dx C), with Dx indicating the duration in which the cardinality constraint is

valid. However, the different semantics may need to be attached to its interpretation. To

illustrate these possible interpretations, we first present the cardinality constraint in a

single interval, say τ:

Definition 5.1.2 (Interval-constraint on Cardinality): Let C =(|Ππ1, π2, ..,

πm�
��(st(plist))|��� n)be a cardinality constraint and τ an interval. Then, C can be time-

constrained within τ in the following ways:

99

1. Weak form: (τ, CW) is said to be a weak form of time-based cardinality constraint

if the following is satisfied:

∀ t ∈ τ, i ∈ {1, 2, .., m}, (πi = t) ∧ (|Ππ1, π2, .., πm�
��(st(plist))|��� n)

2. Strong form: (τ, CS) is said to be a strong form of time-based cardinality

constraint if the following is satisfied:

(�

∈ τt

|Ππ1, π2, .., πm�
��(st(plist)|)���� n

Note that the difference between the two forms is that, in the weak form, the

cardinality constraint is defined with respect to each instant in the specified interval. For

example, if the cardinality constraint is ((9am-9pm), (|Πu =”Smith” �
��(u_assigned(u,

r, t)| ≤ 5)W), then it implies that at each time unit between 9am and 9pm, the user Smith is

assigned to not more than five roles. At different time units, Smith may be assigned

different roles. In contrast, the strong form, ((9am-9pm), (|Πu =”Smith”

�
��(u_assigned(u, r, t)| ≤ 5)S) would mean that, between 9am and 9pm, the total

number of roles assigned to Smith, simultaneously or otherwise, should be less than or

equal to five.

Next, we extend these forms to provide differing semantics for periodicity

constraints.

Definition 5.1.3 (Periodicity constraint on Cardinality): Let C =(|Ππ1, π2, ..,

πm�
��(st(plist))|��� n)be a cardinality constraint and (I, P) be a periodicity expression.

Then, C can be time-constrained in (I, P) in the following ways:

1. Weak form: (I, P, CW) is said to be a weak form of time-based cardinality

constraint if the following is satisfied:

∀ τ ∈Π (I, P), (τ, P, CW)

Alternately, (I, P, CW) can be expressed as:

∀ t ∈ Sol(I, P), i ∈ {1, 2, .., m}, (πi = t) ∧ (|Ππ1, π2, .., πm�
��(st(plist))|��� n)

2. Strong form: (I, P, CS) is said to be a strong form of time-based cardinality

constraint if the following is satisfied:

100

∀ τ ∈Π (I, P), (τ, P, CS)

3. Extended Strong form: (I, P, CEW) is said to be a strong form of time-based

cardinality constraint if the following is satisfied:

(�

∈),(PISolt

|Ππ1, π2, .., πm�
��(st(plist)|)���� n

Note that the weak periodicity constraint implies that in each of the recurring

intervals, the weak interval-constraint semantics applies. Similarly, the strong periodicity

constraint implies that for each recurring interval of the periodic expression, the interval-

constraint applies. It is also intuitive to extend the strong interval-constraint on cardinality

to all the time instants of the periodic expression. We refer to this as the extended strong

form.

5.2 Extended Triggers and Control Flow Dependency Constraints

Another set of constraints that are often needed in the commercial systems is that

of dependencies between roles and other events associated with RBAC entities.

GTRBAC provides a trigger mechanism that can be used to express some dependency

constraints. However, there are much stricter forms of dependency constraints known as

control flow dependency (CFD) constraints, which are needed in various applications. In

this section, we extend the original GTRBAC triggers and define the CFD constraints

using extended triggers.

5.2.1 Extended GTRBAC Triggers

The basic trigger expression of GTRBAC is of the form: (E1 ,…, Em, C1 ,…, Ck

→ pr:E after t), where Ei is an event and Ci is a status condition. Semantically, it

means that the prioritized event pr:E with priority pr can take place t time units after

the trigger fires. The definition, however, is limiting in the following ways: (1) it only

allows scenarios in which all the antecedent events E1,…, and Em occur at the same time

and all the conditions C1 ,…, and Ck hold; it does not allow capturing history information

in which events are spread in the temporal dimension; (2) it does not allow specifying

temporal intervals in which the occurrence of an event Ei can take place, or a condition

101

Ci is satisfied; (3) it is possible that in some cases a condition Ci must be valid for a

specified duration before triggering the event E; such a requirement is also not captured

by the current triggers; and (4) the current trigger considers that E ≠ s:activate r

for u; this needlessly prevents specifying any preconditions for activation events. In

some cases, an activation request may need to be granted only if certain conditions have

been satisfied. We define the extended trigger form, which is temporally more expressive

than the current GTRBAC triggers and does not have the above limitations, as follows:

Definition 5.2.1 (Extended Triggers): The extended trigger expression has the

following form:

(E1 in π1) op1 … opm -1 (Em in πm) op m (C1 in τ1 for d1) opm+1… opm+n-1 (Cn in τn

for dn) → pr:E after t for d, where

• Eis are simple event expressions or run time requests; and Cis are GTRBAC status

expressions,

• pr:E is a prioritized event expression with priority pr.

• If (E =s:activate r for u) is an activation request at time ta ≥ (t + t) then

u_active(u, r, s, t) is true in the interval (ta, ta+ d), provided that the trigger

fires at time t,

• the trigger is fired if τi (πi) is an interval such that there exists a t ∈τ i (πi) at which Ci

(Ei) becomes valid, and Ci remains valid for duration di; we simply write “Ci in τi” to

mean that there exists a t ∈ τi at which C i is valid for some duration; we write “Ci at

t” (“Ei at t”) instead of “Ci in τi” (“Ei in t”) when τi (πi) = (t, t); we write “Ci for

di” to mean that Ci is valid for some duration di.

• t is the duration between the firing of the trigger and the occurrence of the event E,

and d is the duration for which the event E remains valid. If not specified, t = 0,

and d = ∝ opi ∈ {∨ , ∧ } and ∧ has precedence over ∨ . For simplicity, we use “,” to

denote the ∧ operator and “|” to denote the ∨ operator.

We note that the old trigger form cannot be used to specify the temporal

information such as “Ei in πi” or “Ci in τi”. The earlier form is actually a special case of

the extended form, in which all the antecedent events and conditions are associated with

the same time instant. That is, for any t,

102

 E1 at t,.., Em at t, C1 at t,.., Ck at t → pr:E after t, (a)

The duration information d associated with the triggered event E in the

extended trigger simplifies specification but does not increase the expressive power over

the earlier form. The following trigger:

 E1 at t,…, Em at t, C1 at t,…, Ck at t → pr:E after t for d (b)

is semantically equivalent to the combination of the following two old triggers

1. E1 ,…, Em, C1 ,…, Ck → pr:E after t,

2. E → pr’:Conf(E) after d, where Conf(E) is the conflicting event of E and

pr’ ≥ pr.

We note that the triggers of form (a) (one with “at tn” phrase) can represent the

extended form (one with “in πm” phrase); however, it is easy to see that the extended

form achieves compaction in expression over the form (a). For instance, the extended

trigger form without the “for d1” part can only be represented by using multiple triggers

of form (a), each with a permutation of time instants from π1, π2,…, πm, τ1, τ2,…, τn.

Similar compaction is achieved by the use of the two logical operators.

Note that triggers allow GTRBAC events and status conditions only. However, it

can easily be extended to include other events and conditions. For instance, condition Ci

can be any predicate expression that evaluates contextual information that affects access

control decisions. Consider the following trigger:

(Location(x) = “EmergencyRoom”) | (situation ()= “LifeThreatening”) →

pr:E enable EmergencyDoctor

Here, if the room, indicated by variable x, is EmergencyRoom, or the current

situation is LifeThreatening then the EmergencyDoctor role is enabled, thus capturing

environmental context. Similarly, we can allow event E to be any system related event.

With a predefined set of predicates to capture static as well as dynamic environmental

conditions and events, the extended GTRBAC trigger framework can easily provide a

very elaborate support for context-based access control.

103

5.2.2 Control Flow Dependency Constraints

Control flow dependency (CFD) constraints often occur in task-oriented systems

and are stricter forms of dependency constraints than those that can be expressed using

GTRBAC triggers. The following example illustrates such CFD constraints.

Example 5.2.1: Consider the following requirements: (1) a junior employee

of an office is allowed to activate the Junior_Employee role in the system only if his

manager has activated the Manager role; (2) whenever a system administrator makes

some changes in the system, the activation of the SysAdmin role that he uses must

enable the SysAudit role so that another user can activate the SysAudit role and log

those changes. The SysAudit role may need to be activated by the user within the next

τ minutes; (3) everyday, if both the roles SysAdmin and SysAudit are activated, then

the SysAdmin role must be activated before the SysAudit role.

The three requirements imply (1) pre-condition, (2) post-condition and (3)

precedence constraints. Next, we show that GTRBAC does not adequately model these

constraints, but we can semantically define CFDs in terms of these triggers.

Pre-condition Constraints

A pre-condition constraint between two events essentially implies that an event

can occur only if the other event has already occurred and/or the required conditions have

already become true, as in the first case above. The following trigger closely resembles

the pre-condition constraint (1):

s:activate Manager for John → enable Junior_Employee

(Assume that John is the manager)

However, the “only if” semantics of the pre-condition constraint requires that

there be no other events that will enable the Junior_Employee role; i.e., the

Junior_Employee role is not enabled if John does not activate the Manager role. This

means the above trigger can enforce the pre-condition constraint only if we also enforce

the additional restriction that no other constraint or trigger allows the enabling of the

104

Junior_Employee role. However, GTRBAC’s trigger mechanism currently does not

imply such an additional restriction; hence, it falls short in providing support for the pre-

condition constraint. For instance, in addition to the above trigger, assume that we also

have the following periodicity constraint:

Everday between 9am and 6pm, enable Junior_Employee

The presence of this periodicity constraint does not allow the above trigger to

enforce the pre-condition constraint as it allows the role to be enabled even if the

Manager role is not enabled.

Post-condition Constraints

A post-condition constraint between two events essentially implies that if an event

occurs or a condition is satisfied, then the other event also must occur, as indicated in the

second case in the example above. Here, if the SysAdmin role is enabled then the

SysAudit role must also be enabled; otherwise, it may incur certain security risks.

However, the activation of the SysAudit role may also be triggered by other events in the

system. In essence, the post-condition constraint will not be enforced if there are some

other triggers or constraints that do not allow the SysAudit role to be enabled even

though the SysAdmin role has been enabled. Thus, it is easy to see that the following

trigger:

enable SysAdmin → enable SysAudit

enforces the post-condition constraint only if the system additionally makes sure that

there are no other constraints or triggers that prohibit enabling of the SysAudit role when

this trigger fires; this cannot be expressed using GTRBAC triggers.

Precedence Constraints

A precedence constraint is said to exist between two events if there is a condition

that if the two events occur, then one must always precede the other, as shown in

requirement (3). Another real world scenario in which such a precedence semantics

applies is a pair of tasks involving authorizing a check and cashing it. It is easy to see

that such precedence semantics is not enforced by triggers alone.

105

Next, we formalize the syntax and semantics of the CFD constraints in GTRBAC

using triggers. In the definitions we will use (ts, te), such that (ts, te) is in an interval of (I,

P), or (ts, te) is some duration D. For (ts, te) = D, ts is the time instant when D starts and is

non-deterministic. A constraint c = (D, C) needs to be enabled by a trigger or a runtime

event. Assume that T is the set of all GTRBAC constraints and Causes(c, pr:E, t) is a

predicate that evaluates to true if there is a constraint c in T which causes event pr:E to

fire at time t. Furthermore, we use Y to denote the left hand side of a trigger expression,

i.e.,

Y =E1 in π1, …, Em in πm, C1 in τ1 for d1,…, Cn in τn for dn

The following precedence rule is applied in a GTRBAC system - if there are

conflicting pairs of events (e.g., assign and deassign, activate and

deactivate, etc.) then the negative event takes precedence (e.g., deassign takes

precedence over assign) if the priority of the two events are the same; otherwise the

higher priority event takes precedence.

Definition 5.2.2 (Pre-condition constraint): The pre-condition constraint is

expressed as ([I, P|D,] pre, Y, pr:E after t for d). Semantically, to say that ([I,

P|D,] pre, Y, pr:E after t for d) ∈ T is equivalent to saying that:

1. (Y → pr:E after t for d) t ∈ T is an extended-trigger, and

2. ¬∃ c ∈ T s.t. (∀ tx ∈ (t + t, t + t + d) and pr’≥ pr, Causes(c, pr’: E, tx)) is

true for pr’≥ pr.

Definition 5.2.3 (Post-condition constraint): The post-condition constraint is

expressed as ([I, P|D,] post, Y, pr:E after t). Semantically, to say that ([I, P|D,] post,

Y, pr:E after t for d) is in T is equivalent to saying that:

1. (Y → pr:E after t for d) t ∈ T is an extended-trigger;

2. ¬∃ c ∈ T s.t. ∀ tx ∈ (t + t, t + t + d), Causes(c, pr’: ����(E), tx) is true

for pr’≥ pr.

Note that condition (2) in each definition ensures that the additional conditions

required for the two CFDs, as discussed earlier, are enforced. Next, we define a

precedence constraint, which relates two events. We can also define a CFD with “if and

only if” by combining the above two constraints. Next we define a precedence constraint

that essentially relates two events.

106

Definition 5.2.4 (Precedence constraint): Let pr1:E1 and pr2:E2 be prioritized

events such that ([I, P|D,] prec, pr1:E1, pr2:E2 after t), i.e. pr2:E2 is precedent on

pr1:E1. Then, for all t such that t ∈ (ts, te):

([I, P|D,] precedence, pr1:E1, pr2:E2) →

(for each pair c1, c2 ∈ T,

Causes(c1, pr:E1, t1) ∧ Causes(c2, pr:E2, t2) → (te≤t1+ t ≤ t2≤ ts))

The safety notion introduced in Chapter 3 identifies scenarios that have

ambiguous execution semantics, for example, the existence of a cycling dependency

among events through triggers. The safety checking algorithm can be easily extended to

identify the violation of the CFD constraint by introducing extra checks to ensure that

additional restrictions are enforced for the CFDs. Furthermore, it is easy to see that by

using triggers, we can easily express all the 13 temporal relations between a pair of

GTRBAC events [All83]. Moreover, using CFD constraints, we can define stronger

forms of the temporal relations.

5.3 Time-Based Separation of Duty Constraints

Separation of Duty (SoD) policies have been found to be very crucial for securing

commercial applications. Role-based systems are particularly very beneficial for

expressing and enforcing such policies. Various SoDs have been identified in the

literature. However, all earlier research focus on SoDs in a non-temporal environment.

The triggers and CFD constraints introduced in the previous section can also be

used to define SoD constraints that are based on access history, such as the history-

dependent SoD, order-dependent SoDs, object-based SoDs, which are identified in

[Ahn00, Sim97]. In this section, we define various SoD constraints that cannot be

captured by such CFD constraints, some of which correspond to those already identified

in the literature. These SoDs will be defined with respect to GTRBAC status predicates

introduced earlier.

107

Table 5.4

Enabling time and assignment SoDs

SoD Type Expression (SoD)

Semantics

∀ u, u1, u2∈ ��, ∀ r, r1, r2∈ ����∀ p, p1, p2∈ ����, (u1≠ u2), (r1≠ r2) and

(p1≠ p2) the following holds:

Enabling/Disabling SoD

(I, P, EN , �) SoD ∧ enabled(r) → ¬enabled(r2) EN-SoD

 No two roles in � can be enabled at the same time

(DIS-SoD) (I, P, DIS, �) SoD ∧ disabled(r1) → ¬disabled(r2)

 No two roles in � can be disabled at the same time

User-Role assignment/de-assignment SoDs

(I, P, UAS1, �, �) SoD ∧ u_assigned(u, r1) → ¬u_assigned(u, r2) UAS-SoD1
No two roles in � can be assigned to a user in � at the same time

(I, P, UAS1, �, �) ∀ r∈ R, SoD ∧ u_assigned(u1, r, t) → ¬u_assigned(u2, r, t) UAS-SoD2
No two users in � can be assigned to a role in � at the same time

(I, P, UAS3, �, �) SoD ∧ u_assigned(u1, r1, t)
 → ¬u_assigned(u2, r2, t) UAS-

SoD3
Different users in � cannot be assigned different roles in � at the same time

(I, P, UAS4, �, �) SoD ↔ UAS-SoD2 ∧ UAS-SoD3 UAS-SoD4
Roles in � can be assigned to only one of the users in � at the same time

(I, P, UAS5, �, �) SoD ↔ UAS-SoD1 ∧ UAS-SoD3 UAS-SoD5
Users in � can be assigned only one of the roles in � at the same time

(I, P, UAS6, �, �) SoD ↔ UAS-SoD1 ∧ UAS-SoD2 UAS-SoD6
A role in � can be assigned to only one user in � (and vice versa) at the same time

Role-Permission assignment/de-assignment SoDs

(I, P, PAS1, �, �) ∀ p∈ P, SoD ∧ p_assigned(p, r1, t) → ¬p_assigned(p, r2, t) PAS-SoD1

No two roles in � can be assigned a permission in � at the same time

(I, P, PAS2, �, �) ∀ r∈ R, SoD ∧ p_assigned(p1, r, t) → ¬p_assigned(p2, r, t)
PAS-SoD2

No two permissions in � can be assigned to a role in � at the same time

(I, P, PAS3, �, �) ∀ p1, p2∈ P, SoD∧ p_assigned(p1, r1,t)
 →¬p_assigned(p2 r2, t)

PAS-SoD3

Different permissions in � cannot be assigned to different roles in � at the same time

(I, P, PAS4, �, �) SoD ↔ PAS-SoD2 ∧ PAS-SoD3 PAS-SoD4
Roles in � can be assigned only one of the permissions in ��at the same time

(I, P, PAS5, �, �) SoD ↔ PAS-SoD1 ∧ PAS-SoD3 PAS-SoD5
Permissions in � can be assigned to only one of the roles in � at the same time

(I, P, PAS6, �, �) SoD ↔ PAS-SoD1 ∧ PAS-SoD2
PAS-SoD6

Permissions in � can be assigned to only one of the roles in � at the same time

108

5.3.1 Enabling Time SoD Constraints (predicates: enabled/disabled)

The SoD constraints related to enabling and disabling events are shown in Table

5.4. EN-SoD indicates that roles from a given role set cannot be enabled at the same time.

If there are role enabling events that attempt to enable more than one role at the same

time, then the enforcement mechanism must use some criteria to enable only one of the

roles. SoD DIS-SoD is defined with respect to the role-disabling event. The difference

between them is that EN-SoD does not allow all the roles to be enabled at the same time

but allows them to be disabled at the same time, whereas DIS-SoD allows all the roles to

be enabled at the same time but does not allow them to be disabled at the same time. Role

enabling SoDs (EN-SoD) are cases where limiting access is a primary concern. Similarly,

role disabling SoD (DIS-SoD) is more useful in cases where availability is the key

concern. For example, in a hospital, a requirement may state that “Both the ���	� and

������ roles cannot be disabled at the same time”. These SoDs can be expressed in the

form of cardinality constraints introduced earlier; e.g., EN-SoD can be expressed as

|Π1�
��(enabled(r, t)) ∩ �| ≤ 1. Similarly, other SoDs defined below can also be

expressed in this form; however, we use uniformly the implication rule to provide the

semantics of these SoDs.

5.3.2 Assignment Time SoD Constraints(predicates: u_assigned, p_assigned)

Table 5.4 defines various user-role and role-permission assignment time

constraints. UAS-SoD1 indicates that multiple roles from � cannot be assigned to a user in

� at the same time. Accordingly, the roles from � can be assigned to any user not included

in �. In other words, this implies that the role set � has conflicting semantics only with

respect to the user set �. Allowing specification of such a set of conflicting roles with

respect to a particular user set provides the benefit of expressing fine-grained SoD

constraints. UAS-SoD2 states that different users of � cannot be assigned to a role in �;

i.e., the users in � are conflicting with respect to role set ��� Fig. 5.1 depicts various

assignment combinations that are not allowed by the user-role assignment constraints for

� = {u1, u2} and � = {r1, r2}. Here, a line from u to r indicates that u is assigned to r. In

general, set � can be expected to be the set Users. In Fig. 5.1, UAS-SoD1 does not allow

assignment combinations depicted in (c), whereas,�UAS-SoD2 does not allow assignment

combinations shown in (b).

109

u1 r1

u2 r2

u1 r1

u2 r2

r1

u2 r2

u1 r1

u2 r2

u1

u1 r1

u2 r2

u1 r1

u2 r2

SoD Doesn’t Allow SoD Doesn’t Allow
UAS-SoD1 (c) UAS-SoD4 (a), (b)
UAS-SoD2 (b) UAS-SoD5 (a), (c)
UAS-SoD3 (a) UAS-SoD6 (b), (c)

Fig. 5.1. User-assignment SoDs with �={u1,u2} and �={r1,r2}

UAS-SoD3 states that different users from set � cannot be assigned to different

roles. Here, � and � have conflicting semantics with respect to each other. Note that the

notion of conflict here is slightly different from that of UAS-SoD1 and UAS-SoD2.

However, this constraint allows a single user from � to be assigned to multiple roles of �,

and a single role from � to be assigned to multiple users. UAS-SoD3 does not allow the

assignment scenario depicted in (a). In a real world scenario, � of UAS-SoD3 may refer to

a set of employees who are related. The assignment of any two of these employees to

different roles will allow them to commit fraud. If, for instance, one employee is assigned

to role ��� ���!�����"������ (that�authorizes checks) and another is assigned to role

��	 �������# (for cashing authorized checks), they can easily commit fraud. Another

practical scenario in which this constraint can be applicable is when a set of roles

represents subtasks of a bigger task, with the constraint that the different users of � cannot

carry out different subtasks.

UAS-SoD4, UAS-SoD5 and UAS-SoD6 can be derived as combinations of earlier

SoDs, as shown in Table 5.1. We note that, although UAS-SoD3 allows defining

(a) (b) (c)

110

constraints such as all the subtask roles which need be assigned to the same user, it also

allows the assignment scenario (b), which may not be relevant with regards to such a

requirement. UAS-SoD4, for instance, omits the possibility of assigning all the users to the

same subtask role rendering the overall task un-accomplishable. As shown in the figure,

UAS-SoD5 prevents the set of assignments of the type shown in (a) and (c) – i.e., it allows

multiple users to be assigned to only one of the roles, such as those in Fig. 5.1(b). That is,

as soon as one of the roles, say role r, is assigned to a user, then none of the users can be

assigned to any other roles; however, role r can be assigned to any number of users. An

example of the application of UAS-SoD5 is the assignment of a given set of consultants

(set �) to the same consultancy duty (the assignment of all the users to the role

���	������
���$���%�).

The role-permission assignments have semantics similar to that of the user-role

assignments. Note that, here, we are using the notion of conflicting permission, for

example in PAS-SoD2.

5.3.3 Activation Time SoD Constraints (predicate: active)

Activation time SoD constraints are listed in Table 5.5. ACT-SoD1 implies that

activation of conflicting roles at the same time in the same session or different sessions by

a user in � is not allowed. Fig. 5.2 depicts the scenarios for � = {u1, u2} and � = {r1, r2}

when both the roles are active. Here, s: u1(r1, r2) indicates that roles r1 and r2 are active in

u1’s session s. ACT-SoD1 does not allow activation combinations depicted in figures

5.2(b) and 5.2(c). ACT-SoD2 does not allow activation of a role by conflicting users at the

same time. Similarly, ACT-SoD3 does not allow conflicting roles to be active in different

users’ sessions, as depicted in Fig. 5.2(a).

ACT-SoD4 does not allow the scenario in Fig. 5.2(c); i.e. it prevents activation of

the conflicting roles in the same session simultaneously. ACT-SoD5 does not allow

scenarios depicted in 5.2(b); i.e. it prevents the activation of the conflicting roles in the

different sessions of the same user simultaneously. ACT-SoD6 and ACT-SoD7 are

combinations of the earlier SoDs, as indicated in the table.

Fig. 5.3 illustrates the usefulness of SoD constraints ACT-SoD1 - ACT-SoD5. In

Fig. 5.3(i), roles r1 and r2 have a common set of permissions. Now suppose we allow

users u1 and u2, assigned to roles r1 and r2, respectively, to activate the respective roles at

the same time. As the read permission on the object Ox is available to both the roles, the

information that each role writes to object Ox is visible to the other. Hence, Ox opens up

111

the information flow channel between the two users. Common permissions like these may

occur explicitly, in a non-hierarchical case, or implicitly through an I-hierarchy relation

such as in the one shown in Fig. 5.3(i). In a non-hierarchical case, declaring the two roles

as conflicting and applying ACT-SoD3 is a straightforward solution if such information

flow needs to be contained.

Table 5.5

Activation time SoDs

Type SoD

Semantics

∀ u, u1, u2∈ ��, ∀ s, p1, p2∈ ����∀ r, r1, r2∈ ����∀ t ∈ Sol(I, P), (u1≠

u2), (r1≠ r2) and (p1≠ p2), the following holds:

(I, P, ACT-SoD1, �, �) ∀ u∈ U, SoD ∧ u_active(u, r1, t) → ¬u_active(u, r2, t) ACT-

SoD1 No two roles in � can be in active state in session(s) of a user in � at the same time

(I, P, ACT-SoD2, �, �) ∀ u∈ U, SoD ∧ u_active(u1, r, t) → ¬u_active(u2, r, t) ACT-

SoD2 No two users in � can have a role in � active at the same time

(I, P, ACT-SoD3 �, �) ∀ u1, u2∈ U, SoD∧ u_active(u1, r1, t) → ¬u_active(u2, r2,t) ACT-

SoD3
No two users in � can have two different roles in � active at the same time

(I, P, ACT-SoD4, �, �)
∀ u∈ U,∀ s ∈ S, SoD ∧ u_active(u, r1, s, t) → ¬u_active(u,

r2, s, t)
ACT-

SoD4

Two roles in � cannot be in active state at the same time in a single session of a user in �

(I, P, ACT-SoD5, �, �)
∀ u∈ U,∀ s1, s2∈ S, SoD ∧ u_active(u, r1, s1, t) →

¬u_active(u, r2, s2, t)
ACT-

SoD5

No two sessions of a user in � can have two roles in � active at the same time

(I, P, ACT-SoD6, �, �) SoD ↔ ACT-SoD2∧ ACT-SoD4 ACT-

SoD6 Roles in � can be active in a session(s) of only one of the users in ��at the same time

(I, P, ACT-SoD7, �, �) SoD ↔ ACT-SoD5 ∧ ACT-SoD6 ACT-

SoD7 Roles in � can be active in a single session of only one of the users ��at the same time

Kuhn [Kuh99] indicates that roles that have common permissions cannot form a

conflicting pair. We believe that such semantics is too restrictive. Moreover, with that

semantics, we indirectly impose mutual exclusion on the permission sets of the two roles.

112

This may not be what is required in practice. For example, there may be situations where

only the private permissions of a pair of roles are conflicting, but the roles may have a

common set of permissions.

(c)

s: u x (r1, r2)

(a)

(b)

s1: u1 (rx)

s2: u2 (ry)

rx, ry∈ {r1, r2};rx ≠ ry

s1: ux (r1)

s2: ux (r2)

ux ∈ {u1, u2}

ux ∈ {u1, u2}

(d)

s1: u1 (rx)

s2: u2 (rx)

rx ∈ {r1, r2}

SoD Does not allow SoD Does not allow

ACT-SoD1 (b), (c) ACT-SoD5 (b)

ACT-SoD2 (d) ACT-SoD6 (a), (d)

ACT-SoD3 (a) ACT-SoD7 (a), (b) , (d)

ACT-SoD4 (c)

Fig. 5.2. Activation time SoDs for U = {u1, u2} and R = {r1, r2}

In such scenarios, conflicting roles imply a conflicting set of private permissions

only. For example, an &$���%�� role in general can be used to group the basic set of

permissions available to all the employees of an organization. We may have two roles

such as ��� ���!�����"����� and ��	 �������#, which are both senior to &$���%��

but are considered to be conflicting; however, conflicting semantics is obviously limited

to their private permissions rather than the common permissions inherited from

&$���%��. Kuhn’s strict mutual exclusion semantics necessitates partitioning even such

basic roles in order to enforce mutual exclusion over the total sets of permissions

associated with the two roles. However, sometimes in such a scenario, common

permissions may create information flow when the private permissions of the two roles

conflict. In Fig. 5.3(i), for example, when user u1 activates role r1, and u2 activates role r2

at the same time, they can exchange information contained in O1i and O2j to each other.

ACT-SoD3 prevents such possibilities.

113

ACT-SoD1 can be used in cases where a user needs to be restricted from acquiring

permissions that give him/her enough power to carry out some activities. For example,

Fig. 5.3(b) shows two roles that contain permissions for the subtasks of a bigger task. If

we want that the same user not carry out the two subtasks, then we can employ the ACT-

SoD1 constraint. Furthermore, the roles may be organized as an A-hierarchy, where role r

represents the actual task role and is the senior of roles r1 and r2 that represent sub-tasks 1

and 2. If users from � are assigned to r and the ACT-SoD1 is defined with respect to � =

{r1, r2}, then the task can only be performed by two different users of � working at the

same time.

r e a d /w r i te

r e a d /w r i te

r e a d /w r i te

r e a d /w r i te

r e a d /w r i te

r e a d /w r i te

r b

r a

T a s k T

S u b - ta s k T 2

S u b - ta s k T 1

(i i) r a r b

r
(u 1 , u 2) a s s ig n e d to

u 2 a s s ig n e d to

r e a d /w r ite O 1 1

r e a d /w r ite O 1 2

r e a d /w r ite O 1 n

r e a d /w r ite O x

r e a d /w r ite

r e a d /w r ite

r e a d /w r ite

O 2 1

O 2 2

O 2 n

r 2

r 1

(i) r x

r 1 r 2

u 1 a s s ig n e d to

Fig. 5.3. Session time SoD examples

ACT-SoD2 can be used to enforce the requirement that a particular task can be

performed by only one person at a time by assuming the task role. ACT-SoD4 limits the

access capability of a user by not allowing the conflicting roles to be active in a single

user session. Its usefulness comes from the fact that a session in RBAC system is

semantically the same as a subject in traditional access control models (DAC, MAC, etc.)

[San94]. Similarly, ACT-SoD5 prevents a user from simultaneously acting as two

subjects.

5.3.4 Possibilistic Activation SoD Constraints (predicates: can_activate)

We also define SoDs based on the can_activate predicate, as shown in Table

5.6. CACT-SoD1 prevents all possible activation of conflicting roles by users in �.

114

Table 5.6

Possibilistic role activation SoDs

Possibilistic Activation (can_activate) SoDs

Type SoD

Semantics

∀ u, u1, u2∈ ��, ∀ r, r1, r2∈ ����∀ t ∈ Sol(I, P), (u1≠ u2) and (r1≠

r2), the following holds:

(I, P, CACT-SoD1, �, �) ∀ u∈ U, SoD ∧ can_activate(u, r1, t) →

¬can_activate(u, r2, t)
CACT-

SoD1

No two roles in � can be activated by a user in � at the same time

(I, P, CACT-SoD1, �, �) ∀ u1, u2∈ U, SoD ∧ can_activate(u1, r1, t) →

¬can_activate(u2, r2, t)
CACT-

SoD2

No two users in � can activate two roles in � at the same time

(I, P, CACT-SoD3, �, �) SoD ↔ CACT-SoD1 ∧ CACT-SoD2 CACT-
SoD3

Users in � can activate only one of the roles in � at the same time

(I, P, CACT-SoD4, �, �) ∀ u∈ U, SoD ∧ can_activate(u, r1, s, t) →

¬can_activate(u, r2, s, t)

No two roles in � can be activated by a user in � in a single session s at the same time

CACT-
SoD4

Users in � can activate only one of the roles in � in a single session s at the same time

Conflicting roles

r2r1

x

assigned
not

assignedu1 u1

assigned
u1

A-hierarchy

(a)

Fig. 5.4. Implication of possibilistic activation SoDs in presence of A-hierarchy

Note that the purpose of UAS-SoD1 is essentially to prevent activation of

conflicting roles by a user by not allowing explicit assignments to conflicting roles in the

first place. For example, when � = {u1, u2} and � = {r1, r2}, we can prevent the possibility

115

of activation of both the roles by explicitly denying assignments to conflicting roles using

UAS-SoD1. Let’s assume that because of this constraint u1 is assigned to r1 but not r2.

Now, assume that there is a role x such that x is senior to r2 with respect to an A-

hierarchy; i.e., any user assigned to x can also activate role r2, as depicted in Fig. 5.4.

Now, if we allow the assignment of u1 to x, the purpose of preventing u1 from activating

both r1 and r2 at the same time is not fulfilled. This is because the A-hierarchy between s

and r2 makes the predicate can_activate(u1, r2, t) true, hence allowing u1 to activate

r2 even when u1 is already assigned to r1. Therefore, when we have role hierarchies,

implicit assignment may be possible through the use of the can_activate(u, r, t)

predicate. The use of this predicate may make it possible for a user to activate conflicting

roles even if the constraint UAS-SoD1 is already employed. CACT-SoD1 prevents such

scenarios; i.e., it prevents both implicit and explicit assignments of a user to conflicting

roles. Furthermore, CACT-SoD2 is an activation-time counterpart of UAS-SoD3, and

CACT-SoD3 is the activation-time counterpart of UAS-SoD5. CACT-SoD4 is a session

specific counterpart of CACT-SoD1.

Note that one way to prevent the scenarios depicted in Fig. 5.4 is to consider that

r1 is in conflict with all the roles hierarchically superior to r2. However, this approach is

very restrictive, and makes the task of properly designing a role hierarchy very difficult.

5.3.5 Possibilistic Permission Acquisition SoD Constraints

 (predicates: can_acquire, can_be_acquired)

Table 5.7 lists the possibilistic permission acquisition SoDs. CACQ-SoD1

prevents the acquisition of permissions through the conflicting roles that will not be

caught by PAS-SoD3, similar to the way CACT-SoD1 prevents the activation of conflicting

roles not prevented by ACT-SoD1. That is, constraint CACQ-SoD1 employs the “can

acquire” semantics and hence captures both explicit and implicit role-permission

assignments. Note that PAS-SoD3 can prevent the acquisition of permissions through the

conflicting roles by a user by restricting explicit role-permission assignment. However,

permission acquisition may also be allowed through the implicit role-permission

assignment because of some hierarchical relations. For example, let us consider � = {p1,

p2} and � = {r1, r2}. Suppose we have the SoD constraint PAS-SoD3; then the same

permission in � cannot be assigned to the two roles. Provided there are no hierarchies in

the system, the effect (and hence the purpose) of this SoD constraint is that the same

permission is not acquired through two roles even if a user is allowed to activate them

116

both. Now, assume there is a role x such that r2 is the senior of x with respect to an I-

hierarchy, as shown in Fig. 5.5. Suppose we allow the assignment of p1 to x. Furthermore,

suppose we have the following assignment: p1 is assigned to r1, and hence p1 is not

assigned to r2 by virtue of the constraint PAS-SoD2. But, as p1 is also assigned to x, and

(r2≥tx), p1 is also implicitly assigned to r2, the SoD constraint PAS-SoD2 does not prevent

p1 being acquired through role r2 using hierarchy semantics. CACQ-SoD1 prevents such

permission-acquisitions through implicit assignments. CACQ-SoD2 is to CACQ-SoD1 the

way UAS-SoD3 was to UAS-SoD1.

CACQ-SoD3 allows the acquisition of permissions in � by users through only one

of the conflicting roles, whereas CACQ-SoD4 does not allow different users to acquire

different permissions through the conflicting roles. Similar to the CACQ-SoD1 constraint,

CACQ-SoD5 prevents the acquisition of permissions which is allowed by both explicit

and implicit assignments. CACQ-SoD5 prevents conflicting users from acquiring a

permission of P through the same role, as in Fig. 5.4, or through different roles, as in Fig.

5.5. CACQ-SoD6, on the other hand, does not allow two separate permissions to be

acquired by conflicting users neither through the same role (as in (c)) nor the different

roles (as in (d)). CACQ-SoD7 prevents conflicting users from acquiring a permission in P

through the same role in R at the same time and hence does not allow case (a). Similarly,

the table in Fig. 5.7 shows the cases depicted in Fig. 5.6 that are not allowed by CACQ-

SoD8, CACQ-SoD3 and User-SoD4. Various combinations of these SoDs define the SoDs

from CACQ-SoD7 to CACQ-SoD13.

C o n flic tin g ro les

r2r1

a ssig n ed to
n o t

a ssig n ed top 1 p 1

x
a ssig n ed to

p 1

I-h iera rch y

(b)

Fig. 5.5. Implication of permission acquisition SoDs in presence of I-hierarchy

117

Table 5.7.

Possibilistic permission acquisition SoDs

Possibilistic User-Permission Acquisition (can_be_acquired and can_acquire) SoDs

Type SoD

Semantics

∀ u, u1, u2∈ ��, ∀ r, r1, r2∈ ����∀ p, p1, p2∈ ����∀ t ∈ Sol(I, P),

(u1≠ u2), (r1≠ r2) and (p1≠ p2) the following holds:

(I, P, CACQ1, �, �, �) SoD ∧ can_acquire(u2, r1, t)→ ¬can_acquire(u,p r2, t)
CACQ_

SoD1 A permission in � cannot be acquired by a user in � through different roles in � at the same
time

(I, P, CACQ2, �,��, �) ∀ u∈ U, ∀ p1, p2∈ P, SoD ∧ can_acquire(u, p1, r1, t)→

¬can_acquire(u, p2, r2, t)
CACQ_

SoD2

 No two permissions in � can be acquired by a user in � through roles in ��at the same time

(I, P, CACQ3, �,��, �) ∀ u1,u2∈ U,∀ p∈ P, SoD ∧ r_can_acquire(u1,p, r1,t)→

¬can_acquire(u2,p, r2,t)
CACQ_

SoD3
No two users in � can acquire a permission in � through different roles at the same time

(I, P, CACQ4, �,��, �) ∀ u1,u2∈ U,∀ p1,p2∈ P, SoD∧ r_can_acquire(u1,p1, r1,t)→

¬r_can_acquire(u2,p2, r2,t)
CACQ_

SoD4
No two users in � can acquire different permissions in � through two roles at the same time

(I, P, CACQ5, �,��) ∀ p, SoD ∧ can_acquire (u1,p,t) → ¬can_acquire (u2,
p, t)

CACQ_

SoD5
No two users in � can acquire a permission in � at the same time.

(I, P, CACQ6, �,��) ∀ p1, p2∈ P, SoD ∧ can_acquire (u1, p1, t) →

¬can_acquire (u2, p2, t)
CACQ_

SoD6
No two permissions in � can be acquired by the different users in � at the same time

(I, P, CACQ7, �, �, �) ∀ p∈ P, ∀ r∈ R, SoD ∧ can_acquire (u1, p, r, t) →

¬acquires(u2, p, r, t) CACQ_

SoD7
A permission in � cannot be acquired by different users in � through the same role in � at
the same time.

(I, P, CACQ8, �, �, �) ∀ p1, p2∈ P, ∀ r∈ R, SoD ∧ can_acquire (u1, p1, r, t) →

¬acquires(u2, p2, r, t) CACQ_

SoD8 No two permissions in P can be acquired by two users through the same role in R at the
same time.

(I, P, CACQ9, �, �) ∀ r∈ R, SoD ∧ can_be_acquired(p1, r, t) →

¬can_be_acquired(p2, r, t)
CACQ_

SoD9
No two permissions in ��can be acquired through a role in � at the same time.

CACQ_ (I, P, CACQ10, �, �) ∀ r1,r2∈ R, SoD ∧ can_be_acquired(p1, r1, t) →

¬can_be_acquired(p2, r2, t)

118

SoD10
Different permissions in ��cannot be acquired through different roles in � at the same time.

(I, P, CACQ11, �, �) ∀ u∈ U, SoD ∧ can_acquire(u, p1, t) → ¬can_acquire
(u, p2, t)

CACQ_

SoD11
A user in � cannot acquire different permissions in ��at the same time.

(I, P, CACQ12, �, �) ∀ u1, u2∈ U, SoD ∧ can_acquire(u1, p1, t) →

¬can_acquire (u2, p2, t)
CACQ_

SoD12
No two users in � can acquire different permissions in ��at the same time.

(I, P, CACQ13, �, �, �) ∀ r ∈ R, ∀ u, SoD ∧ can_acquire (u, p1, r, t) → ¬
can_acquire (u, p2, r, t)

CACQ_

SoD13
Permissions in ��cannot be acquired by a user in � through a role in � at the same time.

r x r y

r x r yr x r y

r x r y

u x

p x p yp x

u x

u yu x

p x p y

u yu x

p x

(a) (b)

(c) (d)

r x

u 2u 1

p x

r x

u 2u 1

p x p y

(e)

(f)

r x

p x p y

(g)
u x

SoD Does not allow SoD Does not allow SoD Does not allow

CACQ-SoD1 (i) CACQ-SoD6 (vi) CACQ-SoD11 (ii), (vii)

CACQ-SoD2 (ii) CACQ-SoD7 (iii), (v) CACQ-SoD12 (iv), (vi)

CACQ-SoD3 (iii) CACQ-SoD8 (iv), (vi) CACQ-SoD13 (vii)

CACQ-SoD4 (iv) CACQ-SoD9 (vi), (vii)

CACQ-SoD5 (v) CACQ-SoD10 (ii), (iv)

 Fig. 5.6. Possibilistic permission acquisition for U = {u1, u2}, P = {p1, p2} and R = {r1, r2}

119

Table 5.8.

 Comparison with SoDs proposed in the literature

SH: Simon-Zurko’s SoDs [Sim97]; AH: Ahn’s SoDs

[Ahn00].

GTRBAC (non-temporal forms)

SZ
Strong SSoD (no user can be assigned to
conflicting roles)

UAS-SoD1

1

AH
SSoD-���������(no user should be (implicitly and
explicitly) assigned to conflicting roles, i.e., no
user can-activate conflicting roles)

CACT-SoD1

2 AH
SSoD-���������(a user cannot acquire conflicting
permissions)

CACTs-SoD9

3 AH
Variation of 2 (2 + conflicting permissions
cannot be acquired through a role)

CACTs-SoD9 ∧ CACQ-SoD4.1

4 AH
Variation of 1 (1 + conflicting permissions
cannot be acquired through a role + conflicting
permissions cannot be assigned to a role

CACT-SoD1 ∧ CACQ-SoD13 ∧ PAS-SoD2

5 AH
SSoD-��������� (1` + conflicting users cannot be
assigned to a role)

CACT-SoD1 ∧ CACQ-SoD1 ∧ UAS-SoD2

6 AH Variation: (4) ∧∧∧ ∧ (5) (4) ∧∧∧ ∧ (5) above

SZ Simple DSoD
7

AH
User-based DSoD (Conflicting roles cannot be
active at the same time for a user)

ACT-SoD1

8 AH
User-based DSoD with ��������� (Conflicting roles
cannot be active at the same time for a user)

Same as 7 but U is also a conflicting set

9 AH
Session-based DSoD (Conflicting roles cannot
be active at the same in the same user session)

ACT-SoD4

10 AH

Session-based DSoD with ����������Conflicting roles
cannot be active at the same in the same user
session	� Only difference from 9 is that it has
conflicting set of users

Same as 9 but R is also a conflicting set

11 SZ
Object-based DSoD (no user may act upon a
target that that user has previously acted upon)

Can be rephrased as: if a user acquires a
permission then he cannot acquire it again.
Post-condition constraint can be used here.

12 SZ

Operational DSoD (no user may assume a set
of roles that have capability for a complete
business job)

Task oriented: if the task can be
represented by at least two roles (sub-tasks)
then it can be easily represented using
UAS-SoD1 or ACT-SoD1

120

13 SZ
History-based DSoD (no user is allowed to
perform all the actions in a business task in the
same target or collection of targets)

Comment similar to 12 can be made here,
too.

14 SZ
Order-dependent SoD (The roles must perform
their actions in a particular order)

It can be expressed as a sequence of
precedence constraints

15 SZ
Order-independent SoD (Order does not
matter as long as both happen)

 Triggers x→y after � t , y→ x after � t can
be used to enforce this.

5.3.6 Comparison with other SoD Constraints

Table 5.9 shows the correspondence between the major SoDs identified in the

literature and the ones proposed here. First, we note that our SoDs take into account time,

a factor which has not been considered earlier. Secondly, we can express all the SoDs in

[Ahn00] with our constraint expressions or their combinations. The table also shows how

our SoDs correspond to those proposed in [Sim97]. We note that the SoDs in rows 10

through 15 are more task oriented. However, with the help of the triggers and dependency

constraints along with some transformation of the problem to map into RBAC domain,

our framework can easily express them. Since previously identified SoDs are non-

temporal, they correspond to the special case of the time-constrained SoDs proposed here,

where (I, P) = all and any occurrence of �, � or � in GTRBAC SoDs refer to the complete

sets Users, Roles and Permissions. Furthermore, by using the GTRBAC status

predicates, several new SoDs have been identified.

5.3.7 Various Interpretations of Time-based SoD Constraints

In the earlier section, we introduced periodicity constraints on SoDs. Note that

these SoDs apply for each time instant in (I, P). However, we can allow other

interpretations of these SoDs in the temporal dimension. Before presenting the different

interpretations of a periodicity constraint (I, P, SoD), we first observe that for a single

interval, say π, the constraint expression (π, SoD) can be interpreted in two ways, as

defined for weak and strong forms. To illustrate these interpretations, we use the UAS-

SoD1, as shown in Table 5.9. For all other SoDs, the various forms of temporal

constraints may be similarly defined.

The weak form (π, SoDW) implies that within the specified interval there does not

exist a time instant in which conflicting roles are assigned to the same user. (π, SoDW)

121

does not, however, restrict conflicting roles being assigned to the same user at different

time instants. The strong form (π, SoDS) implies that within the specified interval, if there

is an instant in which a role, say r, is assigned to a user, then at no other instants in π, the

user can be assigned to a role that conflicts with r. By using these two forms, we obtain

three semantic interpretations of the periodicity constraint (I, P, SoD) listed in the table.

The weak form (I, P, SoDW) implies that at each time instant in (I, P), a user should not be

assigned to conflicting roles. (I, P SoDW), however, allows a user to be assigned to two

conflicting roles at different time instants. Note, this is the form of the SoDs that we

presented in the earlier section.

Table 5.9.

Time-based SoD constraints

Interval constraint on SoD The following condition holds: ∀ u ∈ U, ∀ r1, r2 ∈ R such that r1≠ r2

Weak ∀ t ∈π , SoDW ∧ u_assigned(r1, u, t) ∧→¬ u_assigned(r2, u, t)

Strong

(π, UAS1,U,R)
as

(π, SoDX)
 ∃ t ∈π , SoDS ∧ u_assigned(r1, u, t) →¬ ∃ t ∈π , u_assigned(r2, u, t)

Periodicity constraints on
SSoD

The following condition holds

Weak
∀ t ∈ Sol(I, P), SoDW ∧ u_assigned(r1, u, t)→¬u_assigned(r2, u, t)

Furthermore, we see that (I, P, SoDW ↔ ∀π∈∏ (I, P), (π,SoDW)

Strong (I, P, SoDS) ↔ ∀π∈∏ (I, P), (π, SoDS)

Extended
Strong

(I, P, UAS1,U,R)
as

(I, P, SoDX)

∃ t ∈ Sol(I, P), SoDES ∧ u_assigned(r1, u, t) ∧ → ¬(∃ t ∈ Sol(I, P),
u_assigned(r2, u, t))

The strong form (I, P, SoDS) implies that for each recurring interval in (I, P), the

strong form of interval constraint (π, SoDS) applies. The extended strong form (I, P,

SoDES) implies that there do not exist two or more time instants in (I, P) for which a user

is assigned to conflicting roles. The weak, strong and extended strong forms also exist for

duration constraints of the form ([I, P|D], Dx, SoD). The weak, strong and extended strong

forms also exist for periodicity and duration constraints of the forms (I, P, SSoD) and ([I,

P|D], Dx DSoD) on DSoD constraints.

122

5.4 Conclusion

We have presented constraints for the GTRBAC model including cardinality

constraints, control flow dependency constraints, and separation of duty constraints. We

used an evaluation function and a projection operator associated with a set of GTRBAC

status predicates to build an elaborate framework for expressing cardinality constraints.

GTRBAC’s trigger has been extended so that more complex time-based past information

can be captured. A set of control flow dependency constraints have been introduced using

the trigger framework to enforce much stricter dependency constraints than those that can

be expressed using triggers. We also showed that by generalizing to system events and

conditions, the triggers and CFD framework provides an elaborate model for capturing

context-based access requirements. Our approach to separation of duty constraints is

based on the fact that the notion of conflict between elements in a set is often associated

with another set. This allows us to consider SoDs that are of much finer-granularity. We

have shown that the separation duty constraints identified in the literature can be easily

expressed by a subset of our separation duty constraint expressions.

123

6. MINIMALITY OF GTRBAC CONSTRAINTS AND DESIGN

ISSUES

An open issue for any model with a rich constraint language is its expressiveness

and minimality. That is, it is important to determine whether the set of constraints the

model contains is minimal. If the constraint model is not minimal, then a crucial issue is

to determine whether the non-minimal model provides any practical benefits over the

minimal model. It is possible that a model may not be minimal, and yet it is more

advantageous to have all the constraints so that the model is more flexible and provides

better practical benefits in terms of complexity and usability than the minimal model.

Issues concerning expressive power and minimality for RBAC constraint languages is

very relevant given the large variety of such languages that have been recently proposed

[Cra03, Neu03].

In this chapter, we present an analysis framework for addressing the issue of the

expressiveness and minimality of constraint languages for RBAC. We cast our analysis in

the framework of the GTRBAC model, as this model has a very rich constraint language.

It is easy to see that GTRBAC’s rich set of constraints is not minimal. We thus show that

there exists a minimal model that has a subset of constraint types defined in the GTRBAC

model and yet has the same expressive power as the GTRBAC model. We show that the

sets of different constraint types can be used to generate a family of GTRBAC models

having the same expressive power.

An important issue, as mentioned above, is to determine if having a non-minimal

set of constraints in the GTRBAC model is at all beneficial. In particular, we show that

the GTRBAC model, although it is not minimal, has advantages in terms of complexity of

specification and usability. Usability of the model is informally expressed as

manageability and user convenience in policy specification. It also refers to maintaining a

clear semantics among the constraints. For example, as we show in this dissertation, time

based user-role assignment policies may be represented by temporal constraints on role

enabling (the role may be newly created) in place of a timing constraint on the user-role

assignment; however, by doing so, the semantics may be lost; i.e., we will be representing

the fact that a user is scheduled to assume a particular role in a given interval of time by a

124

semantics that the particular role is enabled at that interval of time. Based on our analysis,

we provide a set of design guidelines aimed towards improving efficient and convenient

use of various constraints to represent time-based RBAC policies.

To the best of our knowledge, there exists no work similar to ours that addresses

the issue of the minimality of an RBAC model versus its complexity and usability.

6.1 Activity-Equivalent Family of GTRBAC Models

As shown in earlier chapters, the GTRBAC model allows specification of a large

set of time-based constraints. A pertinent question is whether such an exhaustive set of

temporal constraints is desirable at all, or if there is a minimal set of constraint types that

have the same expressive power as the set containing all the constraint types introduced

in this dissertation. In this section, we show formally that the set of GTRBAC constraint

types is not minimal. By introducing the notion of activity-equivalence or a-equivalence,

we show that there exists a minimal set of constraint types that have an expressive power

equivalent to the set of all the GTRBAC constraint types. However, we show through an

extensive analysis that even though such a minimal set exists, the set of GTRBAC

constraints provides better alternatives for representing access constraints. Such

alternatives allow one to favor user convenience and lower complexity of representation

over the use of the minimal set of constraints. Furthermore, the large set of constraints in

the GTRBAC model makes it flexible and allows an appropriate choice of specification,

enhancing the usability of the model.

6.1.1 Minimality of GTRBAC

Given a GTRBAC system, note that we call the set containing all the constraints

its Temporal Constraint and Activation Base (TCAB). A TCAB Γ can be represented as

(CURp, CRp, CPRp, CURd, CRd, CPRd, C
a

dr, C
a

dur, C
a

mr, C
a

mur, C
a

nr, C
a

nur, C
a

nmr, C
a

nmur, Ctr,

Cc) (see Table 3.1, Chapter 3). In the discussion below, we use a shorter version, such as

T = (CRp, CURp), when only CRp and CURp are nonempty sets of constraints. The behavior

of a GTRBAC system depends on T, the set of users Users, the set of roles Roles, the

set of permissions Permissions, and the role hierarchy RH. Therefore, we can use the

tuple (T, Users, Roles, Permissions, RH) to indicate a GTRBAC configuration.

We will also use the notation (u
Cf

t
� p) to read “u acquires permission p at time t under

125

configuration Cf”. Next, we define the notion of a-equivalence between two GTRBAC

configurations.

Definition 6.1.1 (Activity-equivalence or a-equivalence): Given a GTRBAC

system with two configurations Cf1 = (T1, Users, Roles1, Permissions, RH1) and

Cf2 = (T2, Users, Roles2, Permissions, RH2), the configurations Cf1 and Cf2 are

said to be a-equivalent (written as Cf1 ≈ Cf2) if, for all pairs (u, p) such that u ∈ Users,

p ∈ Permissions, the following condition holds: (u
1Cf

t
� p) iff (u

2Cf

t
� p). Furthermore, if

Cf1 ≈ Cfx and Cfx ≈ Cf2, then Cf1 ≈ Cf2 (transitivity).

The a-equivalence between two configurations of a GTRBAC system indicates

that a user can perform the same accesses under the two configurations. Hence, by

replacing configuration Cf1 by Cf2, we do not change the accesses that are allowed for

each individual user. It is to be noted that a-equivalence does not necessarily imply

policy equivalence as we consider the same set of users and permission. Policy

equivalence would mean that at all times the two configurations follow the same rule.

Our goal here is to show different configurations of roles and constraints allowing the

same set of permissions being acquired by the same set of users, and analyze the

complexities of these configurations.

Next, we show that the set of GTRBAC constraint types is not minimal; i.e., some

constraint types can be removed without reducing the expressive power of the GTRBAC

constraints system. For example, the temporal constraints on assignments can be

expressed by using temporal constraints on roles. Using a-equivalence between GTRBAC

configurations, we will show that there is a minimal representation that uses only

periodicity and duration constraints on roles, and the per-role activation constraints.

However, we will still need the default assignments that simply assign users or

permissions to roles without specifying any temporal restriction. Although default

assignments can be considered as a special case of periodicity constraints, we will

consider it a special constraint type (non-temporal constraint) represented by Cd. Next we

introduce two algorithms that can be used to generate an a-equivalent configuration of a

given GTRBAC configuration with the temporal constraints on user-role and role-

permission assignments removed.

TransformPR shown in Fig. 6.1 takes in a GTRBAC configuration and

produces an a-equivalent configuration with all the temporal constraints on role-

126

permission assignments removed. Similarly, the algorithm TransformUR shown in Fig.

6.2 produces a new configuration that is a-equivalent to the input configuration Cfin, with

all user-role assignments and per-user-role activation constraints removed.

Algorithm TransformPR

Input :Cfin; Output : Cfout

1. Cfout ={T’, Users, Roles’, Permissions, RH’}= Cfin={T, Users, Roles, Permissions,

RH};

2. FOR each c = (X, pr:assign/deassign p to r) ∈ T , where X = {(I, P), ([(I, P)|, Dx], D)} DO

3. Create a unique role ri;

4. Replace all occurrences of {X, pr:assign/deassign p to r} by

 {X, pr:enable/disable ri} in T’

5 Add default assignment assign/deassign p to ri to T’

6. FOR each trigger TR ∈ T’, where TR = “E1 ,…, En , C1 ,…, Ck → pr:En+1 after � t” DO

7. Replace TR by TR’ = “E’1 ,…, E’n , C’1 ,…, C’k → pr:E’n+1 after � t”,

 such that,(i =1 to n+1, j = 1 to k) &

8. IF (Ei== “assign/deassign p to r”) THEN E’i = “enable/disable ri” ;

9. ELSE E’i = Ei ;

10. IF (Cj == “assigned/deassigned p to r”) THEN

 C’j = “enabled/disabled ri” ;

12. ELSE C’j = Cj;

13. ENDFOR

14. Roles’ = Roles’ ∪ {ri};

15. FOR each role rj ∈ Roles such that {r≥s rj} DO

16. RH’ = RH’ ∪ {ri≥s rj }; RH’ = RH’ - {r ≥s rj}

17. ENDFOR

18. RH’ = RH’ ∪ {r≥sri}; // Note: all are strongly restricted I-hierarchy

19. ENDFOR

20. RETURN Cout;

Fig. 6.1 Algorithm TransformPR

The following two lemmas formally show that the transformation done by each

algorithm is correct. To maintain readability, we include the proofs of these lemmas and

the other formal statements presented later in this chapter in appendix C.

Lemma 6.1 (Correctness of TransformPR): Given an input configuration Cfin,

algorithm TransformPR produces Cout such that there are no temporal role-permission

assignments in Cfout, and Cfin ≈ Cfout.

127

Algorithm TransformUR

Input :Cfin; Output : Cfout

1. Cfout = Cfin (i.e., {T’, Users, Roles’, Permissions, RH’}={T, Users, Roles,

Permissions, RH}); S = ∅ ;

2. FOR each c = (X, pr:assign/deassign u to r) ∈ T , where X = {(I, P), ([(I, P)|, Dx], D)} DO

3. Create a unique role ri; S = S ∪ (u, r, ri) // function getSui(S, u, r) used in line 24 returns ri

4. Replace all occurrences of {X, pr:assign/deassign u to r} by

 {X, pr:enable/disable ri} in T’

5. Add default assignment “assign/deassign u to ri to T’ ”

6. FOR each trigger TR ∈ T’, where TR = “E1 ,…, En , C1 ,…, Ck → pr:En+1 after � t” DO

7. Replace TR by TR’ where TR’ == “E’1 ,…, E’n , C’1 ,…, C’k → pr:E’n+1 after � t” such that

8. IF (Ei==“assign/deassign u to r”) THEN E’i := “enable/disable ri” ;

9. ELSE E’i := Ei ;

10. IF (Cj=“assigned/deassigned u to r”) THEN C’j:=“enabled/disabled ri”;

12. ELSE C’j := Cj;

13 ENDFOR

14. Roles’ = Roles’ ∪ {ri};

15. FOR each role rj ∈ Roles such that {rj � s r} DO

16. RH’ = RH’ ∪ {rj � s ri}; RH’ = RH’ - {rj � s r}; // Strongly restricted A-hierarchy

17. ENDFOR

18. RH’ = RH’ ∪ {ri � s r};

19. ENDFOR

20. // Handle all the per-role-activation constraints

21. FOR each pair (u, r) such that there is an activation constraint (X, Yu, u, activeUY r) ∈ T’

22. where X ∈ {(I, P), D}, Yu ∈ {Duactive, Dumax, Nuactive, Dumax}and

23. activeUY = {activeUR_total, activeUR_max , activeUR_n, activeUR_con} DO

24. IF (ri:=getSui(S, u, r) == NIL) THEN Create a unique role ri, // getSui(S, u, r)= NIL implies there

25. FOR each c = (X, Yu, u, activeUY r) ∈ T’ DO // was no u, r assignment in line 2

26. Let c’ =(X, Yu, activeUY ri);

27. Replace c in T’ by c’ where c’ =(X, Yu, activeUY ri); //Note that old c will not be in T’

28. Replace all occurrences of “enable c” by “enable c’ ”

29 ENDFOR

30 IF (ri was created in Line 24) THEN

31. Role’ = Role’ ∪ {ri};

32. FOR each role rj ∈ Roles such that {rj ✁ sr}DO

33. RH’ = RH’ ∪ {rj ✁ sri}; RH’ = RH’ - {rj ✁ sr};

34. ENDFOR

35. RH’ = RH’ ∪ {ri � r}; // Note: all are strongly restricted IA-hierarchy
36. Replace per-role activation constraint by (0, activeR_n r) in T’

37. ENDFOR

38. RETURN Cfout;

Figu. 6.2 Algorithm TransformUR

128

Lemma 6.2 (Correctness of TransformUR): Given an input configuration Cfin,

algorithm TransformUR produces Cfout such that there are no temporal user-role

assignments and per-user-role activation constraints in Cfout, and Cfin ≈ Cfout.

We use the following notion of minimal constraint set (MCS) to express the fact

that there is an a-equivalent configuration that has the minimum number of constraint

types.

Definition 6.1.2 (Minimal Constraint Set): Let MCS(T) be the set of constraint

types in TCAB T, and CS = {Cf1, Cf2, .. Cfn} be an a-equivalent set of configurations such

that Cfi = (Ti, Users, Rolesi, Permissions, RHi) for i = 1, 2, …, n. We say that

MCS(Ti) is the minimal constraint set (MCS) of CS for i ∈ {1, 2, …, n}, if there exists no

other configuration Cfj = (Tj, Users, Rolesj, Permissions , RHj), such that i ≠j and

MCS (Tj) ⊂ MCS (Ti).

The definition implies that a minimal constraint set is the one that has the least

number of temporal constraint types. Note that the role set and hierarchy may be altered

to reduce the number of constraint types. Next, we present the minimality result for a

GTRBAC system, which is expressed by the following theorem.

Theorem 6.1 (Minimality of GTRBAC): Let Cf1 be a GTRBAC configuration,

such that {Cd, CRp, CRd, C
a

r, Ctr, Cc} ⊆ MCS(T1); there exists a GTRBAC configuration

Cf2 such that:

a. Cf1 ≈ Cf2, and

b. MCS(T2) {Cd, CRp, CRd, Ca
r, Ctr, Cc}, (note that Ca

r represents per-role

activation constraint types), and

c. MCS (T2) is a minimal constraint set,

Theorem 6.1 shows that the set of GTRBAC constraints is not minimal, because a

set of default assignments, periodic and duration constraints on role enabling (disabling),

and per-role activation constraints and triggers can be used to represent any access policy

that GTRBAC constraints can represent. We can see from the transformation algorithms

that replacing temporal constraints on assignments with temporal constraints on roles, in

general, increases the number of roles and the complexity of role hierarchy, which may

not be desirable. This is because algorithms transformPR and transformUR create

a new role for each temporal assignment that they replace. This may not be very intuitive

129

and efficient as it means there will be as many new roles as there are temporal

assignments. This results in a worst case where a role is created for each user (or

permission) in the system. A more intuitive and practical approach would be to create a

least number of roles such that the enabling/disabling intervals for them are non-

overlapping. For example, if there is a Doctor role and each of the n users are assigned

to it for either day time or night time (or both), then, instead of creating n new roles, we

can simply create DayDoctor and NightDoctor roles and assign all the n users to one or

the other (or both). Thus, to create such temporally non-overlapping roles, we must first

divide n periodic expressions into temporally non-overlapping set of periodic expressions

such as, Daytime and Nighttime. We next provide formal definitions and algorithms to

generate such a disjoint set of temporal roles by generating disjoint periodicity

expressions associated with temporal assignment constraints.

6.1.2 Operations on Periodicity Expressions

In this section, we first introduce the formal notions of containment, equivalence,

overlapping, and disjunction operations between a pair of periodic expressions. Note that

an arbitrary set of intervals can be represented by a periodic expression. This is possible

because each such expression can be formulated, at the worst as a periodic expression

that lists every starting point and the smallest calendar.

Definition 6.1.2 (Containment/Equivalence/Overlapping/Disjunction of

periodic Expressions) : Let PE1=(I1, P1) and PE2=(I2, P2) be two periodic expressions,

then

1. PE1 is said to be contained in PE2 (written as PE1 ⊆ PE2), if the following

conditions hold

for all t, (t ∈ Sol(I1, P1) → t ∈ Sol(I2, P2)) ∧

∃ t (t ∈ Sol(I2, P2) → t ∉ Sol(I1, P1))

2. PE1 and PE2 are said to be equivalent (written as: PE1 PE2) if

for all t, (t ∈ Sol(I1, P1) ↔ t ∈ Sol(I2, P2));

3. PE1 and PE2 are said to be overlapped (written as PE1 ⊗ PE2) if the following

condition holds:

∃ t1, t2 such that

• (t1, t2)∈Π (P1), i.e. t1, t2 are end points of an interval in P1, and

• ∃ ta, tb,

130

• t1 < ta < tb < t2, and

• (ta, tb ∈ Sol(I1, P1) → (ta∈ Sol(I2, P2) ∧ tb ∉ Sol(I2, P2)) ∨ (tb∈ Sol(I2, P2) ∧

ta ∉ Sol(I2, P2)));

4. PE1 and PE2 are said to be disjoint (written as PE1 �PE2), if, for all t1, t2 such that

(t1∈ Sol(I1, P1) ∧ t2 ∈ Sol(I2, P2), the following condition holds:

((tx ∈ Sol(Iy, Py) → (tx ∈ ESol(I2, P2) ∧

(tx ∈ ESol(I1, P1))), for (x, y) ∈ {(1, 2), (2, 1)}

where ESol(I, P) is the set of end-points of intervals in (I, P) such that if t ∈

ESol(I, P) then t ∈ Sol(I, P).

A set of periodic expressions is said to be disjoint if the periodic expressions are

pair-wise disjoint, else it is said to be non-disjoint. Similarly, a set of periodic expressions

is said to be equivalent if all the period expressions are equivalent to each other.

Fig. 6.3 shows some examples of these relations. Note that the fourth part of the

definition implies that if only the endpoints of intervals of two periodic expressions are

common, then they are considered disjoint. Ideally, we want to compute a disjoint set of

periodic expressions that is minimal.

Fig. 6.3. Temporal relations between a pair of periodic expressions

The next definition expresses the notion of minimal disjoint set (MDS) over a set

of periodic expressions.

Definition 6.2.4 (Minimal Disjoint Set): Let PE= {PE1, PE2, …, PEn} be a set of

arbitrary periodic expressions. The minimal disjoint set (MDS) over PE is the least set of

disjoint periodic expressions, MDSPE, defined as:

PE1, PE2 overlaps with PE PE3 is contained in PE
PE4 is disjoint from PE PE5 is equivalent to PE

PE

PE1

PE2

PE3

PE4

PE5

131

MDSPE = minm{PE'i | 1 ≤ i ≤ m}, such that the following conditions hold,

1. PE’1 ∪ PE’2 ∪ ... ∪ PE’m = PE1 ∪ PE2 ∪ ... ∪ PEn,

2. for all 1 ≤ i ≤ m, 1 ≤ j ≤ n either PE'i ⊆ PEj or PE'i ∩PEj =∅ .

In the definition, the first condition says that the MDS contains a disjoint set of

periodic expressions containing all time instants that are contained in all the original set

of periodic expressions PEis. The second condition ensures that each PE’i contains time

instants that entirely belong to a PEj. Associated with MDS, we define minimal subset

(MS) of a periodic expression over a MDS as follows:

Definition 6.1.5 (Minimal subset (MS) for a periodic expression over a MDS):

Let MDSPE = minm{PE'i | 1 ≤ i ≤ m} be a minimal disjoint set over periodic expressions

PE= {PE1, PE2, …, PEn}; the minimal subset (MS) for a periodic expression PEj ∈ PE

over the MDSPE is the set MSPEj(MDSPE) = {PE’π1, PE’π2, …, PE’πk} ⊆ MDSPE 1 ≤ k ≤

m such that,

• {π1, π2, …, πk} ⊆ 1, 2, …, m},

• for each t ∈ Sol(PEj), there is exactly one i ∈ {π1, π2, …, πk} such that (t ∈

Sol(PE’j), and

• |{π1, π2, …, πk}| or k is minimum.

We see that MS of a periodic expression PEi of PE is a subset of MDSPE that

collectively contains all the time instants of PEi. Before presenting an example for MDS

and MS, we first show some formal properties related to the computation of MDS and

MS. We write iMDSPE to mean MDS of the first i periodic expressions of PE.

Lemma 6.3 (MDS for two expressions): Let (PE1, PE2) be a pair of non-

equivalent and non-disjoint periodic expressions; The following holds:

a. if (PEi ⊆ PEj) then, for (i, j) ∈ {(1, 2), (2, 1)}, there exist periodic expressions

PEx PEy such that MDSPE = {PEx PEy}. Furthermore, PEx = PEi and PEy =

PEj - PEi.

b. if (PEi ⊗ PEj) then for (i, j) ∈ {(1, 2), (2, 1)}, there exist periodic expressions

PEx, PEy, PEz such that MDSPE = {PEx, PEy, PEz}. Furthermore, PEx = PEi

∩ PEj, PEy = PEj - PEx and PEz = PEi - PEx.

132

Algorithm PairMDS

Input: PE1 � PE2
Output: MDS of PE1 � PE2
 1 IF (PE1

✁ PE2) THEN RETURN{PE1};
 2 IF (PE1 � PE2) THEN RETURN {PE1, PE2};
 3 IF (PE1 ⊆ PE2) THEN // as per Lemma 6.3(a)
 4 PEx = PE1;
 5 PEy = PE2 - PEx;
 6 RETURN {PEx, PEy};
 7 IF (PE2 ⊆ PE1) THEN // as per Lemma 6.3(a)
 8 PEx = PE2;
 9 PEy = PE1 - PEx;
10 RETURN {PEy, PEx};
11 IF (PE1 ⊗ PE2) THEN // as per Lemma 6.3(b)
12 PEx = PE1 ∩ PE2;
13 PEy = PE2 - PEx;
14 PEz = PE1 - PEx;
15 RETURN {PEx, PEy, PEz}
16 END

Algorithm ComputeMDS

Input: PE1 � PE2 � … � PEn
Output: MDS of PE1 � PE2 � … � PEn
 1 // Assume that PE = {PE1 � PE2 � … � PEn}
 2 S = ∅ ; MDS = ∅ ;
 3 IF | PE | = 1 THEN RETURN PE;
 4 IF | PE | = 2 THEN RETURN PairMDS(PE1 � PE2);
 5 IF | PE | > 2 THEN
 6 MDS = ComputeMDS(PE1 � PE2 � … � PEn-1);

 7 Let MDS computed be (PE’1 � PE’2 � … � PE’m1);
 8 FOR i = 1 to m1 DO
 9 PairMDS = PairMDS(PEi � PEn);
10 IF |PairMDS| = 1 THEN
11 return MDS;
12 IF |PairMDS| = 2 THEN
13 Let PairMDS computed be (PE’x � PE’y);
14 S = S ∪ {PE’x};
15 ELSEIF |PairMDS| = 3 THEN
16 Let PairMDS be (PE’x � PE’y � PE’z);
17 S = S ∪ {PE’x, PE’z};
18 ENDFOR
19 Let S computed be (PE’’1 � PE’’2 � … � PE’’m2);
20 PE’’m2+1= PEn - (PE’’1 ∪ PE’’ ∪ …∪ PE’’m2);
21 IF (PE’’m2+1=∅) THEN
22 MDS = (PE’’1 � PE’’2 � … � PE’’m2,PE’’ m2+1);
23 ELSE
24 MDS = (PE’’1 � PE’’2 � … � PE’’m2);
25 RETURN MDS
26 END

Fig. 6.4 Algorithms PairMDS and ComputeMDS

133

Figure 6.4 depicts the algorithms used to compute the MDS. Algorithm PairMDS

computes MDS for a pair of periodic expressions. We note that when the two expressions

are equivalent, the MDS contains a single periodic expression, which can be either of the

original expressions. Similarly, when the expressions are disjoint, the MDS contains both

the periodic expressions. Algorithm computeMDS repeatedly calls PairMDS and

recursively builds the MDS by first finding the MDSs of smaller sizes. It uses the

inductive technique used to prove Lemma 6.4. The following formal results show that

computeMDS computes the MDS of a set of periodic expressions.

Lemma 6.4 (MDS for n periodic expressions): Given a non-equivalent and non-

disjoint set of periodic expressions PE = {PE1, PE2, ..., PEn}, there exist periodic

expressions PE’1 , PE’2 , ..., PE’m such that MDSPE = {PE’1, PE’2, ..., PE’m}.

Theorem 6.2 (MDS using computeMDS): Given an arbitrary set of periodic

expressions PE ={ PE’1 , PE’2, ..., PE’n}, there exist periodic expressions PE’1 , PE’2, ...,

PE’m, such that

a. MDSPE = {PE’1 , PE’2, ..., PE’m} and

b. For PE as input, algorithm computeMDS produces MDSPE

Theorem 6.2 shows that we can construct a MDS of an arbitrary set of periodic

expressions. As we will show later, this will help us in finding a minimum set of roles

corresponding to a set of periodic expressions such that they are minimal and disjoint in

terms of their enabling intervals. We also derive the following two corollaries:

Corollary 6.2.1 (Bounds for size of MDS): Given a set of periodic expressions

PE = {PE1, PE2, ..., PEn}, the algorithm computeMDS produces MDSPE = {PE’1 , PE’2,

..., PE’m}such that if sn = |MDSPE| then 1 ≤ sn ≤ (2n- 1).

Corollary 6.2.2 (Bounds for size of MS): Given a set of periodic expressions PE

= {PE1 , PE2, ..., PEn} and MDSPE = {PE’1 , PE’2, ..., PE’m} produced by algorithm

computeMDS, if pn = |MSPE1| + |MSPE2| + … + |MSPEn|, then n ≤ pn ≤ n2n-1.

We illustrate the notion of MDS and MS, and the computation of MDS by

algorithms computeMDS and pairMDS with the following example.

134

Example 6.2.1: To simplify notation, we consider the Daytime of the days

listed for a periodic expression. For example, if PE = {Sun}, we mean the interval

(9am, 9pm) or daytime of a Sunday. Let PEA = {Sun, Mon, Tue, Wed, Thu, Fri}, PEB

= {Sun, Tue}, PEC = {Sun, Tue, Thu, Fri}, PED = {Sun, Mon, Tue, Wed, Sat}, PEE =

{Thu, Fri}. The following steps illustrate the computation of MDS{PEA, PEB, PEC, PED,

PEE } using algorithm computeMDS.

1. MDS{PEA, PEB} = {PE’1, PE’2} = {{Sun, Tue}, {Mon, Wed, Thu, Fri}}(as PEB ⊆ PEA)

2. MDS{PEA, PEB, PEC} = MDS of { PE’1, PE’2, PEC} = MDS of {{Sun, Tue}, {Mon,

Wed, Thu, Fri}, {Sun, Tue, Thu, Fri}}

 Here,

• MDS of (PE’1, PEC} = {PE’x1 ={Sun, Tue}, PE’y1 = {Thu, Fri}(as PE’1 ⊆ PEC)},

• MDS of {PE’2, PEC}= {PE’x2 ={Thu, Fri}, PE’y2 ={Sun, Tue}, PE’z2= {Mon,

Wed}}(as PE’2 ⊗ PEC)

• S = {PE’x1, PE’x2, PE’z2}

• PE’x1 ∪ PE’x2 ∪ PE’z2 = {Sun, Mon, Tue, Wed, Thu, Fri}.

• PE”4 = PEC - (PE’x1 ∪ PE’x2 ∪ PE’z2) = ∅

Therefore, MDS{PEA, PEB, PEC} = {PE”1, PE”2, PE”3} = {{Sun, Tue}, {Thu, Fri},

{Mon, Wed}}

3. MDS{PEA, PEB, PEC, PED} = MDS of {PE’’1, PE’’2, PE’’3, PE D}

 = MDS of {{Sun, Tues}, {Thu, Fri}, {Mon, Wed}, {Sun, Mon, Tue, Wed, Sat}}

 Here,

• MDS of {PE’’1, PED} = {PE’x3 ={Sun, Tue}, PE’y3 = {Mon, Wed, Sat} (as PE’’1

⊆ PED),

• MDS of {PE’’2, PED} = {PE’x4 = {Thu, Fri}, PE’y4 = {Sun, Mon, Tue, Wed,

Sat}} (as PE’’2 � PED),

• MDS of {PE’’3, PED} = {PE’x5 = {Mon, Wed}, PE’y5 = {Sun, Tue, Sat}} (as

PE’’3 ⊆ PED),

• S = {PE’x3, PE’x4, PE’x5}

135

• PE’x3 ∪ PE’x4 ∪ PE’x5 = {Sun, Mon, Tue, Wed, Thu, Fri},

• PE’”4 = PED - (PE’x3 ∪ PE’x4 ∪ PE’x5) = {Sat};

 Therefore, MDS{ PEA, PEB, PEC, PED} ={PE’”1, PE’”2, PE’”3, PE’”4} ={{Sun, Tue},

{Thu, Fri}, {Mon, Wed}, {Sat}}

4. MDS{PEA, PEB, PEC, PED, PEE } = MDS of {PE’’1, PE’’2, PE’’3, PE’”4, PEE}

 = MDS of {{Sun, Tue}, {Thu, Fri}, {Mon, Wed}, {Sat}, {Thu, Fri}}

 Since PEE = PE’’2, MDS{ PEA, PEB, PEC, PED, PEE } = MDS{ PEA, PEB, PEC, PED }

 = {PE’”1, PE’”2, PE’”3, PE’”4} = {{Sun, Tue}, {Thu, Fri}, {Mon, Wed}, {Sat}}

Also, we see that,

1. MSPEA(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’”1, PE’”2, PE’”3}.

2. MSPEB(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’”1}

3. MSPEC(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’”1, PE’”2}.

4. MSPED(MDS{PEA, PEB, PEC, PED, PEE }) = {PE’”1, PE’”3, PE’”4}.

5. MSPEE(MDS{PEA, PEB, PEC, PED, PEE }) = {PE’”2}.

Algorithm TransformMDS
Input :Cfin
Output : Cfout
1. Cfout ={T’, Users, Roles’, Permissions, RH’}
 = Cfin={T, Users,Roles, Permissions, RH};

2. FOR each r ∈ Roles DO

3. Let PE = {PE1, PE2…, PEn} and U = {u1, u2…, un} be such that (PEi, assign r to ui) ∈ T’;
4. Compute MDS of PE; Let the computed MDS = {PE’1, PE’2…, PE’n};
5. FOR i = 1 to n DO
6. Compute MSPEi for PEi
7. ENDFOR
8. FOR each PE’i ∈ MDS DO
9. Create a unique role ri;
10. FOR all uk ∈ U such that PE’i ∈ MSPEk DO
11. Add default assignment (assign ri to uk) in T’.
12. Add constraint (PE’i, enable ri) in T’.
13. Remove constraint (PEi, assign r to ui) from T’;

14. Roles’ = Roles’ ∪ {ri};

15. RH’ = RH’ ∪ {ri � sr}; // Note: Strongly restricted A-hierarchy
16 ENDFOR
17 ENDFOR
18. //ENDFOR

Fig. 6.5. Algorithm TransformMDS

136

We next present an algorithm that produces an a-equivalent configuration for a

given GTRBAC system by removing the temporal constraints on user-role assignments.

The following theorem establishes its correctness:

Theorem 6.3 (Correctness of TransformMDS): Given an input configuration

Cfin with only periodicity constraints on user-role assignments, algorithm

TransformMDS produces a configuration Cfout such that the following holds:

1. Cfin ≈ Cfout, and

2. Cfout has no periodicity user-role assignment constraints.

Here, we have considered only the presence of the periodicity constraints on user-

role assignment. If we allow the presence of per-role constraints, algorithm

TransformMDS can be extended easily to handle it by introducing per-role constraints

on the newly created roles.

6.2 Complexity of Specification and Design Issues

The complexity of a GTRBAC system may have different components. Foremost

among them is the number of roles. Typically, we do not want an unmanageable number

of roles in a system. Another component is the number of temporal constraints. Then we

have the complexity incurred by a hierarchy. Finally, we have the default assignments

with no timing constraint. In default assignments, the only check needed is the

membership check, for example, to determine whether a particular user is assigned to a

role or not. Thus, we can expect temporal assignments to introduce additional complexity

compared to an RBAC system without temporal constraints because it involves, besides

checking for membership, ensuring the temporal validity of a membership. To simplify

our discussion on trade-offs and complexity issues, we first develop a family of

GTRBAC models that have equivalent expressive power, based on the results in the

previous section, and we then investigate the potential benefits of a model at a higher

level of family hierarchy over those at the lower level. For our analysis of complexity of

policy specification, we use the complexity parameters notation shown in Table 6.1. Note

that we have left H to just indicate that some hierarchy processing overhead is present.

The minimality result in the previous section shows that the minimal model of

GTRBAC system is the one that includes the following components: per-role activation

constraint, periodicity and duration constraints for role-enabling/disabling, constraint

137

enabling, and triggers, as shown in Table 6.2. Figure 6.6 shows the minimal model as

GTRBAC0 at level 0.

Table 6.1

Complexity parameters and notation used

Complexity parameter Notation Description

Role R n.R indicates n roles (Note: we write 1.R simply as R)

Default (simple) assignment S n.S indicates n default assignments

Enabling time constraints on
role

Tr n.Tr indicates n periodicity/duration constraints on (n) roles

Temporal constraints on
assignments

Tur , Trp n.Tur (n.Trp) indicates n periodicity/duration constraints on (n)
user- role (role-permissions) assignment

Activation time constraints on Aur , Ar n.Aur (n.Ar) indicates n per-user-role (per-role) activation time

Hierarchy H n.H indicates ln hierarchical relations

Table 6.2.

 GTRBAC Family of models

Level Model Constraint Set

2 GTRBAC2 T ✁ T1,A ∪ T1,U ∪ T1,P

GTRBAC1,P T1,P ✁ T0 ∪ {CPRp, CPRd}

GTRBAC1,U T1,U ✁ T0 ∪ {CUrp, CUrd}

1

GTRBAC1,A T1, A ✁ T0 ∪ {Ca
dur, C

a
mur, C

a
nur, C

a
nmur}

0
GTRBAC0

Minimal
T0

✁ {Cd, CRp, CRd, C
a

r, Ctr, Cc}

At level 1, we have three different models, each of which adds a new type of

constraints to the constraint set of GTRBAC0. GTRBAC1,A represents the model having all

the temporal constraints of GTRBAC0 plus the per-user-role activation constraints.

Similarly, GTRBAC1,U represents the model having all the temporal constraints of

GTRBAC0 plus the user-role assignment constraints, whereas, GTRBAC1, P represents the

model having all the temporal constraints of GTRBAC0 plus the role-permission

assignment constraints. At level 2, we have the overall GTRBAC2 model that contains all

138

the temporal constraints. We note that we can have other models between level 1 and

level 2 that represent models representing the pairs of models at level 1 models. However,

for our analysis, we adopt this simpler hierarchy. We also keep in mind that, according to

the results in the previous section, all the models in Fig. 6.6 have the same expressive

power; i.e, these models can be used to generate a-equivalent configurations.

GTRBAC0

GTRBAC1,A GTRBAC1,U GTRBAC1, P

GTRBAC2

{Per-role constraint, role enabling}

{Per-user-role constraint} {user-role constraint} {role-permission constraint}

Level 0
Minimal Model

Level 1

Level 2

All constraints

Fig. 6.6. GTRBAC family of models

Next, we show through analysis that it is advantageous to use a model at a higher

level in terms of user-convenience, clarity of semantics, and complexity of representation.

Our analysis will focus on the advantages and disadvantages of using a Level 1 model

compared against that of the Level 0, the minimal model.

6.2.1 Role Enabling vs. Role Assignment Constraints

We have shown in an earlier section that all temporal constraints on user-role and

role-permission assignments can be transformed into the temporal constraints on roles.

However, such a transformation may result in a large number of roles and/or produce

inconvenient or complex access control structures. In this section, we look at various

design alternatives for choosing constraints on role enablings and assignments. We do

this by comparing the complexity of representation using a Level 1 model against those of

139

various representations using the minimal model for expressing the same set of access

requirements.

As we can see, in TransformUR (see Fig. 6.2), the transformation from

temporal constraints on user-role assignments to the temporal constraints on roles is

similar to the transformation from temporal constraints on role-permission assignments to

the temporal constraints on roles in TransformUR (see Fig. 6.2), except for the

difference in hierarchy relation. That is, in the first case, the newly created roles are made

senior of the original role, whereas in the second case, the original role is made the senior

of the new roles. Because of this similarity, we will focus mainly on the user-role

assignments, as similar results can be obtained for the role-permission assignments. Also,

algorithm TransformUR transforms both the periodicity and duration constraints in a

similar way; i.e., each such constraint is replaced by a new role. Hence, the complexity

analysis we apply for periodicity constraints will apply for the duration constraints as

well. We will, therefore, focus on the periodicity constraints and point out important

considerations related to duration constraints whenever they apply.

A temporal constraint on user-role assignment states that the user can activate a

role in the specified periods or for a specified duration, provided the role is enabled.

Instead of using a temporal constraint on user-role assignment (the user is still assigned

to the role using default assignment), we enforce the desired access control by using

temporal constraints on role enabling. Next, we will present the complexity issues related

to the representations of a set of access requirements using GTRBAC0 and GTRBAC1,U

models. For our purpose, we use the following example:

Example 6.3.1: Let us assume that there is a DayDoctor role in a hospital. Five

doctors A, B, C, D, and E are assigned to this role in the periods given by the periodic

expressions PEA, PEB, PEC, PED, and PEE of Example 6.2.1. We assume that we have

the GTRBAC1,U representation of these constraints (hence, there are no activation

constraints). We will also look at two different representations using the GTRBAC0

model, which we will denote as the GTRBAC0
1 and GTRBAC0

2 representations.

GTRBAC1, U representation: For each doctor, a periodicity constraint on his

assignment to the DayDoctor role is specified using periodic expressions shown in Fig.

6.7(a). For example, for doctor A, PEA is the periodic expression used – i.e., there is a

constraint (PEA, assign DayDoctor to A) in T. Similarly, assignment constraints for the

remaining doctors with the respective periodic expressions are specified.

GTRBAC0
1 representation: In this alternative, we use algorithm TransformUR

with the above GTRBAC1,U representation as the input. Accordingly, a role is created

140

for each constraint, and a default assignment and a periodicity constraint on the new

role are added. For instance, for a constraint (PEA, assign DayDoctor to A), a role, say

rA, is created and a new constraint (PEA, enable rA) is added, whereas the constraint

(PEA, assign DayDoctor to A) is replaced by default assignment (assign rA to A).

Similarly, all other temporal assignments are replaced. This is depicted in Fig. 6.7(b).

Day
Doctor

PEA = {Sun, Mon, Tue, Wed, Thu, Fri}

PEB = {Sun, Tue}

PEC = {Sun, Tue, Thu, Fri}

PED = {Sun, Mon, Tue, Wed, Sat}

PEE = {Thu, Fri}

C

D

E

B

Day
Doctor

PEA = {Sun, Mon, Tue, Wed, Thu, Fri}

PEB = {Sun, Tue}

PEC = {Sun, Tue, Thu, Fri}

PED = {Sun, Mon, Tue, Wed, Sat},

PEE = {Thu, Fri}

C

D

E

B

Day
Doctor

PE’”1 = {Sun, Tue}

PE’”2 = {Thu, Fri}

A A

PE’”3 = {Mon, Wed}

PE’”4 = {Sat}

A

C

D

E

B

(a) (b)

(c)

Fig. 6.7. Access requirements of Example 6.2.1 using (a) GTRBAC1, U representation (b)

GTRBAC0
1 representation and (c) GTRBAC0

2 representation

GTRBAC0
2 representation: This alternative uses the minimal disjoint set

approach using algorithm TransformMDS (see Fig. 6.5). The result is as shown in

Figure 6.7(c). From Example 6.2.1, we know that MDS{PEA, PEB, PEC, PED, PEE } = {PE’”1,

PE’”2, PE’”3, PE’”4}= {{Sun, Tue}, {Thu, Fri}, {Mon, Wed}, {Sat}}. A role is

created for each periodic expression of MDS{PEA, PEB, PEC, PED, PEE }. As |MDS{PEA, PEB,

PEC, PED, PEE }| = 4, four new roles are created, and a periodicity constraint is added for

each new role. The ith new role is associated with the ith periodic expression of

MDS{PEA, PEB, PEC, PED, PEE }. Each doctor is assigned to a set of new roles that

corresponds to the periodic expressions that constitutes MS of the periodic expression

141

associated with him; e.g., since MSPEC(MDS{PEA, PEB, PEC, PED, PEE}) = {PE’”1, PE’”2},

doctor C is assigned to the new roles that correspond to periodic expressions PE’”1 and

PE’”2.

In the complexity expressions we will neglect original role and any activation

constraints associated with it, as they remain the same in all the representations. We can

see that for the GTRBAC1, U representation, the complexity is: n.TUR . The following

theorem establishes formally the complexities of the alternative representations using the

GTRBAC0
 model.

Theorem 6.4 (Complexity expressions for GTRBAC0
1 and GTRBAC0

2

representations): Let n be the number of users assigned to a role r, and let PE = {PE1,

PE2 …, PEn} be the set of the periodic expressions in the user-role assignment

constraints corresponding to n users assigned to r; i.e., there is a (PEi, assign r to ui) for

each i = 1 to n; Then, the general complexity expressions for the alternative

representations GTRBAC0
1 and GTRBAC0

2 are as follows:

1. GTRBAC0
1 representation: n.S + n.TR + n.R + n.H,

2. GTRBAC0
2 representation: pn.S + sn.TR + sn.R + sn.H;

where pn = |MSPE1(MDSPE) | + |MSPE2(MDSPE) | + …. + |MSPEn(MDSPE) |, and sn =

|MDSPE |.

Based on this, we get the following complexities for each representation of

Example 4.3, which is shown in Figure 6.7.

GTRBAC1, U representation: 5.TUR.

GTRBAC0
1 representation: 5.S + 5.TR + 5.R + 5.H

GTRBAC0
2 representation: 10.S + 4.TR + 4.R + 4.H

(using algorithm TransformUR)

We see that, for the above example, the GTRBAC1, U representation is the best in

terms of complexity – it has the least number of roles, no hierarchy overhead, and no

default assignments; furthermore, it is simple and intuitive to use and hence very

convenient. The main difference between the GTRBAC0
1 and GTRBAC0

2 representations

is that the latter always produces roles that are temporally disjoint. The GTRBAC0
1

representation associates one role for each user for whom there is a temporal assignment

constraint. However, the GTRBAC1,U representation may not be the best for all cases as

we show below.

142

It can be seen that the complexities of the GTRBAC1,U and GTRBAC0
1

representations each remain the same for a given n, irrespective of how periodic

expressions are pair-wise related. The complexity of the GTRBAC0
2 representation, for a

given n, depends on MS and MDS of PE. The following corollary states the effect of MS

and MDS on the complexity of the GTRBAC0
2 representations.

Corollary 6.4.1(Complexity cases for GTRBAC0
2 representations): Let n be the

number of users assigned to a role r, and let PE = {PE1, PE2 …, PEn} be the set of the

periodic expressions in the user-role assignment constraints corresponding to n users;

i.e., there is a (PEi, assign r to ui) for each i = 1 to n; then:

1. if PEi ≠PEj, for all i, j pairs such that 1 ≤ i, j ≤ n (i.e., they are pair-wise disjoint),

then the following holds true:

complexity of GTRBAC0
2 = complexity of GTRBAC0

1

In other words, the complexity of GTRBAC0
2 = n.S + n.TR + n.R + n.H

2. if PEi =PEj, for all i, j pairs such that 1 ≤ i, j ≤ n (i.e., they are pair-wise

equivalent), then the following holds true:

the complexity of GTRBAC0
2 = n.S + TR + R + H.

3. the worst case for GTRBAC0
2 is: n2n.S + 2n.TR + 2n.R + 2n.H.

The first part of the corollary shows that when all the periodic expressions

associated with the user-role assignments are disjoint, the GTRBAC0
2 representation is the

same as the GTRBAC0
1 representation. When PEi =PEj, for all i, j = 1 to n and n is large,

GTRBAC0
2 is substantially better than the GTRBAC1,U representation, based on the fact

that temporal constraints incur more processing cost than default assignments. The

hierarchy overhead introduced by an extra role can be expected to be negligible to a

membership check associated with a default assignment for a large n. Furthermore, the

new role created can be combined with the original role, if that does not introduce extra

complicacies, thus removing the hierarchy overhead.

However, the worst case for the GTRBAC0
2 representation, as indicated by the

third part of corollary 6.4.1, is O(2n) in the number of new roles created, temporal

constraints on roles, and new hierarchical relations, and O(n2n) in the number of default

assignments.

Based on the above observation, we can summarize the following design

guidelines.

143

1. The GTRBAC1, U representation is preferable to GTRBAC0
1 representations as its

complexity in terms of the number of roles, the number of temporal constraints,

and/or the number of hierarchical relations created, is always better.

2. The GTRBAC1, U and GTRBAC0
1 representations may result in using temporal

constraints that can be avoided because of some common periodic expressions. For

example, there may be a large number of doctors who need to use the role DayDoctor

at daytime, making daytime a common period for many users. Using the GTRBAC0
1

representations in such cases also results in the same temporal periodicity constraints

on different roles, as algorithm TransformUR does not attempt to reduce constraints

based on common periodicity expressions. The GTRBAC0
2 is a good solution in all

such cases where some user-role assignments have common periodic expressions. If

all the periodic expressions are equivalent, then it produces a single role and all users

are assigned to that role, as indicated by the results in the second part of corollary

6.4.1. Theorem 6.4 and corollary 6.4.1 show that GTRBAC0
2 is advantageous when

the MS set of each periodic expression is very small (the smallest case is when it has

one member, as indicated by the second part of the corollary; i.e., when all the

periodic expressions are equivalent). Furthermore, we want a small MCS set, as it

determines the number of new roles created.

Similarly, if all the periodic expressions are pair-wise disjoint, then the

GTRBAC0
2 representation becomes equivalent to the GTRBAC0

1 representation as

shown by the first part of corollary 6.4.1.

3. The GTRBAC1, U representation is very flexible with respect to access specification

since it supports temporal constraints on user-role assignments, in addition to the

constraints on role enabling. For example, we can have the following constraints:

([Mon, Wed, Fri], assign John to DayDoctor)

([Tue, Thur], assign John to NightDocotor).

([10am, 3pm], assign Greg to DayDoctor).

By using the above constraints, we can keep the roles that have static temporal

enabling times fixed in the system and express individual user requirements using

periodicity constraints. Here, DayDoctor and NightDoctor roles are more or less

fixed in the system and, as illustrated, users are assigned to it as required.

Furthermore, these are semantically much clearer than the GTRBAC0
1 and GTRBAC0

2

forms with only role enabling time temporal constraints.

4. Note that if there are per-user-role activation constraints, using the GTRBAC0
2

representations may not be advantageous. For example, in the example above (Fig.

144

6.7(c)), each user is assigned to multiple new roles. In such a case, if there had been a

per-user-role constraint for each user, we would have needed to take extra steps

during its transformed representation. Here, we note that algorithm TransformMDS

creates an As-hierarchy (strongly restricted activation hierarchy) between the new

roles and the original role. So if we leave the per-user-role constraints untouched; i.e.,

in the transformed representation, if the per-user-role is still specified in terms of the

original role, then the new representation is still valid, as the users assigned to the

new role will have to explicitly activate the new role. However, it is neither intuitive

nor convenient to keep track, as the users are only implicitly assigned to the original

role. Therefore, in the presence of per-user-role activation constraints, GTRBAC0
1

and GTRBAC1,U provide more intuitive and convenient representations than

GTRBAC0
2.

5. Unlike periodicity constraints, duration constraints are somewhat inflexible in terms

of being replaced (for example, replacing user-role assignment by role enabling). As

duration constraints have non-deterministic start times, such constraints depend on

some other events. Such dependencies often have some application semantics, and

even though it may be possible to replace a duration constraint on user-role

assignment, as in the case of periodicity constraints, care must be taken to ensure that

the dependency semantics is not hindered. We illustrate this with an example:

Example 6.3.2: Consider Manager and Employee roles in an office and assume

that the Employee role is enabled on weekdays from 9am to 5pm, whereas the

Manager role is enabled everyday. At other times, the Employee role is enabled only

if Mr. Smith, the manager who is also the owner, has activated his Manager role. This

can be expressed using the following trigger:

activate Manager for Smith → enable Employee (t1)

Suppose Smith wants to allow John, an employee in his office, to work on Saturday

and Sunday when he is also working, for at most four hours. Then he can do that by

adding the following constraints:

 ([Sat], 4 hours, assign John to Employee) (c1)

activate Manager for Smith → assign John to Employee (t2)

de-activate Manager for Smith → disable Employee (t3)

145

When Smith activates the Manager role on Saturday, it enables Employee using

trigger t1 and assigns John to the Employee role using trigger t2. Because of the

constraint c1 active at the time, the assignment gets restricted to four hours during

which John can work.

In this case, if we try to use the duration constraint on the Employee role instead, the

implicit dependency between the activation of the Manager role and allowing John to

work is lost.

6. We note that the transformation such as in GTRBAC0
2 is not possible for user-role

assignment with duration constraints. Although there may be common duration values

associated with different user-role assignments, there is an inherent dependency

semantics associated with each duration constraint that relates it to a trigger or a

constraint enabling expression.

7. Except for the discussion presented in guideline 4, all apply to role-permission

assignments too.

Thus, we can see, except for some cases, where GTRBAC0
2 is better in terms of

complexity of representations. GTRBAC1, U
 gives the best representational form, in terms

of complexity, user convenience, and semantic clarity.

6.2.2 Per-role vs. Per-user-role Activation Constraints

In this section, we compare the use of the GTRBAC0 and GTRBAC1,A models to

express the same set of activation constraints. For simplicity, we assume that GTRBAC1,A

has only total active duration constraints in addition to constraints in GTRBAC0. The

same kinds of analysis apply to other activation constraints. In the complexity

expressions, we use AUR to mean per-user-role activation constraint, and AR to mean per-

role activation constraints as shown in Table 6.1. In addition, we will not include the

original role and any of its associated per-role constraints in the complexity expressions.

For the discussions that follow, we use the following example:

Example 6.3.3: Let A, B, C, D and E be the users subscribing 100, 100, 100,

250, 50 hours of active time per week respectively from a Video Library. A

straightforward representation of these constraints using the GTRBAC1,A model is

shown in Fig. 6.8(a) (we will refer to this as the GTRBAC1,A
s representation). To

represent these constraints using GTRBAC0, we can use the part of algorithm

TransformUR that removes per-user-role activation constraints (or we can simply

assume that there are no temporal assignment constraints and run the TransformUR

146

on this configuration). Such a representation, later referred to as the GTRBAC0
s

representation, is shown in Fig. 6.8 (b).

From the example, it is clear that the straightforward representation of a set of n

per-user-role constraints for n users assigned to a role (a per-role constraint on the role

may or may not be present) using the two models incurs the following costs:

(i) GTRBAC1,A
s representation: n.AUR

(ii) GTRBAC0
s representation: n.AR + n.R + n.H

(using algorithm TransformUR)

(Weekly, 100, C, activeUR_total MV)

D

C

E

A

B

(a)

(Weekly, 100, A, activeUR_total MV)

(Weekly, 100, B, activeUR_total MV)

(Weekly, 600, activeR_total MV)

MV

(Weekly, 250, D, activeUR_total MV)

(Weekly, 50, E, activeUR_total MV)

Video
Database

D

E

(Weekly, 300, 100, activeR_total MV3)

(Weekly, 250, activeR_total MV4)

(Weekly, 50, activeR_total MV5)

MV

MV5

MV3

MV4

(b)

Video
Database

C

(Weekly, 300, 100, activeR_total MV2)
MV2

(Weekly, 300, 100, activeR_total MV1)
MV1A

B

(0, activeR_n MV)

(strongly restricted IA-hierarchy)

Fig. 6.8. Requirements of Example 6.3.3 using (a) GTRBAC1,A
s representation (b)

GTRBAC0
 s representation (algorithm TransformUR) on a GTRBAC1,A

s configuration

Note that we did not include the original role and any per-role constraints on it, as

they will always remain the same. We can see that between the two cases illustrated

above, the GTRBAC1,A
s model gives a better representation in terms of the reduced

number of roles. The total number of activation constraints is the same in both.

However, we want to know if these give the best representations. We observe that in

Fig. 6.8(a), the users A, B, and C have the same per-user-role access requirements and

hence, can possibly be expressed as one per-role constraint. Similarly, we see that in

147

Fig. 6.8(b), MV1, MV2 and MV3 have the same per-role constraint values, which can

possibly be combined. The following theorem formally shows that such reduction in

complexity can be achieved, when there are duration constraint values that are common.

Theorem 6.5 (Complexity expression for GTRBAC0 and GTRBAC1

representations): Let n be the number of users assigned to role r, D = {d1, d2,, … dn | di

be the total active duration that the ith user is allowed over role r}, Dm = {d’1, d’2,, …

d’m} ⊆ D be the set of distinct elements of D, and Cm(d) be the number of times d occurs

in D; then the complexities of the following two representations are as follows:

1. GTRBAC1,A representation: (nx - ny).AUR + ny.AR + c.(b.ny+ 1).R+ c. H

2. GTRBAC0 representation: nx.AR + nx.R + nx.H

where,

• nx = |Dm| and ny = |D’| , such that

i. D’ ⊆ Dm ,and

ii. if d ∈ D’ then Cm(d) > 1

• b =1 if (n > nx); b =0 otherwise,

• c =1 if (n > nx>0); c = 0 otherwise.

The complexities of the previously mentioned representations of the constraints as

shown in figures 6.8(a) and 6.8(b) can be easily derived by forcing each element in D to

be considered as unique. Note that the values of some dis in D may be equal. In that case,

D’ is non-empty and contains those elements of D that occur more than once.

nx = |Dm|= n, ny = 0, b = 0 and c = 0

and hence, the complexities are as follows:

GTRBAC1,A
s
 representation:

= (nx - ny).AUR + ny.AR + c.(b.ny+ 1).R + c. H = n.AUR (same as (i))

GTRBAC0
s representation:

= nx.AR + nx.R + H = n.AR + n.R + n.H (same as (ii))

Thus, for Example 6.3.3, we have the following complexities, as given by

Theorem 6.5 (the constraints are as shown in Figure 6.8):

GTRBAC1,A
s representation: 5.AUR

GTRBAC0
s representation: 5.AR + 5.R+ 5.H

148

Here, we see that, in the GTRBAC0
s representation, there are mainly temporal

constraints for the five new roles and one for the old role. In the GTRBAC1,A
s

representation, there is just one role with one per-role constraint (the original role and

hence not included) but there are five per-user-role and one per-role constraints.

B

(Weekly, 300, 100, activeR_total MV1)

Video
Database

C

A

MV

MV2

MV1

E

D (Weekly, 250, D, activeUR_total MV2)

(Weekly, 50, E, activeUR_total MV2)

(0, activeR_total MV)

B

C

A

MV

MV2

MV1

E
(Weekly, 50, activeR_total MV2)

(0, activeR_total MV)

D

(Weekly, 300, 100, activeR_total MV1)

(Weekly, 250, activeR_total MV2)

MV2

(a)

(b)

Fig. 6.9. Constraints of Example 6.3.3 (a) using GTRBAC0 representation (b) using
GTRBAC1,A representation

Fig. 6.9 illustrates the general constraint design that combines common total

active duration constraints as used in Theorem 6.5. Here, we get nx=3 as Dm={50, 100,

250}, ny=1 as D’={100}, b = 1 and c = 1. Therefore, the complexities are:

GTRBAC0 representation: = nx.AR + nx.R + H = 3.AR + 3.R+ 3.H

GTRBAC1,A representation: = (nx - ny).AUR + ny.AR + c.(b.ny+ 1).R + c. H

= 2.AUR + 1. AR + 2.R + H

We can summarize the following guidelines based on the above observation:

1. If there are many users having a common active duration requirement, then using a

role and a constraint that specify both the total and default duration constraint

minimizes both the number of roles and the number of temporal constraints, as shown

by Theorem 6.5.

149

2. If the expected requirements for active durations for individual users vary

substantially from user to user, the GTRBAC1,A representation is preferable.

3. If flexibility is needed, using per-user-role constraints (and hence the GTRBAC1,A

representation) is better. For example, if the users A, B, C, D and E request a different

active duration every week, then the use of per user-role constraints is more

appropriate.

4. In some cases, a hybrid approach utilizing constraints on both per role and per user-

role will give a more efficient representation, as shown by Figure 6.9(b). This is the

GTRBAC1,A representation as per Theorem 6.5.

Thus, we see that the GTRBAC1,A representation has distinct advantages over the

GTRBAC0 representation.

6.3 Conclusions

In this chapter, we have addressed the issue of the expressiveness of the GTRBAC

model. As our major contribution, we showed through exhaustive analysis of the

minimality of the GTRBAC model that a comprehensive set of GTRBAC constraints can

provide distinct advantages over minimal GTRBAC model in terms of user convenience

and the complexity of constraint representation. This is practically a significant result as it

shows that although the GTRBAC model is not minimal, its constraints set provides

constraint designers with flexibility and intuitive choices over various constraint

expressions as well as much better and less complex representations in certain cases.

Based on these results, we outlined some design guidelines that can assist constraint

designers in choosing more convenient and less complex constraint expressions.

150

7. X-GTRBAC – AN XML BASED GTRBAC POLICY

SPECIFICATION LANGUAGE

In this chapter, we present X-GTRBAC, an XML based GTRBAC policy

specification language. The X-GTRBAC language design and implementation is a joint

work in [Bha03] and therefore, only an overview of the language and system architecture

is provided in this dissertation. The implementation details can be found in [Bha03].

We first motivate the choice of using XML as the policy specification language.

We then present an overview of the features of X-GTRBAC. In particular, the language

has been extended with the capability to support credential-based role assignment. Such a

capability allows X-GTRBAC to be used in a generic web-based environment where the

users are not known a priori. Furthermore, X-GTRBAC also includes some features to

allow role mapping between multiple security domains. While there are many challenging

technical issues related to secure interoperability in a multidomain environment that are

yet to be adequately addressed [Gon96, Hos92a, Hos92b, Jos01a, Jon95, Kuh95, Tar97a,

Tar97b, Vas94, Vuo01], such a provision in X-GTRBAC allows, at least at a

specification level, support for specifying metapolicies that govern the permissible

interdomain access mapping between a pair of domains.

7.1. Motivation for an XML Based Policy Specification Language

The eXtensible Markup Language (XML) [Ber01b, URLa], which evolved from a

simple subset of SGML [Iso86], is considered as the most promising technology for

information interchange across heterogeneous, distributed domains [Vuo01]. XML can be

considered as a meta-language that allows users to design their own markup language,

using some agreed-upon vocabulary for application-specific purposes. XML offers this

capability by providing an extensible set of markup tags for creating custom documents,

as well as a set of related technologies for their interpretation.

XML documents have logical as well as physical structures [Ber99a, Ber01b,

Vuo01]. An XML document is physically composed of entities, which may include other

151

entities and attributes. Each document has a root or document entity. Each XML

document is logically composed of declarations, elements, comments, character

references, and processing instructions. These logical components are all indicated in a

document by explicit markup. Additionally, elements may contain attributes.

<enterprise>
 <depts>
 <engineering>
 <engg_manager job_id= “EM”>
 <name>John</name>
 <level>5</level>
 <…> .. </..>
 </engg_manager>
 <product_engineer job_id=”PE”>

<name>Paul</name>
 <shift>1</shift>
 <…> .. </..>
 </product_engineer>
 </engineering>
 </depts>
</enterprise>

Fig. 7.1. An XML instance document

<xs:schema>
 <xs:element name =“enterprise”>
 <xs:complexType>
 <xs:element name = “depts”>
 <xs:complexType>
 <xs:element name = “engineering”>
 <xs:complexType>
 <xs:element name = “engg_manager”>
 <xs:complexType>
 <xs:attribute name =“job_id” type=”xs:string”/>
 <xs:element name = “name” type=”xs:string”/>
 <xs:element name = “level” type=”xs:string”/>
 <xs:/complexType>
 <xs:/element>
 <xs:element name = “product_engineer”>
 <xs:complexType>
 <xs:attribute name =“job_id” type=”xs:string”/>
 <xs:element name = “name” type=”xs:string”/>
 <xs:element name = “shift” type=”xs:string”/>
 …….
 <xs:/complexType>
 <xs:/element>
 <xs:/complexType>
 <xs:/element>
 ……
 <xs:/complexType>
 <xs:/element>
<xs:schema>

Fig. 7.2. An XML schema for document in Fig. 7.1

152

The syntactic structure of an XML document instance is defined by an associated

XML schema, which itself is an XML document [URLc]. The instance document is said

to conform to its associated schema. Fig. 7.1 illustrates an XML instance document that

conforms to the XML schema shown in Fig. 7.2. Essentially, the structure of XML tags in

the instance document is as per the schema definition. Note, each element may contain its

own set of child elements. For instance, the second line in Fig. 7.2 indicates that

enterprise is the root element of the document that contains element depts as its

child element. Elements can thus form a hierarchy. The engg_manager and

design_manager elements have an attribute named job_id. The tags are usually

chosen to be meaningful within the context of the application that the XML document is

part of. Such an extensible naming feature of XML allows capturing the application

specific needs of an organization to create customized documents. The detailed

specifications of XML and XML Schema can be found at [URLa, URLc].

The use of XML for expressing GTRBAC policies has many advantages. In

particular, we are motivated by the fact that XML is user-friendly, extensible, and widely

supported by all the main platform and tool vendors [URLd]. Hence, the XML policy

specification language will have a wider applicability. In particular, an XML-based policy

specification language can be used in any web-enabled e-commerce applications. Another

motivation for using XML as the language of choice for specifying access control policies

is the heterogeneity of collaborating entities, within a large distributed enterprise

environment, that enable high level information system services. The functional entities

within an enterprise, connected through multiple media, and each comprised of

heterogeneous information systems that are linked together by the EC technology,

require a common policy specification language to efficiently express and enforce the

enterprise level access control policy. As XML provides a uniform, vendor-neutral

representation of enterprise data, and allows a mechanism for interchange, sharing and

dissemination of information content across heterogeneous systems [Bar97, Jos01a,

Bis98], an enterprise can benefit significantly from an XML-based policy specification

language.

7.2 Overview of X-GTRBAC Language Features

In this section, we present the features of the proposed X-GTRBAC language. X-

GTRBAC has been designed to be used in a web-based environment or a large enterprise

setting. The key features that X-GTRBAC provides are discussed below.

153

Specification of GTRBAC Elements: X-GTRBAC allows specification of all the

elements of the GTRBAC model. These elements include user, role and permission

definitions, specification of hierarchies and separation of duty constraints, periodicity and

duration expressions, and triggers.

Specification of Credentials Based Role Assignment: X-GTRBAC allows the

specification of dynamic assignment of users to roles based on the credentials that a user

presents. In an RBAC model, users are assigned memberships to roles. However, in

emerging web-based applications, the pool of users is not known in advance. While in

such cases, other access control models have limitations [Jos01b, San94], RBAC

provides roles as the basis for capturing the access control requirements of an application.

However, the policy also should include how unknown users in the open Internet

environment may be assigned to roles so that services provided by the application are

available to legitimate, yet unidentified users. Furthermore, in a large enterprise, a

considerable amount of administrative effort needs to be expended in the administration

of the assignment of tens of thousands of users to hundreds of roles. Credential based

dynamic assignments of users to roles allows efficient administration of access control

policies in such environments by defining rules on credential attributes for assigning roles

to strangers. X-GTRBAC allows an administrator to define credentials that can be

assigned to users and later used to resolve the assignment of roles when access requests

are made.

Specification of Content and Context based policy : X-GTRBAC provides

some level of support for content-based access control, in particular when access control

policies are defined for XML documents themselves. For protected XML documents,

protection granularity can be at the schema level, an instance document level, or an

element level. In a generic case, we believe, the abstraction provided by a permission as

an authorized operation on an object, can be used to capture generic content based access

control. In such a case, the content-based access control framework described in [Jos02]

can be used. We have not addressed this issue in this dissertation.

Although we have not formally addressed the issue of general context-based

extension of the G-TRBAC model, it has been noted in Chapter 5 that context based

access control policies can be easily defined by allowing triggers to include events and

conditions that are external to the GTRBAC system. X-GTRBAC allows capturing such

context information through a trigger on constraints on assignments to provide context-

based dynamic access control support. In addition to triggers, X-GTRBAC allows

specifying pre-conditions for each state of a role enabling, role activation or role

154

assignment in order to allow authorizations to be controlled based on dynamic context

information. While triggers and control flow dependency constraints can capture such

issues, we include the facility for the specification of such preconditions in X-GTRBAC

to allow simplified policy specification and flexibility. Policy designers may choose

either triggers or such pre-conditions, or a combination of them, to better express the

policy requirements. The notion of pre-condition for roles provides good support for

credential and context-based policies, as these pre-conditions can be defined on credential

attributes as well as the contextual information of an application environment. For each

role, we define the following three types of preconditions

I. Role enabling/disabling precondition: This precondition needs to be

satisfied for a role to be enabled.

II. Role assignment/deassignment precondition: This precondition needs to be

satisfied before a user can be assigned/deassigned to a role.

III. Role activation/deactivation precondition: This precondition needs to be

satisfied before an authorized user can activate a role.

Specification of Policy Mapping Between Different Security Domains: X-

GTRBAC also provides some support for expressing mapping between roles of

GTRBAC policies belonging to different domains. Multidomain environments have

manifested in various forms of emerging systems. Those particularly becoming prominent

include Web-services and Grid-based systems [Azz02, Pea02]. Web Services are typically

employed in B2B applications where a service provider may need to expose specific

information to a client website, or an automated transaction may need to be carried out

between two e-commerce applications based on pre-specified rules. Grid-based systems,

on the other hand, are emerging as a promising technology that can span an environment

with the size and scope of the Internet with heterogeneous computing systems

geographically distributed across multiple administrative domains [Azz02]. In general a

multidomain environment can be characterized as loosely coupled or tightly coupled

systems. In a loosely coupled environment, the interoperation needs are transient and

dynamically determined, whereas in the tightly coupled or federated environment, the

policies from multiple systems are integrated to enable higher goals. X-GTRBAC can be

used to support the specification of interdomain role mapping in such environments.

155

7.3. X-GTRBAC Syntax

In this section, we describe the X-GTRBAC syntax using a BNF-like grammar

that we refer to as X-Grammar. The X-Grammar supports the tagging notation of XML

and allows expressing attributes within element tags. The non-terminals are represented

as <!-- “non_terminal_name”> XML tags, and terminals as standard XML tags. We use the

optional tags by placing them within square brackets “[]”. Group portions of a production

are included in curly brackets “{}”, with a subscript to indicate the repeat count. The

default count, if the subscript is not specified, is one. A “*” and a “+” indicates a count of

“zero or more” and “one or more” respectively, whereas a “-” indicate a range.

Alternative elements are separated by “|”s in a production. Any data placed in parenthesis

“()” is not part of the terminal symbol, and shall be supplied by the security

administrator. The X-Grammar has been used to simplify expressing production rules for

the X-GTRBAC language constructs.

<!-- Policy Definition--> ::=
<Policy [policy_id = “(value)”]>

 <PolicyName> (name)
 </PolicyName>

 [<!--XCredType Definition Sheet>]
 [<!--XTemporalConstraint Definition Sheet>]
 <!-- XML User Sheet>
 <!-- XML Role Sheet>
 <!-- XML Permission Sheet>
 <!-- XML User-Role Assignment>
 <!-- XML Role-Permission Assignment>
 [<!-- XSoD Definition Sheet>]
 [<!-- XHierachy Definition Sheet>]
 [<!-- Local Policy Definitions-->]
 [<!-- Policy Relationship Definitions>]
</Policy>

Fig. 7.3. X-GTRBAC policy sheet

Policy Document: The XML syntax for general policy definition (<!-- Policy

Definition-->) is shown below. The key policy component definitions include the XML

Role Sheet (XRS), the XML User Sheet (XUS), the XML Permissions Sheet, (XPS), the

XML User-Role Assignment Sheet (XURAS), and the XML Permission-Role

Assignment Sheet (XPRAS). Moreover, a policy can include multiple constituent

policies, thus facilitating the specification of policies for multidomain environments.

156

Each constituent policy may be a local policy of a federated system or a policy of a

partner domain in a loosely coupled environment. Local policy definitions are included or

simply referred to by using the ids of the local policies. If local policies are defined, then

the set of relationships between the global policy and each of the local policies needs to

be defined. The relationship definition will include mapping specification between the

global entities and the local entities.

<!-- XCredType Defintion Sheet > ::=
<XCredType xCrType_id = (id)>
 {<!-- Definitions of Credential Types>}+
</XCredType>

<!-- Definitions of Credential Types> ::=
<XCredType [xctd_id = (id)] >

 {<!-- Credential Type Definition>}+
</XCredType>

<!-- Credential Type Definition> ::=
<CredType cred_type_id = (id)

 type_name= (type name) >
 <AttributeList>
 {<!-- Attribute Definition>}+
 </AttributeList>
</CredType >

<!-- Attribute Definition> ::=
<Attribute>

<AttributeName
 usage = “mand | opt”

 type = (type)>
 (name)
 </AttributeName>
</Attribute>

<!-- XML User Sheet > ::=
<XUS xus_id = (id)>
 {<!-- User Definitions>}+
</XUS>

<!-- User Definitions > ::=
<Users>
 {<!-- User Definition>}+
</Users>

 <!-- User Definition> ::=
<User user_id = (id)>

 <UserName> (name) </UserName>

 {<!--CredType>}+
 <MaxRoles> (number) </MaxRoles>
</User>

<!-- CredType> ::=
<CredType cred_type_id = (id)

 type_name= (type name) >

 <!-- Credential Expression>
</CredType>

<!-- Credential Expression> ::=
<CredExpr>

 {<(attribute name)> (attribute value)

 </(attribute name)>}+
</CredExpr>

Fig. 7.4 XUS syntax

Credential Type Definition and XML User Sheets (XUS): X-GTRBAC uses

the notion of credentials proposed in [Ber99a]. Credential type definition specifies the

attribute list associated with a credential type. The value of each attribute is assumed to

be of string type. Each attribute of a credential type may be defined as mand, to indicate

that it is mandatory, or as opt, to indicate that it is optional. Consider the following user

credential based on a general credential expression of the form (cred_type_id,

157

cred_expr), where cred_type_id is a unique credential type identifier and

cred_expr is a set of attribute-value pairs.

(Nurse, {(credtypeid, ”C100”, mand), (uname, “John”, mand), (age, 30, opt), (level, 5,

mand)})

X-GTRBAC allows the definition of new credential types to group users based on

their credentials. The schema for the credential type definition (XCredType) is shown in

Fig. 7.4. The credential information in XCredType sheet allows adding vocabulary to

express the credentials needed by the users. Users and their credentials are expressed in

XUS. Fig. 7.4 shows the grammar for XUS. User definition may simply define user

name and user id, or additionally specify the assigned credentials that the user may carry.

The MaxRoles tag indicates the maximum number of roles that a user can be assigned

to.

XML Permission Sheet (XPS): Permissions are specified in X-RBAC using the

syntax for XPS shown in Fig. 7.5. The permissions for a given system are defined in

terms of objects and associated operations such as read, write, delete, modify, etc.

Permissions are defined by security administrators. The set of permissions for a system is

expressed in the form of an XML document that we refer to as the XML Permission

Sheet (XPS). The grammar for XPS is shown in Fig. 7.5.

<!-- XML Permission Sheet> ::=
<XPS [xps_id = (id)]>

 {<!-- Permission Definition>}+
</XPS>

 <!-- Permission Definition> ::=
<Permission perm_id = id

 [prop= (prop op)] >
 <Object type= (type name) id= (id)/>
 <Operation> (access op)
</Operation>
</Permission>

Fig. 7.5 XPS syntax

The “perm_id” uniquely identifies a permission. Each object also has a unique

id and an associated type attribute. When the resources in the system are modeled as

XML, the hierarchical structure of an XML document is used to capture the physical

object hierarchy described. An object hierarchy could be composed of either documents,

or document elements (in case of XML documents). A permission can, hence, be allowed

on such XML schema, document instances and on each element in the element hierarchy

of the document. When XML documents are to be protected, an optional propagation

option, given by the “prop” attribute, can be specified which indicates whether or not

158

the authorization of privileges propagates down the object hierarchy. X-GTRBAC allows

propagation options “no_prop”, “first_level” and “cascade” [Ber01b], with

default being “no_prop”, meaning that no propagation of authorized privilege is to be

allowed down the element hierarchy.

XML Role Sheets (XRS): Role definitions are provided in an XRS as shown in

Figure 7.4. For each role, a set of role attributes is specified. Preconditions are defined on

these attributes. Such attributes may refer to credential attributes that users present as well

as contextual information of the system. As mentioned earlier, each role may have

associated with it preconditions for its enabling, assignment and activation that are

separately defined using the <EnabCondition>, and <ActivCondition> tags in

Fig. 7.6.

<!-- XML Role Sheet> ::=
<XRS [xrs_id = (id)]>

 {<!-- Role Definition>}+
</XRS>

<!-- Role Definition> ::=
<Role role_id = (id)

 role_name = (role name)>
 [<!--Attributes>]
 [<!--{En|Dis}abling Constraint>]
 [<!--[De]Activation Constraint>]
 [<Junior HType = “I|A|IA”
 PConst = (TempExID)>

 (name)
 </Junior>]

 [<Senior HType = “I|A|IA”
 PConst = (TempExID)>

 (name)
 </Senior>]

 [<Cardinality> (number)

</Cardinality>]
</Role>

<!-- {En|Dis}abling Constraint> ::=
 <{En|Dis}abConstraint
 [op = {AND|OR|NOT}]>

 {<!--{En|Dis}abling Condition>}+
</{En|Dis}abConstraint>

<!-- {En|Dis}abling Condition> ::=
<{En|Dis}abCondition
 [{pt_expr_id=(id) |
 d_expr_id=(id)}] >
 [<!-- Logical Expression>]
<{En|Dis}abCondition>

<!--[De]Activation Constraint> ::=
<[De]ActivConstraint
 [op = {AND|OR|NOT}]>

 {<!--[De]ActivationCondition>}+
</[De]ActivConstraint>

<!--[De]Activation Condition> ::=
<[De]ActivCondition
 [d_expr_id=(id)]>
 [<!-- Logical Expression>]

</[De]ActivCondition >

Fig. 7.6 XRS syntax

For enabling/disabling preconditions, we can use a temporal expression, which

can be defined separately, as a condition. Semantically, it means that the role is enabled

if the current time instant is contained in the periodic time expression. The language

allows specifying additional logical predicates to be used to express context based

159

conditions using the generic syntax for the logical expressions. Periodic time and logical

expressions are shown in Fig. 7.7 and discussed below. Note that we may allow any

complex logical expression using this syntactic framework. A role definition may specify

hierarchy relations by specifying its juniors using the <Junior> and <Junior> tags

and specifying the type HType. Furthermore, the hierarchy relation may be associated

with a temporal expression to time-constrain the validity of the relation and to express

role cardinality using the <MaxUsers> tag.

<!-- Definitions of Temporal Constraints>
::=
<XTempConstDef [xtcd_id = (id)]>

 {<!—Interval Expression>}*
 {<!-- Periodic Time Expression>}*
 {<!-- Duration Expression>}*
</XTempConstDef>

<!—Interval Expression ::=
<IntervalExpr i_expr_id = id)>
 <begin> (date)</begin>

 <end> (date)</end>
<IntervalExpr>

<!-- Periodic Time Expression> ::=
 <PeriodicTimeExpr pt_expr_id = (id)

 [d_expr_id = (id)] [i_expr_id = (id)] >

 <!-- Start Time Expression>
</PeriodicTimeExpr>

<!-- Duration Expression> ::=
<DurationExpr d_expr_id = (id)>

 <cal>{Years|Months|Weeks|Days}</cal>

 <len> (number)</len>
</DurationExpr>

<!-- Start Time Expression> ::=
<StartTimeExpr [pt_id_ref =(pt_id)]>

 [<Year>{all|odd|even} /<Year>]

 [<!--MonthSet>]
 [<!--WeekSet>]
 [<!--DaySet>]
</StartTimeExpr>

<!--MonthSet> ::=
<MonthSet> {<Month>{1|..|12}</Month>}1-

12
</MonthSet >

<!--WeekSet> ::=
 <WeekSet>
 {<Week>{1|..|4}</Week>}1-4

</WeekSet >

<!--DaySet> ::=
<DaySet>
 {<Day>{1|..|7}</Day>}1-7

</DaySet >
<
!—Temporal Expression> ::=
<!—Interval Expression>|
<!-- Periodic Time Expression>|
<!-- Duration Expression>|

<!-- Logical Expression>::=
<LogicalExpr [op = {AND|OR|NOT}]>

 {<!-- Predicate>}+
</LogicalExpr>

<!-- Predicate> ::=
<Predicate>

 [{<Operator> {gt|lt|eq|neq}
</Operator>

 [<FuncParam>(functionname)
 </FuncParam>]
 {<NameParam

type=(role|user|attribute)]>
 (parameter name)
 </NameParam>
 }+

<ValueParam>(value)</ValueParam>
 }

 |
 < !--LogicalExpression>]
</Predicate>

Fig. 7.7 Schema for temporal and logical expression

160

Temporal Constraint and General Logical Expressions: X-GTRBAC allows

defining temporal expressions separately so that they can be associated with role

enabling, assignments and other constraints. Temporal constraint expressions are defined

in the XTempConstDef sheet, presented in Fig. 7.7.

The “Attributes” tag of the role contains a list of role attributes that may be

parameters of the context conditions, or credential a,ttributes which need to be

dynamically evaluated for any role enabling/disabling or activation/deactivation. The

context conditions may be based on parameters such as system load, location information

etc., or on status expressions such as “whether role R has been enabled by user U”. The

“(En|Dis)abling Constraint” and “[De]Activation Constraint” tags

contain a set of conditions, where each condition is composed of possibly multiple logical

expressions for specification of the respective constraints based on both temporal and

non-temporal context-dependent parameters. The constraint tag has an optional op-

code attribute to specify the logical operators applied on its child elements. An op-

code of (i) “AND” implies that all constituent expressions must be true for the constraint

to be true, (ii) “OR” implies that at least one expression must be true for the constraint to

be true, and (iii) “NOT” implies that none of the expressions must be true for the

constraint to be true. The op-code defaults to “AND” if none is specified.

Each condition tag may contain a “pt_expr_id” or “d_expr_id” attribute

that refers to a periodic-time or a duration expression respectively. These expressions are

the XML representation of the periodic-time expression framework provided in the

GTRBAC model, and bind the corresponding condition with the respective periodic

expression. We give an XML representation for each of the start-time, interval, and

duration expressions that together constitute the periodic-time expression. Following the

notion of “calendars” used in the GTRBAC model, the start time expression consists of

“calendar sets”, where each calendar is a unit of time, e.g. years, months, weeks, etc. As

an example, an event that occurs at the start of the second week of every first and eighth

month of every odd year would be represented by using “{odd}” as the Year set, “{1,8}”

as the Month Set, and “{2}” as the Week Set. The optional “pt_id_ref” attribute

indicates start time with reference to the provided periodic-time expression id. If it is

supplied, then the start time is the same as that of the referenced periodic time. Note that

a “pt_id_ref” is provided only when the calendar sets are not provided, and vice

versa. Any new start time is always explicitly defined using new calendar sets. An

interval is given by a (begin_date, end_date) pair, and a duration is specified as a

161

(calendar, calendar_length) pair. The semantics of the periodic time expression thus

dictate that the associated event can only occur if the start time expression is satisfied by

the time of request, and if such time falls within the interval specified by the interval

expression. The duration of the event, if it occurs, would be governed by the duration

expression.

The “Logical Expression” tag contains a set of predicates, where each

predicate may contain a context-condition expressed in terms of role attributes, or embed

within itself another logical expression. Hence, the structure allows evaluation of nested

conditions expressed by multiple logical expressions. The predicates are composed of

context-based parameters, where the “NameParam” tag contains the name of the

parameter to be evaluated, and the ”ValueParam” tag contains its value that is to be

checked according to the given “Operator”. For instance, any attribute supplied as part

of a user credential expression may be compared for a pre-requisite value needed for

certain role assignment or activation by supplying the attribute name as “NameParam”,

the required values as ”ValueParam”, and the comparison operator as “Operator”.

The “FuncParam” is an optional tag which is useful if the parameters in question can

only be evaluated through a system review function, expressed as the status expressions

of the GTRBAC model. Multiple parameter names may be passed to functions that

evaluate multiple parameters, with the distinction among parameter types made with the

“type” attribute. As an example of predicates, we might evaluate status expressions for a

role by supplying a status condition such as “active r for u” as “FuncParam”, the

role name and the user id as two instances of “NameParam”, and the value of either

“True” or “False” as the “ValueParam”. In such situations where a boolean output

is returned, only the “eq” operator is useful for comparison. The “Logical

Expression” tag also has an optional op-code attribute that determines the

evaluation logic of the predicates. On the similar lines as the constraint tag, an op-code of

(i) “AND” implies that all constituent predicates must be true for the logical expression to

be true, (ii) “OR” implies that at least one predicate must be true for the logical

expression to be true, and (iii) “NOT” implies that none of the predicates must be true for

the logical expression to be true. The op-code defaults to “AND” if none is specified. The

grammar for logical expression specification is shown in Fig. 7.7.

Trigger: Fig. 7.8 shows the syntax of the GTRBAC trigger expression. As the

predicates within a logical expression can include both temporal and non-temporal

context-based parameters, they allow for the specification of context-based triggers in our

162

X-GTRBAC framework. This set of triggers is supplied in a separate XTrigDef sheet.

The grammar for the XTrigDef sheet is shown in Fig. 7.8.

The “Head” tag of the trigger has an attribute that indicates the target role or the

permission on which the trigger action is performed. An optional “user_id” attribute is

also supplied for triggers that need to perform the action with respect to certain individual

users. The triggering constraint in the “Body” tag is semantically similar to the

constraints discussed above, and is evaluated in an analogous manner. The action

associated with the trigger is performed if the constraint evaluates to true.

<!--Triggers Specification>::=
<XTrigDef [xtd_id = (id)]>

 {<!-- Trigger>}*
</XTrigDef>

<!--Trigger> ::=
<Trigger [trig_id = (id)]>

 <Head {role_name = (name) | perm_id = (id) }

 [user_id = (id)]

 action = {enable | disable |

 assign | deassign | deactivate} >
 </Head>
 </Body> <!--Triggering Constraint> </Body>

</Trigger>

 <!--Triggering Constraint> ::=
 <TrigConstraint
 [op =
{AND|OR|NOT}]>

 {<!--Triggering Condition>}+
</TrigConstraint>

<!—Triggering Condition>
<TrigCondition>

 [<!-- Logical Expression>]
<TrigCondition>

Fig. 7.8 Trigger syntax

Separation of Duty Expression: The separation of duty constraint specification

simply uses a predefined set of SoD types to identify the type of SoD as shown in Fig.

7.9. For each SoD a set of roles, users, or permissions may need to be specified. If any of

these sets is not specified, and the specified SoD type requires one as discussed in

Chapter 5, then the entire set of the users, roles, or permissions will be considered.

<!-- Separation of Duty Definitions> ::=
<XSoDDef [xsod_id = (id)]>

 {<!—SoD Definition>}*
</XSoDDef>

 <!—SoD Definition>
<XSoD [xsod_id = (id)

 [xsod_type = (id)]>

 [<!—UserSet >]
 [<!—RoleSet >]
 [<!—PermissionSet >]
 [<!—Temporal Expression >]
</XSoD>

Fig. 7.9 Separation of duty expression

163

XURAS: The schema for XURAS is shown in Fig. 7.10. Each

“UserRoleAssignment” (URA) tag has an associated “role_name” attribute, and

contains a set of “AssignUsers” tags containing the set of users who are to be

considered for potential assignment to the specified role. Each such user is identified by

the “user_ id” attribute of the corresponding “AssignUser” tag. This tag also

contains the assignment constraint for this particular user. The assignment constraint has

a “cred_type” attribute that specifies the credential type that the user must possess in

order to be considered for a potential role assignment. The remaining part of the

constraint is semantically similar to the constraints discussed above and is evaluated in an

analogous manner. The user is assigned to the specified role if the constraint evaluates to

true. Similar logic applies to de-assignment of users from roles. Note that a special user

with user_id = “any” is recognized by the system as an unknown user, who may be

required to supply additional assignment conditions in order to be assigned to a particular

role. If no explicit conditions are specified, then any user could be assigned the particular

role, which usually is the “guest” role in most enterprise applications.

<!-- XML User-role Assignment Sheet> ::=
<XURAS [xuras_id = (id)]>

 {<!-- User-role Assignment>}+
</XURAS>

<!-- User-to-role Assignment> ::=
<URA ura_id=(id) role_name=(name)>
<[De]AssignUsers>
 {< !--[De]Assign User>}+
</[De]AssignUsers>
</URA>

<!--[De]Assign User > ::=
<[De]AssignUser
 user_id=(id)>

 <!--[De]Assign User Constraint>
</[De]AssignUser>

<!--[De]Assign User Constraint> ::=
<[De]AssignUserConstraint
 [op = {AND|OR|NOT|XOR}]>

 <!--[De] Assign User Condition>
</[De]AssignUserConstraint>

<!--[De]Assign User Condition> ::=
<[De]AssignUserCondition
 cred_type=”type_name”
 [{pt_expr_id=(id) |
 d_expr_id=(id)}] >
 [<!-- Logical Expression>]
</[De]AssignUserCondition>

<!-- XML Permission-role Assignment Sheet>
::=
<XPRAS [xpras_id = (id)]>

 {<!-- Permission-role Assignment>}+
</XPRAS>

<!-- Permission-role Assignment> ::=
<PRA pra_id=(id) role_name=(name)>
<[De]AssignPermissions>
 {< !--[De]Assign Permission>}+
</[De]AssignPermissions>
</PRA>

<!--[De]Assign Permission > ::=
<[De]AssignPermission
 [{pt_expr_id=(id) |
 d_expr_id=(id)}]
 {<PermId>(id)</PermId>}+
</[De]AssignPermission>

Fig. 7.10 User-role and role-permission assignments

164

XPRAS: The grammar for XPRAS is shown in Fig. 7.10. Each

“PermissionRoleAssignment” (PRA) tag has an associated “role_name”

attribute, and contains a set of “AssignPermission” tags containing the set of

permissions that are to be potentially assigned to the specified role. Each such permission

is identified by a “PermId” tag within the corresponding “AssignPermission” tag.

Note that the permissions would typically be subject to periodic-time or duration

constraints, and hence we allow the option of specification of periodic-time or duration

constraint expression for the permission assignment. The permission is assigned to the

specified role if the constraint evaluates to true. Similar logic applies to de-assignment of

permissions from roles.

<!—Local Policy Definitions -->
<LocalPolicies>
 <!—(Local) Policy Definition -->
</LocalPolicies>

<!—Policy Relationship Definitions -->
<PolicyRelationships
 [prs_id = (id)] [pt_id = (id) -->

 {<!-- Definition of Policy Relation>}+
</PolicyRelationships>

<!-- Definition of Policy Relation>::=
<PolicyRelation pr_id = (id)

 [pt_id = (id)]>
 <GlobalToLocalMapping
 [gMap_id = (id)] >

 {<!-- Role Mapping>}+
 </GlobalToLocalRoleMapping>
</PolicyRelation>

<!-- Role Mapping>::=
<RoleMapping>
 <MappedRole [r_id = (id)]> (name)

 {<!—Roles Mapped To>}+
 </MappedTo>}+
</RoleMapping>

<!-- Roles Mapped To>::=
<MappedTo>
 <Role [r_id=(id)] [policy_id = (id)]>

 (name)
 </Role>
 <!-- Mapping Condition>
</MappedTo>

Fig. 7.11 Schema for metapolicy specification

Specification of Metapolicy: Within a policy definition, we can include local

policy definitions using the XML syntax depicted in Fig. 7.11. Note that each policy may

itself be a global policy over a set of local domains. Thus a hierarchy of policy may be

specified in which a multidomain environment may become a component of a larger

multidomain environment and so on. A relevant principle for mediation policies is the

following scoping rule:

165

Scoping rule: If a policy P becomes a local policy of a higher level policy, then

P’s local policy definitions and the policy relations are not known to the higher

level policy.

Such a rule says that, within a global policy definition, only the entities of its local

policies, and not those of constituent domains of these local policies, are visible. This

abstraction simplifies the metapolicy construction. However, if the higher level policy

management must oversee the policy of the overall federation, then this rule may need to

be relaxed.

With local policies included, we need to define the relationships among their

policy entities with the global entities. The XML syntax for defining policy relationships

is shown in Fig. 7.11. Each global role may be mapped to a number of local roles, which

may belong to the same or different local domains. For each mapping, a condition can be

specified. We require that the local roles that a global role can be mapped to are included

in the local policy definitions.

Example of metapolicy specification: The following example illustrates the

specification of the mapping relationship depicted in Fig. 7.12:

Fig. 7.12. Metapolicy example

Fig. 7.12 shows the mapping of the global role R to the local roles C in Domain 1,

r1 and r2 in Domain 2, and X in Domain 3. Next, we illustrate the possible use of such a

mapping healthcare systems.

Consider a healthcare federated system of three hospitals which allow cross-

appointment of a doctor. In such a case, R can represent a FederatedDoctor which is

mapped to local doctor roles, say C = DayDoctor in hospital 1, r1 = DayDoctor and r2 =

EmergencyDoctor in hospital 2, and X = SupervisorDoctor in hospital 3. Furthermore,

assume that the global-to-local role mappings are valid in the intervals defined as follows:

A

B C

X

Y Z

Domain 1 Domain 3

r1

r2 r3

Domain 2

R Global Role

[I,P]1

[I,P]2 [I,P]3

[I,P]4

(c)

166

[I, P]1 = {Mondays, Wednesdays}, [I, P]2 = {Tuesdays and Thursdays}, [I, P]3 =

{Fridays} and [I, P]4 = Weekends. With these mappings, a user, say Dr. Smith, who

needs to be cross-appointed to different hospitals at different times, for instance, can be

assigned to the FederatedDoctor role between 9am and 6pm on Mondays through

Saturdays. This means that during the daytime between 9am and 6pm, Dr. Smith can

assume:

� DayDoctor role in hospital 1 on Mondays and Wednesdays, and in hospital 2 on
Tuesdays and Thursdays,

� EmergencyDoctor role in hospital 2 on Fridays, and

� SupervisorDoctor role on Saturdays in hospital 3.

<PolicyRelation pr_id = PR1>

 <GlobalToLocalMapping [gMap_id = “GL1”]>
 <RoleMapping>

 <MappedRole> FederatedDoctor
 </MappedRole>

 <MappedTo>
 <Role policy_id = “Policy1”> DayDoctor </Role>
 <MappingCondition>
 <PeriodicTime pt_id = “PTa” />
 </MappingCondition>
 </MappedTo>
 <MappedTo>
 <Role policy_id = “Policy2”> DayDoctor </Role>
 <MappingCondition>
 <PeriodicTime pt_id = “PTb”/>
 </MappingCondition>
 </MappedTo>
 <MappedTo>
 <Role policy_id = “Policy2”> EmergencyDoctor </Role>
 <MappingCondition>
 <PeriodicTime pt_id = “PTc” />
 </MappingCondition>
 </MappedTo>
 <MappedTo>
 <Role policy_id = “Policy3”> SupervisorDoctor </Role>
 <MappingCondition>
 <PeriodicTime pt_id = “PTd” />
 </MappingCondition>
 </MappedTo>
 </RoleMapping>
 </GlobalToLocalRoleMapping>
</PolicyRelation>

Fig. 7.13. X-GTRBAC policy specification for metapolicy of Fig. 7.12.

167

The global-to-local role mapping component can be specified using X-GTRBAC

as shown in Fig. 7.13. Note that in this case the policy of the domains 1 2 and 3 will be

expressed as local domains. The global role FederatedDoctor will be defined at the top

level of the policy definition sheet.

7.4 X-GTRBAC System Architecture

In this section, we present the system architecture of X-GTRBAC. We briefly

provide an overview of the system components and technologies.

The X-GTRBAC framework allows the access policies to be specified and

enforced through a Java-based GUI-enabled application. The application code can be

readily integrated into a Web browser by an application-to-applet transformation

mechanism provided by Java.

Fig. 14. X-GTRBAC architecture

The overall system architecture is depicted in Fig. 14. Information about security

policy is contained in the XML Policy Base. A document composition module external to

X-GTRBAC facilitates the composition of the policy components discussed earlier. The

policy sheets from the XML Policy Base are then loaded into the X-GTRBAC Module by

the security administrator. As shown in the Fig. 14, the two main sub-systems of the X-

GTRBAC Module are the XML Processor and the GTRBAC Processor. The XML

processor is implemented in Java using a Java API for XML Processing (JAXP). The

RBAC
Module

UR ,PR DataSet
 {TRIG DataSet}

Session
DataSet

XML
Sessions

Log

GTRBAC
Processor

Policy
Loader

XML
Processor

XML/SOAP

Authorization

XML/SOAP

Access
Request

Document
Composition

Module

XML
Policy Base

Policy
Validation

Module

XML
Parser

DOM

168

Document Object Model (DOM) instances of the parsed XML documents representing

the policies are forwarded to the GTRBAC Processor. The GTRBAC Module then

enforces the policy accordingly. Since X-GTRBAC can act both as a stand-alone and

web-deployable application, it may be invoked from either the local system, or remotely

through an XML-aware browser. Hence, the X-GTRBAC Module seamlessly interfaces

with an external client across distributed domains over an interconnect network (i.e.

LAN, WAN etc.). The client may submit an access request through any standard XML-

based Web services messaging protocol, like SOAP [URLe]. Similarly, the access

authorization is returned via the same protocol.

7.4.1 XML Processor

The XML Processor consists of the XML Parser and the DOM tree structure of

the XML policy documents. A Policy Loader loads the policy sheets for a given policy

from the policy base. A Policy Validation Module is used to validate the policy sheets in

terms of existence checking and type conformance. In other words, all users, roles, and

permissions referenced in the XURAS, XPRAS and XTrigDef sheet should be defined

in the corresponding XUS, XRS and XPS respectively. Further, all the referenced data

must exist in the corresponding definition files. This implies that (i) the credential types

associated with the users in XUS must conform to the type definitions in the

XCredTypeDef sheet, (ii) the separation of duty constraint sets referenced in the XRS

must be present in a XSoDDef sheet, and (iii) the periodic-time, start-time, interval, and

duration expressions referenced in XRS must be defined in a XTempConstDef sheet.

Currently, this validation support is provided by the Apache Xalan XSLT engine built

into JAXP. The DOM tree representations of validated policy documents are generated

and passed on to the GTRBAC Processor. A GUI facility is provided to display the

instance of the DOM tree.

7.4.2 GTRBAC Processor

The GTRBAC Processor contains the GTRBAC Module and associated data

items generated by the GTRBAC Module. It performs the policy administration and

enforcement tasks.

169

The GTRBAC Module provides functionality to parse the DOM tree structures

supplied by the XML Processor, and retrieves the relevant information into its internal

data structures. It may be noted that for all the users assigned to roles, the actual role

activation occurs when the users actually log into the system and request a roles. The

notion of role assignment in this context is of static type; i.e. it implies that the user has

been declared as assignable to the associated role based on already supplied credential

information. A dynamic role assignment for an unknown user based on his/her credentials

supplied at the time of login is possible. These static and dynamic policy assignments,

together with the role activation and enabling rules and triggers information, create the

complete internal representation of the XML Policy Base within the GTRBAC Processor

for enforcement of the policy. A collection of these policy information items are referred

as UserRole (UR) datasets, PermissionRole (PR) datasets, and TRIG dataset. A facility is

provided to display the UR, PR and TRIG datasets via the X-GTRBAC GUI.

<xas [xas_id= (id)]>
 <login login_id= (id)>
 [<!--CredType>]
 </login>
 ……….
 <xar xar_id= (id)>
 {<Object type= (type name)

 id= (id)/>}+
</xar>
<xas>

<xss [xss_id= (id)]>
 <session>
 <session_id> (id) </session_id>
 <user_id> (user id) </user_id>
 <role_name> (role name) </role_name>
 <domain> (domain name) </domain>
 <login_time> (time) </login_time>
 <login_date> (date) </login_date>
 <duration> (duration) </duration>
 <active> {Yes|No} </active>
 </session>
</xss>

Fig. 15. XAS and XSS sheets

The information from the internal data structures is then used by the GTRBAC

Module to enforce the policy and manage user sessions. The initial login into the system

creates a default session for the user with a pre-specified “minimal” set of roles activated

based on the supplied user credentials. The initial login can be the “user_id” from the

XUS provided it is a known user, or a “user_id” of “any”, as discussed above. In addition

to the default set of activated roles, more roles can also be activated if the user’s

credentials permits. Any triggers associated with role activation or other events are

handled by the GTRBAC Module based on the information from the TRIG dataset.

Access to resources is requested in the form of an XML Access Request (XAR) that

specifies the “object type” and “object id” of the requested resource. An XAR can be

submitted locally or remotely as an assertion in SOAP or through a similar XML-based

170

messaging protocol. This access request is then evaluated based on the currently activated

roles for this user. Only those resources may be accessed during a session for which the

activated set of roles has the respective permissions. Both the login information and

XARs for a user are stored in an XML Access Sheet (XAS). The session-related

information is contained in the Sessions Dataset within the GTRBAC processor. This

information is extracted from an activity log maintained for every user by the GTRBAC

module which we refer to as an XML Sessions Sheet (XSS). A session parameter is

included in the XSS to record the domain from which the user is generating the access

request. In addition to the domain of the requesting user, the XSS also contains the

attributes such as “login_time”, “login_date”, and “duration” of the session. These

attributes are used to capture the activity profile of the user. Such information is

constantly updated into the Sessions DataSet, where it can be dynamically processed, and

incorporated into the access decisions. This feature is useful in certain situations where

context information may be an important decision parameter, as discussed in Section 3.2.

The grammar for a typical XAS and XSS is shown in Fig. 15.

7.5 Conclusions

In this chapter, we have presented an XML-based specification language for

expressing GTRBAC policies and an implementation architecture. X-GTRBAC provides

compact representation of access control policies and allows context-aware access

control and metapolicy features. We have emphasized the separation of language schemas

to provide efficient specification of definitions of RBAC elements, user-to-role and

permission-to-role assignments, hierarchical and separation of duty constraints, and an

elaborate set of temporal constraint expressions.

171

8. CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the contributions of this dissertation and discuss

future research directions.

8.1 Research Contributions

Following are the main contributions of this dissertation:

1. We have proposed a generalized temporal role based access control model that can

handle a comprehensive set of temporal constraints. The model allows temporal

constraints on role enablings and role activations. Various temporal restrictions can be

specified on the user-role and role-permission assignments. We use a notion of

safeness to generate a safe execution model for a GTRBAC system.

2. We have identified various types of temporal hierarchies that capture permission-

inheritance and role-activation semantics based on the temporal properties of

hierarchically related roles. In case, different types of hierarchical relations are

allowed to coexist in a system, complex permission-inheritance and role-activation

semantics are needed. In such a case, it becomes difficult to determine the

permissions that can be acquired and the roles than can be activated by a user

assigned to a role in the hierarchy. We have presented formal analysis and a set of

inference rules related to such role hierarchies that characterize roles that a user can

activate. The detailed formal analysis presented in this dissertation can be used in

security administration tools to efficiently administer access control policies.

Furthermore, we have presented an analysis mechanism for managing evolution of a

role hierarchy.

3. We have presented a comprehensive set of constraints that can be used to capture

complex access control requirements. A generic framework for expressing a wide

range of time-based cardinality constraints associated with GTRBAC states has been

presented. We have developed a trigger expression that can capture complex

dependencies among events and conditions. In particular, we have defined a set of

172

control flow dependency (CFD) constraints that can be used to express stricter access

control requirements typical in workflow applications. We have presented a

comprehensive set of time-based SoD constraints that subsume the SoDs that have

been identified in the earlier work on the RBAC models. Furthermore, these

constraints provide basis for formally expressing many of the earlier identified SoDs,

including history based, and order independent SoDs.

4. We have presented an analysis of GTRBAC’s expressiveness and generated a set of

GTRBAC family of models with equivalent expressive power. We have shown that

the set of constraints in the GTRBAC model, although not minimal, provides better

flexibility in expressing access control policies with less complexity. Various design

guidelines have been provided to allow specification of access policies in a simplified

manner.

We believe that our approach for analyzing the expressiveness and reducing

specification complexity for the GTRBAC model has a broader significance. This is

because the proposed analytical approach is generally applicable to any specification

model that uses more than the minimal specification constructs needed. Such analysis

can be used to derive design guidelines that can be used to generate specification

model with reduced complexity. With the rapidly increasing complexity of

information systems, the current emphasis is on developing more complex models

capturing the semantics and/or requirements of such systems. Analysis similar to that

presented in this dissertation need to be carried out to study tradeoff between

complexity and usability such models.

5. Finally, we have presented X-GTRBAC, an XML-based specification for GTRBAC.

The proposed X-GTRBAC framework allows specification of GTRBAC policies as

well as specification of credential and context based dynamic access control policies

and metapolicies. The framework is particularly beneficial because of the growing

importance of XML and its widespread use in emerging large scale enterprise

applications that span multiple security domains.

8.2 Future Work

The GTRBAC model can provide a foundation for pursuing several challenging

research problems that are becoming relevant in the context of emerging large scale

applications. Below, we summarize several directions in which our work can be pursued.

173

1. An immediate extension of our work will be to extend SQL language for specifying

temporal constraints of the proposed GTRBAC model. Such an extension would

allow using GTRBAC policy framework in database applications.

2. Another possible research direction is to develop tools to support security policy

administration using various analysis techniques we have presented in this

dissertation. Such tools can significantly reduce the administration efforts in large

enterprise environments.

3. One key issue is the verifiability of a policy specification in terms of its safety and

liveness. The GTRBAC execution model provides a restricted notion of safeness that

only guarantees that certain ambiguous situation does not occur, as discussed in

Chapter 3. As pointed out in Chapter 2, the general notion of safety is to ensure that

something bad does not occur. Similarly, to verify liveness of a specification model is

to ensure that something desirable eventually happens. One future direction is to

address the safety and liveness characteristic of the GTRBAC model.

4. In the dissertation, we have referred to WFMSs as motivation for the work presented.

Although roles and temporal constraints capture requirements of workflow tasks in

organizational context, research can be done to reconcile RBAC models with WFMSs

so that complex WFMSs can benefit from the use of RBAC models. Several concepts

regarding restricted hierarchies, SoD constraints as well as temporal constraints

presented in this dissertation can be used to facilitate requirement specification of

WFMSs. X-GTRBAC can be extended to fully address the unique requirement of

WFMSs.

5. As mentioned earlier, RBAC provides a promising approach for addressing the

complex issues of access control in multidomain environments because of its policy-

neutral nature and the flexibility that it provides in expressing a wide range of access

control policies. Accordingly, the GTRBAC model can serve as a foundation for

addressing the complex access control needs of dynamic multidomain environments.

Various types of hierarchies and constraints introduced in this dissertation can provide

support for handling complex scenarios encountered during integration of multiple

policies. Emerging multidomain environments such as Web Services based

application environments and Grids pose several challenges in terms of access control

and policy representation. X-GTRBAC framework can be integrated with other

security functionalities such as authentication and cryptography to generate holistic

solutions to the problems of such multidomain environments.

174

REFERENCES

175

REFERENCES

[Aba93] M. Abadi, M. Burrows, B. W. Lampson, G. Plotkin, “A Caculus for Access

Control in Distributed Systems”, ACM Transactions on Programming
Languages and Systems, Vol. 15, No. 4, September 1993, pages 706-734.

[Ahn00] G. Ahn, R. Sandhu, “Role-Based Authorization Constraints Specification,”

ACM Transactions on Information and System Security, 3(4), November
2000.

[All83] J. F. Allen, “Maintaining Knowledge about Temporal Intervals”,

Communications of the ACM, Vol. 26, No. 11, November 1983, pages 832-
843.

[Atl96b] V. Atluri and W-K. Huang, “An Authorization Model for Workflows”,

Proceedings of the Fifth European Symposium on Research in Computer
Security, Rome, Italy, and Lecture Notes in Computer Science, No. 1146,
Springer-Verlag, September, 1996, pages 44-64.

[Amm92] Ammann, P.E. and Sandhu, R.S. "The Extended Schematic Protection

Model.", Journal of Computer Security, Volume 1, Numbers 3 and 4, 1992,
pages 335-383.

[And01] R. Anderson, “Security Engineering: A Guide to Building Dependable

Distributed Systems,” John Wiley & Sons Inc., 2001.

[Atl99] V. Atluri editor. Proc. of the Fourth ACM Workshop on Role-Based Access

Control, Fairfax (VA), 1999.

[Atl02] V. Atluri, A. Gal, “An Authorization Model for Temporal and Derived Data:

Securing Information Portals,” ACM Transactions on Information and System
Security, 5(1), February, 2002, pages 62 – 94.

[Att93] P. C. Attie, M. P. Singh, A. Sheth, M. Rusinkiewicz, “Specifying and

Enforcing Intertask Dependeices”, Proceedings of the 19th International
Conference on Very Large Data Bases, Dublin, Ireland, 1993, pages 134-145.

[Azz02] F. Azzedin, M. Maheswaran, “Towards Trust-Aware Resource Mangement”,

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid’02), 2002.

176

[Bac02] J. Bacon, K. Moody, W. Yao, “A Model of OASIS Role-based Access Control
and its Support for Active Security”, ACM Transactions on Information and
System Security, Volume 5 , Issue 4 , November 2002.

[Bar97] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn. Role Based
Access Control for the World Wide Web. In Proceedings of 20th National
Information System Security Conference, NIST/NSA, 1997.

[Bel76] D. E. Bell and L. J. LaPadula, “Secure Computer System: Unified Exposition

and Multics Interpretation,” MTR-2997, MITRE Corp., Bedford, MA, March,
1976. Available as NTIS AD A023 588.

[Ber98] E. Bertino, C. Bettini, E. Ferrari, P. Samarati, “An Access Control Model

Supporting Periodicity Constraints and Temporal Reasoning,” ACM
Transactions on Database Systems, 23(3), September 1998, pages 231-285.

[Ber99a] E. Bertino, S. Castano, E. Ferrari, M. Mesiti, “Controlled Access and

Dissemination of XML Documents”, Workshop On Web Information And
Data Management, November 1999.

[Ber99] E. Bertino, E. Ferrari, V. Atluri, “The Specification and Enforcement of

Authorization Constraints in Workflow Management Systems,” ACM
Transactions on Information and System Security, 2(1), February 1999, pages
65-104.

[Ber01] E. Bertino, P. A. Bonatti, E. Ferrari, “TRBAC: A Temporal Role-based

Access Control Model,” ACM Transactions on Information and System
Security, 4(3), August 2001, pages 191-233.

[Ber01] E. Bertino, S. Castano, E. Ferrari, “Securing XML Documents with Author

X”, IEEE Internet Computing, May-June, 2001.

[Bew89] D. F.C. Bewer, M. J. Nash, “The Chinese Wall Security Policy,” In

Proceedings of the Symposium on Security and Privacy, IEEE Computer
Society, May 1989, pages 206-214.

[Bha03] R. Bhatti, “X-GTRBAC: An XML-based Policy Specification Framework and

Architecture for Enterprise-Wide Access Control,” Master’s Thesis, School of
Electrical and Computer Engineering, Purdue University, 2003.

[Bib77] K. J. Biba, “Integrity Considerations for Secure Computer Sytems,” Technical

Report ESD{TR{76-372, The MITRE Corporation, HQ Electronic Systems
Division, Hanscom AFB, MA, April 1977.

177

[Bis98] J. Biskup, U. Flegel, Y. Karabulut, “Secure Mediation: Requirements and
Design,” In Proceedings of 12th Annual IFIP WG 11.3 Working Conference
on Database Security, Chalkidiki, Greece, July 1998.

[Cla87] D. D. Clark, D. R. Wilson, “A Comparison of Commercial and Military

Computer Security Policies”, IEEE Symposium on Security and Privacy,
1987, pages 184-194.

[Cor90] T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms,”

MIT Press, 1990.

[Cra03] J. Crampton, “Specifying and enforcing constraints in role-based access

control,” Proceedings of the 8th ACM Symposium on Access Control Models
and Technologies, Como, Italy, June 02 - 03, 2003, pages 43-50.

[Den76] D. Denning, “A Lattice Model of Security Information Flow”,

Communications of ACM, Vol. 19, 1976, pages 236-243.

[Ede99] J. Eder, E. Panagos, Michael Robinovich, “Time Constraints in Workflow

Systems”, Proc. of 11th Int. Conf. on Adv. Inf. Systems Engineering (CAiSE
99), Heidelberg, Germany, 1999.

[Fer93] D. F. Ferraiolo, D. M. Gilbert, N. Lynch, “An Examination of Federal and

Commercial Access Control Policy Needs,” In Proceedings of NISTNCSC
National Computer Security Conference, Baltimore, MD, September 20-23,
1993, pages 107-116.

[Fer99] D. F. Ferraiolo, J. F. Barkley, D. R. Kuhn, “A Role-Based Access Control

Model and Reference Implementation within a Corporate Intranet,” ACM
Transaction on Information and System Security, Vol. 2, No. 1, February,
1999, pages 34-64.

[Fer01] D, F. Ferraiolo , R. Sandhu , S. Gavrila, D. Richard Kuhn, R. Chandramouli,

“Proposed NIST standard for role-based access control,” ACM Transactions
on Information and System Security, 4(3), August 2001, pages 224 - 274.

[Gao02] “Critical Infrastructure Protection: Significant Homeland Security Challenges

Need to Be Addressed,” GAO-02-918T July 9, 2002.

[Gav98] S. I. Gavrila , J. F. Barkley, “Formal Specification for Role Based Access

Control User/role and Role/role Relationship Management,” Proceedings of
the third ACM workshop on Role-based Access control, Fairfax, Virginia,
United States, October 22-23, 1998, pages 81-90.

178

[Gar96] S. Garfinkel, E. H. Spafford, “Practical UNIX & Internet Security”, O'Reilly &
Associates, Inc., 2nd Edition, April 1996.

[Gar97] S. Garfinkel, E. H. Spafford, “Web Security & Commerce”, O'Reilly &

Associates, Inc., Sebastapol, CA, 1997.

[Gho98] A. K. Ghosh, “E-Commerce Security: No Silver Bullet”, Proceedings of the

Twelfth IFIP WG 11.3 Working Conference on Database Security, Greece,
July 14-17, 1998.

[Giu95] L. Giuri, “A New Model for Role-based Access Control,” In Proceedings of

11th Annual Computer Security Application Conference, New Orleans, LA,
December 11-15 1995, pages 249-255.

[Giu97] L. Giuri. Role-based Access Control: A natural approach. In Proceedings of

the 1st ACM Workshop on Role-Based Access Control. ACM, 1997.

[Gli98] Gligor, V.D., S.I. Gavrila, and D. Ferraiolo, “On the formal definition of

separation-of-duty policies and their composition,” Proceedings 1998 IEEE
Computer Society Symposium on Research in Security and Privacy (Oakland,
Calif., May 1998), IEEE Computer Society, pages 172- 183.

[Gon96] L. Gong, X. Qian, “Computational Issues in Secure Interoperation,” IEEE

Transaction on Software and Engineering, Vol. 22, No. 1, January 1996.

[Gra72] G. Graham and P. Denning, “Protection -- principles and practice,” In Proc.

Spring Joint Computer Conference. AFIPS Press, 1972.

[Gra91] J. Gray, “Toward a Mathematical Foundation for Information Flow Security,”

In Proceedings of the 1991 IEEE Symposium on Research in Security and
Privacy. IEEE Computer Society Press, 1991.

[Har76] M. H. Harrison, W. L. Ruzzo, J. D. Ullman, “Protection in Operating

Systems”, Communications of the ACM, Vol. 19, No. 8, 1976, pages 461-471.

[Hos92] H. H. Hosmer, “Metapolicies I”, ACM SIGSAC Data Management Workshop,

San Antonio, Texas, December, 1991, ACM SIGSAC Review 1992.

[Hos92] H. H. Hosmer, “Metapolicies II,” In Proceedings of the 15th NISTNCSC

National Computer Security Conference, NISTNCSC, United States
Government Printing Office:1992-625-512:60546, 1992, pages 369-378.

179

[Iso86] Standard Generalized Markup Language (SGML), ISO 8879. Information
Processing -- Text and Office Systems - Standard Generalized Markup
Language (SGML), 1986

[Jaj97] S. Jajodia, P. Samarati, V. S. Subrahmanian, E. Bertino, “A Unified

Framework for Enforcing Multiple Access Control Policies,” Proceedings of
the ACM SIGMOD International Conference on Management of Data, May
1997, pages 474-485.

[Jon95] D. Jonscher, K.R. Dittrich, “Argos – A Configurable Access Control System

for Interoperable Environments” Proceedings of the IFIP WG 11.3 Ninth
Annual Working Conference on Database Security, Rensselaerville, NY,
August 1995.

[Jos01a] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford. Digital Government

Security Infrastructure Design Challenges. IEEE Computer, Vol. 34, No. 2,
February 2001, pages 66-72.

[Jos01b] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford. Security Models

for Web-based Applications. Communications of the ACM, 44, 2 (Feb. 2001),
pages 38-72.

[Jos02] J. B. D. Joshi, K. Li, H. Fahmi, B. Shafiq, A. Ghafoor, "A Model for Secure

Multimedia Document Database System in a Distributed Environment", IEEE
Transactions on Multimedia: Special Issue of on Multimedia Databases, Vol.
4, No. 2, June, 2002.pages 215-234.

[Kan99] S. Kandala and R. Sandhu. Extending the BFA Workflow Authorization

Model to Express Weighted Voting. In Research Advances in Database and
Information Systems Security, pages 145-159, Kluwer Academic Publishers,
1999.

[Ker02] A. Kern, “Advanced Features for Enterprise-Wide Role-Based Access

Control,” Annual Computer Security Applications Conference, 2002

[Kuh95] W. E. Kuhnhauser, M. K. Ostrowski, “A Formal Framework to Support

Multiple Security Policies”, Proceedings of the 7th Canadian Computer
Security Symposium, Ottawa, Canada, May 1995.

[Kun99] D. R. Kuhn, “Mutual Exclusion of Roles as a Means of Implementing

Separation of Duties in a Role-based Access Control System,” ACM
Transactions on Information and System Security, 2(2), 1999, pages 177-228.

180

[Lam71] B. Lampson, “Protection,” In the Princeton Symposium on Information
Sciences and Systems, March 1971. Reprinted in ACM Operating Systems
Review, 8(1) (1974).

[Lam73] B. Lampson, “A note on the Confinement Problem,” Communications of the

ACM, 16(10), October 1973, pages 613-615.

[Lam77] L. Lamport, “Time, Cocks, and the Ordering of Event in a Distributed

System,” Communications of the ACM, 21(7), 1977, pages 558-565.

[Mcl90] J. McLean, “Security Models and Information Flow,” In Proceedings 1990

IEEE Symposium on Security and Privacy, Oakland, CA, 1990, pages 180—
187.

[Mcl94] J. McLean, “Security Models,” In J. Marciniak, editor, Encyclopedia of

Software Engineering. Wiley & Sons, 1994.

[Mof98] J. D. Moffet, “Control Principles and Role Hierarchies,” In Proceedings of 3rd

ACM Workshop on Role-Based Access Control, November 1998.

[Mof99] J. D. Moffet. E. C. Lupu, “The Uses of Role Hierarchies in Access Control,”

In Proceedings of 4th ACM Workshop on Role-Based Access Control,
October, 1999.

[Nie92] M. Niezette and J. Stevenne, “An Efficient Symbolic Representation of

Periodic time,” In Proc.First International Conference on Information and
Knowledge Management, 1992.

[Neu03] G. Neumann, M. Strembeck, “An Approach to Engineer and Enforce Context

Constraints in an RBAC Environment”, Proceedings of the 8th ACM
Symposium on Access Control Models and Technologies, Como, Italy, June
02-03, 2003, pages 65–79.

[Nya93] M. Nyanchama, S. L. Osborn, “Role-Based Security, Object-Oriented

Databases and Separation of Duty”, SIGMOD Rec. 22, 4, December 1993,
pages 45-51.

[Nya94] M. Nyanchama, S.L. Osborn, “Access Rights Administration in Role-Based

Security Systems,” Database Security VIII: Status & Prospects, Biskup,
Morgenstern and Landwehr, eds. North-Holland, 1994, pages 37-56.

[Nya95] M. Nyanchama, S. L. Osborn, “Modeling Mandatory Access Control in Role-

Based Security Systems,” Database Security IX: Status and Prospects,

181

Spooner, Demurjian and Dobson, eds. Chapman & Hall, Aug. 1995, pages
129-144.

[Nya99a] M. Nyanchama and S. Osborn. The Role Graph Model and Conflict of

Interest. ACM Transactions on Information and System Security, 2(1), 1999,
pages 3-33.

[Osb97] S. L. Osborn, “Mandatory Access Control and Role-Based Access Control

Revisited”, Proceedings of Second ACM Workshop on Role-Based Access
Control, November 1997.

[Osb00a] S. Osborn editor. Proc. of the Fifth ACM Workshop on Role-Based Access

Control, Berlin, Germany, July 2000.

[Osb00b] S. L. Osborn, R. Sandhu, Q. Munawer. Configuring Role-Based Access

Control to Enforce Mandatory and Discretionary Access Control Policies.
ACM Transactions on Information and System Security, Vol. 3, No. 2,
February 2000.

[Pea02] L. Pearlman, V. Welch, Ian Foster, Carl Kesselman, S. Tuecke, “A

Community Authorization Service for Group Collaboration,” 2002 IEEE
Workshop on Policies for Distributed Systems and Networks.

[Pow00] R. Power, “"Tangled Web": Tales of Digital Crime from the Shadows of

Cyberspace,” Que/Macmillan Publishing, Aug. 31, 2000.

[San88] R. Sandhu, “The Schematic Protection Model: Its Definition and Analysis for

Acyclic Attenuating Schemes,” Journal of the ACM, 35(2), 1988, pages 404-
432.

[San91] R. Sandhu, “Separation of Duties in Computerized Information Systems”, In

Database Security IV: Status and Prospects. Elsevier North-Holland, Inc.,
New York, 1991, pages 179-189.

[San92] R.S. Sandhu, “The Typed Access Matrix Model,” In Proceedings IEEE

Computer Society Symposium on Research In Security and Privacy, Oakland,
CA, May 1992, pages 122-136.

[San92b] R. Sandhu, “Lattice-based Enforcement of Chinese Walls,” Computers and

Security, 11(8), December 1992, pages 753—763.

[San93] R. Sandhu, “Lattice-Based Access Control Models”, IEEE Computer, Vol. 26,

No. 11, 1993.

182

[San94] R. Sandhu, P. Samarati, "Access Control: Principles and Practice", IEEE
Computer, Sept 1994, pp 40-48.

[San95] R. Sandhu, editor. Proc. of the First ACM Workshop on Role-Based Access

Control, Fairfax (VA), 1995.

[San96a] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role-Based Access

Control Models,” IEEE Computer 29(2), IEEE Press, 1996, pages 38-47.

[San96b] R. Sandhu, “Access Control: The Neglected Frontier (Invited Paper),” In

Proceedings of the First Australasian Conference on Information Security and
Privacy. Wolongong, Australia, June 23-26, 1996.

[San96c] R. Sandhu, “Role Hierarchies and Constraints for Lattice-based Access

Controls,” In E. Bertino, H. Kurth, G. Martella, and E. Montolivo Eds.,
Computer Security - Esorics'96, LNCS N. 1146, Rome, Italy, 1996, pages 65-
79.

[San96d] R. Sandhu, “Role Hierarchies and Constraints for Lattice-Based Access

Controls”, Proceeding Fourth European Symposium on Research in
Computer Security, Rome, Italy: Springer-Verlag, Published as Lectures Notes
in Computer Science, Computer Security- ESORICS96.

[San97] R. Sandhu, editor. Proc. of the 2nd ACM Workshop on Role-Based Access

Control, Fairfax (VA), 1997.

[San98a] R. Sandhu editor. Proc. of the 3rd ACM Workshop on Role-Based Access

Control, Fairfax (VA), 1998.

[San98b] R. Sandhu, “Role-based Access Control,” Advances in Computers, vol. 46,

Academic Press, 1998.

[Sch96] B. Schneier, “”Applied Cryptography: Protocols, Algorithms, and Source

Code in C,” John Wiley & Sons, Inc., 1996.

[Sim97] R. Simon, M.E. Zurko, “Separation of Duty in Role-based Environments,” In

Proc. 10th IEEE Computer Security Foundations Workshop, June 1997.

[Tar97] Z. Tari, G. Fernandez, “Security Enforcement in the DOK Federated Database

System”, Database Security X: Status and Prospects, P. Samarati, R. Sandhu
(eds), Chapman & Hall, 1997, pages 23-42.

[Tar97] Z. Tari, S. Chan, “A Role-Based Access Control for Intranet Security,” IEEE,

Internet Computing, Sept-Oct, 1997, pages 24-34.

183

[Tid98] J. Tidswell, J. Potter. A Dynamically Typed Access Control Model. In

Proceedings of the Third Australasian Conference on Information Security and
Privacy, July 1998.

[Tho97] R. K. Thomas, R.S. Sandhu, “Task-based Authorization Controls (TBAC): A

Family of Models for Active and Enterprise-oriented Authorization
Management,” Proceedings of the IFIP WG11.3 Workshop on Database
Security, Lake Tahoe, California, August 11-13, 1997.

[Thu01] B. M. Thuraisingham, C. Clifton, A. Gupta, E. Bertino, E. Ferrari, “Directions

for Web and E-Commerce Applications Security,” 10th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2001), 20-22 June 2001, Cambridge, MA, USA. IEEE
Computer Society 2001.

[Woo93] T. Y. C. Woo, S. S. Lam, “Authorizations in Distributed Systems: A new

Approach”, Journal of Computer Security, 2(2, 3), 1993, pages 107-136.

[Vas94] J. V'asquez-G'omez, “Multidomain Security,” Computers & Security, 13(2),

1994, pages 161-184.

[Vuo01] N. N. Vuong, G. S. Smith, Y. Deng, “Managing Security Policies in a

Distributed Environment Using eXtensible Markup Language (XML)”,
Symposium on Applied Computing, March 2001.

[URLa] “eXtensible Markup Language (XML) 1.0 (Second),” W3C Recommendation

6 October 2000, http://www.w3.org/TR/REC-xml

[URLb] “XML Path Language (XPath) 2.0” Working Draft 16 August 2002,

http://www.w3.org/TR/xpath20/

[URLc] W3C XML Schema, http://www.w3.org/XML/Schema

[URLd] XACML 1.0 Specification, http://xml.coverpages.org/ni2003-02-11-a.html

[URLe] Simple Object Access Protocol (SOAP), 1.1 http://www.w3.org/TR/SOAP/

184

APPENDIX A

Proofs of Theorems of Chapter 3

Proof of Theorem 3.1: Proof of part 1

By definition 3.3.5, the Caused(t, EV, ST, Γ, RQ) contains only those events that

are caused at time t and satisfy all the constraints in T. Hence, to prove that the status

update done by computeST(t) satisfies all the constraints in Γ, we need to prove that

the update done is with respect to each of the non-blocked events in the Caused(t, EV,

ST, CT, Γ, RQ). This is because the non-blocked events of Caused(t, EV, ST, Γ, RQ) are

the only events that actually happen at time t. Since by definition 3.3.6, EV(t) =

Caused(t, EV, ST, Γ, RQ), we can proceed by showing that each of the events of

Nonblocked(EV(t) is considered by the algorithm. In addition, the algorithm needs to

ensure that all the valid activation constraints are also satisfied by the updated

information. We will proceed step by step.

Step 1: We discuss with respect to each of the cases listed in this step.

User-role role-permission deassignments: In this step, all the non-blocked

deassignment events of EV(t) are considered. Since the presence of a u-snapshot

associated with user u in Ur corresponding to the role r indicates that the role r has been

assigned to user u, the removal of the u-snapshot corresponding to the user to whom the

role r is deassigned correctly updates the effect of the deassignment event. Since ut

contains all the activation status of a particular user associated with a role, the removal of

the u-snapshot ut completely removes all such information. Similarly, permissions that

are deassigned from a role are removed from the permission list Pr associated with the

role. The next earliest change to these new values of Ur and Pr occur at time t+1. We also

note that no activation constraints affect deassignments. Hence, the changes are according

to condition (1).

Role-permission assignment: Here, we simply add the permission p to the set Pr

associated with the role r if “assign p to r” is a non-blocked element in EV(t). The

presence of p in set Pr associated with the role r indicates that p is assigned to r and hence

this update correctly establishes the status of the assignment until it is changed by a

deassignment at time t+1 or after.

185

Role-permission assignment: Here, we simply add a u-snapshot, say ut, associated

with user u to the set Ur that is associated with the role r if “assign r to u” is a non-

blocked element in EV(t). The presence of ut in set Ur associated with the role r indicates

that u is assigned to r and hence this update correctly establishes the status of the

assignment. Furthermore, the set of sessions and their durations are currently empty. The

remaining parameters are set to initial default values of ∞. Thus, the updates reflect that

an assignment event occurs and is in accord with condition (1).

Deactivation of roles: This step simply updates the effect of deactivation events.

For each deactivation event, there is a session and the duration associated. Thus for a

(s:deactivate r for u), the associated session s and its associated duration d are

removed from the u-snapshot of u associated with role r. Note that session s may still be

present in which other roles are still active. In such a case, the session s will be present in

the u-snapshot of u associated with the other roles. Thus, removal of (s, d) is in accord

with condition (1).

Step 2: In this step, all non-blocked events that disable roles are considered. Since

a role r is disabled at t, its status is changed to disabled, which remains so until it is

changed later, as there are no statements below step 2 that change rt.status; the only

change that can occur to this parameter afterwards is at time (t+1), which occurs if the

“enable r” event is non-blocked at time (t+1). As a role is disabled, all valid per-role

activation constraints whose validity is not restricted by (I, P) or a duration D (and hence

they are valid for each enabled duration of the role), must be reset to default values. This

is done by each of the next set of IF statements. Furthermore, each per-user-role

constraints must also be considered and corresponding associated parameter values reset.

This is done by the FOR loop which considers each of the users assigned to the role being

disabled. We note that, for per-role activation constraints of type (I, P, C) and (D, C), the

updating of the corresponding parameter values is dictated by (I, P) and D respectively as

is done in step 3 and is not affected by the disabling of a role. Hence, step 2 does the

required update in accord with condition (1).

Step 3: The fact that a constraint of form (I, P, C) or (D, C) which was in CT(t-1)

but is not in CT(t) implies that these constraints are not in effect anymore (disabled). This

step considers all such per-role activation constraints and resets the values of the

corresponding parameters such as dra, nra, etc., to ∞. These parameter values can only be

altered at t+1 or later; hence, the update is in accord with condition (1).

Step 4: This step handles the effect of the enabling of a role r. First the status is

updated to enabled. The first IF condition checks if a constraint of type C1 in one of

186

the forms (I, P, C), (D, C), or (C), is present. If it is, then dra is updated to the minimum

of Dactive in C1 or the current value of dra. If dra < ∞ then it implies that some valid

constraint is restricting the role activation time and is left unchanged. If dra = ∞, then it

means no constraint of type C1 has been active earlier. Thus, the update essentially

conforms to the semantics and hence is in accord with condition (1). Similar arguments

apply to the remaining IF statements of step 4.

Step 5: In this step, all non-blocked activation events are considered. Since a new

activation of a role is being added, if there is a per-role cardinality constraint active at this

time (rt.nra<∝), then rt.nra must be decremented, as required. The new value will be

checked to control role activation events in the next run of computeCauseSet at

(t+1). Note that we do not need to check if rt.nra=0, because the reason the activation

event is in nonblocked(EV(t)) is because no cardinality constraint has blocked the

activation event as per definition 3.3.5. Hence, the simple decrement operation is

adequate. A similar argument applies to the per-user-role cardinality constraint (the

associated parameter is ut.nua).

Each of the IF statements that follows updates the user parameter based on the

type of per-user-role or per-role constraint. The first IF statement checks to see if a per-

user-role total activation constraint is active at time t. If it is active, then the

corresponding user parameter dua is updated as specified. If the constraint form is (C1)

then this value will be restricted for the duration dua or until the time the corresponding

role r is disabled (in which case, step 2 will reset this value when it is updated next). The

ELSE part considers the per-role constraint that applies to the activation of r by u. In that

case, the default value specified is assigned to dua. We note that this default value, if not

explicitly specified, is equal to the value specified for the role, for example, Dactive in this

case). Hence, the IF statement updates the user parameter as required. Similar arguments

apply to the rest of the IF statements. The remaining duration for the activation of r by u

is then added to sets Su and Du, so that they can be decremented at each time instant until

they become 0. Hence, step 5 updates the required parameters in accord with condition

(1).

Step 6: In this step, for each enabled role, the duration of each session is

decremented. Similarly, the total active duration of the role is also adjusted. The

decrement value represents the total value that will be decremented at the end of the

interval (t, t+1). The else part simply decrements the value of dra by one. This is necessary

because there may be a per–role constraint of type (I, P, C) or (D, C) on the role which is

187

valid even when the role is disabled. Similarly, each user values are also decremented.

Thus, step 6 updates all the duration values as required.

Hence, it follows that the condition of (1) is satisfied by ST(t) produced by the

algorithm.

Proof of part 2 and 3

We look at the complexity of each step and sum them up to get the overall

complexity. The FOR loop of step 1 checks each of the events in that is non-blocked. At

most, there are (nR.nU) user-role deassignments, and (nR.nP) role-permission assignments.

Similarly, in the worst case, all user-role activations, i.e., (nR.nSm), need to be deactivated.

Thus, the worst case for step 1 is O(nR.(nU + nP + nSm)

Step 2 handles role-disabling events. At worst, all roles need to be disabled. The

inner loop of step 2 repeats all users assigned to each role. Thus, the worst case for step 2

is (nR.nU).

Step 3 checks for the per-role activation constraints active at the time. Since, there

are nR roles, the maximum number of such constraints is 4nR as there are four types of

per-role constraints, hence we have O(nR). The FOR loop of step 4 repeats at most nR

times. Step 5 is bounded by the maximum number of sessions allowed in the system;

hence the worst case is (nR.nSm). Step 6 repeats for each role, and the worst case occurs

when the else part is executed, giving the worst case of (nR.nU). Because nR, nU, nP and

nSm are each finite, we see that each step terminates. Hence the algorithm computeST

terminates. Thus the complexity of the algorithm can be expressed as:

O(nR.(nU + nP + nSm)).

188

APPENDIX B

Proofs of Theorems of Chapter 4

Proof of Theorem 4.1: Let u be assigned to SH. If H is an I-hierarchy, u can only

activate the seniormost role. Hence, UAS(H, t) = {{SH}}. Similarly, if H is an A-

hierarchy, u can activate all the combination of roles in the hierarchy. Furthermore, for

each combination of roles, u acquires a unique set of permissions. Therefore, UAS(H, t) =

2X/∅ (we exclude the empty set). If H is an IA-hierarchy, if u can activates the seniormost

role, he permissions of all the junior roles as well. Hence, {SH}is an element of UAS(H, t)

and no other element can include SH, as per Definition 4.2.1. Same argument applies to

the seniormost roles of each of the sub-hierarchy of role SH. Note that the each element of

a sub-hierarchy of SH can occur in combination with each element of another sub-

hierarchy of SH. Furthermore, elements of the UAS of different sub-hierarchies can be

activated together to get different permission sets. Thus, all combinations of a set

containing one element from the UAS of each sub-hierarchy can form an element with

unique permission set. Thus, UAS(H, t)= {{x1}}∪ {2Z | Z=�
i

iz ; zi ∈ UAS(SubHi (H))}/∅ .

Here, each Z is a set of elements that contains elements belonging to one UAS element of

each of the sub-hierarchies of role SH.

Proof of Lemma 4.1: Let u be assigned to SLm. By definition 4.2.2, SLm = SL1, JLm

= JL2 and JL1 = SL2.

Case 1: First, consider (<f1>, <f2>) = (≥t, <f2>) s.t. <f2> ∈ { t, t}. As the first

hierarchy is an I-hierarchy, UAS(L1, t) = {SL1} = {x1} by theorem 4.1 and hence, none of

the roles in L2 can be activated by u. Therefore, we get UAS(Lm, t) = UAS(L1, t).

Similarly, let (<f1>, <f2>) = (<f1>, ≥t) where <f1> ∈ { t, t}. As L2 is an I-hierarchy, u

cannot activate any junior roles. But u acquires all the permissions of L2 when s/he

activates SL2, as L2 is an I-hierarchy. Because of <f1>, u can activate JL1 (= SL2) and

acquire all the permissions of L2. Hence, UAS(Lm, t) = UAS(L1, t). Therefore, if ≥t ∈ { t,
t}, then UAS(Lm, t) = UAS(L1, t).

Case 2: Consider (<f1>, <f2>) = (t, t). Here, first we note that UAS(Lm, t) must

contain the following:

189

1. all the activable elements of L1, i.e. all elements of UAS(L1, t),

2. all the activable elements of L2, i.e. all elements of UAS(L2, t), and

3. all the possible combination of activable elements in L1 and L2.

From Theorem 4.1, UAS(L1, t) = 2X1/∅ and UAS(L2, t) = {{JL1}, , …, {xn}}. We

need to show that UAS(Lm, t) = UAS(L1U, t) ∪ UAS(L2, t) ∪ (UAS(L1U, t) ⊗ UAS(L2, t))

exactly contains the elements mentioned in 1 through 3. We see that UAS(L1, t) =

UAS(L1U, t) ∪ (UAS(L1U, t) ⊗ {{JL1}}). But as JL1 = SL2, JL1 ∈ UAS(L2, t). Therefore,

(UAS(L1U, t) ⊗ {{JL1}}) ⊆ (UAS(L1U, t) ⊗ UAS(L2, t)). Hence, elements of both UAS(L1,

t) and UAS(L2, t) are in UAS(Lm, t). We further note that as there are no common roles in

L1U and L2; hence, UAS(L1U, t) and UAS(L2, t) are disjoint. It is easy to see that (UAS(L1U,

t) ⊗ UAS(L2, t)) consists of all the combinations of the activable sets of UAS(L1U, t), and

UAS(L2, t). (UAS(L1U, t) ⊗ UAS(L2, t)) is disjoint from UAS(L1U, t) and UAS(L2, t) as each

of its role sets contains roles from the elements of both UAS(L1U, t) and UAS(L2, t).

(Hence, cardinality computation is simply |UAS(Lm, t)| = |UAS(L1U, t)|∪ |UAS(L2, t)|∪ |(

UAS(L1U, t) ⊗ UAS(L2, t))|).

Case 3: The case for (<f1>, <f2>) = (t, t) is similar to that of case 2.

Proof of Theorem 4.2: Let u be assigned to SLm. By definition 4.2.2, SLm= SL1,

JLm = JLM2 and JL1 = SL2.

Case 1 (<f1> = ≥t): As L1 is an I-hierarchy, by reasoning similar to the case for

(<f1>, <f2>) = (≥t, <fx>) in the proof for Lemma 4.1, the result follows immediately.

Case 2(<f1> = t): As L1 is an A-hierarchy, if <fx> = ≥t then no roles below SLx

can be in the set UAS(Lm, t); hence, UAS(Lm, t) = UAS(L1, t). If <fx> = t, then the case

is similar to that of Lemma 4.1.

Case 3: As L1 is an IA-hierarchy, if <fx> = ≥t then no roles below SL2 can be in the

set UAS(Lm, t); hence UAS(Lm, t) = UAS(L1, t). If <fx> = t then the case is similar to that

of Lemma 4.1 except for the fact that the LM2 is not necessarily an A-hierarchy. Hence,

by following similar reasoning, the result follows.

Proof of Theorem 4.3: Here, UAS(H1) has two parts, namely S1 and S2. S1

constitutes the subset of UAS(H, t) which are either from LM1 or from H1. Hence S1 =

(UAS(LM1, t) ∪ UAS(H1, t)). Similarly, S2 constitutes the subset of UAS(H, t) resulting

from the combination of UAS(LM1, t) and UAS(H1, t). Here we note that there may be

common elements. At the least, the senior-most role is common to both. Therefore, S2 =

(UAS(LM1, t)/B ⊗ UAS(H1, t)/B) contains all combinations of the possible elements of the

190

components LM1 and H1. Here B represent elements of UAS(LM1, t) and UAS(H1, t) that

have common elements. However, I = S1 ∪ S2 may not still be the required activable set.

This is because in both LM1 and H1, the same two roles may have a hierarchical relation

(direct or derived) showing alternative relations between the roles. The result of the two

alternative relations is that we may have a new derived relation (as discussed in Section

4.3). For example in LM1, x and y may be related by an A-relation and hence appear

together in an element of the UAS(LM1, t), whereas in H1, x and y may be related by an I-

relation (or an IA-relation). As a result the derived relation between x and y becomes an

IA-relation in H. Thus, x and y should not appear together in an element of UAS(H, t). C

determines exactly those elements in UAS(H, t) that are IA-related (directly or derived);

hence, UAS(H, t) = I/C.

Proof of Theorem 4.4: We note that H1 and H2 have some pair-wise related roles

only differing in the hierarchical relation. Hence the hierarchy structure is the same and

H2 is a monotype whereas H1 can be monotype or hybrid type. We prove this case-wise.

Let X = Role(H2).

Case 1 (H1 is monotype): Assume that H2 is an I-hierarchy, Obviously, Pmax(H2, t)

= P(SH2, t)= P(X, t). We have three cases for H1. If H1 is also I-hierarchy then by they are

obviously the same hierarchy. Let H1 be an A-hierarchy. Then a user assigned to SH1 can

activate all the roles at once in a session. Hence, Pmax(H1, t) = P(X, t) = Pmax(H2, t). Now,

let H1 be an IA-hierarchy. Thus, by activating role SH2, a user can acquire all the

permissions of roles in X; i.e. Pmax(H1, t) = P(SH1, t)= P(X, t) = Pmax(H2, t). Thus, all

monotype hierarchies are AC-equivalent.

Case 2 (H1 is a hybrid type): Here it is possible that H1 has a linear component

LMi = (LM’, Lx, LMmid, Ly, LM”). In such a case, a user assigned to the senior-most role

cannot acquire the permissions associated with roles in (Xy ∪ X’’) (considering Ly = (Xy,

<fy>) and L’’ = (X’’, <f’’>)) as fx is an I-relation. Thus, a user assigned to the senior-most

role can acquire the permission set P(X, t) in H2, whereas he can acquire only the

permission set P(X/(Xy∪ X’’), t) in H1. However, if such a component is not presents then

by Theorem 4.1 and 4.2, the user acquires the permission set P(X, t) in both H1 and H2.

Hence, we get the result.

Proof of Theorem 4.5 (Soundness of rules R1-R4): We prove this by taking all

the possible cases of h that can be derived from each rule. Let us assume that user u is

assigned only to the senior role x.

191

x

y

z

x

y

z

x

y

z

x

z z

x[{y}]

z

(a) (d) (e)

x[{y}]

x

y

z

x

z

(f)

x

y

z

x

y

z

x

z

x

z

(b) (c)

Fig. B.1. Derived hierarchical relation for two consecutive types (rule R2)

Case 1: h is derived from rule R1: Here, (x<f>z) because (x<f>y) and (y<f>z).

Let us consider <f> = ≥t. Assume that permission p can be acquired through role z at time

t; i.e., can_be_acquired(p, z, t) holds. As y≥tz, p can be acquired through role y at

time t. Again, as x≥ty, p can also be acquired through role x at time t. Similarly, x≥tz also

indicates that p can also be acquired through role x at time t. Hence, the result follows.

The cases for the A-hierarchy and IA-hierarchy can be shown similarly.

Case 2: h is derived from rule R2: Fig. B.1 depicts all the six possible

combinations of (x<f1>y) and (x<f2>z). Figures 4.14(a)- 4.14(e) correspond to the cases

R2.1(i), R2.1(ii), R2.3, R2.3(i) and R2.3(ii) respectively. Rule R2.1(i) is straightforward.

As both hierarchical relations allow permission inheritance, role x can inherit all the

permissions of role z. However, u cannot activate role y and hence he cannot activate role

z. Thus, roles x and z are related by an I-relation only. The rules R2.1(ii) and R2.2 can be

shown in a similar way.

192

Fig. B.2. Derived relations in a general linear hierarchyusing rules R3 where set B is empty

In rule R2.3(i) (refer to Fig. B.1(d)), x and y are related by an A-relation; hence, u

can also activate role y. However, as y and z are related by an I-relation, u cannot activate

role z. u can still acquire the permissions of role z without activating it, but to do that s/he

has to activate role y. Hence, we get a conditioned derived relation x[{y}]≥t z, as per

definition 4.3.1. In rule R2.3(ii) (refer to Fig. B.1(e)), u can activate z. However, u can

also acquire z’s permissions without activating it, but to do that s/he has to activate role y.

Hence, we again get, as per definition 4.3.1, a conditioned derived relation x{y} t

z. We note that the combination shown in Fig. B.1(f) does not derive any relation between

x and z. Here, the I-relation between x and y prohibits the activation of role y and hence

that of role z by u. The A-relation between y and z prohibits the inheritance of z’s

permissions through y and hence, u cannot directly inherit z’s permissions. Thus, u can

neither activate z nor inherit its permissions. Hence, x and z are not hierarchically related.

Thus, Fig. B.1 shows all the possible cases in which a hierarchical relation (either direct

or unconditioned derived) of one type follows another type (direct or derived). Thus, R2

captures completely all such cases.

ax y z z

ax y z

x z

y

y

x{a}

x[{a}]

Corresponding
rules

ax y z z R3.1(ii)

ax y z

x z
#1

R3.2(i)

R3.3

ax y z

ax y z

R3.2(ii)z

R3.1(i)z

Derived Relations

x[{a}]

x[{a}]

x[{a}]

x[{a}]

x[{a}]

193

a1 a2 an b1 b2 bm

x

y

b

z

a1 a2 an

x

z

y

a1 a2 an

x

z

a1 a2 an

x

z

y

R3.1 a R3.2a R3.2b

a1 a2 an b1 b2 bm

x

y

z

a1 a2 an

x

z

y y

R3.1 b

x

z

R3.3

Non-empty Non-empty

Fig. B.3. Derived relations in a general linear hierarchy using rules R3 with set B is non-
empty

Case 3: h is derived from rule R3: R3 deals with cases in which a conditioned

derived relation is immediately followed by an unconditioned relation in a hierarchical

path. Fig. B.2 illustrates graphically all such possible combinations for A = {a} and B =

∅ . The combination labeled #1 that corresponds to (x[A]≥ty)∧ (y tz) does not derive any

new relation. This is because (a≥ty) is followed by (y tz) (see Figure 4.14(f)). The

remaining combinations correspond to the five cases of R3 in the Fig. B.2.

In R3.1(i), corresponding to rule R3.1.a, the conditioned derived relation between

x and y is an I-relation. As the relation between y and z is also an I-relation, u can still

acquire the permissions of z through the activation of a role in [A] (role a in Fig. B.2) as

z’s permissions can be acquired through y. Hence, the result is the conditioned derived

relation x[{a}]≥tz. Similarly, in rule R3.1(ii), corresponding to rule R3.1.b, the presence

of a more restrictive conditioned I-relation before the IA-hierarchy between y and z

prohibits u to activate z. But, because of the IA-hierarchy, z’s permissions can be inherited

through y and hence through the activation of a role in A. Thus, the conditioned derived

relation x[{a}]≥tz holds. In rule R3.2(i), corresponding to rule R3.2.a, we see that a user

194

assigned to x can acquire y’s permissions by activating a role in A. But the I-relation

between y and z allows z’s permissions to be inherited through y and hence by the

activation of a role in A. However, the same I-relation between y and z prohibits her/him

to activate z. Hence, the result is a conditioned I-relation x[{a}]≥tz. In rule R3.2(ii),

corresponding to rule R3.1.a, because of IA-relation between y and z, u can activate z. At

the same time, u can also acquire through y all of z’s permissions by simply activating a

role in A. Hence, the inferred rule is x[A] t z.

In rule R3.3, corresponding to rule R3.3, u can activate y because of the IA-

relation. The A-relation between y and z allows u to activate z also. However, because of

the A-relation between y and z, u cannot acquire z’s permissions without activating z.

Hence, the result is (x tz). Note that it is not a conditioned derived relation. Again, we

note that R3 captures rules for deriving any new derived relations from all possible

combinations of a conditioned derived relation followed by an unconditioned relation.

Fig. B.3 shows the same cases when set B is non-empty. The proof is similar to

that for the above case, except that whenever the new derived relation between x and z is

an A or IA-hierarchy, then the set is non-empty.

Case 4: h is derived from rule R4: The first rule R4.1 is a trivial case and is

straightforward. In rule R4.2, we consider those alternate paths that have different

unconditioned relations. When we have (x≥ty) and (x ty), u can directly inherit y’s

permissions through the first relation and at the same time u can activate y using the

second relation, hence (x ty). Similarly, when one of the two relations is (x ty), u can

inherit y’s permissions directly as well as activate y. Thus, no matter what the other

relation is, we have the derived relation (x ty). In rule R4.3, we have various cases in

which one relation is a conditioned derived relation and the other is an unconditioned

relation, as depicted in Fig. B.4. In R4.3a, both the hierarchical relations are of the same

type. If the relation is I-hierarchy then the unconditioned relation allows direct inheritance

of role y’s permissions through role x; hence, the resulting derived relation is an

unconditioned I-relation. Similarly, when the relation is an IA-hierarchy, y’s permissions

are inherited by simply activating role x using the unconditioned relation and hence the

derived relation is not conditioned. In rule R4.3b, the first relation is a conditioned one.

When <f> is an I-relation, as in Fig. B.4, then it means that through that hierarchical path

u can acquire y’s permission by activating a role in A. Furthermore, x and y also is related

by A-hierarchy through sets B and C. Note that B and/or C may contain role x itself. The

activation path is simply the union of the activation paths of the two paths. The case

where <f> is an IA-relation is similar.

195

y

x

a1
a2 an b1

b2 bm

x

y

a1
a2 an b1

b2 bm

x

y

y

x

R4.3a

y

x

a1
a2 an b1

b2 bm

x

y

R4.3c

a1
a2 an b1

b2 bm

x

y

R4.3a

a1
a2 an b1

b2 bm

x

y

C a1
a2 an

b1
b2 bm

x

y

C

iS(y)

R4.3b

Fig. B.4 Derived relations for rules R4.3

In rule R4.3c, we have I and IA-relations, as shown in Fig. B.4. In the first case,

the first path allows an A-relation between x and y through the conditioned relation, either

through roles in A or B, whereas the alternate path allows the I-relation. Hence, the

derived relation is an IA-relation. In the second case, the IA-path allows both the

semantics, hence the result is the IA-relation between x and y R4.4 captures cases where

the both alternate paths are conditioned (Fig. B.5). Rule R4.4a deals with the cases where

both the alternate derived relations are the same. In rule R3.4b, both the alternates have

conditioned derived relations but are of different types: I and IA-hierarchy. In the first

case, there is a conditioned I-hierarchy portion on the first hierarchical path through A1

and a conditioned IA-hierarchy portion on the second hierarchical path through A2. As the

path through A2 provides an IA-relation, this means A2 provides both I and A-relations.

Now, by taking the union of the I and A-paths separately, we get the result. The second

case is similar to the first one. Thus, the inference rules covers all possible combinations.

Hence, the result follows.

196

x

y

A2 B2

x

y

A1B1

and

x

y

A1, A2 B1, B2

x

y

A2 B2

x

y

A1B1

and

x

y

A1, A2 A2, B1, B2

x

y

A2 B2

x

y

A1B1

and

x

y

A1, A2
A1, B1, B2

R4.4a

R4.4b(1)

R4.4b(2)

Fig. B.5. Derived relations for rules R4.4

Before we prove Theorem 4.6, we first prove the following lemmas:

Lemma 4.6.1 (Completeness of rule R1 in monotype linear hierarchy): Given

a monotype linear hierarchy L, rule R1 is complete with respect to L; that is, if for any

pair of roles x, z ∈ Roles(L) ¬ L[R1] � hx,z, then L � L ∪ {hx,z}; i.e., the hierarchies L

and L’ = L ∪ {hx,z} are not authorization consistent.

Lemma 4.6.2 (Completeness of rules R1-R3 in a hybrid linear hierarchy):

Given a hybrid linear hierarchy Lh, rules R1-R3 are complete with respect to Lh; that is,

if for any pair of roles x, z ∈ Roles(Lh), ¬ Lh[R1-R3] � hx,z, then Lh � Lh ∪ {hx,z}, i.e.,

the hierarchies Lm and Lm’ = Lm ∪ {hx,z} are not authorization consistent.

Proof of Lemma 4.6.1: Assume otherwise, i.e., there exists a relation hx,z = x<f>z,

such that ¬ L[R1] � hx,z but L ≈ L’. As ¬L[R1] � hx,z, it implies that there exists no y such

that (x<f>y)∧ (y<f>z) holds under L. It is easy to see that (x<f>y)∧ (y<f>z) cannot hold iff

the following hold under L:

1. for all y such that (x<f>y), we have ¬ (y<f>z), or

2. for all y’ such that (y’<f>z), we have ¬ (x<f>y’),

Let us first consider <f>∈ ≥t, i.e. hx,z = x≥tz, Note that there is no direct

hierarchical relation between x and z as hx,z is not in L. The first condition above

197

indicates that x can inherit permissions from y because of the relation (x≥ty), but because

¬ (y<f>z) also holds for all such y, x cannot inherit from z. Similarly, the second condition

indicates that none of the roles that are senior to z is a junior of x. Therefore, x cannot

inherit z’s permissions. Hence, it follows that u cannot acquire permissions from z under

hierarchy L. But as hx,z is in L’, u can acquire z’s permissions under L’. Hence, it follows

that L � L’, contradicting our assumption. Thus, if ¬L[R1] � hx,z, then L and L’ are not

authorization consistent.

Proof Lemma 4.6.2: As Lh is a hybrid linear hierarchy, by definition 4.4 we can

write Lh = {L1, L2, …, Ln}, where each Li is a monotype linear hierarchy. Let Li be xi(1)

<fi> xi(2) <fi> … <fi> xi(|Li|). Then by Lemma 4.6.1, we get the derived relations

xi(πi)<fi>xi(ηi) for 1 ≤ πi ≤ (|Li|-2) and 3 ≤ ηi ≤ | Li|. For each linear component, the derived

set is complete as per Lemma 4.6.1. But, we know that for i = 2 to n, SLi = JL(i-1) by

definition 4.4. To show completeness of R1-R3 with respect to Lh, we show that any

derived relation between a role in L1 with that of a role in Lj for 2 ≤ j ≤ n can be inferred

from R1-R3. To do that, we use induction on the following hierarchical chain from an

arbitrary role x1(π1) in L1 to an arbitrary role xn(ηn) in Ln:

Lhc = x1(π1) <f1> x1(|L1|) <f2> x2 (|L2|) …. x (n-1) (|L(n-1)|) <fn> xn (ηi)

Note that each hierarchical relation in this chain is a relation derived in each

component using R1.

Basis: Consider n = 2, i.e., Lhc = x1(π1) <f1> x1(|L1|) <f2> x2(η2) . In the proof for

soundness of R2 (Fig. B.1), we showed that R2 captures all possible combinations of <f1>

and <f2>. Hence, as R2 is sound, by employing an argument similar to the proof of

Lemma 4.6.1, it follows that R2 is complete with respect to Lhc. Note that as x1(|L1|) <f2>

x2(|L2|) by R1. Rules R1-R3 is complete for Lhc = x1(π1) <f1> x1(|L1|) <f2> x2(|L2|)

Induction Hypothesis: Assume that rules R1-R3 are complete for Lhc = x1(π1) <f1>

x1(|L1|) <f2> x2 (|L2|) …. x (n-1) (|L(n-1)|) . Now we need to show that they are complete for Lhc =

x1(π1) <f1> x1(|L1|) <f2> x2 (|L2|) …. x (n-1) (|L(n-1)|) <fn> xn (ηn). As R1-R3 are complete Lhc =

x1(π1) <f1> x1(|L1|) <f2> x2 (|L2|) …. x (n-1) (|L(n-1)|), we can deduce a derived relation between

x1(π1) and x(n-1)(|L(n-1)|), which is either

1. (x1(π1) <f> x(n-1)(|L(n-1)|)) where <f>∈ {≥t, t, t}, or

2. (x1(π1)[A](B)<f> x(n-1)(|L(n-1)|)) where <f>∈ {≥t, t} and A, B ⊆ {x1|L1|, x2|L2| , …., x

(n-1)|L(n-1)|}.

198

Assume that the derived relation is unconditioned, i.e., it is (x1(π1) <f> x(n-1)(|L(n-1)|)).

But as pointed out in the proof for Soundness of R1 – R4, rule R2 can be employed over

(x11 <f> x (n-1)|L(n-1)) and (x(n-1)|L(n-1)| <fn> xn|Ln|) to derive any relation between x1(π1) and xn|Ln|

(i.e., as indicated earlier, all combinations of relations <f> and <fn> are captured by R2).

As already argued in the induction basis, R2 is complete for such cases.

Now suppose the derived relation is (x1(π1)[A](B)<f> x (n-1)|L(n-1)|). We know that

<f> can only be ≥t or t. But as mentioned in the proof of the Soundness Theorem, R3

completely captures all the combinations where an unconditioned relation follows a

conditioned derived relation. This argument can be easily extended to any arbitrary pair of

roles. Hence, using an argument similar to that in the proof of Lemma 4.6.1, it follows

that R1-R3 is complete with respect to a (derived) hybrid linear hierarchy Lhc. Using the

same technique we can easily prove that a relation between any role of Li with that of Lj 1

≤ i < j is completely determined by rules R1-R3. Hence, R1-R3 is complete with respect

to the hybrid linear hierarchy Lh.

Theorem 4.6 (Completeness of rules R1-R4): We prove this by considering

various cases of H.

Case 1: H is a linear hierarchy: If it is a monotype linear hierarchy, we can see

that only R1 applies as all other rules involve more than one hierarchy type or more than

one relation between the same pair of roles. Hence from Lemma 4.6.1, it follows that R1-

R4 is complete with respect to H. If H is a hybrid linear hierarchy, then that means only

one relation can exit between a pair of roles; i.e., there are no alternative hierarchical

paths between the roles. Thus, only rules R1 through R3 apply. Hence, from Lemma

4.6.2, it follows that R1-R4 is complete with respect to H.

Case 2: H is a not a linear hierarchy: By definition 4.2.3, we can write H =

{LH1, LH2, …, LHm}, where each component LHi is a linear hierarchy (hybrid or

monotype). From Lemma 4.6.1 and Lemma 4.6.2, we can see that for each LHi, rules R1-

R3 are complete. The only remaining case is the case where two or more hierarchical

paths can exist between a pair of roles. Such a case can occur only in a hierarchy that is

not a linear hierarchy. Now, we need to show that when multiple hierarchical paths exist

between a pair of roles, rule R4 provides a basis for inferring all derivable relations. First

let us consider the following n hierarchical relations between roles x and y: hxy(π1), hxy(π2) ,

…, hxy(πn), which corresponds to the linear components LHπ1, LHπ2, …, LHπn for n ≤ m

and {π1, π2, …, π n}⊆ {1, 2, …, m}. It is easy to see that each of these relations between x

and y can be completely derived using rules R1 through R3 as each is derived within a

199

linear component. Now, we show that R4 completely covers all the possible derived rules

that can be inferred by using these relations between x and y. Again, we use induction.

Basis: Let n = 2. Then, we have only two relations between x and y deduced in

components LHπ1, LHπ2, which are hxy(π1), hxy(π2). We note that hxy(π1), hxy(π2) can be any of

the unconditioned relations or the conditioned derived relations. As noted in the proof of

the Soundness Theorem, all possible combinations are captured by the rules in R4.

Hence, applying an argument similar to that used in the proof for Lemma 4.6.1, it follows

that R4 is complete with respect to the two relations hxy(π1), hxy(π2) between the same pair.

Induction hypothesis: Assume that R4 is complete with respect to the n-1 relations

between the same pair of roles x and y.

Induction: Let hxy(π) be the relation between x and y derived from n-1 different

relations between them using rule R4. Now we have two relations between x and y: hxy(π)

and hxy(πn). It is easy to see that hxy(π) is one of the unconditioned relations because of the

application of rules R4.1, R4.2, R4.3a, and R4.3c, or it is the conditioned derived relation

with a possibly bigger set on which the relation is conditioned, as is possible because of

R4.3b and R4.4. But the same rules also apply to hxy(π) and hxy(πn). This is because, the

rules in R4 cover all possible combinations of conditioned and/or unconditioned alternate

relations. Thus, by applying an argument similar to that used to prove Lemma 4.6.1, it

follows that R4 is complete for all n different relations.

Hence, it follows that rules R1- R4 are complete with respect to a hierarchy.

200

APPENDIX C

Proofs of Theorems of Chapter 6

Proof of Lemma 6.1: (Correctness of TransformPR) : Let us consider an

arbitrary user u such that (u
inCf

t
�p). We need to show that (u

outCf

t
� p). Since (u

inCf

t
�p), the

following conditions must be true at time t for Cfin:

(1) there is a constraint {X, pr:assign/deassign p to r} ∈ Cfin because of which

p is assigned to role r,

(2) role r is enabled,

(3) user u is assigned to role r,

(4) there is no activation constraint that prevents the user from activating the role.

We note that algorithm TransformPR only replaces the constraints of types {X,

pr:assign/deassign p to r} to produce Cfout, and temporal constraints on original

roles are not changed. Hence, conditions (2), (3) and (4) are still valid in Cfout at time t.

The FOR loop in line 2 repeats for every constraint of type {X, pr:assign/deassign

p to r}. Each constraint {X, pr:assign/deassign p to r} is replaced by a temporal

constraint on role enabling/disabling in line 4. Thus a constraint of type {X,

pr:assign/deassign p to r} is not in Cfout. We need to show that Cfin ≈ Cfout for the

following two cases:

Case 1: Let X = (I, P), i.e. {X, pr:assign/deassign p to r} in (1) is a

periodicity constraint: We note that following replacements take place in T’ (initially T’=

T) according to lines 4, 5, and 7:

(i) the replacement of all temporal role-permission assignment expressions by

a. temporal constraint on the corresponding new role in line 4, and

b. default assignments, as is shown in line 5.

(ii) the replacement of all occurrences of temporal role-permission assignment

expressions and role-permission assignment status expressions in triggers by

constraint and status expressions on the new roles as shown in line 7-12.

201

Because of (i) and (ii), for all triggers or constraint enabling events that cause an

“assign/deassign p to r” event in Cfin, the algorithm produces triggers and

constraints that cause an “enable/disable ri” event in Cfout and vice versa. Hence,

if because of {(I, P), pr:assign/deassign p to r} in Cfin, permission p is assigned to

r at time t, then because of {(I, P), pr:enable/disable ri} and the default assignment

{pr:assign/deassign p to ri} in Cfout, p is assigned to ri at time t and vice versa.

Hence, as conditions (2), (3) and (4) are satisfied at t, a user u who is assigned to role r

that is enabled at time t can inherit p through ri, using restricted inheritance Ir in Cfout.

This inheritance allows u to acquire exactly those permissions that he can acquire in Cfin.

Hence, (u
outCf

t
� p) and therefore, Cfin ≈ Cfout.

Case 2: (X = ([(I, P)| D], Dx), i.e. c = {X, pr:assign/deassign p to r} in

condition (1) is a duration constraint): The transformation indicated by line 4 also

replaces all duration constraints of this form by the same duration constraint on the new

role’s enabling/disabling times. Thus, enabling/disabling of the assignment constraint in

Cfin done by any “enable/disable c” expression (independent constraint enabling

expressions or in triggers) now enables the duration constraint on the new role and vice

versa. Thus, since conditions (2), (3), and (4) are satisfied, user u, who is assigned to role

r, which is enabled at time t, can inherit p through ri, using restricted inheritance Ir in

Cfout. Thus, (u
outCf

t
� p). Hence, Cfin ≈ Cfout.

Proof of Lemma 6.2 (Correctness of TransformUR) : We prove this by

considering following cases:

Case 1: There are no per-user-role activation constraints in T: In this case, lines

20-37 do not apply. We also note that except for the hierarchy relations added to RH’

with respect to the new roles, everything else is the same as that of algorithm

transformPR if the assignment of permissions is replaced by an assignment of users.

So, by arguments similar to one used to prove Lemma 6.1, we can show that the

transformation of temporal constraints on user-assignments done by transformUR

produces an a-equivalent configuration.

Case 2: There are no temporal constraints on user assignments: In this case, only

lines 20-37 apply. Since S is empty, new roles will be created for all per-user-role

activations in line 30. Each set of per-user-role constraints associated with user role pair

(u, r) is replaced by a new role and a corresponding set of per-role constraints on it so

that all activation constraints associated with a user-role pair applies to the corresponding

202

new role. Since each new role is assigned to only one user, in Cfout, the per-role constraint

on it has the same effect as the per-user-role with the matching constraint value (total

active duration, cardinality, etc.). Since a zero duration activation time constraints is

added for the old role, no users can activate the role (line 36); however, because of the

strongly restricted IA-hierarchy, permissions are inherited by the new roles. Thus, as

(u
inCf

t
�p), it follows that (u

outCf

t
� p).

Case 3: Both temporal user assignments and per-user-role activation constraints

are present: This case is similar to case 1, in that a new role is created for each user

assignment. In addition, all per-user-role activation constraints are transformed into per-

role constraints for the new role created, as indicated by line 2 and 30 (use of getSui

allows creation of one new role for a (u, r) pair). As the new roles still have only one user

assigned to it, the per-role constraints applied to them have the same effect as the original

per-user-role constraints. Hence, as (u
inCf

t
�p), it follows that (u

outCf

t
� p).

Case 4: There are no user-role assignment and no per-user-role activation

constraints: In this case the algorithm simply returns Cfin as Cfout as both the FOR loops

at lines 2 and 21 are not entered.

Hence, it follows that for a given input Cfin, if Cfout is the output produced by

algorithm TransformUR, then Cfout contains no temporal user assignments and per-

user-role activation constraints, and Cfin ≈ Cfout.

Proof of Theorem 6.1 (Minimality of GTRBAC)

Proof for (a) and (b): To prove (a) and (b), we can carry out the following two

step process:

Step 1: Let C12= transformPR(Cf1); i.e., configuration Cf1 is input to

algorithm transformPR, and Cf12 is the new a-equivalent configuration returned by it.

Step 2: Let Cf2= transformUR(Cf12); i.e., configuration Cf12 is input to

algorithm transformUR, and Cf2 is the new a-equivalent configuration returned by it.

Since Cf1 ≈ Cf12 by Lemma 6.1, and Cf12 ≈ Cf2 by Lemma 6.2, it implies that Cf1 ≈

Cf2. As transformPR removes all temporal role-permission assignments, Cf12 does not

have any temporal constraints on role-permission assignments.

Similarly, since transformUR removes all temporal user-role assignments and

per-user-role activation constraints, Cf12 does not have any temporal constraints on role-

203

permission assignments and per-user-role activation constraints. Hence, MCS (T2) ⊆ {Cd,

CRp, CRd, C
a

r, Ctr, Cc}

Proof for (c): From (b), we have MCS(T2) = {Cd, CRp, CRd, Ca
r, Ctr, Cc}. We

need to prove that MCS(T2) is minimal. We show that a constraint type from MCS(T2)

can not be replaced by another constraint type of MCS(T2) to produce an a-equivalent

configuration. We show this case-wise.

Case 1: (Periodicity(CRp) vs. Duration constraints(CRd) on role): Periodicity

constraint specifies each time instant at which a role is enabled/disabled, whereas,

duration constraint does not specify the starting/ending time at which a role is

enabled/disabled. Furthermore, an event associated with a duration constraint needs to be

triggered or caused by a runtime request. A periodicity constraint can be represented by a

duration constraint if there is a way to enable it (the duration constraint) at a specific time

instant that corresponds to the start time of the periodic expression. But GTRBAC does

not support such specific constraint enabling unless we use a trigger in which a clock

timer is allowed to trigger an “enable c” event that enables the duration constraint,

which then becomes equivalent to the original periodicity constraint. However, even if we

allow that, the duration constraint that is generated to enforce the periodicity constraint

will allow any other trigger or run-time event to enable the role, which is not what the

periodicity constraint is intended to do.

Similarly, a duration constraint cannot be specified using a periodicity constraint

as it does not have deterministic start times.

Case 2: (Duration constraint vs. Trigger): Assume we have the following set of

triggers:

 B → enable r (1)

 enable r → disable r after t. (2)

When trigger (1) fires the non-blocked event enable r, trigger (2) will allow role

r to be enabled for a duration t. In effect, this is similar to the duration constraint (D =

t, enable r). However, if we also have a periodicity constraint (I, P, enable r) in Γ

of Cfin, then whenever, for an instant t∈ Sol(I, P), the non-blocked event enable r is

caused, trigger (2) will enable the duration constraint. This is semantically different from

a duration constraint (D = t, enable r), in which only a trigger or a run-time event can

cause the duration restriction for event “enable r” as specified by (D = t, enable r).

Thus, representing the duration constraint by triggers is not possible in the GTRBAC

framework.

204

Case 3: (Activation vs. Non-activation constraint): Replacement of one by the

other is not possible because they refer to the different states of a role. In addition, for an

enabling/disabling of a role, no user needs to be assigned to the role. An activation

constraint needs to be enforced only when a user is actually using the associated role.

Hence, MCS (T2) ⊆ {Cd, CRp, CRd, C
a

r, Ctr, Cc} is minimal.

Proof of Lemma 4.2.1 (MDS of two periodic expressions)

a. Here, we have PEi ⊆ PEj. Hence for all t ∈ Sol(PEi), it is also true that t ∈ Sol(PEj).

But since PEi ≠ PEj (non-equivalent), there exists some t ∈ Sol(PEj) such that

t∉ Sol(PEi). Therefore, there are two groups of time instants of which one group

belongs to both PEi and PEj, and the other group belongs to only PEj. This implies

that at least two groups of periodic expressions are needed to represent the time

instants of both the periodic expressions. This is because if there is a single group for

both PEi and PEj, then we need PEx = PEi ∪ PEj in order to satisfy the first condition

of an MDS. But then, if we consider t1 and t2 such that t1, t2∈ Sol(PEi), t1 ∈ Sol(PEj)

and t2 ∉ Sol(PEj), then the second condition required for an MDS is not satisfied.

As the first group contains time instants that belong to both PEi and PEj, we can

write the first expression to denote this group as PEx = PEi ∩ PEj, but PEi = PEi ∩

PEj; hence, PEx = PEi as all time instants that are in Sol(PEi) are also in Sol(PEj). The

second group of time instants belongs to only PEj; hence, we can denote the second

group as PEy = PEj - PEi = PEj - PEx. We can see that PEy do not contain time

instants in PEx, hence, PEx and PEy are disjoint.

From the construction of PEx and PEy, we can see that PEx ∪ PEy = PEi ∪ PEj ,

which is the first condition for an MDS (Definition 6.2.4 (a)). Furthermore, since PEx

= PEi, only those time instants in PEi belong to PEx; any time instant t not in PEi also

is not in PEx. Similarly, since PEx is contained in PEj, only a proper subset of time

instants in PEj is in PEx, and no time instant that is not in PEj is in PEx. Similarly, by

construction, only a proper subset of time instants in PEj is in PEy, and no time instant

that is not in PEj is in PEx.. Thus, PEx and PEy satisfy the condition (b) of Definition

6.2.4, too. Hence, MDSPE = {PEx PEy}.

b. Here, we have PEi ⊗ PEj. Hence, as the definition of PEi ⊗ PEj implies, there are three

groups of time instants. The first group belongs to both PEi and PEj. The second

group belongs only to PEi, whereas the last group belongs only to PEj. As there exist

some common time instants in the two periodic expressions, based on the argument

presented in (a) above, its MDS must contain more that one periodic expression.

205

Assume that we can create an MDS that contains two disjoint periodic

expressions. Since there is a group of periodic instants that belong to both PEi and

PEj, they must be represented by a single periodic expression, otherwise we cannot

get a disjoint pair as required for an MDS. So assume that PEx = PEi ∩ PEj. Now, we

have two remaining groups of time instants, one that belongs only to PEi and the other

that belongs only to PEj. If we combine the two groups to get PEy, then {PEx PEy}

can not be an MDS, because it will not satisfy the second condition (just take time

instants t1, t2 such that t1 belong to PEi, and t2 belongs to PEj but not to PEi, then t1, t2

do not satisfy the second condition).

Thus, the problem is that one group of time instants belongs to only PEi and the

other belongs to only PEi” not PEi. Now, if we construct PEy = PEi - PEx and PEz =

PEj - PEx , we get the disjoint set of periodic expressions {PEx PEy PEz}. As in (a),

it is easy to see that {PEx PEy PEz} satisfies the two conditions of an MDS. Hence,

it follows that {PEx PEy PEz} is an MDS of {PEi, PEj}.

Proof of Lemma 6.4 (MDS of n periodic expressions)

We show this by induction on the number of periodic expressions n. Note that
iMDSPE represents the MDS of the first i periodic expressions of PE.

Basis: n = 2: That is, PE = {PE1 , PE2}. Then by Lemma 6.1, we have the

following:

• if PE1 ⊆ PE2 then MDSPE = {PEx PEy}, and

• if PE1 ⊗ PE2 then MDSPE = {PEx PEy PEz}.

Hypothesis: Assume that it is true for n-1; i.e. there exists n-1MDSPE = {PE’1

PE’2, …, PE’m1} for PE = {PE1 PE2, …, PEn-1}.

We need to show that MDSPE = {PE’’1 PE’’2, …, PE’’m2} for PE = {PE1 PE2,

…, PEn}.

We start by writing MDSPE ({PE1 PE2, …, PEn}) = MDSPE ({n-1MDSPE, PEn}) =

MDSPE ({PE’1 PE’2, …, PE’m1, PEn}) (This is true because PE’1 ∪ PE’2 ∪ ... ∪ PE’m1 =

PE1 ∪ PE2 ∪ ... ∪ PEn-1). Now, we look at pair-wise relations between PEn and PE’i, for

1 ≤ i ≤ m1. First, we note that it is possible that PEn is equivalent to some PE’i. A simple

example is when PEn = PEi ∩ PEk and PE’i represents PEi ∩ PEk in n-1MDSPE. However,

as PE is not a disjoint set, PEn cannot be disjoint from all PE’i , 1 ≤ i ≤ m1. We look at

each of the possible relations that PEn may have with each PEis.

Case 1: PEn = PE’i for some i, such that 1 ≤ i ≤ m1 : then, MDSPE ({PE1 PE2,

…, PEn}) = n-1MDSPE and we are done.

206

Case 2: PE’i ⊆ PEn for some i, such that 1 ≤ i ≤ m1: then, by Lemma 6.3(a),

MDS{PE’i � PEn} = {PE’’xi , PE’’yi}, where PE’’xi = PE’i, and PE’’yi = PEn - PE’’xi .

Case 3: PE’i ⊗ PEn for some i, such that 1 ≤ i ≤ m1: then by Lemma 6.3(b),

MDS{PE’i � PEn} = {PE’’xi, PE’’yi, PE’’zi}, where PE’’xi = PE’i ∩ PEn, and PE’’yi = PEn -

PE’’xi , and PE’’zi = PE’i - PE’’xi .

We can see that PEn may be related to each of the PE’is, 1 ≤ i ≤ m1 by either case

2 or case 3 (As shown above, we need not worry about case 1; the case of PEn ⊆ PE’i can

be handled easily by reversing the periodic expressions of MDS in case 2).

Now, consider that PE’i ⊆ PEn and PE’j ⊆ PEn for i ≠ j. (i.e., case 2 applies to

both i and j). Thus, we have MDS{PE’i � PEn} = {PE’’xi, PE’’yi} and MDS{PE’j � PEn} =

{PE’’xj, PE’’yj}. We see that PE’’xi and PE’’xj are disjoint as PE’’xi = PE’i and PE’’xj =

PE’j, and PE’i and PE’j belong to n-1MDSPE. However, we do not know how PE’’yi and

PE’’yj are related; but we do know that each of them is a proper subset of PEn.

Now consider that PE’i ⊗ PEn and PE’j ⊗ PEn for i ≠ j. (i.e., case 3 applies to

both i and j). As shown in case 3, we get: MDS{PE’i � PEn} = {PE’’xi, PE’’yi, PE’’zi}and

MDS{PE’j � PEn} = {PE’’xj, PE’’yj, PE’’zj}. Now we know that, PE’’xi is a subset of PE’i and

PE’’xj is a subset of PE’j. Hence, PE’’xi and PE’’xj are disjoint (as PE’i and PE’j are

disjoint). Similarly, PE’’zi is a subset of PE’i and PE’’zj is a subset of PE’j and hence,

PE’’zi and PE’’zj are disjoint. Again, we are left with PE’’yi and PE’’yj but we do not

know how they are related. However, again, we know that each of them is a subset of

PEn.

And lastly consider that PE’i ⊆ PEn and PE’j ⊗ PEn for i ≠ j (i.e., case 2 applies

to the first and case 3 applies to the second; we ignore the situation in which case 3

applies to the first and case 2 applies to second, as it is a simple case of exchanging the

index values). Thus, we get MDS{PE’i � PEn} = {PE’’xi, PE’’yi} and MDS{PE’j � PEn} = {PE’’xj,

PE’’yj, PE’’zj}. Similar to the reasons given above, PE’’xi and PE’’xj , and PE’’xi and

PE’’zj are disjoint. Again, we are left with PE’’yi and PE’’yj, and we do not know how

they are related. However, here too, we do know that they are each a subset of PEn.

Hence, {MDS{PE’1 � PEn}, MDS{PE’2 � PEn}…, MDS{PE’m1 � PEn}} =

{PE’’1, PE’’2, …, PE’’ m2, PE’’ y1, PE’’ y2, PE’’ ym1}, where

{PE’’1, PE’’2, …, PE’’ m2} =

{PE’’xi, PE’’xj| case 2 applies both to MDS{PE’ i � PEn} and MDS{PE’,j � PEn} and i ≠ j}

∪ {PE’’xi , PE’’xj , PE’’zj | case 2 applies to MDS{PE’ i � PEn} , case 3 to MDS{PE’,j �

PEn} and i ≠ j}.

207

This implies that (PE’’i � PE’’j), for all i, j pairs such that i ≠ j, 1 ≤ i, j ≤ m2.

However, we cannot guarantee that (PE’’i � PE’’yj) for all i, j pairs such that i, j, 1 ≤ i ≤

m2 and 1 ≤ j ≤ m1. This is because each PE’’yj is a proper subset of PEn and there are

some PE’’i such that (PE’’i ⊗ PEn). However, since the construction of each PE’’i

involves breaking down time instants contained in PEn, we can construct a periodic

expression for the group of time instants in PEn that were not contained or overlapped

with any other PE’i.

Now let PE’’ m2+1= PEn - (PE’’1 ∪ PE’’ ∪ …∪ PE’’m2). Then if PE’’m2+1 is not

empty, then MDSPE({PE1 PE2, …, PEn}) = {PE’’1, PE’’2, …, PE’’m2, PE’’ m2+1},

otherwise MDSPE ({PE1 PE2, …, PEn}) = {PE’’1, PE’’2, …, PE’’m2}.

We need to show that MDSPE constructed in this way is minimal. Assume that it is

not minimal. Then there is at least one periodic expression PE’’i, 1 ≤ i ≤ m2 such that all

time instants in PE’’i are contained in one or more of PE’’j for i ≠ j and 1 ≤ i, j ≤ m2+1.

But it can only be possible if the periodic expressions in n-1MDSPE are not disjoint, as the

construction above does not introduce such a non-disjoint set. Hence, it contradicts with

our assumption. Therefore, the MDSPE constructed above is the MDS of PE.

Proof of theorem 6.2 (MDS using computeMDS)

(a) We prove this by taking all the possible cases:

Case 1 - All the n periodic expressions are equivalent: In this case anyone of the

periodic expressiosn can constitute the MDS, as each periodic expression satisfies the

conditions of an MDS.

Case 2 - The n periodic expressions are pair-wise disjoint: In this case we can

simply consider MDS = PE (and thus MSPEj = {PEj}). This satisfies the conditions of

a MDS.

Case 3: The set of n periodic expressions are non-equivalent and non-disjoint:

In this case, according to Lemma 6.4, there exists an MDS.

Therefore, there exists an MDS for an arbitrary set of periodic expressions.

(b) Again, we prove this by taking all the possible cases used above:

Case 1 - All the n periodic expressions are equivalent: In this case, for each n>2,

computeMDS recursively computes MDS of smaller size at line 6. When the

recursive call reaches n = 2, the algorithm calls pairMDS to compute the MDS of

{PE1, PE2}. As the periodic expressions are equivalent, pairMDS returns {PE1}

from line 1. This is returned by computeMDS in line 4 for n = 2. This is also the

value of MDS computed by computeMDS at line 6 for n = 3. So for n = 3,

208

computeMDS will compute the MDS of {PE1, PE3} at line 9 by using the algorithm

pairMDS. But since PE1 and PE3 are equivalent, again {PE1} is returned. And thus,

from line 11, {PE1} will be again returned. We can see, for all n >2, the MDS is the

same periodic expression that was returned by the invocation of the algorithm for n =

2. Hence, the algorithm correctly returns the MDS for a set of periodic expressions

that are equivalent.

Case 2: The n periodic expressions are pair-wise disjoint: Since all are pair-wise

disjoint, for each pair, pairMDS returns the original pair of periodic expressions.

Now if n-1MDSPE = {PE1, PE2,…, PEn-1}, then after the FOR loop in line 8, S will be

{PE1, PE2,…, PEn-1} (i.e., m2 = n-1 in the algorithm). Hence, PE”n= m2+1 = PEn at

line 20. Therefore, MDSPE = {PE1, PE2,…, PEn}. Hence, it follows that the algorithm

correctly returns the MDS for a set of periodic expressions that are equivalent.

Case 3: The set of n periodic expressions are non-equivalent and non-disjoint:

We can see that lines 5 to 25 implement the inductive method used to prove Lemma

6.4. When n > 2, the MDSs of lower values are recursively computed. The FOR loop

computes the pair-wise MDS of the new periodic expression PEn with each of the

periodic expressions PE’j computed for the earlier value of n. Line 11 returns the

earlier MDS if PEn is equivalent to any one of PE’j. In lines 14 and 17, those periodic

expressions returned by pairMDS are collected in S, which constitutes time instants

that belong to the periodic expressions of n-1MDSPE, some of which may also belong

to PEn (when PEn is contained in or overlaps with some PE’j). In line 20, a periodic

expression is created for any time instants that do not fall in the periodic expressions

of n-1MDSPE but only in PEn. The IF-ELSE statement ensures that this periodic

expression is not empty. Hence the algorithm correctly computes the MDS of PE.

Proof of Corollary 6.2.1 (Bounds for size of MDS): We prove this by induction

on n.

Basis: Let n = 1, then trivially 1 ≤ s1 ≤ (21- 1), as implied by the first IF statement

of line 3 of algorithm computeMDS.

For n = 2, the second IF statement of algorithm computeMDS is executed and the

returned set is the set returned by algorithm pairMDS for {PE1, PE2}. But algorithm

pairMDS returns a set whose cardinality is 1, 2, or 3. Hence, 1 ≤ s2 ≤ 3 = 22- 1.

Hypothesis: We assume that it is true for n-1. That is, 1≤ sn-1= |n-1MDSPE| ≤ 2n-1- 1.

We need to show that 1 ≤ sn = |MDSPE| ≤ 2n- 1.

209

We observe that a pair-wise MDS is computed for each pair (PE’j, PEn), 1≤j≤ sn-1

= m1, where PE’j ∈ n-1MDSPE. For each such pair (PE’j , PEn), algorithm pairMDS

returns at most three disjoint periodic expressions {PEx , PEy , PEz}. In such a case

MSPE’j= {PEx , PEz}. Thus, we see that each of the periodic expression of n-1MDSPE is

split into at the most two disjoint sets. Furthermore, a new set is created for the remaining

time instants of PEn. Hence, we get the following expression,

sn ≤ 2 sn-1 + 1 = 2(2n-1- 1) + 1 = 2n- 1

Furthermore, when all periodic expressions are equivalent we get sn = 1.

Therefore, 1 ≤ sn ≤ (2n- 1).

Proof of Corollary 6.2.2 (Bounds for size of MS)

Basis: Let n = 1. Then, trivially, p1 = 1 and n ≤ p1 ≤ n2n-1. Let n = 2. Then, when

the periodic expressions are equivalent, we get |MDSPE| = 1 and |MSPEj| = 1 for both j = 1

and 2; hence, p2 = 2. However, if MDSPE = {PEx , PEy , PEy}, then |MDSPE| = 3 and

|MSPE| = 2 for both j = 1 and 2, and hence p2 = 4. Thus, 2 ≤ p2 ≤ 4 = 2.22-1.

Hypothesis: Assume that for n-1, it is true, i.e., (n -1) ≤ pn-1 ≤ (n-1)2n-2. We need

to show that n ≤ pn ≤ n2n-1.

Induction step: If all n periodic expressions are equivalent, then |MDSPE| = 1 and

|MSPEj| = 1 for each 1 ≤ j ≤ sn-1= m1. Thus, pn = n. Since this creates the minimum number

of expressions in |MDSPE|, we have n ≤ pn.

When we add the nth periodic expression PEn, each of PE’j of n-1 MDSPE is split

into two periodic expressions at the most. Thus, the maximum increase in pn occurs when

PEn overlaps with each PE’j for 1 ≤ j ≤ sn-1. Thus, each of the MSPEj will be split into

two. Furthermore, |MSPEn| = sn-1 + 1, as in the worst case, PEn overlaps with each of the

periodic expressions PE’j of n-1MDSPE, and there is a periodic expression that represents

those instants of PEn that are not contained in n-1MDSPE. Hence, we have,

pn ≤ 2pn-1 + (sn-1 + 1)

 = 2(2pn-2 + (sn-2 + 1)) + (sn-1 + 1) = 22pn-2 + 21(sn-2 + 1) + (sn-1 + 1)

 = …

 = 2n-1p1 + 2 n-2(s1 + 1) + … + 21(sn-2 + 1) + 20 (sn-1 + 1)

 = 2n-1 + 2 n-2(s1 + 1) + … + 21(sn-2 + 1) + 20(sn-1 + 1)

 ≤ 2n-1 + 2 n-2(2 1 – 1 + 1) + … + 21(2 n-2 – 1 + 1) + 20(2 n-1 – 1 + 1)

 = 2n-1 + (n-1)2 n-1

210

 = n2 n-1

Therefore, n ≤ pn ≤ n2n-1.

Proof of Theorem 6.3 (Correctness of TransformMDS):

We have PE = {PE1, PE2…, PEn} and MDS = {PE’1, PE’2…, PE’m}.

Furthermore, in line 6 all the required MSPEi are computed. Line 9 creates a unique role

for each of the expressions PE’i which is made senior to the original role using An. Line

10 inside the FOR loop of line 9 ensures that each user uk which corresponds to PEk in the

user-role assignment of Cin is assigned to this new role associated with PE’i ∈ MSPEk.

This ensures that the following hold:

a. For each t∈ PEi , we have t∈ MSPEi (by Definition 6.1.5 of MS)

b. For each ui ∈ U, we see that ui is (default) assigned to each new role that

corresponds to expressions in MSPEi by lines 11 and FOR loops at lines 8 and 10,

and (b)

c. For each PE’i, (PE’i, enable ri) is added to T’ by line 12

Thus from (a), it follows that a ui can activate the original role r through one of

the new roles that corresponds to expressions in MSPEi at t∈ MSPEi. Furthermore, the

periodic expressions {PE1, PE2…, PEn} and {PE’1, PE’2…, PE’m} exactly cover the

same time instants. The main loop in line 2 ensures that such transformation is done for

each r. Hence, it follows from (a), (b), and (c) that Cin ≈ Cout. We note that the repetition

of line 13 removes all the user-role assignments. Hence, Cout is free of user-role

assignments.

Proof of Theorem 6.4 (Complexity expressions GTRBAC0
1 and GTRBAC0

2)

(1) GTRBAC0
1 representation is n.S + n.TR + n.R + H : Here, GTRBAC0

1 refers to the use

of algorithm TransformUR. For each user-role assignment, algorithm

TransformUR creates a new role (therefore total of n roles), adds a constraint for each

new role (total is n.TR), and adds a default assignment (hence, total is n.S).

Furthermore, as new roles are made senior to the original role, we introduce n

hierarchical relations. Hence, for n user-role assignments the complexity incurred is:

n.S + n. R + n.R + n.H.

(2) GTRBAC0
2 representation is pn.S + sn.TR + sn.R + sn.H: It follows immediately from

corollaries 6.2.1 and 6.2.2 and Theorem 4.3.

211

Proof of Corollary 6.4.1 (Complexity cases for GTRBAC0
2 representations)

Proof of Part 1: From Theorem 4.4, the complexities for GTRBAC0
1 and

GTRBAC0
2 are (n.S + n.TR + n.R + n.H) and (pn.S + sn.TR + sn.R + sn.H) respectively.

When PEi ≠PEj, for all i, j pairs such that 1 ≤ i, j ≤ n, we obtain pn = n and sn = n

as per corollaries 6.2.1 and 6.2.2. Furthermore, hierarchy overhead is also incurred.

Hence, the complexity for GTRBAC0
2 representation, using TransformMDS (Theorem

6.3) and by Theorem 6.4, is (pn.S + sn.TR + sn.R + sn.H = n.S + n.TR + n.R + n.H) which

is also the complexity of the GTRBAC0
1 representations.

Proof of Part 2: When PEi =PEj, for all i, j pairs such that 1 ≤ i, j ≤ n, we obtain

pn = n and sn = 1 as per corollaries 6.2.1 and 6.2.2. Furthermore, hierarchy overhead is

also incurred. Hence, the complexity for GTRBAC0
2 representation is:

= pn.S + sn.TR + sn.R + H = n.S + TR + R + H.

Proof of Part 3: As shown by corollaries 6.2.1 and 6.2.2, the worst cases for pn

and sn are n2n and 2n respectively. Thus, using it in the complexity expression given by

Theorem 6.4, we get

= pn.S + sn.TR + sn.R + H = n2n.S + 2n.TR + 2n.R + 2n.H

Proof of Theorem 6.5 (Complexity expression GTRBAC0 and GTRBAC1,A)

Proof of 1 (GTRBAC1,A representation) : We prove this by cases.

Case 1: di ≠ dj, for all i, j pairs such that 1 ≤ i, j ≤ n; i.e., durations are pair-wise

disjoint.

Since durations are distinct from each other, we need a per-user-role activation

constraint for each. Hence, we have the term n.TUR to represent n such constraints. Other

than that we do not require other constraints as they fully express the required access

constraints. However, the original role is still there, and if there is a per-role constraint on

the original role, it will still be there. Thus, the complexity of representation without

including the original role and per-role constraints on it simply is: n.AUR.

Now we show that the expression provided by the theorem gives this same

expression. Since the durations are all pair-wise disjoint, we get Dm =D and therefore nx =

n, and ny = 0. Similarly, we see that b = 0 and c = 0. Therefore the complexity is:

= (nx - ny).AUR + ny.AR + c.(b.ny+ 1) (R + H) = nx.AUR = n.AUR .

Thus, the expression holds for this case.

Case 2: di = dj, for all i, j pairs such that 1 ≤ i, j ≤ n, i.e., durations are all equal.

When all the durations are the same, then all per-user-role constraints can be

expressed as a per-role constraint on a role such that the default value of the per-role

212

constraint is that duration. Thus, we create a new role that is senior to the original role

and specify the new per-role constraint. This obviously incurs some hierarchy overhead.

The complexity is, thus, TR + R + H.

Now, lets look at the constraint expression given by the theorem. Since all the

durations are equal, there is only one distinct duration element. Hence, nx = 1. Similarly,

ny = 1, as the same element occurs more than once in D. Values for b = 0 and c = 1.

Therefore, we get:

= (nx - ny).AUR + ny.AR + c.(b.ny+ 1)(R + H) = AR + R + H

Thus, the expression holds for this case also.

Case 3: There is at least one i, j pair, 1 ≤ i, j ≤ n such that di = dj, and there is at

least one i, j pair, 1 ≤ i, j ≤ n such that di ≠ dj.

In this case, Dm ⊂ D. Let Dm = { d’1, d’2,, … d’nx}, i.e., nx = |Dm| < n. We know

that D’ = { d’π_1, d’π_2,, … d’π_ny} ⊆ Dm, where ny = |D’| ≥ 0. Since each of duration d’π_i

is common to at least two users, we create a role rπ_i corresponding to each d’π_i, and

specify a per-role constraint with d’π_i as the default value and (Cm(d’π_i) × d’π_i) as the

total per-role active duration value; i.e., the new per-role constraint is (Cm(d’π_i) × d’π_i,

[d’π_i], activeR_total rπ_i). Complexity incurred by this is:

ny.AR + ny.R (a)

Since nx = |Dm|, (nx - ny) is the number of durations that occurs only once in D and

hence we can create a role rnx and assign all the users associated with these durations to it

and specify an associated per-user-role activation constraints for each user. This will

incur cost as follows:

(nx - ny).AUR + R (b)

Furthermore, the roles rπ_is and rnx need to be made senior to the original role,

thus incurring H. Hence, adding (a) and (b) and H, we get the following complexity:

(nx - ny).AUR + ny.AR + (ny +1). (R + H) (i)

Now we show that this is exactly the complexity given by the theorem. According

to the theorem, in this case, b = 1, as n > nx holds true because of the strict subset relation

Dm ⊂ D. Similarly, since there is at least one i, j pair, 1 ≤ i, j ≤ n such that di ≠ dj;

therefore (n > nx> 0) holds true; hence c = 1. Therefore, the complexity expression,

according to the theorem, is:

(nx - ny).AUR + ny.AR + c.(b.ny+ 1)(R + .H)= (nx - ny).AUR + ny.AR + (ny+ 1)(R + H)

213

which is the same as (i). Thus,the complexity expression holds good for case 3

too. Since the three cases cover all the possible relations among the duration values, it

follows that the complexity expression for the GTRBAC1,A representation is true.

Proof of 2 (GTRBAC0 representation)

As nx is the number of distinct durations D, we simply create nx roles and add to

each role a per-role constraint. Such a constraint will use the duration value in D. For all

durations which occur only once in D, they are used as per-role duration values in the

corresponding new per-role constraint; i.e, the new constraint is (X, d, activeR_total, r),

where d occurs only once in D. For all d’s that occur more than once in D, the new per-

role constraint is (X, Cm(d) × d , d, activeR_total, r). The new roles are senior to the

original roles, thus incurring H. Hence, the complexity becomes: nx.AR + nx.R + H.

214

VITA

James B. D. Joshi was born in Nepal in 1969. He completed his Bachelor of Engineering

in Computer Science and Engineering from Motilal Nehru Regional Engineering College,

Allahabad, India, in 1993. From 1993 to 1996, he served as a lecturer in the Computer

Science and Engineering department in Kathmandu University, Nepal. He joined Purdue

University in the fall of 1996 and obtained an M.S. in Computer Science in 1998. His

research interests include information system security, distributed database systems,

multimedia systems, and networking.

