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Abstract-We have developed a Generalized Timed Petri Net (GTPN)
model for evaluating the performance of computer systems. Our model
is a generalization of the TPN model proposed by Zuberek [1] and ex-
tended by Razouk and Phelps [2]. In this paper, we define the GTPN
model and present how performance estimates are obtained from the
GTPN. We demonstrate the use of our automated GTPN analysis tech-
niques on the dining philosophers example. This example violates re-
strictions made in the earlier TPN models. Finally, we compare the
GTPN to the stochastic Petri net (SPN) models. We show that the GTPN
model has capabilities for modeling and analyzing parallel systems
lacking in existing SPN models. The GTPN provides an efficient, easily
used method of obtaining accurate performance estimates for models
of computer systems which include both deterministic and geometric
holding times.

Index Terms-Deterministic delays, dining philosophers, embedded
Markov chain, Markov models, performance analysis, Petri nets.

I. INTRODUCTION
W,,rE present a Generalized Timed Petri Net (GTPN)

v model for evaluating the performance of computer
systems. The GTPN model is an efficient, easily used tool
for calculating exact performance estimates for many
models of computer systems. For example, in [3] we de-
rive exact performance estimates of multiprocessor mem-
ory and bus interference for fixed memory cycle times.
Only approximate solutions existed previously for many
of the models we studied.

Petri nets are a graph model of computation [4]. Mod-
ifying Petri nets so that time is represented has recently
been an active research area. The goal of these models is
to analyze system performance as an extension of the
reachability analysis. Our model is a-generalization of the
timed Petri net (TPN) model proposed by Zuberek [1] and
extended by Razouk and Phelps [2]. The TPN model as-
sociates firing frequencies and deterministic firing times
with each transition in the net. Both Zuberek and Razouk
and Phelps restrict the allowed nets in order to propose
algorithms for building the net's reachability graph. They
further restrict the allowed nets in order to analyze the
net's reachability graph. Our generalization, the GTPN
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model, removes all of these restrictions. We present effi-
cient algorithms for building the reachability graph of an
arbitrary bounded net and we show how to analyze that
reachability graph in the general case.
For the purpose of performance analysis we view the

GTPN as a stochastic process. The time-in-state is a de-
terministic function for each state of the net. However, a
probability distribution is defined over the possible next
states based on the firing frequencies. The GTPN ana-
lyzer automatically generates the associated discrete pa-
rameter, embedded Markov chain and calculates perfor-
mance estimates.

Stochastic Petri nets (SPN's) are an alternate method of
representing time in Petri nets for the purpose of perfor-
mance analysis. Continuous-time SPN models were pro-
posed by Natkin [5], Symons [6], and Molloy [7]-[9],
and generalized by Marsan, Balbo, and Conte [10] and
Dugan, Trivedi, Geist, and Nicola [11]. The Generalized
continuous-time SPN (GSPN) model [10] associates an
instantaneous or exponentially distributed firing time with
each transition. The Extended SPN (ESPN) model [11]
allows general firing time distributions and then defines
restrictions on the net which are necessary for efficient
solution.
Molloy [7], [9] has also proposed a discrete-time SPN

model with transition firing times that are geometrically
distributed. The discrete-time SPN model is especially in-
teresting because it can represent deterministic firing
times, thus bridging the gap between the SPN and TPN
models. However, the representation of deterministic fir-
ing times has two restrictions in the discrete-time SPN:
1) a firing time must be a nonzero multiple of some unit
time step, and 2) all conflicting actions having determin-
istic delays must be equally likely.
The GTPN can represent geometric holding times, and

thus also bridges the gap between the TPN and SPN
models. Furthermore, deterministic firing times can be
any nonnegative real value, including zero, and we can
assign arbitrary next-state probabilities to conflicting tran-
sitions. Thus, the GTPN has some attractive features
lacking in existing SPN models.

This paper is an extended version of [12]. In Section
II, we describe untimed Petri nets and the previous TPN
models. In Section III we describe the GTPN model and
in Section IV we show how the GTPN model is analyzed.
In Section V, we demonstrate the use of our automated
GTPN analysis techniques on the dining philosophers
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model [13], which violates restrictions in the earlier TPN
models. In Section VI we compare the GTPN to the dis-
crete-time and continuous-time SPN models. Section VII
contains the conclusions of this work and suggestions for
future research.

II. UNTIMED PETRI NETS AND PREVIOUS TPN MODELS

In this section we describe untimed Petri nets and pre-
vious TPN models which provide a foundation for the
GTPN in Section III. Section Il-A describes untimed Petri
nets. A more thorough introduction to untimed Petri nets
can be found in Peterson [13]. Section Il-B reviews the
work of Zuberek and Razouk and Phelps.

A. Untimed Petri Nets
Untimed Petri nets (PN's) contain places P, transitions

T, and arcs A. The arcs are directed and can only connect

P = {P1,P2, * * p,Pn}
T = {tl, t2, * *,tm.
A: {P x T} U {T x P} -)

Mo:P -+{0,1, * *}
D: T x S -(R+ U {O}
F: T x S R+ U {O}

B. Previous TPN Models
Ramachandani [14] was the first to introduce a fixed

firing time with each transition in a Petri net. Ramamoor-
thy and Ho [15], Zuberek [1], and Razouk and Phelps [2]
are three more recent studies that use a single fixed firing
time. Our work is based on the TPN model of Zuberek
and Razouk and Phelps.
The TPN model [1], [2], is a Petri net which has been

augmented to include a set of firing durations (D), a set
of firing frequencies (F), and a set of named resources
(R). Each set is associated with the transitions in the net.
Letting S denote the set of reachable states, (R+ denote
the positive reals, and 6( denote the power set, the model
is formally defined as follows:

TPN = (P, T, A, MO, D, F, R)

where

(0, 1, 2, ...}

R: PU T -+ ({rl, r2, ***, rk})

transitions to places and places to transitions. If an arc
exists from a place to a transition, then the place is an
input place for that transition. If an arc exists from a tran-
sition to a place, then the place in an output place for that
transition. Places may contain tokens. The state of a PN
is defined by the number of tokens in each place and is
represented by a vector M called the marking vector. M[ i]
is the number of tokens in the ith place.

Petri nets are often illustrated graphically. Circles rep-
resent the places. Black dots in the circles represent the
tokens. Bars represent the transitions. Fig. 1 can be con-
sidered an example of an untimed Petri net by simply ig-
noring the vectors next to each transition.
The number of arcs connecting a place to a transition is

that input place's multiplicity. A transition is enabled if
each of its input places contains at least as many tokens
as there are arcs from the place to the transition. The to-
kens on all input places which exactly equal the input's
multiplicity are the transition's enabling tokens. An en-
abled transition canfire. A transitionfires by: 1) remov-
ing all of its enabling tokens from its input places, and 2)
placing on each of its output places one token for each arc
from the transition to that output place. Each firing of a
transition changes the assignment of tokens to places and
thus creates a new state. The reachability set of a PN and
a given initial state is the set of all states that can be
reached from that initial state via a sequence of transition
firings. The reachability graph associated with a reach-
ability set can be constructed as follows. Represent each
state by a vertex and place a directed edge from vertex v,
to vertex v2 if the state v2 can result from firing some
transition enabled in state v1.

(places)
(transition)
(directed arcs)
(initial marketing)
(firing durations)
(firing frequencies)
(resources)

The state of a TPN is defined differently than in un-
timed Petri nets because firing a transition is not an atomic
operation. A transition has an associated deterministic fir-
ing duration. There is a start firing, and an end firing
event. In between the firing is in progress. The removal
of tokens from a transition's input places occurs at start
firing. The placement of tokens on a transition's output
places occurs at end firing. While the firing of a transition
is in progress, the time to end firing, called the remaining
firing time (RFT), decreases from the firing duration to
zero (without causing a change in the net). Because firings
can be in progress when a marking change occurs, a state
is only partially defined by the distribution of tokens. A
state must also include the RFT of each firing in progress.
A state is thus a marking vector and a set of RFT's.

Also unlike an untimed Petri net, the next state is not
generated by a single start firing or end firing event. In-
stead it is generated by a set of start firings or a set of end
firings which occur simultaneously. Given a particular
state, the basic rule for finding the possible next states is
straightforward. Find how many enablings of each tran-
sition exist. (Instead of a transition being either enabled
or not, it has a nonnegative number of enablings. N en-
ablings of a transition exist if each of its input places con-
tains a number of tokens equal to at least N times its mul-
tiplicity.) Find the maximal sets1 that can start firing
simultaneously. Each maximal defines a next state. The
time spent in the original state is zero. The RFT vectors

'A set with property a is a maximal set with property a if it is not a
proper subset of any other set with property a.
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of the transitions which just started firing are set to their
transition's duration. The frequencies are used in assign-
ing probabilities to next states formed by the start firings
of maximal sets. If there are no enablings, but there are
some firings in progress, then the next state is generated
by the end firing of all transitions with the smallest RFT
(Tmin). The time-in-state value in this case is Tmin. If
there are no enablings and no firings in progress, then the
net remains in the current state forever.
The rule that next states are generated by sets of events

that occur simultaneously, is not strictly necessary. The
advantage of having it is that the state spaces generated
are dramatically smaller. The disadvantage is that the al-
gorithms for building the state space are more compli-
cated.
Zuberek suggested that the reachability graph of the

timed Petri net be viewed as a Markov chain and that per-
formance measures be computed using standard tech-
niques for analyzing the Markov chain's long run behav-
ior. Extensions of his work, however, are desirable in two
areas. One, he only proposed a method for constructing a
net's reachability graph for a restricted class of nets: nets
that are safe and free choice. A net with a given initial
state is said -to be safe if, for every state in the reachability
set, no place has more than one token. A net isfree choice
if each place that is an input to more than one transition
is the only input to those transitions. Two, even
for safe and free choice nets, the structure of the reach-
ability graph (i.e., the Markov chain) may be such that
Zuberek's approach gives incorrect values for the perfor-
mance measures. The state in a discrete time Markov
chain can be divided into classes. A set of classes, called
recurrent classes, is important because in the long run the
model will reach and stay in one of these classes. Zuber-
ek's approach gives correct values only when there is ex-
actly one recurrent class.
Razouk and Phelps [2] extend Zuberek's work in the

first of the two areas above. They allow a superset of the
class of safe, free choice nets. Two or more transitions
are said to be in the same conflict set if their sets of input
places intersect. Two conflict sets overlap if at least one
transition is in both. Razouk and Phelps make the restric-
tions that conflict sets do not overlap and that all transi-
tions in a conflict set are mutually disabling, i.e., firing
of one, disables all the others. They maintain Zuberek's
restriction in the second area (they call this, requiring a
cyclic net).
Razouk and Phelps also introduce the concept re-

sources, originally proposed in E-Nets [16]. A resource
in their model can be associated with one or more tran-
sitions. Whenever one of those transitions is firing, the
resource is in use. If more than one of these transitions is
firing simultaneously, the resource has several usages oc-
curring. By building and analyzing the net's reachability
graph we can find the average number of useg of a re-
source over time. This average, if properly implemented
and interpreted, can be used to obtain a variety of mean-
ingful performance estimates.

III. THE GTPN MODEL

The GTPN model extends the models of Zuberek and
Razouk and Phelps by: I) removing all restrictions on the
net except the obvious one that the state space be finite,
and 2) computing correct performance estimates for any
reachability graph (i.e., an arbitrary embedded discrete
parameter, finite state Markov chain). We also allow the
firing duration to be an arbitrary real number (the nonin-
teger case is not discussed by Zuberek or Razouk and
Phelps) and we allow resources to be associated with
places as well as transitions.
A third extension we have found useful involves firing

durations and frequencies. In the models of Zuberek and
Razouk and Phelps, the duration and frequency are state-
independent constants. In the GTPN model a transition's
firing duration and frequency can be expressions contain-
ing immediate values (real and integer), names of places,
names of transitions, and arithmetic, relational, and log-
ical operators. A place name stands for the number of to-
kens in that place in the current state. A transition name
represents the value one if at least one firing of that tran-
sition is in progress in the current state, and is otherwise
zero. The state-dependent durations and frequencies be-
come deterministic values when used to determine time-
in-state and next state probabilities for a state in the reach-
ability graph. (Note that Petri net inhibitor arcs can be
modeled using the state-dependent frequency expres-
sions.)

Besides a firing duration, frequency, and set of re-
sources, a GTPN transition has a flag associated with it
that is used in computing the next state probabilities as
described in Section III-B.

Fig. 1 shows an example GTPN net, including the ini-
tial state distribution of tokens. Each place and transition
is labeled. Each transition has, from left to right, its firing
duration expression, its frequency expression, its flag, and
its list of resources. This example models users at termi-
nals, who with a geometric think time generate requests
for a server. There is one token on place P1 for each user.
Transitions T1 and T2 implement the think time. Tran-
sition T3 implements a load-dependent server with a fir-
ing duration that depends on the number of tokens on P2.

In Fig. 2 and Table I we show the reachability graph
for the simple GTPN in Fig. 1 assuming only one user.
The labels on the edges of the graph are the next state
probabilities. The labels on the vertices of the graph are
the values for time-in-state. The marking vectors are
shown in the table. The RFT sets are shown as a list of
pairs, with one pair per in-progress firing of a transition.
The first component of each pair is the name of the tran-
sition. The second component is the remaining firing time.
The resources used and their number of uses are also
shown in the table.
The Razouk and Phelps' TPN model does not allow

multiple tokens on place P1. Allowing such nets compli-
cates constructing the reachability graph. An overview of
our reachability algorithm, which handles these compli-
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Fig. 1. Example of a GTPN net.

00
-4

0 0 6.73

Fig. 2. Reachability graph for example.

TABLE I
REACHABLE STATES FOR EXAMPLE

States ARIarkin RFT Set Resources
P1 P2 P3

1 0 0 1 f(TI,0.0))
2 0 0 1 {(T2, 1.0)) {Terminal(l)}
3 0 1 I
4 0 0 0 {(T3,6.73)} {Server(1) }

cations, is in Fig. 3. The TimeInState and ResUsages
(number of usages of a resource) functions are used in the
performance analysis as described in Section IV. The al-
gorithm has two complex parts: 1) finding the next states
when the next states are due to maximal sets of transition
enablings which start firing together, and 2) assigning
probabilities to next states. These two parts are discussed
in Sections III-A and III-B.

A. Finding Maximals
Our first point is somewhat discouraging. In an arbi-

trary state in a net the number of maximals in the worst
case is exponential in the number of enablings.

Theorem 1: Consider a state S in a GTPN with n en-
ablings. The number of maximals is

Q(2 - 2

Proof: First we will construct a state in a net such
that the number of maximals is ( n/2). Consider the case
where n is even (the n is odd case is similar). Consider
the net with n transitions and one place P which is an
input place for all the transitions. Assume each of the n
transitions also has another input place, with one initial

X.State + Initial State; X. Class - Frontier
while at least one Frontier state, Y do begin

if Y is a duplicate of an Interior state Z then
Y.Class +- Duplicate

else begin
Find the set of enabitngs in Y
If no enablings and the RFT set is empty then

Y.Class Terminal
else if any enablings then begin

Find the set of maximals of enablings
Compute the probability of each maximal
For each maximal M create a new state Z from Y

Remove tokens from the input places of
transitions that have enablings in M

Add a firring, ft, to the RFT set for each
enabling in M

Set the RFT of each added firing, ft, to the
firing duration of transition t

Z becomes a child of Y; Z. Class - Frontier
for all resources ResUsages[Y] ' count uses
TimeInState[Y] - 0; Y.Class Interior end

else begin
Let Tmin be the smallest RFT in Y
Create state Z from Y by subtracting Tmin from

each RFTin Y
For each firing ft whose RFT = 0 in Z do

Add tokens to the output places of transition t
Remove ft from the RFT set

Z becomes a child of Y; TimeInState[Y] +- Tmin
for all resources ResUsages[Y] '- count uses
Z.Class +- Frontier; Y.Class - Interior end

end

Fig. 3. Overall state space algorithm.

token, which is also an output place of the transition. Let
the place P have n /2 tokens. In this state, there are n
enablings (i.e., each transition is enabled once), and
( n/2) maxirftals. Thus, the number of maximals is
0 ( n/2). The observation that by Stirling's approxima-
tion, n! = - (n/e)n(1 + 0(1/n)), completes the
proof. U

This result should not be given too much weight. In
practice, we find that the number of maximals is far less
than exponential in the number of enablings. Theorem 1
does, however, point out that the space of potential max-
imals is large. Consequently, an algorithm for finding the
maximals must be carefully thought out in order to pre-
vent poor performance when the actual number of maxi-
mals is small. The algorithm described below meets this
criterion. When we profiled our GTPN tool, the percent-
age of total program time taken by this algorithm was less
than 5 percent for the analysis of large nets.2
Our algorithm consists of two independent subalgo-

rithms Partition and FindMax. The Partition algorithm
partitions the set of enablings into Generalized Conflict
Sets, such that maximals of the partitioned sets can be
efficiently combined to generate all the ma-ximals for the
original set of enablings. The Partition algorithm does not
specify how the maximals for each partition member are
found. Maximals are found for each member of the par-
tition by FindMax.

1) The Partition Algorithm: The Partition algorithm
has two parts. The first part constructs a static partition
of the set of transitions T. Define the directly-conflicts-

2We profiled our program using gprofunder 4.2 bsd UNIX® running on
a VAX-I 1 /780®.
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with relation on T as follows. For all t, and t2 in T, t,
directly-conflicts-with t2 if the set of input places for t1
intersects the set of input places for t2. Define the con-
flicts-with relation on T as the transitive closure of the
directly-conflicts-with relation. The conflicts-with rela-
tion is clearly reflexive, symmetric, and transitive, so it
is an equivalence relation on T. The partition of T induced
by conflicts-with is denoted by { GCS[ i I 1 C i C N },
where GCS [ i] is the ith member of the partition and N is
the size of the partition ( GCS stands for generalized con-
flict set). Note that a transition which does not share any
input places with any other transitions forms a GCS of
size one.

Part two of the Partition algorithm uses the conflicts-
with partitioning of T to partition the set of enablings,
Enablings (S), for each state S. The desired partition of
Enablings (S) is

{EGCS[S, i]

- Enablings (S) n GCS[i]i partition i

At this point, FindMax is applied to each partition mem-
ber to find its local maximals. Let Maxi-
mals [Enablings( S) ] be the set of maximals over all the
enablings. We have constructed our partition such that
Maximals [Enablings (S)] is simply the Cartesian prod-
uct of the local maximals.

Maximals [Enablings (S)]

= FindMax (S, EGCS[ 1])

x ... x FindMax (S, EGCS[N])
2) The FindMax Algorithm: We want to find the local

maximals for a generalized conflict set G in a given state
S. Any subset of EGCS [S, G I is a potential local maxi-
mal (for brevity's sake we will call a local maximal, a
maximal, in this section). The power set, (P(EGCS[S,
G ]), unfortunately, can be a large search space. Our goal
is to minimize the number of members of this power set
that we examine. Note that set inclusion defines a partial
order on (P (EGCS [1S, G]), which, in turn, induces a di-
rected acyclic graph [see Fig. 4(a)]. This graph has one
root which represents the set EGCS [S, G] itself. The
FindMax algorithm does a breadth-first search of this
graph searching for vertices that are maximals. The tra-
versal is implemented in the standard way using a queue.
Initially, the root vertex is the only entry on the queue.

Searching the graph breadth-first causes the order in
which vertices are examined to have an important prop-
erty: if 1) the set of enablings E1 represented by a vertex
can fire together, and 2) E1 is not a subset of any maximal
already found, then E1 is a maximal. In other words, it is
impossible that some vertex examined later will have a
set of enablings E2 that can all fire together and for which
E1 is a subset. Thus, to find the maximals we just do the
breadth-first search, checking each vertex to see if it sat-
isfies properties 1) and 2).

Three methods are used to avoid searching the entire

{1,2,3}

(a)

1,2,31

{2,3} {1,3} { 1, 2}
t tX

{2} {3} {1}

(b)

Fig. 4. Example of the FindMax data structures. (a) Directed acyclic graph.
(b) Optimized search.

graph. One, if a vertex's set of enablings, E1, can all fire
together, then none of its descendents needs to be exam-
ined (so its children are not added to the queue). Two, a
pointer is used to ensure that vertices are never examined
more than once. Note that the graph is not a tree. Thus,
a naive breadth-first search would cause vertices to be ex-
amined multiple times. Three, the pointer used in method
two is used to implement a heuristic for pruning subtrees.
Methods two and three are based on a pointer Vp asso-

ciated with each vertex V in the graph. Consider the set
of enablings El represented by V to be described by a vec-
tor of nonnegative integers. The ith component of the vec-
tor gives the number of enablings of the ith transition. Vp
points at one of the components in this vector. The set of
transitions to the left of Vp is VL. The set of transitions to
the right of Vp and including the transition pointed to by
Vp iS RV
The pointer Vp can be used to ensure tthat a vertex is

only examined once. The method is as follows. Set the Vp
of the root vertex to point to the leftmost transition. For
each parent vertex, subtracting one enabling from the
transitions in VR defines a child vertex. For each of these
child vertices, set its Vp to point to the transition that was
decremented. It can be shown inductively that at each
level in the graph, the sets VL are distinct for each vertex.
Consequently, any child resulting from decrementing VR
of one parent can never be the same as a child resulting
from decrementing VR of another parent. Note, also, that
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the use of Vp does not cause any state to not be examined
that should be examined. For each state c that should be
examined, there is a vertex p whose set of enablings over
the transitions in VL matches c's set of enablings over the
same transitions. Consequently, c will become a child of
p.

Method three is a simple optimization made possible by
the existence of Vp. If the enablings in VL cannot fire to-
gether, then it is irrelevant what enablings are subtracted
from VR. Consequently, none of the child vertices result-
ing from decrementing VR need be added to the queue.

Fig. 4 illustrates the FindMax algorithm. The left graph
is the complete directed acyclic graph defined on the
power set of { 1, 2, 3 } by set inclusion. The right DAG
shows only the edges that will be used in the breadth first
search. The vertical arrows in the middle row are the
pointers used in the optimizations.

Partition and FindMax are used to calculate all maximal
sets of enabled transitions which can start firing together.
Next state transition probabilities must be assigned to
these maximal sets. This is discussed in the next section.

B. Computing Probabilities
To interpret the reachability graph as a Markov chain

we need to assign probabilities to next states. In the non-
trivial case, we need to assign a probability to each max-
imal set of transitions that can start firing together. From
the previous section we know that a maximal is the union
of a set of independent local maximals, one from each
GCS. Thus a reasonable probability for the maximal is
the product of the probabilities for the local maximals.
Suppose that LocalMax [k, i ] is the kth local maximal of
the ith generalized conflict set. Suppose that there are N
generalized conflict sets and the jth global maximal is the
union over all GCS's of the jith local maximal of the ith
generalized conflict set. Then

Pr { Maximal [ j ]} {ii=I[ Pr{LocalMax [ ji, i]}Pr{Maximl[I]} = i:i=1,. .,NT
In order to compute the probability of a local maximal,

we take the product of the frequencies of all the enablings
in the local maximal. This is multiplied by a number
NumComb discussed below. Then for each local maxi-
mal, we normalize this product by dividing it by the sum
of the products over all local maximals. More formally,
suppose the ith GCS has M local maximals and the fre-
quency expression for the kth enabling in the ith GCS is
fk. Then our formula for Pr { LocalMax [ ji, i I} is:

NumComb means number of combinations and is a com-
binatoric value associated with each local maximal. This
value is defined as the number of ways tokens can be re-
moved from input places in order to implement that local
maximal. As a simple example, suppose the local maxi-
mal consists of one enabling of one transition with one
input place, two arcs connect the place to the transition,
and the input place has three tokens. In this case, the com-
binatoric value NumComb is (2 ).
Computing NumComb [LocalMax] is done by decom-

posing it first on the transitions in the local maximal and
second on the input places for the given transition. The
number of ways that the tokens can be removed from the
given input place by the given transition is a binomial
coefficient. As we consider each transition, the value in
the upper position of this binomial coefficient is changed
to reflect any removals made by transitions considered
earlier.
More formally, consider the local maximal LMax of the

ith generalized conflict set. Let InputPlace [t] be the set
of input places for transition t. Let Enab [t] be the number
of enablings of transition t in this maximal. Let Tok-
Needed [ t, p] be the number of tokens needed from input
place p by one enabling of transition t. Note that Enab [t]
* TokNeeded [ t, p] is the number of tokens needed from
place p by transition t in this maximal. Let TokLeft [ p
initially be the number of tokens on input place p in the
parent state. After looking at an input place p, Tok-
Left [p] is updated to reflect the start firing of all the en-
ablings of transition t. With this notation we have:

NumComb [LMax] = 11 Il
{t:teLMax} {p:ppelnputPlaces[t]}

TokLeft[t, p]
(Enab[t * TokNeeded[t,p])

From practical experience it appears that in some cases
it is reasonable to use this combinatoric value when as-
signing probabilities to local maximals. A Boolean flag
associated with each transition specifies whether this
should be done. Only if the flag is yes for all transitions
in the maximal, is NumComb used. Note that if Num-
Comb is used, the next state probabilities are the same as
if we constructed the reachability graph by allowing one
start firing event at a time with all CntComb flags set to
zero, and then summed the probabilities over all paths
leading to the state which represents the maximal set.

Pr{ LocalMax [ ii, i ]} =

NumComb [LocalMax [ ji, i]] x H fk
{ k: keLocalMax[ji,i] }

Z NumComb[LocalMax m, i]] * II fk
{m:m= 1, * * * ,M } S {k:kELocalMax[m,

if CountComb = yes;

H fk
{k: keLocalMax[ji, i I }

Z ~~~~Hfk'
{m:m=1, * *,M.} {k:keLocalMax[m,i]}

otherwise.
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The motivation for our method of assigning probabili-
ties to local maximals is that it assigns the right probabil-
ities in the important case where all the enablings in a
local maximal are independent events. In the case where
there are dependencies between the enablings it is difficult
to envision a single formula that will always generate the
"right" probabilities. This case motivated our introduc-
tion of state-dependent frequency expressions. Such fre-
quency expressions can specify what probabilities maxi-
mals should have in different markings. Allowing state-
dependent frequency expressions also allows the possi-
bility that in some states a transition's frequency expres-
sion may evaluate to zero even though it has one or more
enablings. We remove these enablings from the set of
considered enablings before finding the local maximals.

IV. GTPN PERFORMANCE ANALYSIS
For the purpose of performance analysis, we view the

GTPN as a stochastic process. The time-in-state is a de-
terministic function, TimeInState, of the state. Neverthe-
less, the process is stochastic because of the probability
distribution over the possible next states. Since the time-
in-state can be an arbitrary real number, the process is a
continuous time stochastic process. The parameter set is
described in Section IV-E. The states of the stochastic
process are divided into classes. In the long run, with
probability one, the process will reach and stay in one of
the set of classes called recurrent classes.3 Consequently,
the long run fraction of time spent in each state depends
on which recurrent class the process reaches in the long
run. For each recurrent class the long run fraction of time
spent in each state forms a probability distribution over
the states. Thus, there is a vector of long run probability
distributions with one component for each recurrent class.
In addition, we can compute the probability (the absorp-
tion probability) of reaching each recurrent class in the
long run. These absorption probabilities allow us to as-
sign relative weights to the components of the vector of
long run probability distributions.
The number of usages of a given resource is also deter-

ministic for a given state; it is a function ResUsages of
the state. Consequently, ResUsages, being a function of
a random variable, is a random variable. A performance
estimate for a resource is a vector with one component for
each recurrent class. The value for recurrent class R's
vector component is the long run expectation and distri-
bution of that resource's ResUsages random variable, with
respect to R's long run probability distribution. In other
words, the expectation is the weighted sum of the long
run fractions of time spent in each state, given that in the
long run the process is in class R. The weight of a state
is the number of resource usages in that state. The distri-
bution of a ResUsages random variable is obtained by
summing the probabilities of the states that use the re-
source the same number of times, given that in the long
run the process is in class R.

3Note that a terminal state in the reachability graph is a recurrent class
due to the self-loop we added (see Fig. 3).

Our approach to computing performance estimates uses
the key observation4 that the times at which state changes
occur form an embedded, discrete time, finite state Mar-
kov chain. Consequently, our approach has four parts: 1)
building the Markov chain, 2) aggregating the states in
order to reduce the size of the state space, 3) analyzing
the Markov chain, and 4) computing resource usage dis-
tributions and expectations in the original stochastic pro-
cess.

Building the Markov chain involves building the reach-
ability graph and assigning next state probabilities, as de-
scribed in Section III. Our aggregation rule is: any state
S2 can be aggregated with its parent state S1 if and only
if S1 is S2's only parent and S2 is SI's only child. The
number of usages of a resource in an aggregated state
equals the sum of its usages in the internal states weighted
by the relative fraction of time spent in each internal state.
Part 3, the Markov chain analysis, has three steps: a) find-
ing the chain's recurrent classes, b) finding the absorption
probability for each recurrent class, and c) finding, for
each recurrent class, the long run fraction of visits to each
state. These steps are discussed, respectively, in Sections
IV-A, IV-B, and IV-C.

Part 4 has two steps: a) for each recurrent class R, com-
puting the long run fraction of time spent in each state
(the TimeInState function and the long run fraction of vis-
its to each state are used to do this), b) for each recurrent
class R, use the ResUsages functions and the long run
fraction of time spent in each state to find the long run
distribution and expected number of usages of each re-
source. These two steps are discussed in Section IV-D.
As mentioned above, the long run resource usage dis-

tributions and expectations are the performance estimates
(given that the process is in class R in the long run). For
each resource we thus have a vector of performance esti-
mates. If desired, the expectations could be weighted by
the absorption probabilities to give a single performance
estimate.

In Section IV-E we give a more precise definition of the
parameter set of the GTPN stochastic process.

A. Finding Recurrent Classes
In order to find the recurrent classes we need to first

define a recurrent class. Recall that Vn Pii = Pr{X +1
= i Xn = i }. P = fPij] is the one-step transition prob-
ability matrix. p(n), the n-step transition probability ma-
trix is defined similarly. f l) is the probability that, start-
ing from state i, the first return to state i occurs at the nth
transition. A state is recurrent if E'o f(l) = 1. In other
words, a state is recurrent if and only if, after the process
starts from state i, with probability one the process returns
to state i in a finite length of time. A state is transient if
it is not recurrent. State j is said to be accessible from
state i if P(J) > 0 for some integer n 2 0. Two states i
and j that are each accessible to the other, are said to com-
municate.

4The GSPN model uses a similar observation.
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Note the following facts. Accessibility defines a partial
order on the states. This partial order implies a directed
graph with the vertices being the states. Communication
is an equivalence relation on the states. Thus it partitions
the states into subsets called classes. The communication
classes are the strongly connected components of the ac-

cessibility graph. These strongly connected components
form a directed acyclic graph, DAG.

All the states in a class are recurrent or none are, so we

can speak of recurrent classes and transient classes. In
the case of a finite state space,5 the recurrent classes are

the leaves of the DAG[17] of strongly connected com-

ponents. The interior nodes of the DAG are the transient
classes.
Given that the recurrent classes are the leaves of this

DAG, the algorithm to find the recurrent classes is im-
mediate. The reachability graph of the GTPN is the ac-

cessibility graph. Create the DAG by finding the strongly
connected components of the accessibility graph. We do
this using Tarjan's 0(n) algorithm [18]. Then find the
leaves of the DAG by a depth first search starting at the
initial state.

B. Absorption Probabilities
In a finite state Markov chain, if we start in a state in a

transient class we will eventually reach and stay forever
in one of the recurrent classes. We are said to be absorbed
by a particular recurrent class. Computing the probability
of absorption in a particular recurrent class R given a par-

ticular initial state i can be done using a standard tech-
nique called first-step analysis [19]. On the first state
change, the process will move from state i to a state j that
is in a transient class or in a recurrent class. Ifj is in class
R, the future probability of being absorbed by class R is
one. Ifj is in another recurrent class, the future probabil-
ity of being absorbed by class R is zero. If j is in a tran-
sient class, then, by the memoryless property, the prob-
ability of being absorbed by class R is the same as if j
were the initial state.
More formally, suppose that the states in all the tran-

sient classes are numbered 0, * * *, r - 1 and consider a

fixed recurrent class R and fixed initial state i. Let Ui =

Pr{ Absorption in class R Xo = i} for 0 c i < r.

r-1

ZJu Pi, + ,Eo Pi, UjR, i = , 1, . ,r - 1.
j RZ

This equation cannot be solved in isolation. However, if
we consider all possible initial states, then we have a sys-

tem of linear equations that can be solved for the Ui's.
The mean time to absorption can be computed using a

similar system of linear equations.

C. Long Run Expected Fraction of Visits
If R is a recurrent class in a finite state space, then Vj

e R a number wj exists such that Vi E R

5This is not true if the state space is countably infinite. A simple coun-

terexample is a one-dimensional, asymmetric random walk.

lim EF! -I =j) I ]
ML+0 M k=O {Xj

r1 m-

=lim- E, P(t
m-*om k=0 J

The leftmost expression above is the long run expected
fraction of visits spent in state j. I xk=j} is the indicator
random variable that equals one when the outcome chosen
is in the event { Xk = j } and 0 otherwise.
We want to find these xj's for each class R. We do this

by noting that each recurrent class R in a finite state space
has one and only one stationary probability distribution
and the vector -rR of its <j's is this stationary probability
distribution. This stationary probability distribution is
easy to find since it is the unique solution to the set of
equations

xrR = rRPR and 7r = 1.
jeR

The matrix PR is PR = { Pij i E R }. We solve this system
of equations numerically using an iterative matrix algo-
rithm, the power method [20]. The numerical issues in-
volved in computing this stationary probability distribu-
tion, as well as those issues involved in computing the
absorption probabilities and mean time to absorption, are
discussed in [21].

It is also true that an arbitrary Markov chain with a fi-
nite state space has at least one stationary probability dis-
ribution over the entire state space. However, if the Mar-
kov chain has more than one recurrent class, then any
linear combination. that sums to one of the stationary
probability distributions of the individual recurrent classes
is a stationary probability distribution of the chain as a
whole.
Our approach is correct regardless of whether the re-

current classes are periodic or aperiodic. Recall that the
period of a state is the greatest common divisor of all in-
tegers n 2 1 for which P(ti) > 0. A state is aperiodic if
its period is 1, else is periodic. All the states in a class
have the same period so we can refer to a class as periodic
or aperiodic. Only for the states i in an aperiodic recurrent
class does the limit lim0 p(n) exist. However, the long
run expected fractions of visits and the stationary proba-
bility distribution exist in both cases. Again we assume a
finite state space.

D. Resource Usage Estimates
We find, for each recurrent class R, the long run ex-

pected fraction of time spent in each state. Then, we find
the long run distribution and expectation of each resource
with respect to each recurrent class.

Let S be the set of states. Let RelTime (SI) be the long
run expected fraction of time spent in state S1, given that
the process is absorbed in class R. From the Markov chain
we know the long run expected fraction of visits to each
state k, 7Fk, given absorption in class R. RelTime (S1) can
be computed, using the TimeInState function, as follows:
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RelTime (S1)
n-i

lim (1/n) Z E[1{x(t)=s1}TimeInState(X(t))]
n-oo t=0

n-1

lim (1 /n) E E[TimelnState (X(t))]
fl -~ 00t

TimeInState ( SI ) 1rs,
Z TimelnState (k) Irk
keS

Recall that 1A is the indicator random variable for the
event A. To show why the last equality holds we derive
its denominator. A similar derivation holds for the nu-
merator. Let S be the set of states.

nn-lI

lim 1EEn[TimeInState (X(t))]

= lim0 Z hLE TimeInState(k) Pr {X(t) = k}j]
~~~~~~~~~~~~~n - 1on

n-1~~~1 -

= l TimelnState(k) lim - E Pr {X(t) = k}
keS n-o n t=O

= E TimelnState (k) 7rk.

To find the long run distribution of the number of usages
of a resource for each absorbing recurrent class, we sim-
ply sum over all of the states in the class that use the
resource the same number of times, the long run fraction
of time spent in that state. To find the long run expected
number of usages of each resource for each absorbing re-
current class, we simply take the expectation of the ran-
dom variable ResUsages:

E[Res Usages] = E ResUsages (k) Pr { statek}
kES

- Z ResUsages (k) RelTime (k).

E. Parameters Set of the Stochastic Process
Since firing durations can be zero in the GTPN model,

a GTPN can be in two or more states at the same "time."
This slightly complicates viewing a GTPN as a stochastic
process. In this subsection we discuss that complication
and how it can be resolved. The complication is that the
right halfline cannot be the parameter set of the GTPN
stochastic process. To see this, recall that a stochastic
process is a family of random variables indexed by the
parameter set and a random variable is a function from
the sample space into the reals. If the right halfline were
the parameter set, then on some sample path at some pa-
rameter t, the random variable X( t) could simultaneously
hold more than one value in its range. This contradicts
X(t)'s being a function.

This complication is resolved by using a different pa-
rameter set. The parameter set used is the lexicographi-
cally ordered Cartesian product of the nonnegative reals
an-d the natural numbers. The parameters are assigned in

the following way. Consider an arbitrary sample path. At
any time t in the nonnegative reals, if there are n (n > 0)
instantaneous state changes, then X(t, 0) is the state be-
fore the first (if any) state change, X( t, 1 ) is the state after
the first state change, . . . , X(t, n - 1) is the state after
the n - ith state change, X(t, m), m . n is the state
after the nth instantaneous state change. Since at most a
countably infinite number of instantaneous state changes
can occur, the process is never in two or more states at
the same 'time." Note that the parameter set of the
embedded Markov chain need only be the nonnegative in-
tegers with the nth parameter meaning the nth state
change.

V. ANALYSIS OF THE DINING PHILOSOPHERS
The dining philosopher model is a well-known example

which violates net restrictions in previous TPN models.
Although performance of this system is largely hypothet-
ical in nature, it serves to illustrate the capabilities of the
GTPN analyzer, and it yields some insight into the timing
behavior of the dining philosopher protocol.
A GTPN model of the five dining philosophers [13] is

shown in Fig. 5. The initial marking of the net shows all
five philosophers thinking. We have analyzed the model
with deterministic think times, ThinkTime (i ), as shown,
for each philosopher i. We have also used a slightly mod-
ified model (see Fig. 1), to represent think times that are
geometrically distributed with mean ThinkTime ( i ). After
thinking, the philosopher competes for two forks which
are shared with neighboring philosophers on the left and
right, respectively. After acquiring the forks, the philos-
opher spends a deterministic amount of time eating,
DineTime(i ). This cycle is repeated as many times as
necessary to finish the meal. The firing frequencies f, as-
sociated with transitions that model fork acquisition are
used to compute the probabilities that various maximal
sets of competing philosophers get the forks they require.
These probabilities are calculated as described in Section
III-B. Note that all of these transitions are in the same
generalized conflict set.
A unique resource is associated with each thinking and

dining transition. The GTPN analyzer will compute the
long run expected usages of these resources, (Think-
Fraction ( i ) and DineFraction ( i )), which correspond to
the long run fractions of time that philosopher i spends
thinking and dining. From these measures, we can cal-
culate the long run fraction of time philosopher i is idle,
waiting for forks (IdleFraction ( i ) = 1 - Think-
Fraction (i) - DineFraction ( i )). Performance of the
dining philosophers is maximized when time spent wait-
ing for forks and expected time to complete the dinner are
minimized.
The dining philosopher model can be analyzed quickly

for various think times, dining times, and firing frequen-
cies (i.e., relative aggressiveness in grabbing forks). We
first consider the case of two classes of philosophers and
deterministic think times. The first class of philosophers,
formed by any two nonneighbors, thinks for N units of

1305



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 12, DECEMBER 1987

*** * = (ThinkTime(i), 1, no, (thinki))
** = (0, fi, no, ()
*** = (DineTime(i), 1, no, (dinei))

Fig. 5. Dining philosophers GTPN model.

time and dines for N units of time. The second class of
philosophers also dines for N units of time. In one exper-
iment, we let N = 3, and vary the duration of the think
time of the second class of philosophers between 1 and
12 units of time. The firing frequencies, fi for both classes
of philosophers in this experiment are set equal to one.
Fig. 6 shows ThinkFraction (i), IdleFraction ( i), and
DineFraction(i) for the model. Each of the four data
points, corresponding to ThinkTime(2) equal to 4, 7, 8,
and 9, have two recurrent classes. In each case, both re-
current classes have absorption probabilities equal to 0.5.
In each case, the resource usage estimates are the same
for both recurrent classes. Each of three data points, cor-
responding to ThinkTime(2) equal to 5, 10, and 11, have
four recurrent classes in the Markov chain. In each case,
all four recurrent classes have absorption probabilities
equal to 0.25. For ThinkTime (2) equals 5 or 11, the re-
source usage estimates are also the same for all recurrent
classes. For ThinkTime equal to 10, two recurrent classes
have identical resource usage estimates which are distinct
from the identical resource usage estimates of the other
two recurrent classes. Both values are shown in Fig. 6.
Our first observation is that the fractions of time the

philosophers spend thinking, waiting, and dining, vary in
a complex way with the input parameters in this experi-
ment. Reasoning about the behavior of the system for one
parameter setting (i.e., when ThinkTime (2) = 3), shows
that after 9 units of time, the system reaches "steady
state," in which two philosophers are thinking, two are
dining, and one is waiting (interchangeably), forever
after. We note that this behavior is highly dependent on
the relative delays in the model.
We investigated the complex behavior of system per-

formance as a function of varying think times for the two
classes of philosophers further. Assume that each philos-
opher requires R = 60 units of time dining to complete
the meal. Let MaxDineFraction be the maximum value of

(b)

Fig. 6. Performance measures for varying deterministic think times. Two
classes of philosophers ThinkTime(l) = 3, vjfj = 1, DineTime(j)=
3.

DineFraction (i ) over all i. Then the expected time that
the first philosopher(s) complete their meal is Dmin =

R/MaxDineFraction, which we define to be the "end of
the dinner." Fig. 7 shows the total time spent thinking,
idle, and dining, and the amount of time needed to com-

plete any unfinished portions of the meal, for a few inter-
esting parameter settings. Starting with a "baseline"
model (ThinkTime(i) = DineTime(i) = N), in Fig.
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Fig. 7. Performance for selected parameters.

7(a), we see that Dmin = 2.5 hours, of which each class
of philosopher spends 60 minutes (40 percent) eating, 60
minutes thinking, and 30 minutes waiting for forks. This
corresponds to ThinkTime (2) = 3 in Fig. 6. All philoso-
phers finish the meal at the same time. Note that two phi-
losophers in the maximum number that can be dining at
the same time, so the baseline model is optimum with
respect to DineFraction( i ) = 0.4. The question is
whether the idle time for the philosophers can be reduced
while still dining at full capacity. In Fig. 7(b), the second
class of philosophers reduce their idle time by slightly in-
creasing their think time by some amount x, x < N/2. In
Fig. 7(c), the second class of three philosophers increase
their think times to 3N, which reduces idle time to zero

for all philosophers, but causes the three to miss half their
meal. This corresponds to ThinkTime (2) = 9 in Fig. 6.
In Fig. 7(d), both classes of philosophers have think times
set to ThinkTime(i) = 1.SDineTime(i) = 1.5N, which
represents the optimum behavior.

For the experiments above, we varied the think time
while holding all dining times and firing frequencies con-

stant. In the next experiment, we set the think time of the
second class of philosophers to N, and vary the firing fre-
quencies of the first class of philosophers. Fig. 8 gives
the results of these analyses. Note that the maximum pos-

sible value for DineFraction for the given parameter set-
tings, is 50 percent. When the firing frequency for the
aggressive philosophers is 5.0 the fraction of time they
spend waiting for forks is reduced by 70 percent (to 0.06).

Finally, we repeated the first experiment (Fig. 6) with
geometric think times. Figure 9 shows the performance
estimates as a function of mean think time of the class
two philosophers. The trends in the performance esti-
mates as ThinkTime (2) varies are qualitatively the same

as in the deterministic model. However the performance
curves are smooth, in contrast to the erratic variations in

Figure 6. The erratic performance in the deterministic
models is due to cyclic dependencies. These dependen-
cies also make multiple recurrent classes more likely in
the deterministic models.

Fig. 8. Performance for aggressive philosophers.

VI. COMPARISON WITH SPN MODELS
Models in which a transition's firing time is an expo-

nential random variable, stochastic Petri Nets (SPN), have
been independently proposed by Natkin [5], Symons [6],
and Molloy [7], [8]. Marsan, Balbo, and Conte [10] gen-

eralized the continuous-time SPN model, GSPN, by al-
lowing transitions which fire in zero time. Molloy [7], [9]
also proposed a discrete time SPN model with transition
firing times that are geometric random variables. The SPN
models are interesting because the reachability graph for
these models are (continuous-time or discrete-time) Mar-
kov chains. In this section, we compare the conflict res-

olutions and probability assignment methods of the GTPN
model and the SPN models. We then compare the mod-
eling features of the GTPN and SPN models in four re-

spects. Finally, we comment on the complexity issues
concerning deterministic firing durations.

A. Conflict Resolution

The addition of timing information to the Petri net
model provides several options for conflict resolution. The
method of resolving conflicts in the GTPN is different than
the method defined for the GSPN model.
The GTPN conflict resolution submodel uses (possibly

state-dependent) transition firing frequencies to resolve
conflicts. Our underlying assumption is that the conflict
is resolved before one of the conflicting transitions starts
firing. We also assume that once a transition is in prog-
ress, it cannot be preempted by a new conflict. This sub-
model is useful, for example, if the conflict is due to con-

tention for a shared resource (e.g., two processors
requesting use of a shared bus in a multiprocessor).
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Fig. 9. Varying geometric think times. Two classes of philosophers.
ThinkTime(l) = 3, Vjf = 1, DineTime(j) = 3.

In contrast, the conflict resolution submodel for timed
transitions in the GSPN is based on competing transition
delays. The transition which fires first wins the conflict.
This mechanism is based on the view that the physical
events modeled by the conflicting transition are in prog-
ress simultaneously and that the completion of one event
disables the other. For example, this view holds if one

transition models the successful acknowledgment of a
message in a computer network, and the other transition
models a timeout process. (Note that the timeout process

is exponentially distributed in these models.) The removal

0.3-

0.2-

0.1-

0.0

T s r

Fig. 10. Competing geometric delays in the GTPN.

of tokens at the time a transition is enabled is not useful
for this approach.
Each of the conflict resolution submodels is valid for

the corresponding physical systems. Both can be em-
ployed in the GSPN and in the GTPN model. For exam-
ple, the GSPN model uses firing frequencies to resolve
conflicts for instantaneous transitions. Conversely, the
GTPN can have conflicting geometric holding times such
that assigned next-state probabilities are equal to proba-
bilities based on competing delays. To do this, we assign
the appropriate competing rate frequencies to instanta-
neous transitions at the start of a timestep and then model
the geometric delays in the usual way. Fig. 10 illustrates
this technique. In this figure, P1 =I 1/( X1 + X2) and
P2 = X2/( XI + X2) where XI and X2 are the means of
the competing geometric holding times.
Razouk and Phelps have defined enabling times in their

TPN. An enabling time specifies a deterninistic time that
a transition must be enabled before it will start firing. The
competing delays in this case are the deterministic ena-
bling time (e.g., a timeout), and a random delay that leads
to enabling of a conflicting transition. We plan to extend
the GTPN reachability graph construction methods to in-
corporate enabling times.

Alternative conflict resolution submodels are also dis-
cussed in (12] and [22].

B. Probability Assignment
The continuous time GSPN model and the GTPN have

an embedded discrete time Markov chain, while the dis-
crete time SPN model itself is a discrete time Markov
chain. In either case, probabilities need to be assigned to
next states. Each model assigns probabilities that are con-
sistent with its conflict resolution semantics.
When no instantaneous transitions are enabled, the SPN

models assign probabilities according to competing tran-
sition delays. In the continuous time SPN's, with proba-
bility one, no two transitions in progress will finish firing
simultaneously. This simplifies probability assignments.
In particular, the probability of the next state associated
with transition ti's finishing first has probability equal to
ti's firing rate divided by the sum of the firing rates of the
transitions that are in progress.

In the discrete time SPN, with probability greater than
zero, two or more transitions in progress can finish firing
simultaneously. Though more complicated, it is still pos-
sible to assign probabilities to next states using competing
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transition delays [7], [9]. Unfortunately, using competing
delays to assign next state probabilities restricts the al-
lowed probability assignments in the important special
case of deterministic firing delays. A deterministic firing
delay is represented as a geometric firing delay that has
probability one of firing in the next time step. Conse-
quently, using competing delays implies that all the next
states have equal probability.
The GTPN uses transition frequencies to assign next-

state probabilities, independent of transition delays. The
transition frequency method, unlike the discrete time
SPN, can assign nonuniform probabilities to next states
in the case of conflicting transitions with deterministic de-
lays. In general, although the frequency method is pow-
erful, the assignment of static (state-dependent) frequen-
cies which will be used, for the dynamic calculation of
probabilities, requires careful thought during model con-
struction. The random switches used in the GSPN when
there are instantaneous transitions firing is a similar
method which uses firing probabilities to determine prob-
ability assignments. In the random switches method,
however, instead of one frequency expression per transi-
tion, a probability distribution is explictly given for each
possible set of enabled transitions.

C. Modeling Features
The GTPN has capabilities for modeling and analysis

lacking in the existing SPN models, in the probability as-
signments discussed above and in two additional respects:
1) firing durations, and 2) analysis of multiple recurrent
classes.
The first respect is firing durations. The GTPN can rep-

resent deterministic firing durations which are arbitrary
nonnegative real values, including zero. The GTPN can
also model geometric holding times as can the discrete
time SPN. Since a holding time in the discrete time SPN
must be a multiple of some unit step, the GTPN can rep-
resent a larger class of firing durations, than the discrete
time SPN. Also, since the geometric distribution is the
discrete-time analog of the exponential distribution, and
since the GSPN cannot represent deterministic delays ex-
cept with certain strong restrictions [23], the GTPN can
also represent a larger class of firing durations than the
GSPN model.
The second respect is the GTPN's analysis of multiple

recurrent classes. The GTPN allows the performance
evaluation of systems that have several possible long run
behaviors. In contrast, the GSPN and the discrete time
SPN analyses assume that their Markov Chains are irre-
ducible (i.e., have only one recurrent class). We believe
that the SPN analysis could be developed to support mul-
tiple recurrent classes.
We note that the extended stochastic Petri net (ESPN)

model of Dugan, Trivedi, Geist, and Nicola [11] is an
SPN model that, in at least one respect, is more powerful
than the GTPN. The ESPN allows arbitrary holding times,
and has been shown to be useful for analyzing system re-
sponse to failure. However, the ESPN is analytically
tractable only'for models with (simple) acyclic reachabil-

ity graphs, or models where the firing times for all con-
current transitions are exponentially distributed.

D. Complexity Issues
Representing deterministic holding times inherently

leads to greater complexity than when holding times are
geometrically or exponentially distributed. This is be-
cause the memoryless property of the geometric and ex-
ponential random variables does not apply. Thus, both the
GTPN and the discrete-time SPN model have the poten-
tial for large state spaces when deterministic holding times
are represented.
The GTPN contains new states for start firing as well

as end firing events. If we loosely identify these two state
changes as one, there is an equivalence between the states
in the GTPN and the discrete-time SPN when geometric
holding times are in progress (i.e., one state change per
time step, including a cycle back to a given state with the
probability that none of the geometric delays completes
in the step). When only deterministic holding times are in
progress, however, the GTPN may not contain state
changes (or new states) for every time step, whereas the
discrete-time SPN must. Thus, it appears that the GTPN
has at most twice as large a state space as the discrete-
time SPN and that for some deterministic models, the
GTPN has a smaller state space. We note that the RFT
vector, which allows a potential reduction in the size of
the state space (in comparison to the discrete-time SPN),
adds minimal complexity. It is easy to assign new values
to the RFT vector and to find the smallest value in it.
Due to the inherent complexity of deterministic delays,

two important goals during our development of the GTPN
were to minimize the size of the state space and to mini-
mize the cost of constructing and analyzing it. These goals
are reflected in the algorithms and performance analysis
techniques presented in Sections III and IV. The GTPN
state space is reduced by generating next states for max-
imal set of events that occur simultaneously (including
multiple start-firings of a single transition). Another ex-
ample of reducing the cost of building the state space is
our definition of generalized conflict sets (GCS) and the
Partition algorithm. Generalize conflicts sets are state in-
dependent and thus need only be calculated once. We thus
are able to avoid a large fraction of the conflict determi-
nation cost when we are calculating the next states of the
reachability graph. In contrast, the definition used in the
discrete time SPN is based on partitioning enabled tran-
sitions into sets that are in conflict. This partition is state
dependent and thus must be computed for each state.
That we achieved our goal can be seen by example. We

have been able to apply the GTPN to obtaining exact per-
formance estimates of multiprocessor memory and bus in-
terference [31. Previously, researchers have viewed ob-
taining such exact estimates to be computationally
intractable. In contrast, with the GTPN a multiprocessor
model with 12 processors, 10 memories, 2 buses, and a
geometric time between memory requests with mean of 5
time units has 2026 states and requires 274 seconds to
build the reachability graph and analyze it for perfor-
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mance estimates. The largest model we have examined
[24] involves a comparison of shared bus cache consis-
tency protocols and has 41 159 states.

VII. CONCLUSIONS
We have developed a generalized timed Petri net model

for studying the performance of computer systems. The
model imposes no restrictions on the net except that the
state space be finite. We have also defined methods for
performance analysis of the GTPN based on analysis of
the embedded discrete-time Markov chain. The analysis
is defined for chains which include multiple recurrent
classes. Our comparison of this model with the discrete-
time SPN and the continuous-time GSPN models shows
that the GTPN has capabilities lacking in these other
models. In particular, we showed that the GTPN is a bet-
ter bridge between the TPN and SPN models than is the
discrete-time SPN model. We have implemented the
GTPN analyzer and demonstrated that the algorithms pre-
sented are efficient.
We expect that the capability to obtain accurate analytic

performance estimates will yield insight into many com-
puter system models. Such exact estimates have already
been obtained with the GTPN for multiprocessor memory
and bus interference [3]. Future research plans include
studying the applicability of GTPN's to other issues in
computer performance evaluation, such as the perfor-
mance of network protocols, the performance of load bal-
ancing algorithms in distributed systems, the performance
of database machines, and the performance of advanced
architectures for high-speed numeric or symbolic com-
putation.
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