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A Generalized Weighted Linear Predictor Frequency
Estimation Approach for a Complex Sinusoid

H. C. So, Member, IEEE, and Frankie Kit Wing Chan

Abstract—Based on linear prediction and weighted least
squares, three simple iterative algorithms for frequency estima-
tion of a complex sinusoid in additive white noise are devised. The
proposed approach, which utilizes the first-order as well as higher
order linear prediction terms simultaneously but does not require
phase unwrapping, can be considered as a generalized version of
the weighted linear predictor frequency estimator. In particular,
convergence as well as mean and variance analysis of the most
computationally efficient frequency estimator, namely, GWLP 2,
are provided. Computer simulations are included to contrast the
performance of the proposed algorithms with several conventional
computationally attractive frequency estimators and Cramér–Rao
lower bound for different frequencies, observation lengths, and
signal-to-noise ratios.

Index Terms—Frequency estimation, iterative algorithm, linear
prediction, low complexity.

I. INTRODUCTION

PARAMETER estimation of sinusoids in noise has been a

classical problem for more than 200 years [1] and is still an

important research topic because of its numerous applications in

multiple disciplines such as control theory, signal processing,

digital communications, biomedical engineering, instrumenta-

tion and measurement. Estimation of the frequencies is often the

crucial step in the problem because they are nonlinear functions

in the received data sequence. Once the frequencies have been

determined, the remaining parameters, namely, amplitudes and

phases, can then be computed straightforwardly [2]. It is note-

worthy that for exponentially damped sinusoids, we also need to

determine the extra parameters of damping factors, which can

be estimated jointly with the frequencies [3]. For comprehen-

sive readings on frequency estimation and tracking, the inter-

ested reader is referred to [2] and [4]–[6].

In this paper, we consider the most basic form of the fre-

quency estimation problem, namely, finding the frequency of a

pure complex tone in additive white noise. Mathematically, the

single tone model is

(1)

where

(2)
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The sinusoidal amplitude, frequency, and phase are denoted by

, and , respectively, and they are considered as de-

terministic but unknown constants. While the noise is as-

sumed to be a zero-mean complex white process of the form

, where and are zero-mean real

white processes with identical but unknown variances of

and uncorrelated with each other. Although estimating the single

frequency is a fundamental and well-studied problem, efforts

have continually been made [7]–[16] to derive estimators that

can attain high estimation performance but with low computa-

tional cost. Our objective is also to estimate ac-

curately in a computationally simple manner, from the dis-

crete-time noisy measurements of .

In the presence of white Gaussian noise, the maximum-like-

lihood (ML) estimate of frequency is obtained from the

periodogram maximum [17] but it involves extensive computa-

tions. To avoid high computational requirement, autocorrelation

or linear prediction [7], and phase-based [8] approaches are

widely used choices. Although they are similar in the sense

that they both extract angle information, their basic distinction

is that the former utilizes the phase of the autocorrelation

function of , denoted by , where is the lag, while

the latter considers the signal phase to achieve frequency

estimation. Founded on [7] and [8], many computationally

efficient frequency estimators with suboptimal performance

have been proposed in the literature, to name but a few [9]–[11],

[13]–[16]. Kay [9] has proposed the so-called weighted linear

predictor (WLP) frequency estimator [18], which introduces

different weights in computing a generalized version of .

Frequency estimation from a set of has been inves-

tigated in [10], [13], [15]. Recently, Brown and Wang [16]

have suggested to use linear prediction together with low-pass

filtering, decimation and heterodyning iteratively for single

frequency estimation. On the other hand, an alternative to the

phase-based approach [8] is devised by using the differenced

phase data, which is known as the weighted phase averager

(WPA), and this technique has been extended via the use of

simple low-pass filtering and a set of filter banks in [11] and

[14], respectively. However, as discussed in [16], most of these

computationally attractive schemes have the demerits of poor

threshold performance, nonuniform estimation performance

across the admissible frequency range, limited frequency op-

eration range, and/or requirement of phase unwrapping which

becomes prone to errors at low signal-to-noise ratio (SNR).

The primary motivation of this work is to develop compu-

tationally simple and accurate frequency estimators which do

not have the above drawbacks. Based on the linear prediction

property of a complex tone, we have devised three frequency
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estimators which can be considered as a generalization of the

WLP approach [9], [18]. All the algorithms, namely, GWLP 1,

GWLP 2, and GWLP 3, can be easily programmed on com-

puters and their computational requirement is comparable to

that of the autocorrelation and phased-based methods. In par-

ticular, we have proved the convergence of GWLP 2 and have

derived its variance, which can attain Cramér-Rao lower bound

(CRLB) for white Gaussian noise.

The rest of the paper is organized as follows. The develop-

ment of the generalized weighted linear predictor (GWLP) fre-

quency estimation approach is given in Section II. The basic al-

gorithm GWLP 1 is first devised via the use of linear prediction

and weighted least squares (WLS). Two alternative realizations,

namely, GWLP 2 and GWLP 3, are then proposed. Further-

more, the relationships between the proposed estimators and ex-

isting approaches are discussed. In Section III, a detailed study

of GWLP 2 is provided, which includes its computational re-

quirement, convergence as well as mean and variance analysis.

Numerical examples are presented in Section IV to corroborate

the analytical development and to evaluate the performance of

the proposed algorithms by comparing with the minimal order

linear predictor (LP) [7], WPA and WLP [9], as well as CRLB.

Finally, conclusions are drawn in Section V.

II. ALGORITHM DEVELOPMENT

In this section, three GWLP frequency estimators for a com-

plex noisy sinusoid will be developed and their relationships

with several well-known frequency estimation methods will also

be illustrated.

A. Basic Algorithm

The linear prediction property of can be expressed as

(3)

Based on (3), the linear prediction error is

(4)

where is a variable corresponds to , which is to be deter-

mined. Expressing (4) into vector form yields

(5)

where

and denotes the transpose operation. The WLS cost function

constructed from the linear prediction error is then

(6)

where represents the conjugate transpose and

is a weighting matrix which satisfies

. An ideal choice of is obtained from the

Markov estimate [13], [19]

(7)

where

...
...

...
...

...
...

(8)

with is

the expectation operator, represents conjugate, and denotes

matrix inverse. Differentiating with respect to and then

setting the resultant expression to zero, we get the estimate of

, denoted by

(9)

As the ideal is a function of the unknown parameter , we

propose to use a relaxation algorithm [20] for iterative frequency

estimation, which is denoted as GWLP 1, and the procedure is

summarized as follows.

i) Find a coarse estimate of from the WLP frequency

estimate, denoted by . The initial is given by

. The WLP is used because it belongs to the

GWLP approach and their relationship will be shown

clearly in Section II-C. It is noteworthy to mention that

other simple frequency estimators such as the minimal

order LP and discrete Fourier transform (DFT) [21] can

be used for initialization as well.

ii) Use to construct from (7) and (8).

iii) Compute an updated version of using (9).

iv) Repeat Steps ii) and iii) until parameter convergence.

v) The frequency estimate of GWLP 1, denoted by ,

is calculated as , where represents the

phase angle in .

It is seen that a major computational requirement of the GWLP

1 is to perform the matrix inverse in (7) and attempts [22], [23]

have been made to determine a closed-form expression for

though unsuccessful. Note that it is possible that a closed-form

result exists, which is not known by the authors. Nevertheless,

efficient computation of the inverse can be achieved via the use

of Cholesky decomposition [24] or exploiting the tri-diagonal

property of [25]. In particular, the former technique only re-

quires the order of flops, where each flop means roughly a

complex multiplication and a complex addition [26].

B. Alternative Realizations

Since , an alternative form for the ideal weighting

matrix is then

(10)
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where

...
...

...
...

...
...

(11)

It is worthy to note that in practical implementation, using (7) is

different from (10) because the magnitude of in (9) is generally

not equal to unity due to noise, which implies that the latter is

an approximation. Nevertheless, it is easy to show that (10) has

a closed form and its entry is expressed as

(12)

where if and it is equal to other-

wise. From (12), we also notice that is a positive-definite

Hermitian matrix, which implies that is real and

always has zero phase. As a result, the denominator of (9) can

be removed if the weighting matrix of (10) is employed. Based

on these findings, we suggest our second algorithm for single

frequency estimation, which is referred to as GWLP 2, as fol-

lows.

i) Obtain an initial frequency estimate of GWLP 2 denoted

by using WLP, that is, .

ii) Use to construct from (12).

iii) Compute an updated using

(13)

iv) Repeat Steps ii) and iii) until parameter convergence.

From GWLP 1 and GWLP 2, we propose the third frequency

estimation algorithm, namely, GWLP 3, which replaces in (9)

by , which is defined as

(14)

where we ignore the denominator of (9) in the GWLP 1. The

steps in GWLP 3 are as follows.

i) Use to obtain an initial estimate.

ii) Substitute for to construct from (7) and (8).

iii) Compute an updated version of using (14).

iv) Repeat Steps ii) and iii) until parameter convergence.

v) The frequency estimate of GWLP 3, denoted by , is

calculated as .

It is obvious that among the three proposed estimators, GWLP 1

involves the highest computational requirement whereas GWLP

2 is the most computationally simple, although all algorithms

can be easily programmed on computers. Admitting that GWLP

2 and GWLP 3 are approximate forms of GWLP 1, the approx-

imation in GWLP 2 can also be interpreted as application of the

unity-magnitude constraint in which is justifiable while

will be increasing or decreasing during the iterative procedure

because there is a discrepancy in the magnitudes of both sides

of (14) as the denominator term is removed. As a result, it is

expected that both GWLP 1 and GWLP 2 perform comparably

and are superior to GWLP 3, which will be demonstrated via

computer simulations in Section IV.

C. Relations With Existing Approaches

The relationships between the proposed estimators and some

well-known estimation methods in the literature are now dis-

cussed. Following the development in [27], it can be shown

that the minimizer of (6) with parameterized by is in fact

the ML estimator in the presence of white Gaussian noise. The

GWLP 1 can also be viewed as the so-called iterative quadratic

maximum-likelihood (IQML) method [28], [29] which relaxes

the ML cost function to a quadratic form, for the special case

when the source signal is a pure complex sinusoid. It should

be noted that although the two methods are equal in the im-

plementation, their derivations are different: Our approach uti-

lizes the WLS technique while the IQML estimate is derived

from the ML criterion and assumes white Gaussian noise. Due

to their equivalence, we may utilize the IQML properties in [30]

to prove the local convergence and derive the theoretical perfor-

mance of GWLP 1. On the other hand, since it has been shown

[31] that the IQML method is identical to Steiglitz–McBride al-

gorithm [32], we can also apply the convergence results of the

iterative filtering algorithm for frequency estimation [33], which

bears a strong resemblance to [32], to GWLP 1.

The proposed algorithms are also related to the linear predic-

tion approach as follows. When we use the identity matrix as

the weighing matrix in GWLP 1, GWLP 2 and GWLP 3, all of

them will reduce to the minimal order LP [7]. For the GWLP 2

and GWLP 3, we can express the frequency estimate in a scalar

form

(15)

where is a function of for and it is characterized by

for . In particular, the estimate of GWLP 2 can be further

expanded via summing up the diagonals of one by one, as

follows:

(16)

with

(17)
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TABLE I
COMPUTATIONAL COMPLEXITY OF DIFFERENT LOW-COMPLEXITY FREQUENCY ESTIMATORS

while the second and third components of (16) represent the

higher order as well as zero-order weighted linear prediction

terms. On the other hand, the estimate of the WLP is given

by [9]

(18)

From (16)–(18), we see that the sum involving the main diag-

onal of , that is, the first component of (16), is exactly the

WLP approach with the same parabolic weights up to a real

scalar. While the summations correspond to other diagonals of

are parabolically weighted computations of the higher-order

as well as zero-order autocorrelation lags. This clearly shows

how the GWLP 2 generalizes the WLP. Furthermore, the expres-

sion of (9) is even more general than (15). Because of these, we

call our approach as generalized weighted linear predictor. It is

noteworthy to mention that (16) is also related to autocorrela-

tion-based methods of [10], [13], and [15] which use different

combinations of the higher-order autocorrelations, and in par-

ticular, [15] attempts to find an optimal set of autocorrelation

lags for the purpose of fitting a line to their phases. However,

one major difference between the GWLP 2 and these autocor-

relation-based methods is that the latter are subject to phase un-

wrapping errors or have limited frequency operation range while

the former is free of these demerits.

III. ANALYSIS OF GWLP 2

In this Section, we will investigate the computational com-

plexity, convergence as well as mean and variance of the sim-

plest frequency estimator, namely, GWLP 2.

A. Computational Complexity Analysis

Since the first term of (16) corresponds to (18) and remains a

constant during the iterative process, using the WLP as initial-

ization is advantageous in terms of computations in GWLP 2.

For the first iteration, including the initialization, GWLP 2 re-

quires two angle calculations, real-valued multi-

plications and real-valued additions. For each of the

second or above iteration, an additional complexity of one angle

calculation, real-valued multiplications and

real-valued additions are needed. As a result,

the computational complexity of the GWLP 2 has order or

. To reduce its computational complexity, we can include

the two-sided linear prediction terms up to the th order, where

, and ignore the rest, which is analogous to [10], [13],

and [15], where only a set of autocorrelations is employed. In so

doing, the computational complexity of the GWLP 2 can be re-

duced to . The computational requirements of the GWLP

2 as well as some conventional low-complexity frequency es-

timators [7], [9], [10], [15] are tabulated in Table I. Note that

roughly refers to the GWLP 2 with no approxima-

tion. We can see that although GWLP 2 is more computationally

demanding than the minimal order LP, WLP, and WPA, its com-

plexity is comparable to those of [10] and [15].

B. Convergence Analysis

The following analysis is to show that if is sufficiently

close to , iterative application of (13) will converge to the true

frequency as the number of samples goes to infinity. Basically,

we have followed [34] to prove the convergence of the algo-

rithm. Note that similar convergence analysis is also found in

[35] which deals with iterative estimation of a single real tone.

Let , where in (12) is now a function

of . To prove the convergence of the GWLP 2, it is sufficient

[34] to show that the following two conditions are satisfied:

i)

ii) ,

and

almost surely as , where

, and are fixed. If these two conditions are

satisfied, will iterate to a unique fixed point, namely, , upon

convergence. In our study, an alternative form for the second

condition is employed:

ii)

where denotes the imaginary part and

.
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In Appendix A, we have shown that

(19)

which implies that the first condition is satisfied. Moreover,

and have been derived as (see Appendix A)

(20)

and

(21)

Using (20) and (21), the second condition can be proved as fol-

lows:

(22)

As a result, will approach upon convergence as tends to

infinity.

C. Mean and Variance Analysis

The bias and variance of the frequency estimate for the

GWLP 2 are now derived. It is expected that the mean analysis

will also hold for the GWLP 1 for sufficiently high SNRs and/or

large such that and . To sim-

plify the derivation, we assume that the ideal weighting matrix

of (10) is used in (13). Note that this assumption becomes valid

when the frequency estimate approaches the true value of ,

which is anticipated to occur at sufficiently large SNR and/or

data length conditions. Taking the expected value of (13) with

the use of the ideal weighting matrix gives (see Appendix B)

(23)

which indicates the approximately unbiasedness of the algo-

rithm. In Appendix B, we have also derived the variance of ,

denoted by , as

SNR SNR
(24)

where SNR . On the other hand, the CRLB for

single frequency estimation in white Gaussian noise, denoted

by CRLB , is given by [17]

CRLB
SNR

(25)

Comparing (24) and (25), we see that for a fixed SNR, the esti-

mation accuracy of in the presence of white Gaussian noise

approaches the CRLB when the data length is sufficiently large.

It is worthy to note that (24) can hold for noises with other prob-

ability density functions as well because its derivation assumes

zero-mean white noise only.

IV. SIMULATION RESULTS

Computer simulations had been carried out to evaluate

the frequency estimation performance of the three proposed

Fig. 1. Mean square frequency errors versus SNR at N = 20 and ! = 0:1�.

Fig. 2. Mean frequency errors versus SNR at N = 20 and ! = 0:1�.

algorithms in the presence of complex white Gaussian noise by

comparing with minimal order LP, WLP, and WPA as well as

CRLB. We used 2 iterations in all proposed algorithms because

no significant improvement was observed for more iterations.

The signal power was unity, which corresponded to and

we scaled the noise sequence to produce different SNRs while

we fixed the phase parameter as . All results provided

were averages of 2000 independent runs.

Fig. 1 shows the mean square frequency error (MSFE) perfor-

mance versus SNR at and , which corresponded

to a small data length scenario. It is seen that the GWLP 1 and

GWLP 2 performed almost identically and their MSFEs attained

the CRLB for SNR 4 dB. On the other hand, the estimation

performance of the GWLP 3 and minimal order LP was very

similar, which had the largest MSFEs. We believe the inferi-

ority of GWLP 3 was due to the discrepancy in the magnitude

of both sides of (14) as pointed out in Section II-B. Although

the WPA could attain the CRLB as well, its threshold SNR was

higher than those of the GWLP 1 and GWLP 2, which implies a

smaller SNR operation range. While it is seen that the WLP was

optimum only for very high SNR conditions. The corresponding

mean frequency errors, which were obtained by subtracting

from the mean frequency estimates, are shown in Fig. 2. We

observe that the biases in all the methods were negligible for

sufficiently high SNRs, which demonstrates the approximately

unbiasedness property of the proposed methods and indicates
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Fig. 3. Mean square frequency errors versus SNR atN = 200 and! = 0:1�.

Fig. 4. Mean square frequency errors versus! at SNR = 10 dB andN = 20.

that the MSFEs were mainly due to variances of the frequency

estimates.

We repeated the first test for , which corresponded to

a large data length scenario, and the MSFEs are plotted in Fig. 3.

Similar findings were observed, in particular, the GWLP 1 and

GWLP 2 could attain the CRLB with the largest SNR operation

range. Note that we have not included the corresponding mean

frequency error results because they were similar to those in

Fig. 2.

Fig. 4 shows the MSFEs of different frequency estimators

versus frequency at SNR 10 dB and . We see that

both GWLP 1 and GWLP 2 achieved optimum performance for

the admissible frequency range while the optimality of the WPA

only held for . Furthermore, the GWLP 3

and minimal order LP performed almost identically and were

inferior to the suboptimal WLP. The above test was repeated for

and the results are shown in Fig. 5, and the findings

were similar to those in Fig. 4.

Figs. 6–11 plot the frequency versus SNR contours of MSFE

for the GWLP 1, GWLP 2, GWLP 3, minimal order LP, WLP,

WPA, respectively, at in order to investigate the

threshold performance in more detail. We can see that GWLP

1 and GWLP 2 had the best threshold performance while that

of WPA was the poorest. The corresponding contour plots at

were also produced which are shown in Figs. 12–17,

and we had similar observations.

Fig. 5. Mean square frequency errors versus ! at SNR = 10 dB and N =

200.

Fig. 6. Contour plot of GWLP 1 at N = 20.

Fig. 7. Contour plot of GWLP 2 at N = 20.

In Figs. 18–21, the performance of different approximations

of GWLP 2 was evaluated, that is, we only employed the linear

prediction terms up to the th order. The results of ,
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Fig. 8. Contour plot of GWLP 3 at N = 20.

Fig. 9. Contour plot of minimal order LP at N = 20.

Fig. 10. Contour plot of WLP at N = 20.

and , which corresponded

to no approximation, and the baseline algorithm of WLP were

given. The simulation settings of Figs. 18–21 were identical to

Fig. 11. Contour plot of WPA at N = 20.

Fig. 12. Contour plot of GWLP 1 at N = 200.

Fig. 13. Contour plot of GWLP 2 at N = 200.

those of Figs. 1, 3, 4, and 5, respectively. From the figures, we

see that using and had comparable

MSFEs with those of the exact version, except that the GWLP 2
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Fig. 14. Contour plot of GWLP 3 at N = 200.

Fig. 15. Contour plot of minimal order LP at N = 200.

Fig. 16. Contour plot of WLP at N = 200.

with had a larger threshold SNR. It is also observed

that the estimation accuracy increased with .

Fig. 17. Contour plot of WPA at N = 200.

Fig. 18. Mean square frequency errors of different approximations of GWLP
2 versus SNR at N = 20 and ! = 0:1�.

Fig. 19. Mean square frequency errors of different approximations of GWLP
2 versus SNR at N = 200 and ! = 0:1�.

V. CONCLUSION

Three computationally simple frequency estimation algo-

rithms, viz. GWLP 1, GWLP 2, and GWLP 3, have been

developed for a complex sinusoid embedded in white noise.

The GWLP 1 is the fundamental algorithm which is derived

straightforwardly using the ideas of linear prediction and
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Fig. 20. Mean square frequency errors of different approximations of GWLP
2 versus ! at SNR = 10 dB and N = 20.

Fig. 21. Mean square frequency errors of different approximations of GWLP
2 versus ! at SNR = 10 dB and N = 200.

weighted least squares. The other two algorithms are the

approximate realizations of the GWLP 1 and they involve

fewer computations. The proposed approach can be considered

as a generalized version of Kay’s weighted linear predictor

frequency estimator. In particular, computational requirement,

convergence as well as mean and variance analysis of the

GWLP 2 are studied. It is shown that the GWLP 1 and GWLP

2 can provide optimum estimation accuracy while the GWLP 3

is a suboptimum estimator. As a result, the GWLP 2 is the best

among the three estimators in terms of estimation performance

and implementation complexity.

APPENDIX A

In this Appendix, we prove that if , the fre-

quency estimate of GWLP 2 will converge to the true frequency

for infinite data samples. Expanding

yields

(A1)

where

, and

such that and . The terms in (A1)

are analyzed as follows. The first term of (A1) is

(A2)

where if and it is equal to otherwise.

Considering the second and third terms of (A1) together, we

have

(A3)

where is given by

with

and

while the terms and are
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and

We notice that is real and has order of .

Furthermore, is .

Combining these results, (A3) is simplified as

(A4)

The last term of (A1) is

(A5)

where is

with

and

while the terms and are

and

We note that is real and applying the following result [35]:

is . Similarly, both and are

while and are . There-

fore, is . Com-

bining these results, (A5) is simplified as

(A6)

With the use of (A2), (A4), and (A6), the magnitude and

phase angle of can be calculated as (A7) and (A8), shown

at the bottom of the page. By applying the following formulas

with

the second component in (A8) can be simplified to ,

and this implies

(A9)

which is (19). From (A7) and (A9), we get

(A10)

In a similar manner, it can be shown that

(A11)

Utilizing (A9)–(A11), the two conditions for convergence of

GWLP 2 are proved.

APPENDIX B

In this Appendix, we will prove that the frequency estimate

of the GWLP 2 is approximately unbiased and produce its vari-

ance expression. With the use of (13) and (A1), the frequency

estimate of the GWLP 2 is expressed as

(B1)

(A7)

and

(A8)
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where

(B2)

is the error in the frequency estimate.

We first notice that is real. Let

the real and imaginary parts of

be and , respectively, and noting that here

corresponds to the ideal weighting matrix of (10). Assuming that

the estimation error is sufficiently small, we use Taylor’s series

to expand around 0 up to the first-order term to obtain [7]

(B3)

The denominator of (B3) can also be expressed as

(B4)

where

(B5)

and tr represents the trace operation. The entry of is

evaluated as . With the use of (12) and

[36], is calcu-

lated as

(B6)

To investigate the numerator of (B3), we decompose into

where ,

and . Expanding as

, and are computed as

(B7)

and

(B8)

where (see the equations at the bottom of the page). Since

and are uncorrelated, it is easily seen from (B7) and

(B8) that , which implies

or the approximately unbiasedness of .

To compute the variance of , we use (B3) again, as follows:

(B9)

Since and are uncorrelated, we have

(B10)

With the use of (B7) and (B8), and are calcu-

lated as

(B11)

and

(B12)

Substituting (B6) and (B10)–(B12) into (B9) yields (24).
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