
 

A Generally Weighted Moving Average Signed-Rank Control Chart 
 

N. Chakraborty
a
, S. Chakraborti

a,b
, S.W. Human

1a
, N. Balakrishnan

c
  

 
aDepartment of Statistics, University of Pretoria, Pretoria, Lynnwood Road, Hillcrest, South Africa, 0002 

bDepartment of Information Systems, Statistics and Management Science, University of Alabama, Tuscaloosa, AL 35487, U.S.A. 

cDepartment of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1 

 
Abstract: The idea of process monitoring emerged so as to preserve and improve the quality of a 

manufacturing process. In this regard, control charts are widely accepted tools in the manufacturing sector for 

monitoring the quality of a process. However, a specific distributional assumption for any process is 

restrictive and often criticised. Distribution-free control charts are efficient alternatives when information on 

the process distribution is partially or completely unavailable. In this article, we propose a distribution-free 

generally weighted moving average (GWMA) control chart based on the Wilcoxon signed-rank (SR) statistic. 

Extensive simulation is done to study the performance of the proposed chart. The performance of the proposed 

chart is then compared to a number of existing control charts including the parametric GWMA chart for 

subgroup averages, a recently proposed GWMA chart based on the sign statistic and an exponentially 

weighted moving average (EWMA) chart based on the signed-rank statistic. The simulation results reveal that 

the proposed chart performs just as well and in many cases better than the existing charts, and therefore can 

serve as a useful alternative in practice. 
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1. Introduction 

Control charts are known to be efficient tools for monitoring quality of products. In the present era of 

highly sophisticated technology, it is of increasing importance to design control charts that are efficient in 

detecting small shifts in the characteristics of interest in a production process. While the Shewhart-type charts 

are the best known and most widely used in practice due to their inherent simplicity and global performance, 

other classes of charts, such as the exponentially weighted moving average (EWMA) and the generally 

weighted moving average (GWMA) charts are useful and sometimes more naturally appropriate. 

The traditional EWMA chart for the mean was introduced by Roberts
1
 and includes the Shewhart-type 

chart as a special case. The literature on EWMA charts is vast and still continues to grow at a considerable 

pace. The reader is referred to the overview on EWMA charts by Ruggeri et al.
2
 and the references therein. A 

generalization of the EWMA chart, referred to as the Generally Weighted Moving Average (GWMA) chart, 

was proposed by Sheu and Lin
3
 and they showed that it does perform better in detecting small shifts in the 

process mean. 

In typical applications of the GWMA chart, it is usually assumed that the underlying process distribution 

is normal. If normality is in doubt or cannot be justified, a distribution-free control chart is more desirable. For 

an overview on distribution-free control charts and their advantages, the reader is referred to Chakraborti et 

al.
4
.  
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Amin and Searcy
5
 proposed an EWMA chart based on the Wilcoxon signed-rank statistic (EWMA-SR 

chart) for monitoring the known value of the median of a process. Graham et al.
6
 further studied the practical 

implementation and performance of the EWMA-SR chart. Graham et al.
7
 proposed an EWMA chart based on 

the sign statistic (EWMA-SN chart). Lu
8
 proposed the GWMA chart based on the sign statistic, called the 

GWMA sign (GWMA-SN) chart, and showed that it outperforms the EWMA-SN chart for small shifts and 

performs similarly for large shifts. Lu
8
 also showed that the GWMA-SN chart is more efficient than the 

parametric GWMA chart for the mean (GWMA-  chart) for underlying normal and many non-normal 

distributions. It is therefore only natural to further investigate and develop the GWMA control chart based on 

some other (and more efficient) nonparametric or distribution-free statistics. 

The Wilcoxon signed-rank (SR) test is a popular nonparametric alternative to the paired two-sample t-

test, but has the advantage that normality is not needed; only symmetry of the underlying continuous process 

distribution is needed which is easy to verify (see Konijin
9
 for a discussion on some tests of symmetry). 

Furthermore, it is well known that the SR test is more efficient than the sign (SN) test for a number of non-

normal symmetric continuous distributions (see Gibbons and Chakraborti
10

. In addition, it can be shown that 

the Asymptotic Relative Efficiency (ARE) of the SR test relative to the Student t-test is at least 0.864 for any 

symmetric continuous distribution (see Gibbons and Chakraborti
10

, page 508). 

In this article, we propose a GWMA chart based on the Wilcoxon signed-rank statistic (hereafter referred 

to as the GWMA-SR chart) to monitor the known value of the median of a process with a continuous 

distribution; the objective is to gain better sensitivity for small sustained upward or downward step shifts. The 

median is taken as the location parameter of interest as it is more robust and therefore a better choice than the 

mean for measuring the central value. Moreover, the Wilcoxon signed-rank test considers the median as the 

location parameter of interest. 

The rest of this article is organised as follows: The GWMA-SR chart is defined in Section 2. In Section 3, 

the design and implementation of the proposed control chart is provided. A detailed empirical study 

comparing the performance of the GWMA-SR chart with a number of existing control charts is provided in 

Section 4. An illustrative example is given in Section 5. Finally, a concluding summary and some 

recommendations are presented in Section 6. 

 

2. GWMA signed-rank (GWMA-SR) control chart 

Let   be the quality characteristic of interest and assume its underlying distribution to be continuous and 

symmetric around  . We take   to be the median as it is a more robust measure and a better representative of 

the central value of a distribution than the mean. Let    denote the known value of  . 

Suppose    , where           and          , denotes the     observation in the     random sample 

(or rational subgroup) of size   > 1. Let      denote the ranks of the absolute differences |      |, for             within the     subgroup. Define the statistic 

     ∑     (      )        ,           ,  (1) 

2



 

where     ( )          if   > 0 or   < 0, respectively. Therefore, it is easily verified that             is the difference between the sum of the ranks of the |      |’s corresponding to positive and negative 

differences, respectively, within the     subgroup. Also,     can be re-written as           (   )  because 

the sum of all the ranks within a sample          (   ) ; this relationship between the statistics will be used 

later to show that the proposed GWMA control chart is non-parametric or distribution-free. Note that, as the 

random sample is assumed to be drawn from a continuous distribution, the probability of tied observations, i.e.    ,      -, is theoretically zero and therefore ignored. 

Let   be the discrete random variable denoting the number of samples until the next occurrence of an 

event since its last occurrence. Then, by summing over all possible time periods, we can write ∑    ,   -     ∑    ,   -        ,   -   .    (2) 

A generally weighted moving average (GWMA) is a weighted moving average (WMA) of a sequence of     statistics with the probability   ,   - being regarded as the weight of the     most recent statistic        . In other words, the probability   ,   - is the weight of the latest or most recent observation     
and the probability   ,   - is the weight of the most out-dated or oldest observation    . The probability   ,   - is taken to be the weight of the starting value, denoted by   , which is typically taken as the in-

control (IC) expected value of the statistic under consideration, i.e.     (      )   . Therefore, the 

charting statistic for the GWMA-SR chart can be defined as     ∑    ,   -               ,   -         for                ,      (3) 

where     (      )    is the starting value of the chart. As in Sheu and Lin
3
, the distribution of   is 

taken to be    ,   -    (   )     , where       and     are two parameters; this is the discrete 

two-parameter Weibull distribution (Nakagawa and Osaki
11

). By substituting      and the probability mass 

function (p.m.f.) of the two-parameter Weibull distribution in equation (3), the charting statistic for the 

GWMA-SR chart simplifies to 

     ∑ ( (   )     )                 for                 .    (4) 

Note that the GWMA-SR chart reduces to the EWMA-SR chart when     and      , where       

is the smoothing parameter of the EWMA chart. The EWMA-SR chart further reduces to the Shewhart-SR 

chart when     and    . The GWMA chart can therefore be viewed as a generalisation of both EWMA 

and Shewhart-type charts with an additional parameter   that provides more flexibility in designing the chart. 

The in-control (IC) expected value and variance of the charting statistic    are given by  (     )  ∑ ( (   )     )      (       ) = 0        (5) 

and    (     )  ∑ ( (   )     )         (       )   (   )(    )   ,  (6)  

respectively, where    ∑ ( (   )     )      is the sum of squares of the weights. Equations (5) and (6) are 

derived using the results in Gibbons and Chakraborti
10

 (page 198) for the mean and variance of the well-
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known Wilcoxon signed-rank test statistic coupled with the properties of the EWMA charting statistic (see 

Montgomery
12

, page 419).  

The exact time-varying (and symmetrically placed) upper control limit (    ), lower control limit 

(L   ) and centerline (   ) of the GWMA-SR chart are given by 

             √ (   )(    )      and        ,        (7) 

where    0 is the distance of the control limits from the centerline. 

The asymptotic variance of the charting statistic    is given by          (     )   (   )(    )  , 

where           , which is an increasing function of    and converges as     (see the Appendix for 

more detail). 

The steady-state control limits are used when the process has been running for several time periods and are 

based on the asymptotic variance of the charting statistic (see Lucas and Saccucci
13

). The steady-state control 

limits and the centerline are given by             √ (   )(    )     and        ,     (8) 

where the subscript “ ” denotes the steady-state values.  

 

The following points are worth noting: 

i. The distribution of the     statistic is discrete, symmetric about zero and its extreme values, i.e. the 

minimum and maximum, are  
  (   )  and  

 (   ) , respectively; these extremes occur when all the 

observations within a subgroup are less than or greater than   , respectively; 

ii. We study two-sided GWMA-SR charts with symmetrically placed control limits, i.e. equidistant from the 

centerline. The methodology can be easily modified wherein a one-sided chart is more meaningful or when 

two-sided control charts with asymmetric control limits are necessary; 

iii. Steady-state control limits are used in order to simplify the application/implementation of the chart. For the 

sake of notational simplicity, we will use     and     hereafter to denote the steady-state control limits; 

iv. If any charting statistic    plots on or outside either of the control limits given by equation (8), a signal is 

given and the process is declared to be out-of-control (OOC). Otherwise, the process is considered to be in-

control (IC), which implies that no location shift has occurred, and the charting procedure continues on.  

In the next section, we discuss the design of the proposed GWMA-SR chart in more detail. 

 

3. The design and implementation of GWMA-SR chart 

Performance measures are needed to design and compare the performance of control charts. The 

traditional approach of evaluating a control chart is to obtain the run-length distribution and its associated 

characteristics. The run-length is a discrete random variable that represents the number of samples which must 

be collected (or, equivalently, the number of charting statistics that must be plotted) in order for the chart to 
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detect a shift or give a signal. An intuitively appealing and popular measure of a chart’s performance is the 

average run-length (   ), which is the expected number of charting statistics that must be plotted in order for 

the chart to signal (see Human and Graham
14

). Clearly, for an efficient control chart, one would like to have 

the in-control     (denoted     ) to be “large” and the out-of-control     (denoted     ) to be “small”. 

Although other measures such as the standard deviation of the run-length (    ) and various upper and 

lower percentiles could be and have been used to supplement the evaluation of control charts, the     is the 

most widely used measure due to its intuitive appealing interpretation. Therefore, we use here the      to 

design and compare the performance of the proposed GWMA-SR chart to other charts. 

The design of a control chart typically involves solving for the combination of the chart’s parameters, i.e.  ,   and  , so as to obtain a pre-specified in-control average run-length denoted by      . The computational 

aspects of the run-length distribution for the GWMA-SR chart are discussed next, followed by the design of 

the GWMA-SR control chart. 

 

3.1 The run-length distribution of the GWMA-SR chart 

Suppose the run-length random variable is denoted by   and that    denotes the signalling event at the     sample. The complimentary event is the non-signalling event and is the event that there is no signal at the     sample, i.e.     ,          - for    1,2,3,.... Then, in general, the run-length distribution can be 

written as   ,   -    ,{           }    -, for    1,2,3,...; i.e. there is a signal for the first time at the     

sample. For any    , we can re-write the event that a charting statistic is between the control limits, i.e.     ,          ], as     ,         -, where            and          , respectively, and 

       ∑ . (   )     /                and        ∑ . (   )     /                , for      2,3,4,… (9) 

The benefit of re-writing the non-signalling event is as follows: Instead of working with the joint 

distribution of a sequence of dependent charting statistics, i.e. the   ’s (which is compared to the steady-state 

control limits in equation (8)), one works with the joint distribution of a sequence of independent sample 

statistics     (which is compared to the varying limits in (9)). The run-length distribution can therefore be 

written as 

   ,   -      ,         -   and     ,   -          ,            (10) 

where       ,         -    ,      *         +- for          ; see the Appendix for more detail. 

As the samples are assumed to be independent, the    ’s are independent and an expression for    can be 

obtained using the relationship           (   )  ; see Gibbons and Chakraborti
10

 (page 198) for more 

detail on the statistic    . An expression for    is given by      ∑ ∑   ∑  .∏   .         (   ) /    /                 (11) 
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where     ∑  (      )         with   ( )         if   > 0 or   < 0, respectively,    denotes the observed 

value of the statistic    , and   is the sample size. The     can also be expressed in terms of     as (see the 

Appendix for more detail)      = 1+∑        .     (12) 

 

The following comments regarding equations (11) and (12) are essential: 

i. Because the in-control distribution of     does not depend on the underlying process distribution (see 

Gibbons and Chakraborti
10

), the run-length probabilities and the     , which are both functions of   , 
are the same for all continuous symmetric distributions. This makes the proposed GWMA-SR chart a 

distribution-free control chart; 

ii. To analytically evaluate equations (11) and (12)  is time-consuming and uneconomical for a number 

of reasons: 

a. The lower and upper bounds in the summations of   , i.e.    and    given in equation (9), are 

dependent and functions of the sequence of preceding statistics    ,    ,…,      ; these 

bounds cannot be economically recursively updated and is therefore a computationally 

expensive approach;   

b. The number of terms in equation (11) that needs to be evaluated increases dramatically as   

increases; 

c. The out-of-control distribution of the statistic     is not known. 

Due to these difficulties, extensive simulation is used to calculate the     values for the proposed 

GWMA-SR chart. To this end, it is important to note that, Sheu and Lin
3
, Sheu and Yang

15
 and Lu

8
 

have also mentioned that the run-length distribution of the GWMA charts cannot be obtained by either 

the Markov chain approach or by the recursive integral equation approach.  

    

3.2 Design of the GWMA-SR chart 

For a given or chosen sample size  , the two parameters   and   are varied over a certain range and for 

each (   ) combination, the values of the charting constant, i.e.    0, are obtained so that the attained in-

control     is close to (in this case slightly above or below due to the use of simulation) the nominal or 

specified value      . We consider four sample sizes, i.e.    5, 10, 15 and 20; one may consider other values 

of   too. The typical industry standards for       are 370 or 500 and we consider the former in our study. The 

typical recommendation for the smoothing parameter       for an EWMA chart is to choose smaller 

values for smaller shifts (see Montgomery
12

, page 423). Because the GWMA chart reduces to an EWMA chart 

when       and    , a larger value of  , i.e. closer to 1, should be a reasonable choice for the GWMA 

chart to detect smaller shifts. To this end, Sheu and Lin
3
 noted that (   ) combinations in the intervals 0.5     0.9 and 0.5     1 enhanced the sensitivity of the GWMA- ̅ chart and outperformed the EWMA- ̅ 

chart for small shifts (i.e. less than 1.5 standard deviations in the location). The same range of (   ) values 
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were also considered by Sheu and Yang
15

, Teh et al.
16

, Sheu et al.
17

 and Lu
8
. In our simulation study, we 

considered the range    0.5 (0.1) 0.9 and the range    0.1 (0.1) 1.5, which is slightly larger than those used 

in previous studies. 

 

Using simulation together with a grid search algorithm, we obtained the charting constant    0 for the 

chosen (   ) combination and specified sample size  , so that the attained      is approximately equal to          ; the values of   thus determined are presented in Table 1 along with the attained      values in 

parenthesis. The   values in Table 1 will be useful for the design and implementation of the GWMA-SR chart.  

To ensure our simulation yields reasonable and consistent results, we compared our results to those 

obtained by Graham et al.
6
; this was possible for two reasons: (a) the GWMA-SR chart reduces to EWMA-SR 

chart when       and    , and (b) the EWMA-SR chart by Graham et al.
6
 uses steady-state control 

limits. Consider, for example, the following two scenarios: 

i. When   = 5,   = 0.8 and   = 1, we find from Table 1 that a value of    2.768 gives an attained       370.90. In Graham et al.
6
, the EWMA-SR chart with   = 5,        0.2 and    2.764 

has an attained      = 369.91; 

ii. When    10,    0.9 and     , we find from Table 1 that a value of    2.683 gives an attained       370.12. In Graham et al.
6
, the EWMA-SR chart with   = 10,        0.1 and    2.684  

has an attained      = 370.09.  

To further investigate the behaviour of the in-control     as a function of the parameters  ,       

and  , we calculated the attained      for certain combinations of the parameters. We chose     ,      (   )   ,      (   )    and set   2.0, 2.5, 3.0 and 2.79; the latter value was chosen based on the 

values reported in Table 1. The obtained results are displayed in Figure 1. Note that the line graphs in each of 

the panels display the attained      on the vertical axis versus the value of   on the horizontal axis for a 

certain combination of (   ). The attained      values are shown in the data tables below the graphs for ease 

of reference. 

 

From Figure 1, we observe the following: 

i. For    2.0 and 2.50 in panels (c) and (d), the attained      is a monotonically increasing function 

of  ; 

ii. For   2.79 and 3.0 in panels (a) and (b), the attained      is a decreasing function of   when           and thereafter increases. This implies that, in general, multiple combinations of the 

parameters (     ) will yield the same     . This is somewhat problematic because, apart from 

desiring a sufficiently large     , the      should be small for an effective GWMA-SR chart. 

Therefore, the (     ) combination with the minimum      for a specified shift   is said to be the 

optimal combination. The optimal design of the GWMA-SR chart consists of specifying the desired      and      values and the magnitude of the process shift that is anticipated and then select the 
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Table 1: Values of   for the GWMA-SR charts for different ( ,  ) when   = 5(5)20 and        370 

      0.5 0.6 0.7 0.8 0.9 

5 

0.1 2.133 (370.32) 2.146 (368.28) 2.158 (371.61) 2.169 (369.91) 2.180 (370.93) 

0.2  2.234(371.50) 2.262 (373.71) 2.287 (371.16) 2.310 (368.37) 2.332 (366.31) 

0.3 2.320 (367.80) 2.363 (371.12) 2.402 (369.37) 2.439 (369.72) 2.470 (369.87) 

0.4 2.396 (372.61) 2.451 (370.30) 2.502 (369.96) 2.548 (367.92) 2.573 (371.58) 

0.5 2.458 (369.87) 2.523 (370.01) 2.583 (369.86) 2.631 (370.68) 2.631 (370.86) 

0.6 2.510 (370.69) 2.582 (369.81) 2.646 (370.38) 2.686 (369.55) 2.657 (369.88) 

0.7 2.553 (369.63) 2.628 (369.11) 2.688 (369.38) 2.724 (369.48) 2.667 (370.69) 

0.8 2.588 (370.29) 2.665 (370.61) 2.721 (370.72) 2.747 (370.28) 2.668 (370.01) 

0.9 2.615 (370.56) 2.690 (369.86) 2.742 (369.62) 2.761 (369.44) 2.667 (370.34) 

EWMA  1.0 2.638 (370.79) 2.708 (370.09) 2.757 (369.96) 2.768 (370.91) 2.666 (369.90) 

1.1 2.657 (372.24) 2.728 (367.20) 2.768 (373.80) 2.769 (369.40) 2.670 (369.76) 

1.2 2.670 (369.98) 2.733 (372.94) 2.767 (367.36) 2.767 (370.72) 2.671 (369.19) 

1.3 2.681 (371.19) 2.735 (367.96) 2.767 (368.47) 2.765 (370.19) 2.679 (371.02) 

1.4 2.689 (369.26) 2.739 (370.88) 2.765 (368.76) 2.758 (369.41) 2.685 (371.74) 

1.5 2.694 (368.95) 2.739 (369.19) 2.761 (370.30) 2.757 (370.94) 2.690 (370.48) 
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0.1 2.708 (369.80) 2.708 (375.07) 2.706 (372.49) 2.704 (370.07) 2.704 (371.35) 

0.2 2.707 (372.19) 2.709 (371.54) 2.714 (372.69) 2.716 (370.17) 2.717 (365.09) 

0.3 2.719 (368.82) 2.726 (368.38) 2.733 (368.20) 2.740 (371.50) 2.743 (371.98) 

0.4 2.734 (367.96) 2.747 (369.42) 2.760 (369.94) 2.767 (368.65) 2.757 (371.09) 

0.5 2.751 (369.86) 2.768 (369.96) 2.785 (370.59) 2.791 (370.32) 2.751 (370.29) 

0.6 2.768 (370.42) 2.790 (370.45) 2.807 (369.93) 2.804 (370.59) 2.735 (370.69) 

0.7 2.783 (370.32) 2.806 (369.98) 2.822 (370.15) 2.814 (370.34) 2.718 (370.48) 

0.8 2.797 (369.95) 2.822 (370.47) 2.832 (369.48) 2.816 (370.26) 2.698 (369.07) 

0.9 2.805 (369.89) 2.833 (369.39) 2.841 (370.87) 2.815 (369.34) 2.687 (370.88) 

EWMA  1.0 2.815 (370.78) 2.841 (369.35) 2.843 (369.11) 2.814 (369.76) 2.683 (370.12) 

1.1 2.822 (368.32) 2.843 (365.56) 2.843 (366.94) 2.814 (370.43) 2.681 (371.56) 

1.2 2.829 (368.21) 2.846 (367.68) 2.843 (365.86) 2.813 (370.22) 2.688 (368.55) 

1.3 2.832 (370.08) 2.850 (369.78) 2.843 (364.61) 2.812 (369.82) 2.694 (367.53) 

1.4 2.835 (370.58) 2.851 (371.70) 2.841 (367.16) 2.811 (371.78) 2.702 (369.98) 

1.5 2.841 (374.18) 2.850 (373.09) 2.842 (370.78) 2.810 (369.39) 2.714 (368.75) 
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0.1 2.808 (369.99) 2.809 (369.75) 2.809 (369.14) 2.810 (370.73) 2.810 (369.91) 

0.2 2.812 (370.98) 2.813 (370.39) 2.815 (369.89) 2.818 (371.08) 2.818 (369.97) 

0.3 2.819 (369.98) 2.823 (370.46) 2.828 (369.68) 2.827 (369.18) 2.823 (369.65) 

0.4 2.828 (370.74) 2.835 (370.93) 2.839 (370.26) 2.837 (370.72) 2.815 (369.02) 

0.5 2.837(370.49) 2.844 (370.79) 2.849 (370.87) 2.843 (370.41) 2.791 (370.46) 

0.6 2.850 (370.62) 2.851 (370.05) 2.856 (369.99) 2.844 (370.52) 2.761 (370.60) 

0.7 2.850 (370.61) 2.860 (369.40) 2.865 (370.84) 2.844 (370.36) 2.733 (370.02) 

0.8 2.853 (369.54) 2.868 (370.26) 2.866 (370.52) 2.835 (369.27) 2.709 (370.92) 

0.9 2.859 (369.53) 2.873 (369.72) 2.871 (370.32) 2.832 (369.81) 2.694 (370.56) 

EWMA  1.0 2.867 (370.51) 2.876 (370.10) 2.872 (370.83) 2.825 (369.29) 2.686 (369.11) 

1.1 2.875 (370.94) 2.878 (369.84) 2.869 (370.45) 2.823 (370.93) 2.680 (370.05) 

1.2 2.876 (369.14) 2.882 (370.09) 2.867 (369.41) 2.821 (370.96) 2.685 (370.68) 

1.3 2.880 (370.84) 2.883 (369.91) 2.867 (369.95) 2.821 (370.76) 2.693 (370.52) 

1.4 2.883 (370.50) 2.885 (370.16) 2.866 (370.05) 2.821 (370.88) 2.702 (369.55) 

1.5 2.886 (370.52) 2.885 (370.55) 2.867 (370.33) 2.823 (369.45) 2.715 (369.90) 

20 

0.1 2.864 (370.53) 2.864 (369.84) 2.864 (369.69) 2.864 (369.51) 2.864 (369.16 

0.2 2.866 (369.95) 2.867 (369.36) 2.867 (370.16) 2.869 (370.67) 2.870 (370.58) 

0.3 2.871 (370.22) 2.873 (369.58) 2.875 (370.16) 2.876 (370.43) 2.868 (369.79) 

0.4 2.876 (369.46) 2.877 (369.18) 2.880 (369.58) 2.878 (370.52) 2.848 (369.62) 

0.5 2.880 (370.06) 2.883 (370.87) 2.887 (370.83) 2.872 (369.18) 2.818 (369.04) 

0.6 2.885 (370.92) 2.890 (369.83) 2.889 (369.75) 2.868 (369.76) 2.781 (370.39) 

0.7 2.891 (370.14) 2.896 (370.03) 2.891 (370.03) 2.862 (370.17) 2.744 (370.43) 

0.8 2.894 (369.08) 2.899 (370.89) 2.889 (370.22) 2.857 (370.64) 2.724 (370.01) 

0.9 2.899 (369.96) 2.901 (370.31) 2.885 (370.48) 2.852 (370.44) 2.703 (370.21) 

EWMA  1.0 2.903 (370.11) 2.902 (370.87) 2.884 (369.90) 2.841 (369.85) 2.698 (369.76) 

1.1 2.905 (369.98) 2.903 (370.01) 2.885 (370.92) 2.835 (370.37) 2.695 (369.23) 

1.2 2.906 (370.39) 2.902 (370.04) 2.883 (370.06) 2.831 (369.61) 2.695 (370.46) 

1.3 2.906 (370.09) 2.903 (370.34) 2.881 (370.02) 2.830 (369.69) 2.703 (370.99) 

1.4 2.907 (369.50) 2.904 (369.70) 2.881 (370.48) 2.830 (370.06) 2.710 (370.66) 

1.5 2.907 (369.36) 2.904 (370.66) 2.880 (369.16) 2.833 (370.62) 2.723 (369.76) 
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(     ) combination that provides the desired     performance. A detailed study on the optimal 

design for the GWMA-SR chart is out-of-scope for this paper and will be discussed in a future work; 

iii. Comparing the line graphs in panels (a) and (b) with those in panels (c) and (d), it is easily observed 

that the attained      is larger if   is larger; this is naturally expected since the control limits are 

wider for larger    which leads to a smaller probability of a signal. 

 

 

Figure 1. Attained ARL0 versus q for different combinations of (α, L) when n = 10 

 

Next, we study the performance of the GWMA-SR chart and compare it with some existing control 

charting procedures. 

 

4. Performance study 

The GWMA charts are generally more sensitive than the EWMA charts in detecting small shifts (see the 

results in Sheu and Lin
3
, Lu

8
 and Sheu and Yang

15
). In addition, Graham et al.

6
 showed that in many cases the 

EWMA-SR chart outperforms the EWMA-SN chart (Graham et al.
7
) and the Shewhart-SR chart with run rules 

(Chakraborti and Eryilmaz
18

). Lu
8
 further showed that the GWMA-SN chart is more sensitive than the 

parametric GWMA-  chart for normal and many non-normal distributions. Given the available results, it is of 

interest to compare the proposed GWMA-SR chart with the GWMA- ̅ chart, the GWMA-SN chart and the 

EWMA-SR chart. 

To study the performance of the GWMA-SR chart, we use some of the combinations of the parameters 

used in Table 1; these combinations ensure that the      is close to 370. Because the underlying distribution 
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is assumed to be symmetric, only the positive shifts (i.e. increases in the mean/median) are considered with 

magnitude   = 0.05, 0.10, 0.25, 0.50, 0.75, 1.0 and 1.5; the results are equally applicable for negative or 

downward shifts. Also, as Shewhart-type charts are traditionally known to be efficient in detecting large shifts, 

we do not consider shifts more than 1.5; the purpose and focus of this article is only on detecting small shifts. 

The results of the comparison in performance of all the charts are displayed in Tables 2-4. We first compared 

the GWMA-SR chart with the EWMA-SR chart (which is regarded as the main competitor) and thereafter 

against the GWMA-SN and GWMA-  charts. A summary of the findings is as follows:  

i. GWMA-SR vs. EWMA-SR chart under normal distribution 

Table 2 shows the out-of-control (OOC) average run-length (    ) values of the GWMA-SR and the 

EWMA-SR charts when   = 5 and 10 assuming that the underlying process can be modelled by the 

standard normal distribution. Both charts were designed so that their     ’s are close to 370.  

The results show that for small shifts, i.e. when        and       , the GWMA-SR chart 

performs better than the EWMA-SR chart (Graham et al.
6
) for a suitable combination of the 

parameters (     ).  For example, given a shift of    0.05 and sample size     , the GWMA-SR 

chart with parameters (   0.9,    0.8,    2.698) gives an       140.28 while the EWMA-SR 

chart with parameters (   0.9,    2.683) gives an       151.79. The GWMA-SR chart will 

therefore, on average, signal 11 samples sooner than the EWMA-SR chart. However, for larger shifts, 

the two charts perform similarly. For example, focussing on the results in Table 2 for    1.5 and     , the GWMA-SR chart with parameters (   0.5,    1.2,    2.829) gives an       2.01 

whilst the EWMA-SR chart with parameters (   0.5,    2.815) gives an       2.02. Both charts 

are therefore expected to detect the shift on the second sample following the shift. 

ii. GWMA-SR vs. EWMA-SR charts under various non-normal distributions 

Table 3 shows the      values of the GWMA-SR and the EWMA-SR charts when   = 10 under four 

non-normal symmetric (around zero) distributions. The distributions we considered have heavier or 

lighter tails than the normal distribution. We used the scaled Student’s   √  (   )   distribution with 

degrees of freedom    10, the logistic.  √  / distribution, the uniform( √  √ ) distribution and the 

Laplace.   √ / distribution. The parameters of these distributions were chosen so that the variance is 1 

which makes the results comparable amongst different distributions. Note that the      for the 

standard normal distribution (for   = 10) is included in the table for ease of comparison. 

The results in Table 3 show that for small shifts, i.e. when        and       , the GWMA-SR 

chart performs better than the EWMA-SR chart (Graham et al.
6
) for all the distributions considered. 

For example, for the logistic.  √  / distribution, the      for the GWMA-SR chart is 52.78 while the      for the for EWMA-SR chart is 58.78 when the shift is       . These results confirm that the 

GWMA-SR chart outperforms the EWMA-SR chart for small shifts. 
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Table 2: Average run-lengths for the GWMA-SR and EWMA-SR charts for various shifts   under the 

normal distribution when        370 and    10 

  Chart 
   5    10                     

0.05 
GWMA-SR 0.9 0.4 2.573 195.79 0.9 0.8 2.698 140.28 

EWMA-SR 0.9 1.0 2.666 243.68 0.9 1.0 2.683 151.79 

0.10 
GWMA-SR 0.9 0.6 2.657 93.35 0.9 0.7 2.718 58.75 

EWMA-SR 0.9 1.0 2.666 120.85 0.9 1.0 2.683 59.48 

0.25 
GWMA-SR 0.9 0.8 2.668 26.62 0.9 1.1 2.681 15.19 

EWMA-SR 0.9 1.0 2.666 26.96 0.9 1.0 2.683 15.42 

0.50 
GWMA-SR 0.9 1.3 2.679 9.80 0.9 1.5 2.714 5.72 

EWMA-SR 0.9 1.0 2.666 9.97 0.9 1.0 2.683 6.23 

0.75 
GWMA-SR 0.8 1.2 2.767 5.69 0.6 1.4 2.851 3.18 

EWMA-SR 0.8 1.0 2.768 5.81 0.6 1.0 2.841 3.26 

1.00 
GWMA-SR 0.5 1.1 2.657 4.06 0.5 1.5 2.841 2.31 

EWMA-SR 0.5 1.0 2.638 4.31 0.5 1.0 2.815 2.40 

1.50 
GWMA-SR 0.5 1.1 2.657 2.62 0.5 1.2 2.829 2.01 

EWMA-SR 0.5 1.0 2.638 3.19 0.5 1.0 2.815 2.02 

Table 3: Average run-lengths for the GWMA-SR and EWMA-SR charts for various shifts   under 

different symmetric distributions when        370 and    10 

  Chart       normal(0,1)    logistic.  √  / uniform( √  √ ) Laplace.   √ / 
0.05 

GWMA-SR 0.9 0.8 2.698 140.28 145.39 137.50 156.24 107.80 

EWMA-SR 0.9 1.0 2.683 151.79 168.29 157.88 179.78 126.46 

0.10 
GWMA-SR 0.9 0.8 2.698 58.94 54.99 52.78 63.84 39.40 

EWMA-SR 0.9 1.0 2.683 59.48 61.24 58.78 72.30 42.69 

0.50 
GWMA-SR 0.9 1.5 2.714 5.72 5.44 5.34 6.37 4.83 

EWMA-SR 0.9 1.0 2.683 6.23 5.93 5.81 6.87 5.25 

1.00 
GWMA-SR 0.5 1.5 2.841 2.31 2.27 2.27 2.48 2.25 

EWMA-SR 0.5 1.0 2.815 2.40 2.37 2.36 2.57 2.33 

Table 4: Average run-lengths for the GWMA-SR, GWMA-SN and GWMA-  ̅ charts for various shifts  when        370 and    10 under different symmetric distributions 

  Chart       normal(0,1)    logistic.  √  / uniform( √  √ ) Laplace.   √ / 
GWMA-SR 0.9 0.9 2.687 370.88 371.01 370.90 370.05 371.75 

0.00 GWMA-SN 0.9 0.9 2.695 370.24 370.69 368.68 369.07 370.85 

GWMA-  ̅ 0.9 0.9 2.720 369.41 370.74 362.74 382.22 355.36 

GWMA-SR 0.9 0.9 2.687 150.01 155.67 147.27 167.72 115.28 

0.05 GWMA-SN 0.9 0.9 2.695 195.63 178.24 169.60 246.48 101.34 

GWMA-  ̅ 0.9 0.9 2.720 156.22 159.82 155.03 155.60 154.14 

0.10 

GWMA-SR 0.9 0.9 2.687 62.01 56.69 55.54 67.16 40.90 

GWMA-SN 0.9 0.9 2.695 81.23 70.48 66.57 126.61 36.72 

GWMA-  ̅ 0.9 0.9 2.720 57.92 57.30 58.39 58.48 57.82 

0.25 

GWMA-SR 0.9 0.9 2.687 15.21 14.01 13.67 16.72 11.10 

GWMA-SN 0.9 0.9 2.695 19.34 16.97 16.17 31.63 10.71 

GWMA-  ̅ 0.9 0.9 2.720 13.86 13.80 13.79 13.83 13.88 

GWMA-SR 0.9 0.9 2.687 6.44 6.04 5.91 7.03 5.31 

0.50 GWMA-SN 0.9 0.9 2.695 7.59 6.94 6.66 11.17 5.31 

GWMA-  ̅ 0.9 0.9 2.720 5.57 5.56 5.52 5.53 5.51 

GWMA-SR 0.9 0.9 2.687 3.42 3.42 3.39 3.64 3.35 

1.00 GWMA-SN 0.9 0.9 2.695 3.74 3.56 3.50 4.54 3.30 

GWMA-  ̅ 0.9 0.9 2.720 2.56 2.55 2.55 2.55 2.56 
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iii. GWMA-SR vs. GWMA-SN and GWMA- ̅ under various distributions 

To compare the GWMA-SR chart with the GWMA-SN and GWMA- ̅ charts, we used the same 

symmetric distributions (with the same parameters) as in the preceding section; this includes the 

standard normal distribution too. The corresponding results are displayed in Table 4 for   = 10 when 

the attained      is close to 370. 

From the results in Table 4, it can be observed that the GWMA- ̅ chart outperforms both the GWMA-

SR and GWMA-SN charts (for shifts    0.1) when the underlying distribution is the standard normal 

or the scaled Student’s     distribution. This result is not unexpected since the GWMA- ̅ chart is 

specifically designed for the normal distribution and, the scaled Student’s     distribution does not 

deviate much from the normal distribution. However, it is important to note the following points: 

a) While the attained      values of the GWMA-SR and GWMA-SN charts remain unchanged 

for different underlying distributions, the attained      of the GWMA- ̅  fluctuates. For 

instance, the GWMA- ̅ chart with    0.9,    0.9,    2.720 has an       369.41 under 

normality, but it has an       382.22 under the uniform( √  √ ) distribution. This non-

robustness of the GWMA- ̅ chart occurs because the GWMA- ̅  is a parametric chart 

designed for a specific distribution. In cases where normality is in question or cannot be 

verified, the GWMA-SR chart and the GWMA-SN can be valuable alternatives; 

b) The GWMA-SR chart generally outperforms the GWMA-SN chart for all shifts in case of the 

scaled Student’s     distribution, the logistic.  √  / distribution and the uniform( √  √ ) 

distribution. For example, the     ’s are 155.67 vs. 178.24, 147.27 vs. 169.60 and 167.72 vs. 

246.48, respectively, for    0.05. Even for a shift of size    1.00, the     ’s are 3.42 vs. 

3.56, 3.39 vs. 3.50 and 3.64 vs. 4.54; 

c) In case of the Laplace.   √ / distribution, the GWMA-SN outperforms the GWMA-SR for 

shifts    0.05, 0.10 and 0.25; the     ’s are 101.34 vs. 115.28, 36.72 vs. 40.90 and 10.71 

vs. 11.10, respectively. For shifts    0.50 and 1.00, the performance of the charts is similar; 

d) The GWMA- ̅ chart performs marginally better than the GWMA-SR and GWMA-SN charts 

for a shift of        under the logistic.  √  /, uniform( √  √ ) and Laplace.   √ / 
distribution. 

As a general recommendation for the implementation of the GWMA-SR chart is that value of   such as 0.8 or 

0.9 and values of   in the region 0.4 to 0.9 should be useful in detecting a shift of    0.5 while    0.8 and     should be useful in detecting larger shifts. In the next section, an example is provided to illustrate the 

proposed GWMA-SR chart.  
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5. Example 

To demonstrate the application and performance of the proposed GWMA-SR chart against the GWMA-

SN chart, we draw 15 random samples each of size    10 from a normal distribution with mean 0.25 and 

variance 1.00.  If we assume the true mean/median of the process is 0.00, the simulated data can be viewed as 

observations from an out-of-control (OOC) process following a shift of 0.25 standard deviation in the 

location.  

Setting the parameters of the GWMA-SR chart equal to      ,    0.9 and    2.687, the control 

limits and centerline are calculated using equation (8) to be      10.90,      –10.90 and     , 

respectively. For this choice of the parameters, the attained      is 370.88 and obtained from Table 1 or 

Table 4. 

The parameters for the GWMA-SN chart were taken to be      ,    0.9 and    2.695. The control 

limits and centerline are calculated to be      5.881,           and     , respectively. The attained      of the GWMA-SN chart is 370.24, which is shown in Table 5. As the attained      values are 

approximately equal, the two charts are at an equal footing in terms of their in-control performance.  

 

The two control charts are shown in Figure 2; from panels (a) and (b), we observe the following: 

i. Although the general trend in the charting statistics is similar, the GWMA-SR chart detects the 

shift and signals on the 9th observation (i.e. the run-length is 9) whereas the GWMA-SN chart 

does not detect the shift and does not signal; 

ii. Both the GWMA-SR and the GWMA-SN charts use steady-state control limits; 

iii. The centerline of the GWMA-SR chart is equal to zero (which makes it easy to visually 

distinguish between an upward/positive shift and a downward/negative shift), whereas the 

centerline of the GWMA-SN chart is equal to 5; 

iv. Neither of the two charts’ vertical axes is in the original scale of measurement. This happens 

since the two charts do not use the original numerical measurements, i.e. the GWMA-SR chart’s 

key building block is the Wilcoxon signed-rank statistic (which is based on counting and ranking 

the observations within the samples) and the GWMA-SN chart’s basic building block is the well-

known sign test (which is based on counting only). Although this can be seen as a shortcoming, 

the fact these charts are distribution-free far outweighs this inconvenience. 
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Figure 2. The GWMA-SR and GWMA-SN charts 

 

6. Concluding remarks 

A new distribution-free GWMA chart to detect small sustained upward or downward steps shifts in the 

location has been proposed based on the Wilcoxon signed-rank statistic; the proposed chart extends the 

existing EWMA-SR and GWMA-SN charts for a known in-control value of the process median. An advantage 

of the GWMA class of charts (over the EWMA charts) lies in the additional parameter   which provides more 

flexibility in its design and better detection ability for small shifts. For a specified      of 370 and different 

combinations of the parameters (   ), the charting constant     has been obtained which will assist in the 

design and implementation of the chart. The performance of the GWMA-SR chart has been evaluated by 

means of simulation. It has been found that the GWMA-SR chart (with suitable parameters) performs better 

than the GWMA-SN and the EWMA-SR charts. Because both the GWMA-SN and the EWMA-SR charts are 

well-known to be better than many parametric and nonparametric control charts, the GWMA-SR chart should 

be a useful addition to the quality practitioner’s collection of control charts to choose from. It will be of 

interest to consider the problem when the population median (for which the control chart is built) is not 

specified; this will be pursued in future work.  
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Appendix 

A1. Convergence of          ∑ ( (   )     )      for      ,     

We have    ∑ ( (   )     )      ∑   (   )      ∑           ∑  (   )        . We consider two 

scenarios:  

i. For    ,          ∑ ( (   )     )       ; 

ii. For      , we have  (   )       (   )         . Substituting   (   )     by      , it 

follows that    (∑   (   )      ∑           ∑         )  (∑   (   )      ∑         ). It then 

follows that    (      )   . 

So, for      , the monotonically increasing sequence *            + is  bounded above and is 

therefore convergent. Further,         for all values of  ; this implies that              and so there 

exists a number (denoted by  ) in the interval (0,1) such that             for      . This completes the 

proof. 

A2. For               ,   -          , where      ,         -   ,   -    [{           }    ]    [           ]    [{           }     ]    [           ]    ,         -.  
Therefore,   ,   -          , where      ,         -. 
A3.      1+∑        

Because   ,   -         , we have     ∑     ,   -    . By expanding and re-arranging some of 

the terms, we obtain       ,   -  ∑     ,   -     =     ,   -  ∑  (       )         ,   -     ∑        = 

1+∑       ,  

as required. 
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