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A generating family for the Freudenthal compactification
of a class of rimcompact spaces

by

Jesús M. Domı́nguez (Valladolid)

Abstract. For X a Tikhonov space, let F (X) be the algebra of all real-valued con-
tinuous functions on X that assume only finitely many values outside some compact
subset. We show that F (X) generates a compactification γX of X if and only if X has
a base of open sets whose boundaries have compact neighborhoods, and we note that if
this happens then γX is the Freudenthal compactification of X. For X Hausdorff and
locally compact, we establish an isomorphism between the lattice of all subalgebras of
F (X)/CK(X) and the lattice of all compactifications of X with zero-dimensional remain-
der, the finite-dimensional subalgebras corresponding to the compactifications with finite
remainder.

Introduction. Throughout the paper C(X) will stand for the algebra of
all real-valued continuous functions on a non-empty Tikhonov space X, and
C∗(X) for the subalgebra of bounded functions. C#(X) will be the subset
of C(X) consisting of all f with the property that, for every maximal ideal
M of C(X), there exists λM ∈ R such that f−λM ∈M . We shall denote by
F (X) the subset of C(X) consisting of all f such that f(X −K) is a finite
set for some compact K ⊆ X, K depending on f . Both C#(X) and F (X)
are subalgebras of C∗(X), and F (X) ⊆ C#(X). Moreover, F (X) = C#(X)
for X realcompact and locally compact (see [20]).

The space X is said to be rimcompact if it has a base of open sets with
compact boundaries. Each rimcompact space has a compactification φX that
is the maximum compactification of X with zero-dimensional remainder; φX
is called the Freudenthal compactification of X.

Henriksen was the first to observe the relationship between C#(X) and
φX; he showed in [12] that if X is realcompact and C#(X) generates a
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compactification of X, then X is rimcompact and φX is the compactification
generated by C#(X). Ünlü proved in [21] that F (X) generates φX if X is
locally compact. Here we show that F (X) generates a compactification of X
if and only if X has a base of open sets whose boundaries have compact
neighborhoods, and we note that in that case the compactification is φX.
The question of exactly when C#(X) generates φX remains open.

Assume now that X is a locally compact space. We shall denote by
C∞(X) the ideal of C∗(X) consisting of all functions in C(X) that vanish
at infinity, and by CK(X) the ideal of all continuous functions with com-
pact support. If A is a closed subalgebra of C∗(X) containing C∞(X), then
the maximal ideal space MaxA of A is a compactification of X, and ev-
ery compactification of X can be obtained this way. The correspondence
A 7→MaxA establishes an isomorphism between the lattice of closed subal-
gebras of C∗(X) that contain C∞(X), and the lattice K(X) of all compact-
ifications of X.

Magill proved in [16] that, for X and Y locally compact spaces, K(X)
and K(Y ) are isomorphic lattices if and only if βX − X and βY − Y are
homeomorphic spaces. Let us denote by K0(X) the lattice of all compact-
ifications of X with zero-dimensional remainder. We show that F (X) and
CK(X) play with respect to K0(X) a similar role to that of C∗(X) and
C∞(X) in the case of K(X). We establish an isomorphism between K0(X)
and the lattice of all subalgebras of F (X)/CK(X), and we make use of
this isomorphism to derive the zero-dimensional version of Magill’s theorem
(Woods [23]): “For X and Y locally compact spaces, K0(X) and K0(Y ) are
isomorphic lattices if and only if the remainders φX −X and φY − Y are
homeomorphic spaces”.

Section 1 contains the algebraic treatment. By making abstraction of the
algebraic properties of F (X)/CK(X), we study the algebras over a fixed field
that are linearly generated by their idempotents; we call them LC-algebras,
as they are algebras of locally constant functions. In Section 2 we prove that
F (X) generates a compactification of X if and only if X has a base of open
sets whose boundaries have compact neighborhoods. Finally, in Section 3
we establish the lattice isomorphisms, and we derive the zero-dimensional
version of Magill’s theorem.

1. Algebraic treatment. For algebraic concepts we shall basically ad-
here to the notation and terminology in [1]. The word “ring” will always
mean a commutative ring with identity element 1, the subrings of a ring A
contain the identity element of A, and the ring morphisms preserve the
identity elements. From now on A will be a ring.

We now review some definitions and results that will be used throughout
the paper.
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1.1. The prime and maximal spectra, SpecA and MaxA. By SpecA we
mean the prime spectrum of the ring A, that is, the set of all prime ideals
of A with the Zariski (or hull-kernel) topology. The sets V (F ) = {P ∈
SpecA : F ⊆ P}, where F ⊆ A, are the closed subsets of SpecA. We
shall denote by MaxA the maximal spectrum of A, that is, the subspace
of SpecA consisting of all maximal ideals of A. For F ⊆ A, we shall write
VM (F ) = V (F ) ∩MaxA.

Let ψ : A → B be a ring morphism. If Q is a prime ideal of B, then
ψ−1(Q) is a prime ideal of A, so that ψ induces a continuous map

ψ∗ : SpecB → SpecA, Q 7→ ψ−1(Q).

In this way one establishes a contravariant functor from the category of rings
to the category of topological spaces.

Let I be an ideal of A. The canonical map A→ A/I induces a topolog-
ical embedding Spec(A/I)→ SpecA whose image is V (I). This embedding
allows us to identify Spec(A/I) with V (I). We also identify Max(A/I) with
VM (I).

We shall say that A is a reduced ring if
⋂

SpecA = {0}, and A will be
called semisimple if

⋂
MaxA = {0}.

We shall denote by AP the localization of the ring A at the prime ideal P ;
in other words, AP = S−1A, where S = A− P .

Recall that a ring A is regular (in the sense of von Neumann) or absolutely
flat if, for every x ∈ A, there exists x′ ∈ A such that xx′x = x.

The next result is well known (see [1]).

1.2. Theorem. For a ring A, the following conditions are equivalent :

(a) A is a regular ring.
(b) Each principal ideal of A is generated by an idempotent.
(c) A is a reduced ring and every prime ideal of A is maximal.
(d) For every M ∈ MaxA, the local ring AM is a field.

If A is a regular ring, then MaxA is a Boolean space, that is, a compact
Hausdorff and zero-dimensional space.

1.3. The Boolean ring B(A). We shall denote by B(A) the set of all
idempotents of an arbitrary ring A. We keep the product inherited from A,
and we define a new addition in B(A) by the rule:

e ? f = e+ f − 2ef for e, f ∈ B(A).

With these operations B(A) is a Boolean ring.

1.4. Locally constant functions. From now until the end of Section 1,
E will be an infinite field, and the word “algebra” will mean a non-zero
E-algebra. If A is an algebra, we shall identify each element of E with its
image in A under the structural morphism E → A. For M a maximal ideal
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of A, we shall write A/M = E (resp. AM = E) if the structural morphism
E → A/M (resp. E → AM ) is an isomorphism.

We adapt the notation and some of the results in [15]. For X a compact
Hausdorff space, we shall denote by LC(X) the algebra of all locally constant
functions from X to E. The idempotents of LC(X) are the characteristic
functions, with values in E, of the clopen (both open and closed) subsets of
X. Every element of LC(X) is a linear combination of idempotents.

1.5. LC-algebras. We shall say that an algebra A is an LC-algebra if
every f ∈ A is a linear combination of idempotents, that is, if

f =
n∑

i=1

λiei, where λi ∈ E, ei ∈ B(A), for 1 ≤ i ≤ n.

We shall say that an algebra A is a Gelfand algebra if, for every maximal
ideal M of A, one has A/M = E, that is, for every f ∈ A and every
M ∈MaxA, there exists λ ∈ E such that f − λ ∈M .

Let us consider En = E × . . .×E with the sum and product operations
defined componentwise. The map E → E × . . .×E, λ 7→ (λ, . . . , λ), defines
on En an E-algebra structure. In fact, En is an LC-algebra.

Let A ⊆ B be a ring extension. Recall that an element b ∈ B is said to be
integral over A if b is a root of a monic polynomial P (x) = xn+an−1x

n−1 +
. . . + a0 with coefficients in A. The ring B is said to be integral over A if
every element of B is integral over A.

The next result can be easily proved, and so we shall not include its
proof.

1.6. Theorem (see [15] and compare with Th. 1.2). For an algebra A,
the following conditions are equivalent :

(a) A is an LC-algebra.
(b) A is a reduced algebra and for every f ∈ A there exist λ1, . . . , λn

in E such that
n∏

i=1

(f − λi) = 0.

(c) A is a semisimple Gelfand algebra and an integral extension of E.
(d) A is isomorphic to LC(X), X being a Boolean space.
(e) AM = E for every M ∈ MaxA.

It follows from the above theorem that LC-algebras are regular rings,
and so their maximal spectra are Boolean spaces. It is clear that quotients
by a proper ideal and subalgebras of LC-algebras are also LC-algebras. It is
also clear that a finite tensorial product or an inductive limit of LC-algebras
(in the category of E-algebras) is again an LC-algebra. Therefore, a tensorial
product of LC-algebras (in the category of E-algebras) is an LC-algebra. It
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follows from the preceding theorem that a finite product of LC-algebras (in
the category of E-algebras) is again an LC-algebra.

1.7. The Gelfand transformation and the spectral representation. Let A
be an LC-algebra. Since A is a Gelfand algebra, we can associate to every
f ∈ A the function f̂ : MaxA→ E, M 7→M(f), where M(f) is the residue
class of f modulo the maximal ideal M . The Gelfand transformation is the
map

GA : A→ LC(MaxA), f 7→ f̂ .

It is an algebra isomorphism which is functorial in A (see [15]).
LetX be a Boolean space. For x ∈ X, setMx = {f ∈ LC(X) : f(x) = 0}.

The spectral representation

µX : X → Max LC(X), x 7→Mx,

is a homeomorphism which is functorial in X.
The duality between Boolean lattices, Boolean rings and Boolean spaces

is well known. We shall see that this duality may be extended to the LC-
algebras.

Let BS be the category of Boolean spaces (and continuous maps), set
LC for the category of LC-algebras (and E-algebra morphisms), and denote
by BSop the opposite category to BS.

1.8. Theorem. The category LC is equivalent to the category BSop.

Proof. On the one hand, a continuous map α : X → X ′ between Boolean
spaces induces, by composition, a morphism of algebras LC(X ′)→ LC(X),
f 7→ f ◦ α, so that LC is a contravariant functor from BS into LC. On
the other hand, Max is a contravariant functor from LC into BS. The
Gelfand transformation (G−) and the spectral representation (µ−) estab-
lish the needed functorial isomorphisms.

1.9. Example. Let S be the algebra of all periodic sequences with values
in the field E, and denote by P the set of all positive prime integers.

For p ∈ P , set

Sp = {f ∈ S : pn is a period of f for some n ∈ N},
and, for n ∈ N, set

S(pn) = {f ∈ S : pn is a period of f}.
Sp is the inductive limit of the subalgebras S(pn), and S is the tensorial

product of the subalgebras Sp, that is,

Sp ∼= lim−→
n∈N

S(pn), S ∼=
⊗

p∈P
Sp.

The algebras S(pn), Sp, and S are all LC-algebras.
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According to 1.8,

MaxSp ∼= lim←−
n∈N

Z/(pn) ∼= Zp, MaxS ∼=
∏

p∈P
MaxSp ∼=

∏

p∈P
Zp,

where the quotient ring Z/(pn) has the discrete topology, and Zp is the ring
of the p-adic integers with the topology induced by the p-adic absolute value.

Both the product
∏
p∈P Zp and each factor Zp are perfect compact metric

spaces which are zero-dimensional. Hence, they are all homeomorphic to the
Cantor ternary set. Thus, MaxS ∼= MaxSp. It follows from 1.8 that S ∼= Sp
for every p ∈ P . In particular, S ∼= S2.

Recall that a collection of functions separates points in X if, whenever
x 6= y ∈ X, there is a function f in the collection such that f(x) 6= f(y).

1.10. Theorem. If X is a Boolean space and A is a subalgebra of
LC(X) that separates points, then A = LC(X).

Proof. Since A separates points, the contraction of maximal ideals

X = Max LC(X)→MaxA, Mx 7→Mx ∩A,
is a continuous and injective mapping between compact Hausdorff spaces.
Moreover, it is surjective because A ⊆ LC(X) is an integral extension of
rings (see [1, 5.10]). It is, then, a homeomorphism.

We say that an algebra is finite-dimensional if it is a finite-dimensional
vector space over the field E.

The algebra A is singly generated if there exists f ∈ A such that A =
E[f ], that is, every element of A can be written as a polynomial in f with
coefficients in E. In that case, f is said to be a primitive element for the
extension E ⊆ A.

Recall that a singly generated E-algebra is finite-dimensional if it is an
integral extension of E.

1.11. Theorem. For an LC-algebra A, the following conditions are
equivalent :

(a) A is an algebra isomorphic to En for some n ∈ N.
(b) A is a finite-dimensional algebra.
(c) MaxA is a finite set.
(d) A = E[f ], that is, A has a primitive element.

Proof. The first three conditions are clearly equivalent.
(a)⇒(d). Set f = (λ1, . . . , λn) ∈ En, where λi 6= λj for i 6= j. Since E[f ]

separates points in MaxEn, it follows from 1.10 that E[f ] = LC(MaxEn)
= A.

(d)⇒(b). A is a finite-dimensional algebra because it is a singly gener-
ated E-algebra and an integral extension of E.
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If A is an LC-algebra (resp. a Boolean ring) we shall denote by L(A) the
lattice of all subalgebras (resp. subrings) of A. We shall denote by LF(A)
the sublattice of L(A) consisting of all finite-dimensional subalgebras of the
LC-algebra A. Then LF(A) is a lower complete lattice.

We shall not include the proof of the next result.

1.12. Theorem (Sachs [19], Filippov [7]). The Boolean rings A1 and
A2 are isomorphic if and only if L(A1) and L(A2) are isomorphic lattices.

1.13. Corollary. Let A1 and A2 be LC-algebras. The following con-
ditions are equivalent :

(a) A1 and A2 are isomorphic algebras.
(b) LF(A1) and LF(A2) are isomorphic lattices.
(c) L(A1) and L(A2) are isomorphic lattices.
(d) MaxA1 and MaxA2 are homeomorphic spaces.

Proof. It is clear that (a) implies (b), and we already know that (a) and
(d) are equivalent.

(b)⇒(c). Let φ : LF(A1) → LF(A2) be a lattice isomorphism. Observe
that, for any subalgebra A of A1,

A =
∨
{C : C is a finite-dimensional subalgebra of A}.

We extend φ to a new lattice isomorphism Φ : L(A1)→ L(A2) by defining

Φ(A) =
∨
{φ(C) : C is a finite-dimensional subalgebra of A}.

(c)⇒(a). This will follow from 1.12, once we observe that, for any LC-
algebra A, the map that sends a subalgebra C of A to the Boolean ring
B(C) is a lattice isomorphism between L(A) and L(B(A)).

1.14. Remark. It is possible to repeat the argument in [16] and prove
1.13 without making use of 1.12, and then one may obtain 1.12 as a conse-
quence of the duality established in 1.8.

2. F (X) generates φX. For topological concepts we shall adhere to the
notation and terminology in [8] and [2], but we shall use the word “algebra”
as in the first section, with E = R. Therefore, all the subalgebras of C(X)
contain the constant functions.

Recall that X is a non-empty Tikhonov space, and F (X) is the algebra
of all f in C(X) such that f(X − K) is finite for some compact K ⊆ X,
K depending on f .

Let us describe F (X) in some particular cases. The algebra F (R) consists
of those functions in C(R) that are constant on both (−∞, a) and (b,∞)
for some a, b ∈ R. For n ≥ 2, F (Rn) consists of those functions in C(Rn)
that are constant on {x ∈ Rn : ‖x‖ > a} for some a ∈ R. If no point
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of X has a compact neighborhood, then F (X) consists of those functions in
C(X) with finite range. Therefore, for X an infinite product of copies of R,
the only functions in F (X) are the constant ones. F (N) consists of the real
sequences with finite range. And finally, if W is the space of all countable
ordinals (with the order topology), then F (W) = C(W).

Recall that a collection of functions separates points from closed sets inX
if, for every point x of X and every closed subset B of X not containing x,
there is a function f in the collection such that f(x) 6∈ cl f(B).

Assume that S is a subalgebra of C∗(X) and that αX is a compactifica-
tion of X. We shall say that S generates αX if every f ∈ S has an extension
fα ∈ C(αX) and Sα = {fα : f ∈ S} separates points in αX. We shall
say that S determines αX if every f ∈ S has an extension fα ∈ C(αX)
and Sα = {fα : f ∈ S} separates points in αX − X. If S generates αX,
then S determines αX. It is well known (see [22, 2.2]) that S generates a
compactification of X if and only if it separates points from closed sets in X.

Let Cα(X) denote the algebra of all functions f ∈ C∗(X) continuously
extendable to αX. We shall write Fα = F (X) ∩ Cα(X).

We shall denote by Kα(X) the closure of αX −X in αX. Observe that
Kα(X) = (αX −X)∪R(X), where R(X) is the set of points in X that fail
to have a compact neighborhood.

2.1. Lemma. If S is a subalgebra of F (X) that generates a compactifi-
cation αX of X, then Kα(X) is zero-dimensional.

Proof. Assume that S generates a compactification αX. If f ∈ F (X)
then fα(Kα(X)) is finite, so the finite-valued continuous functionsKα(X)→
R separate points in Kα(X). Thus, Kα(X) is zero-dimensional.

It is a known result that there exists a compactification αX with Kα(X)
zero-dimensional if and only if X has a base of open sets whose boundaries
have compact neighborhoods (see [14, VI.29] or [10, 3.1]). Note that the last
condition is satisfied by every Hausdorff locally compact space, and by every
space X that is zero-dimensional at each point of R(X).

2.2. Theorem. The following statements are equivalent :

(a) Fα(X) separates points from closed sets in X for every compactifi-
cation αX.

(b) F (X) separates points from closed sets in X, that is, F (X) generates
a compactification of X.

(c) There exists a compactification αX of X such that Kα(X) is zero-
dimensional.

(d) X has a base of open sets whose boundaries have compact neighbor-
hoods.
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Proof. It is evident that (a) implies (b), it follows from the previous
lemma that (b) implies (c), and we already know that (c) and (d) are equiv-
alent. Now we prove that (d) implies (a).

Let αX be a compactification of X. We are going to see that Fα(X)
separates points from closed sets in X. Take a closed subset B of X and
a point x ∈ X − B. By the hypothesis, there exists an open neighborhood
U of x having a compact boundary and such that B ⊆ int(X − U) and
FrU ⊆ X −R(X). Now, take a compact neighborhood K of FrU such that
K ∩B = ∅. One has

clαX U ∩ clαX (X − (U ∪K)) ⊆ clαX U ∩ clαX (X − clU) ⊆ FrU.

But FrU ⊆ intαX K, since K is a compact neighborhood of FrU . Hence,

clαX U ∩ clαX (X − (U ∪K)) ⊆ clαX (X −K) ∩ intαX K = ∅.
Therefore, there exists f ∈ Cα(X) such that

f =
{

1 on clαX U ,

0 on clαX(X − (U ∪K)).

Certainly f ∈ Fα(X), since f(X − K) = {0, 1}. Moreover, f(x) = 1 and
f(B) = {0} as required.

We omit the proof of the next result since it is completely analogous to
the argument in [12, 2.5].

2.3. Theorem. If F (X) generates a compactification of X, then X is
rimcompact and the compactification is φX.

3. The lattice isomorphisms

3.1. Notation. We shall always identify equivalent compactifications
of the non-empty Tikhonov space X. We shall denote by K(X) the com-
plete upper semilattice of all compactifications of X. Recall that K(X) is
a complete lattice if and only if X is Hausdorff and locally compact. We
shall denote by K0(X) the subset of K(X) consisting of all compactifica-
tions with zero-dimensional remainder, and by KF(X) the subset of those
compactifications with finite remainder.

Observe that, for αX ∈ K(X), Fα = F (X) ∩ Cα(X) is a subalgebra of
C∗(X) containing the ideal CK(X) of all continuous functions with compact
support.

Recall that C∞(X) is the ideal of C∗(X) consisting of all functions in
C(X) that vanish at infinity.

For αX ∈ K(X), the map

ψ : Cα(X)→ C(Kα(X)), f 7→ fα|Kα(X),
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is a surjective morphism whose kernel is C∞(X) (see [5, 2.4.6] or [17, 5]).
Observe that, for f ∈ Fα(X), fα(Kα(X)) is a finite set, and so fα|Kα(X) ∈
LC(Kα(X)).

3.2. Theorem. For αX ∈ K(X), the map

Fα(X)→ LC(Kα(X)), f 7→ fα|Kα(X),

is a surjective morphism whose kernel is CK(X).

Proof. It is certainly an R-algebra morphism whose kernel is C∞(X) ∩
Fα(X) = CK(X). In order to prove that it is surjective, it is enough to see
that every idempotent of LC(Kα(X)) has a predecessor in Fα(X). Given an
idempotent e ∈ LC(Kα(X)), let g ∈ C(αX) be an extension of the function
e to the whole αX, and set

h = 3
[(
g ∨ 1

3

)
∧ 2

3

]
− 1.

Finally, set f = h|X and

K =
{
p ∈ αX :

1
3
≤ g(p) ≤ 2

3

}
.

K is a compact subset of X, and f(X−K) ⊆ {0, 1}. Therefore, f ∈ Fα(X).
Moreover, fα|Kα(X) = e.

3.3. Theorem. (a) If αX is a compactification of X with Kα(X) zero-
dimensional , then Fα(X) is a subalgebra of F (X) which contains CK(X)
and generates αX.

(b) If A is a subalgebra of F (X) that contains CK(X) and generates αX,
then Kα(X) is zero-dimensional and A = Fα(X).

Proof. (a) SinceKα(X) is zero-dimensional, Fα(X) generates a compact-
ification of X (see 2.2). Now it is enough to show that Fα(X) determines
αX. We show that {fα : f ∈ Fα(X)} separates points in αX − X. Let p1

and p2 be two different points in αX−X. Since Kα(X) is zero-dimensional,
there is an idempotent e ∈ C(Kα(X)) such that e(p1) 6= e(p2). According
to 3.2, e = fα|Kα(X) for some f ∈ Fα(X).

(b) It follows from Lemma 2.1 that Kα(X) is a zero-dimensional space,
and certainly A ⊆ Fα(X). To prove the reverse inclusion it is enough to
show that A/CK(X) = Fα(X)/CK(X). But this equality follows from 1.10
if we take into account the isomorphism Fα(X)/CK(X) ∼= LC(Kα(X)) es-
tablished in 3.2.

For X a Hausdorff locally compact space, CK(X) separates points from
closed sets inX, so that any subalgebra of F (X) containingCK(X) generates
a compactification of X.
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3.4. Corollary. If X a Hausdorff locally compact space, then the lat-
tice K0(X) of all compactifications of X with zero-dimensional remainder
is a complete lattice, which is isomorphic to the lattice L(LC(φX −X)) of
all subalgebras of LC(φX −X).

Proof. K0(X) ∼= L(F (X)/CK(X)) ∼= L(LC(φX −X)).

Let Se be the algebra of all eventually periodic real sequences, and let S
be the subalgebra of periodic sequences. Observe that

Max(Se/CK(N)) ∼= MaxS,

since Se = CK(N) ⊕ S. Hence, Se generates a compactification of N whose
remainder is homeomorphic to the Cantor set (see 1.9). We get the same
remainder (although not the same compactification) if we replace Se by
CK(N) + S2.

3.5. Theorem (compare with [11] and [9, 2.1]). Let X be a Hausdorff
locally compact space. Every compact metric space is a remainder of X if
and only if F (X)/CK(X) contains a subalgebra isomorphic to S2.

Proof. Assume that every compact metric space is a remainder of X.
Then there is αX ∈ K(X) such that αX −X ∼= MaxS2. Since

Max(Fα(X)/CK(X)) ∼= αX −X ∼= MaxS2,

it follows from 1.13 that Fα(X)/CK(X) is isomorphic to S2. Let us prove the
converse. On the one hand, it is well known that a compact Hausdorff space
is a remainder of X if and only if it is a continuous image of βX−X. On the
other hand, every compact metric space is a continuous image of the Cantor
set. Hence, it is enough to show that X has a remainder homeomorphic to
the Cantor set. By the hypothesis, there exists A ∈ L(F (X)/CK(X)) such
that A ∼= S2. If ψ : F (X)→ F (X)/CK(X) is the canonical morphism, then
Maxψ−1(A) is a compactification of X whose remainder is MaxS2.

3.6. Theorem. Let X be a Hausdorff locally compact space, and let
αX ∈ K0(X). The following conditions are equivalent :

(a) αX −X is a finite set.
(b) Fα(X)/CK(X) is a finite-dimensional algebra.
(c) Fα(X) = CK(X) + R[f ] for some f ∈ F (X).
(d) αX is the compactification determined by a single f ∈ F (X).

Proof. For the equivalence of conditions (a), (b) and (c), apply 1.11 to
Fα(X)/CK(X). To see that (c) implies (d), observe that if f ∈ F (X) and
Fα(X) = CK(X) +R[f ], then αX is the compactification determined by f .
Finally, let αX be the compactification determined by a single function f ∈
F (X). The function fα|αX−X is injective and has finite range. Therefore,
αX −X is finite. This proves that (d) implies (a).
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3.7. Corollary. Let X be a Hausdorff locally compact space. The lat-
tice of all compactifications of X with finite remainder is a lower complete
lattice, which is isomorphic to the lattice of all finite-dimensional subalgebras
of LC(φX −X).

3.8. Corollary (Woods [23]). For X and Y Hausdorff locally compact
spaces, the following conditions are equivalent :

(a) The remainders φX −X and φY − Y are homeomorphic.
(b) The lattices KF(X) and KF(Y ) are isomorphic.
(c) The lattices K0(X) and K0(Y ) are isomorphic.

Proof. This follows from 1.13, 3.4 and 3.7.

3.9. Corollary (Nowiński [18]). If X is a Hausdorff locally compact
space, then φX is the least upper bound of all compactifications of X with
finite remainder.

Proof. We denote by αfX the compactification determined by a single
function f ∈ C∗(X). If αX is a compactification with finite remainder, then
αX ≤ φX, since φX is the maximum compactification of X with zero-
dimensional remainder. Let γX be a compactification such that γX ≥ αX
for every compactification αX with finite remainder. In particular, γX ≥
αfX for every f ∈ F (X). Therefore, Cγ(X) ⊇ F (X), and so γX ≥ φX.
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Canad. J. Math. 22 (1970), 1071–1078.
[16] K. D. Magill, Jr., The lattice of compactifications of a locally compact space, Proc.

London Math. Soc. 18 (1968), 231–244.
[17] F. Mendivil, Function algebras and the lattice of compactifications, Proc. Amer.

Math. Soc. 127 (1999), 1863–1871.
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