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SUMMARY

The new challenges of geophysical imaging applications ask

for new methodologies going beyond the standard and well es-

tablished techniques. In this work we propose a novel tool for

seismic imaging applications based on recent advances in deep

neural networks. Specifically, we use a generative adversarial

network (GAN) to process seismic migrated images in order to

potentially obtain different kinds of outputs depending on the

application target at training stage.

We demonstrate the promising features of this tool through a

couple of synthetic examples. In the first example, the GAN is

trained to turn a low-quality migrated image into a high-quality

one, as if the acquisition geometry were much more dense than

in the input. In the second example, the GAN is trained to turn

a migrated image into the respective deconvolved reflectivity

image.

INTRODUCTION

Applications in hydrocarbons exploration, reservoir character-

ization and civil engineering, require a subsurface mapping

at increasingly higher resolution and higher fidelity. More-

over, the amount of collected data that needs to be analyzed

is constantly increasing and, as for hydrocarbon exploration,

the areas of interest are more and more complex to analyze.

This determined a high demand for advanced seismic imaging

methodologies that prove computationally efficient.

To face some of these issues, in the last few years, there has

been an increasing renewed interest in machine learning tech-

niques. In particular, supervised classification methods have

been increasingly explored by the geophysical community, es-

pecially as a helping tool for the interpretation step (Hall, 2016;

Bestagini et al., 2017).

However, most of the components of seismic imaging work-

flows are large scale ill-posed inverse problems, rather than

classification ones. From the analytical point of view, the study

of regularization, iterative methods and appropriate cost func-

tions has historically played a key role both in seismic imaging

and in other areas (e.g., biomedical imaging). However, for

some inverse imaging applications, deep learning techniques

have also proved particularly interesting recently (Lucas et al.,

2018).

As a matter of fact, the recent advancements brought by con-

volutional neural networks (CNNs) have greatly impacted the

whole signal and image processing community. In particular,

among the different architectures, generative adversarial net-

works (GANs) emerged as a promising approach for problems

that need some form of regularization that is not easy to ex-

press through simple modeling (Goodfellow et al., 2014).

While leading to state-of-the-art results in computer vision,

image processing and various related field, deep learning has

barely started to be studied for inverse imaging problems (Al-

Regib et al., 2018). McCann et al. (2017) provide a review of

recent applications of convolutional neural networks for biomed-

ical imaging problems. Recently, Araya-Polo et al. (2018)

proposed a deep learning strategy for seismic velocity model

building.

In this work we introduce a possible way of using deep learn-

ing for seismic imaging applications. In particular, we propose

to use a GAN as a tool for processing seismic images obtained

via Reverse Time Migration (RTM). We formulate the prob-

lem as the estimation of a post processing operator that can be

learned through a training phase to tackle different problems.

Specifically, the GAN is fed with pairs of images composed of

input images and desired output images depending on the tar-

get application (e.g., deconvolved images, Least squares-RTM

images, deghosted images, etc.).

The used CNN architecture builds upon the recently proposed

pix2pix GAN (Isola et al., 2017). Its potential is shown by tai-

loring the proposed architecture to two different applications

on synthetic migrated data.

The first application is data interpolation in the image space:

we aim at recovering an image obtained with a dense source-

receiver acquisition geometry from an image migrated with a

very coarse acquisition geometry. The example we show is

obtained on several 2D migrated sections of the SEG/EAGE

Overthrust velocity model.

The second application is deconvolution. In particular we train

our CNN on a portion of the well known SMAART JV Sigsbee

velocity model, to transform the migrated image on the corre-

sponding reflectivity section (obtained from the stratigraphic

velocity model). Then we predict the reflectivity from the re-

maining part of the migrated image.

Preliminary results confirm the positive impact that deep learn-

ing can have in seismic image processing in the future.

GAN FOR SEISMIC IMAGE PROCESSING

In this section we introduce the way we cast seismic image

processing problem in the GAN framework, then we provide

all details about the proposed solution.

Problem formulation
The goal of the proposed method is to build a machine that

takes a migrated image I as input, and produces an image Î

as output, as depicted in Figure 1. During training stage, the

target application is chosen in order to obtain a desired output

Î depending on the problem to solve.

In other words during training, the machine is fed with a set of

K pairs {I(k),Iref
(k)} ,k ∈ [1,K], where I(k) are migrated im-

ages, and Iref
(k) are the corresponding desired outputs. In this
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Figure 1: Training and test pipeline.

phase, the machine learns how to transform a migrated image

I into the corresponding desired image Î, by minimizing an

appropriate cost function. Depending on the application we

can decide to train the machine over very different desired im-

ages, for instance: deconvolved images, least-square migrated

images, deghosted images, etc.

Proposed solution

To solve the aforementioned problem, we propose to use a gen-

erative adversarial network (GAN). Specifically, a GAN is a

composition of two neural networks trained in a joint fashion:

a generator G that takes care of the input-output image map-

ping (i.e., Î = G(I)); and a discriminator D that aims at distin-

guishing between generated images Î (i.e., D(Î) = 0) and the

reference ones Iref (i.e., D(Iref) = 1).

As architectures for G and D we followed the guidelines pro-

vided in (Isola et al., 2017). Specifically, the generator is a U-

net (Ronneberger et al., 2015), which is a fully convolutional

neural network composed by a series of more than 10 convo-

lutional layers with skipped connections, for a total amount of

more than 42 million parameters. As the output of the network

has the same size of the input, this U-net already proved to be

particularly well suited to transform images from one domain

to another one (Ronneberger et al., 2015). The discriminator D

is a simpler and shallower fully connected network composed

by a series of convolutional, pooling and rectified linear unit

layers. Its goal is to predict a label (i.e., true or false) when fed

with an original or synthetically generated image.

Both G and D can be seen as series of parametric operators.

The parameters are chosen through training. This means that

a cost function (typically referred to as loss) is chosen, and an

iterative procedure is applied to find network parameters that

minimize a cost function over the used training image pairs

{I(k),Iref
(k)}.

The rationale behind GAN training is that the discriminator

is trained to understand whether an image under analysis is a

real image, or an image obtained through the generator. At

the same time, the generator is trained to obtained the desired

output from a given input, and fool the discriminator. In other

words, the discriminator can be seen as a regularizer of the

generator. It enforces the generator to output images visually

similar to real ones.

From a more formal point of view, the used cost function de-

pends on several terms. One term is the generator loss defined

as

LG(I ,Iref) = ‖Iref −G(I)‖1, (1)

which represent the ℓ1-norm of the error introduced by the gen-

erator. This term controls that the generated image is coherent

with the desired one. As additional term, we define the GAN

loss as

LGAN(I) = logD(I)+ log(1−D(G(I)), (2)

which measures how likely the generator is able to fool the dis-

criminator in terms of binary cross-entropy. Finally, we pro-

pose an additional normalization term defined as

Lℓ1
(I) = ‖G(I)‖1, (3)

which enforces the generated image to have small ℓ1-norm, as

typically required in some seismic imaging applications. The

overall cost function to minimize is then

L (I ,Iref) = LG(I ,Iref)+λ1LGAN(I)+λ2Lℓ1
(I), (4)

where λ1 and λ2 are used as weights for the different loss

terms. In our work, minimization is achieved relying on the

well-known Adam technique customary used in many deep

learning applications (Kingma and Ba, 2014).

In order to adapt the proposed method to images of any size,

the network is built to work on image patches. Specifically,

every time we analyze an image (for either training or testing),

we split it into smaller patches of 128 × 128 samples each,

which are processed separately.

When the whole GAN has been trained, we can process new

images I. Specifically, we feed I (or patches of it) to the gen-

erator G, and obtain the estimated Î (or its patches that can be

simply spliced together).

APPLICATIONS

In this section we discuss the investigated applications, provid-

ing for each one of them all details about the used dataset and

achieved results.

High quality images from coarse data

The scenario proposed in this example is, for instance, that of

fast track projects, when we desire to obtain high quality mi-

grated images but we have no time/resources to perform RTM

over the entire data. In this case, the input image I is a depth

migrated image obtained from a very coarse acquisition ge-

ometry. The output Î that we want is the corresponding depth

migrated image as obtained with a dense acquisition geometry.

Here we show the results obtained on a modified version of

the SEG/EAGE Overthrust model. In order to build the train-

ing set {I(k),Iref
(k)} we extracted 1392 patches (of 128×128

samples) from 58 pairs of 2D migrated in-lines and x-lines.

Each 2D section was made of 768×128 samples, with a sam-

pling step of 30m.

The images I(k) have been generated by migrating a coarse ac-

quisition geometry, designed with 10 equispaced sources and

80 equispaced receivers covering all the acquisition surface.



A Generative Adversarial Network For Seismic Imaging Applications

Input

100 200 300 400 500 600 700

20

40

60

80

100

120

(a)

imgout putover.pd f imgout putover.pngimgout putover.eps

(b)

Figure 2: Input image I (a) and desired output Iref (b) for our

first application.

The images Iref
(k) have been generated by migrating a dense

acquisition geometry, designed with 200 equispaced sources

and 800 equispaced receivers covering all the acquisition sur-

face.

After the training, the GAN has been tested on different in-

lines and x-lines never used for training. This is done to assess

the generalization capability of the trained GAN. In Figure ??

we show an input migrated section (a) and the corresponding

output (b). The red square highlights the portion of the image

zoomed in Figure 3.

In particular, Figure 3(a) is a close-up view of the input im-

age I and Figure 3(b) is the actual corresponding desired target

image Iref (i.e., the zoomed version of the image obtained by

migrating the dense acquisition geometry). The output of the

trained network upon convergence is shown in Figures 3(c) and

3(d) when λ2 = 0 and λ2 = 10, respectively (i.e., we consider

or not Lℓ1
). It is possible to see that both solutions are satisfac-

tory: the low-resolution artifacts have been almost completely

eliminated and the visual quality of the image is remarkably

like that of the desired target. However, by adding a constraint

on the ℓ1 norm (Figure 3(d)) of the output we have been able

to further improve the result and to accelerate the convergence

of the training phase.

In order to have a numerical evaluation of the achieved results

we choose as a metric the Signal-to-Noise Ratio (SNR) in dB,

defined as

SNR = 10log10

Var(Iref)

VAr(Î− Iref)
. (5)

Testing 79 images, we obtained an average SNR of 17.15 dB

and 16.6 dB for the outputs obtained with and without ℓ1 con-

straint, respectively. This confirms the improvement given by

the proposed Lℓ1
term added to the overall loss function.

Once the training of the network is completed, the computa-

tional time needed to obtain an image of comparable quality

with respect to that obtained with a dense acquisition geom-

etry dramatically reduces. For instance, in order to build the

example shown in this section, the time needed to generate

a single migrated section with the dense migration geometry

was around 40 minutes. Instead, the time needed to generate

an output image of the network was about 2 minutes, almost

entirely dedicated to migration with the coarse geometry, only

Inputzoom
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Outputzoom
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Figure 3: Input (a), desired output (b), results achieved without

(c) and with (d) Lℓ1
loss term.

few seconds were needed to generate the output Î from the in-

put I using a single Nvidia Titan X GPU.

Reflectivity from migrated images

As we believe that the analyzed CNN represents a promis-

ing approach for deconvolution-like problems (e.g., deghost-

ing, LS-RTM etc.), we propose a synthetic example in order

to illustrate its potential. Here, the input I is a standard depth

migrated image and the desired output Î is an image of subsur-

face’s reflectivity.

In a synthetic experiment we are able to build a training set

{I(k),Iref
(k)} where the elements I(k) are patches of depth mi-

grated images and the elements Iref
(k) are the corresponding

patches of reflectivity images r(x,z), computed from the strati-

graphic velocity models v(x,z) as

r(x,z) =
v(x,z+∆z)− v(x,z)

v(x,z)
. (6)

We trained the network on 194 pairs of patches from the Sigs-

bee model and then we tested it on a different validation set of

193 pairs.

As evaluation metric we compared the output and the target

through the structural similarity index (SSIM) defined as:

SSIM =
(2E[Iref]E[Î]+ c1)(2Cov(Iref, Î)+ c2)

(E[Iref]+E[Î]+ c1)(Var(Iref)+Var(Î)+ c2)
, (7)

where c1 and c2 are appropriate damping factors, E computes

the mean, and Cov the covariance.

We show a couple of results computed on the validation patches

with different structural features: an area with the presence of

a salt body, and the water bottom interface (Figure ??) and an

area of sediments only (Figure 5).
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Figure 4: Input (a), desired output (b), results achieved without

(c) and with (d) Lℓ1
loss term.

For each example we show: (a) the input migrated image I; (b)

the corresponding reflectivity, which is the reference desired

output I; (c) the output Î of the GAN trained on the training

dataset for 1000 iterations; (d) the output Î of the GAN with the

additional ℓ1 constraint on the loss function and with a training

of 200 iterations. In the first example, the average SSIM is

around 0.66, as the salt makes the problem more challenging.

In the second example, the average SSIM is 0.90, much closer

to the optimal value of 1. Despite the use of ℓ1 constraint in

loss function does not improve the quality of the reconstructed

image, it is worth noting that it makes training convergence

much faster.

Figure 6 shows a 1D vertical profile extracted at the central

horizontal location from the example of Figure 5. The blue

dotted lines represent the ideal reflectivity profile, the black

lines are extracted from the migrated section (left image) and

from the output of the GAN with regularization (right image).

The effect of deconvolution is quite evident, and also the am-

plitudes are well recovered.

CONCLUSIONS

In this work we proposed an alternative use of a GAN as seis-

mic image processing operator. Specifically, we propose a

GAN that builds upon (Isola et al., 2017) with a modified loss

function tailored to seismic image processing. Through a pre-

liminary experimental campaign, we show that it is actually

possible to leverage recent findings in deep learning for dif-

ferent geophysical imaging applications. Future work will be

devoted to study the generalization capabilities of GANs ap-

plied to seismic image processing.
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Figure 5: Input (a), desired output (b), and results achieved

without (c) and with (d) Lℓ1
loss term.
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Figure 6: 1D vertical profiles. The reference profile (blue line)

is compared with the migrated (a) and deconvolved (b) profiles

represented with black lines.
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