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Abstract 

Objective: In this paper, we proposed a Denoising Super-resolution Generative 

Adversarial Network (DnSRGAN) method for high-quality super-resolution 

reconstruction of noisy cardiac magnetic resonance (CMR) images. 

  

Methods: This method is based on feed-forward denoising convolutional neural 

network (DnCNN) and SRGAN architecture. Firstly, we used a feed-forward 

denoising neural network to pre-denoise the CMR image to ensure that the input is a 

clean image. Secondly, we use the gradient penalty (GP) method to solve the problem 

of the discriminator gradient disappearing, which improves the convergence speed of 

the model. Finally, a new loss function is added to the original SRGAN loss function 

to monitor GAN gradient descent to achieve more stable and efficient model training, 

thereby providing higher perceptual quality for the super-resolution of CMR images. 

  

Results: We divided the tested cardiac images into 3 groups, each group of 25 images, 

calculated the Peak Signal to Noise Ratio (PSNR) /Structural Similarity (SSIM) 

between Ground Truth (GT) and the images generated by super-resolution, used them 

to evaluate our model, and Compared with the current widely used method: Bicubic 

ESRGAN and SRGAN, our method has better reconstruction quality and higher 

PSNR/SSIM score. 

  

Conclusion: We used DnCNN to denoise the CMR image, and then using the 

improved SRGAN to perform super-resolution reconstruction of the denoised image, 

we can solve the problem of high noise and artifacts that cause the cardiac image to be 

reconstructed incorrectly during super-resolution. Furthermore, our method is capable 

of high-quality reconstruction of noisy cardiac images. 

  

Keywords： Generative Adversarial Network, Denoising, Super-resolution, CMR 

images, Deep learning. 

  

  

  

  

  

  

  

  

  

  

  

  

  

 



 Highlights 

 

 

 DnSRGAN method is proposed for high-quality super-resolution of noisy CMR 

images. 

 Feed-forward convolutional neural network is used to pre-denoise the CMR 

image. 

 Applied gradient penalty (GP) method solves the problem of the gradient 

disappearing. 

 WGAN loss function monitors GAN gradient descent to achieve more stable 

training. 

 

 

1. Background  

Cardiac magnetic resonance (CMR) imaging plays an important role in the diagnosis 

of heart disease. It can be used to assess the structure and function of the heart. The 

false triggering of ECG gating, patient arrhythmia and incomplete breath hold may 

cause artifacts or other noises during the acquisition of CMR images [1], which will 

greatly affect the cardiovascular image diagnosis [39] of patients.The suppression of 

noise is best handled in time during the acquisition process, but the hardware 

requirements are very demanding and the cost is relatively expensive. The cost of 

using the deep learning technology for the acquired image is much smaller. With the 

development of deep learning, image processing[36] methods such as denoising, 

super-resolution reconstruction and intelligent recognition of the collected images 

have become the focus of attention of most scholars. 

  

Image denoising is a classic theme in computer vision and is an indispensable part in 

the application of actual image processing. In the past, non-local self-similarity (NSS) 

[2], sparse representation [3], Markov random field (MRF) [4] and other prior 

methods are applied to image denoising. However, the significant problems of the 

prior method are difficult to optimize and take a long time. Chen et al. suggested a 

trainable nonlinear reaction diffusion (TNRD) model [5], which is expressed as a 

feed-forward deep network by developing a fixed number of gradient descent 

inference steps. With the development of machine learning and deep learning, 

multi-layer perceptron (MLP) [6] is successfully used in image denoising. Yang et al. 

used a CT image denoising method with Wasserstein distance and perceptual 

similarity based on Generative Adversarial Network (GAN) [7]. Perceptual similarity 

loss is compared with the perceptual features of the denoising output in the 

established feature space, and use the perceptual features of real images to suppress 

noise.  

  



The disadvantages of the above methods that cannot be ignored are that they are 

trained with a specific model for a specific noise level and are limited in the denoising 

of non-directional noise images. Zhang et al. advised to treat image denoising as a 

simple discriminant learning problem [8], that is, to separate noise from noisy images 

by feed-forward denoising convolutional neural network (DnCNN), integrating batch 

normalization and residual learning to accelerate training Process and improve 

denoising performance. This paper uses feed-forward denoising convolutional neural 

network (DnCNN) to denoise the noisy cardiac image, train a single DnCNN model 

for blind Gaussian denoising, and a better denoising model than training for a specific 

noise level.This method improved the authenticity and quality of cardiac images. 

  

In actual medical image diagnostics processing [40], low-resolution (LR) images with 

poor quality have too few texture details, which is detrimental to the accuracy of the 

diagnosis of heart disorders. Therefore, it is necessary to convert a LR cardiac image 

into a high-quality high-resolution (HR) image. Harris and Goodman et al. mentioned 

super-resolution [9,10], and believed that there is a relevant mapping relationship 

between LR images and HR images. If we can train a large number of images through 

deep learning models to learn these mapping relationships, then using LR images can 

reconstruct true HR images. Dong et al. used a deep learning model to solve the 

super-resolution problem [11], and used a three-layer convolutional neural network 

(CNN) [12] to learn the mapping relationship between LR images and HR images, 

adding a Mean Squared Error ( MSE) as a loss function to obtain high-quality images. 

  

However, when MSE is used as a loss function, when the input resolution of the 

image is large, the high-frequency texture details of the image will be lost. Ledig et al. 

used GAN to deal with image super-resolution [13], learned the mapping relationship 

between LR and HR through the confrontation of generator and discriminator, and 

adopted a new perceptual loss function to enhance the texture details of the image. 

However, the training of the original GAN is unstable and it is easy to bring the 

non-existing features to the generated image, which is also the open and challenging 

problem that GAN has always faced. Martin Arjovsky et al. proposed WGAN to solve 

the problem of instability in the original GAN training [14]. The approximate optimal 

discriminator was used to optimize the generator to reduce the Wasserstein distance, 

so that the distribution of generated images tended to the distribution of real images. 

Ishaan Gulrajani et al. found that WGAN had shortcomings and can only generate 

low-quality samples and the model convergence was difficult [15]. Therefore, WGAN 

was improved, and a high learning rate gradient penalty was applied to each sample to 

increase the convergence speed and use the Adam optimizer to Improve performance. 

  

Our main contributions are as follows: Firstly, the input image with lower PSNR [33] 

is not suitable for GAN, which will greatly reduce its performance. Most CMR 

images are noisy, and their PSNR is relatively low. Therefore, we first perform 

DnCNN denoising on the CMR image to obtain a high PSNR cardiac image, which is 

used as the SRGAN [32] training image to increase the CMR training set. Enhance 



the generalization ability of the model. Secondly, SRGAN has the problem of gradient 

disappearance, which makes the training unstable and brings non-existent features to 

the generated image. Therefore, we minimize the Wasserstein distance and use the GP 

method, make the distribution of the generated image close to the distribution of the 

real image. The Lipschitz limit is that the gradient of the discriminator does not 

exceed K, then we first find the gradient of the discriminator. A L2-norm between 

output and K is established to implement a penalty loss function to avoid the 

disappearance and explosion of training, and at the same time improve the 

convergence speed of the model. Thirdly, the network we proposed is based on the 

GAN architecture and extends the Denoiser module so that the network can perform 

super-resolution processing on low-resolution and noisy CMR images, and add the 

WGAN loss function to the original SRGAN loss function SR

WGANL  to increase the 

accuracy of image reconstruction. The experimental results show that our method has 

higher PSNR/SSIM than Bicubic [30], ESRGAN [31], SRGAN and other methods, 

and the reconstruction quality is significantly improved. 

  

  

2. Results 

Our method is implemented by Python 3.6, TensorFlow 1.6.0 and Pytorch 0.4.1. We 

applied the Adam optimizer [29] to adjust our GAN network, where the parameter β

=0.9, and the batch normalized size is 16. The learning rate of the residual network is 

10-4, and the learning rate decay is 0.1. we use Wasserstein-GP to supervise gradient 

descent [38] and avoid gradient disappearance and explosion. We changed the number 

of training epoch from 10,000 in the past to 1500, because we found that the network 

began to converge after 1500 epochs, so we discarded the number of unnecessary 

training epochs, reduced the amount of network calculations, and accelerated the 

speed of network reconstruction. 

 

Our data set collected cardiac images of 64 patients using the Siemens Sonata 1.5 T 

Syngo MR 2004A scanner with Numaris-4 serial number 21609. A total of 675 MR 

images were collected, of which 75 were used as test images. The test was divided 

into 3 groups of 25 images, and the PSNR/SSIM was averaged for each group to 

verify our super-resolution reconstruction model. The remaining 600 images are used 

as the training set, and the data is amplified by cropping, translation, and rotation, 

because a large amount of data can improve the reconstruction accuracy of the model. 

The original GAN uses MSE and VGG as the generation loss function, which solves 

the generation of super-resolution images, but the training time and reconstruction 

accuracy can also be improved. We combine WGAN with the two as the generation 

loss function of Dn-SRGAN. Through the comparison of the experimental training 

curve (see Fig.1), it is found that the PSNR value is effectively improved after adding 

the WGAN loss function. It can be seen from the curve that the improved method can 

reach convergence in fewer training rounds. 



 

We divided the test images into 3 groups ( hereby labelled as a, b, and c ), which is 

based on each group of 25 time series frames, to verify our DnSRGAN model. As 

shown in Fig. 2, we select representative images from each group to show the 

intuitive visual experience of our method and super-resolution methods such as 

bicubic, SRGAN, ESRGAN, etc. It can be clearly seen that the MR image generated 

by our method is closer to the GT image than other methods. In computer vision, most 

people use the numerical evaluation criteria such as PSNR and SSIM to verify the 

quality of the reconstructed image. From the values in Table 1, we can see that the 

Avg-PSNR and Avg-SSIM of our DnSRGAN model are obvious higher than the other 

three methods. From the average PSNR/SSIM, we are superior to other methods. The 

histograms in Fig.3 and Fig. 4 show the advantages of our method more 

clearly,VAvg-PSNR ,VAvg-SSIM are the values of Avg-PSNR and Avg-SSIM, respectively. 

This diagram shows that our network can better reconstruct cardiac images with 

complex structures. 

  

  

3. Discussion 

In this work, we refer to the WGAN and WGAN-GP methods to add the WGAN loss 

function to the original SRGAN loss function to monitor the GAN gradient descent, 

minimize the Wasserstein distance, adjust the distribution of the generated image 

close to the distribution of the real image, and use the GP optimize the discriminator 

to achieve more stable and efficient model training, thereby providing higher 

perceptual quality for the super-resolution of CMR images. We also pre-denoise the 

CMR image, add the obtained high PSNR image to the training of the network, 

expand the training set, and enhance the generalization ability and credibility of the 

model. 

 

The traditional bicubic interpolation method adopts average interpolation for the 

enlarged image, which smoothes the contour details. The generation of adversarial 

networks solves the problems of traditional methods and sharpens the boundary 

texture. But then comes new problems. The deepening of the network layer and the 

complexity of the texture of the training image make the training unstable and the 

gradient disappears, so that the network produces unreal texture details. Our method 

fills the defects of the above two problems. From Table 1, we can see that our 

DnSRGAN is significantly better than the bicubic interpolation method and other 

SRGAN methods in PSNR/SSIM, and is superior in the reconstruction of a clear 

image. 

 

Since our dataset is many groups of cine MR image, which consist of the same object 

in different time frames. Even if data augmentation technologies such as rotation, 

translation, and cropping expand the data set, they still cannot solve the problem of 

insufficient data and insufficient variety. In future research, we will conduct research 



from the following three aspects. Firstly, we try a more accurate loss function to 

restore the structural information lost after image enlargement, and will not 

reconstruct unreal texture features. Secondly, we consider using a highly complex and 

modular deep learning method to pre-denoise the CMR image, because the higher the 

quality of the input image, the better the effect of super-resolution reconstruction. 

Thirdly, use deep learning to batch generate CMR images that are completely 

different from existing data sets. Finally, we will perform research in the direction of 

3D super-resolution and consider adding the spatial features of the image sequence to 

the middle of the network. 

 

 

 

 

4. Conclusion 

In this paper, we developed a novel Dn-SRGAN model based on DnCNN and 

advanced SRGAN architecture, introducing the Denoiser module to pre-denoise the 

CMR image. The network not only perform super-resolution processing on the 

original low-resolution and noisy CMR images, but also perform super-resolution 

reconstruction on the original high-resolution CMR images. Based on our proposed 

technique, we can solve the problem that the artifacts and noise of CMR images cause 

lower PSNR to affect the performance of GAN. Experimental results show that our 

method has higher PSNR/SSIM compared to Bicubic, ESRGAN and SRGAN 

methods, which means that our proposed method has higher image reconstruction 

quality, which can better guide medical experts in the targeted cardiac diagnosis. 

 

 

5. Materials and Methods 

5.1. Related work 

5.1.1 Denoising Convolutional Neural Network 

The goal of image denoising [34] is to remove the pollution information 

superimposed on the original clean image and reconstruct the potentially clean image. 

Compared to noisy images, potentially clean images contain more information. Zhang 

et al. proposed to use a deeper DnCNN model to achieve denoising [7]. In order to 

solve the gradient dispersion effect caused by the deepening of the network layer, 

DnCNN does not directly learn the noise image, but uses the L2-norm [37] of output 

and noise as the loss Function to train the network. DnCNN is regarded as a residual 

learning process. The network uses the BN layer and residual learning to jointly use to 

improve the performance of the model and achieve blind image denoising without 

specific noise. 

  

5.1.2 Generative Adversarial Network 



Goodfellow et al. first designed to generate adversarial networks [16], which use 

generator networks and discriminator networks to confront each other and train 

alternately to make the generated images better. The generator network G is 

responsible for generating SR images close to Ground Truth (GT) image, and the 

discriminator network D is responsible for distinguishing the true and false images 

generated by the generator network from the GT images. Ideally, when the 

discriminator network discriminates the generated image into the GT image, the 

network model is optimal. However, the distribution of the images generated by the 

original GAN generator is random, which easily makes the gradient [17] of the 

generator disappear. To solve this problem, WGAN was proposed to minimize the 

Wasserstein distance [18] so that the distribution of the generated image and the 

distribution of GT image are infinitely close. In the process of experimental training, 

the convergence speed of WGAN is slow. Therefore, WGAN with Gradient Penalty 

(WGAN-GP) [19] accelerates the convergence of WGAN by adding a GP to the 

discriminator and using the Adam optimizer to optimize the generator.  

  

We convert the GAN problem to solve the min-max problem, as shown in Eq. 1: 

       
2

min max x 1HR LR
CMR CMR

G D

HR LR

CMR CMR x x
D D G D

 
   

                  (1) 

 

where G  is the generator network, D  is the discriminator network, HR

CMR  is the 

original high-resolution CMR image or the high-resolution image after denoising.  

x  means to sample in all CMR images,  is a constant. 

  

5.2 Proposed DnSRGAN architecture 

  

The network structure we use is based on the SRGAN framework, but we have 

augmented a Denoiser, which effectively helps us remove noise and artifacts [20] in 

CMR images. The high PSNR images after denoising can be added to the GT image 

as our training image. This increases the data set and avoids overfitting [35] the model. 

At the same time, it enables our generator to perform super-resolution reconstruction 

of noisy CMR images. The entire network structure is shown in Fig. 5, we take the 

noisy CMR low-resolution image as input and enlarge it by 4x . The generator uses 

the enlarged image to generate a SR image. The discriminator distinguishes whether 

the generated image is the original high-resolution CMR image or the high-resolution 

CMR image after denoising by the denoiser. 

  

Our expanded Denoiser (Fig.6a) separates noisy images and noise based on the 

DnCNN network, adopts residual learning [21], and adds batch normalization to 

enhance denoising performance and speed up the training process. After denoising the 

CMR image, the sharpening effect of the boundary and texture details is better. We 

convolved the CMR noise image with 64 3×3 convolution kernels, and then 

integrated the feature map using the ReLU function. Then we used 8 residual blocks 



ResBlock (Fig. 6b) to train the network, difference from the previous residual block is 

that we added the BN layer and adopted the skip connection [23] between each 

ResBlock [22], which can shorten the training time of the network and improve the 

denoising performance of the network. 

 

The generator of the network learns the residual between the original HR image and 

the LR enlarged 4x image by modifying the gradient parameters on the basis of the 

low-resolution CMR image enlarged by 4x. The task of the discriminator is to 

determine whether the image generated by the generator is GT image, and feed back 

the result to the generator through parameters. As shown in Fig.7a, the left side is a 

LR magnified 4x image, and the right side is a generated SR image. First use 64 9×9 

convolution kernels for convolution processing, then use 8 ResBlocks to learn the 

residual mapping between LR/HR, and finally use 256 3×3 convolution kernels for 

convolution to obtain the final generation SR images. In Fig. 7b, the generated SR 

image and GT image are taken as input, and after 8 convolutional layers, each 

convolutional layer is batch normalized (BN) [24], LeakyReLU [25] activation, after 

passing through two dense layers [26], the statistical probability is finally feed back to 

the generator through the Sigmoid function. Ideally, the discriminator discriminates 

all SR images into GT images, the model can reconstruct true HR cardiac images. 

  

5.3  Perceptual loss function 

  

GAN model training is unstable and prone to gradient disappearance and explosion 

problems. We use the minimized Wasserstein distance to make the distribution of the 

generated image close to the distribution of the real image, and use the gradient 

penalty method. Lipschitz limits the gradient of the discriminator to no more than K, 

the gradient of the discriminator is determined, and then a two-norm between K is 

established to realize a penalty loss function to avoid training disappearance and 

explosion, and at the same time improve the convergence speed of the model. 

Wasserstein distance is shown in Eq. 2: 

)()())(())((
1

1i

xGxGKxGDxGD
L

W
L

ii

  


  (2) 

There, L represents the number of layers of the network, 
i

D  represents the judgment 

network of the i-th layer, G
 
represents the real generation network, G represents 

the estimated generation network, x represents the image sample, and K is a constant, 

which depends only on the size of the pixel space, and the network of each layer The 

weight is irrelevant. 

In order to enable our generated CMR image to have better high frequency details, 

our loss function 
SR

L
 
uses the combination of MSE [27] loss and VGG [28] loss as 

the content loss of the generator, while adversarial loss using the WGAN loss function  



to solve the problem of gradient disappearance during the training process. loss 

function is shown in Eq. 3: 

  

-MSE 1 2= + +SR SR SR SR

C VGG WGAN
L L L L 

      (3) 

 

In this equation, MSEC -  is the MSE loss ( Eq. 4) between high-resolution CMR 

images and low-resolution CMR images, 1  is 0.01, 2  is 0.001. 
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      (4) 

 

Here, W and H are the dimensions of the image, the D represents the discriminator 

and the G represents the generator. LR

CMR  is LR images,   LR

CMRD  ˆ  is the 

high-resolution image after denoising the low-resolution CMR image. 

  

In our experiments, we found that applying the VGG network to the generator can 

enhance the texture details of the image and improve the quality of the generated 

image. We applied VGG loss function is shown in Eq. 5: 

      i,j i,j
2

i,j i,j
, ,

1 1i,j i,j

1 ˆ=
G

W H

SR LR LR

VGG CMR CMR
x y x y

x y

L D G
W H

 
 

   (5) 

Here, 
ji,  represents the feature obtained by the j-th convolution before the i-th 

pooling layer. 

  

 

Due to the problem of gradient disappearance of the original GAN generator, we 

adopted Wasserstein distance to optimize generator. The generator's adversarial loss is 

defined as the probability that the discriminator will recognize the generated 

high-resolution CMR image as the original high-resolution image. The function loss 

of the generator is shown in Eq. 6: 

  = HR
CMR

SR LR

WGAN CMR
L D G


      (6) 

Where, HR

CMR  refers to GT images. 

   

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Ethics approval and consent to participate 

The authors declare that there is not against human ethnics. 

 

Consent for publication 

Not applicable. 

 

Competing interests 

We declare that they have no competing interests 

  

Funding 

This work was funded by the National Natural Science Foundation of China 

(No.81771927, No.61572526). 

 

Authors Contributions 

Conceived and designed the experiments: MZ YW. Performed the experiments: 

KKLW MZ YW.. Analyzed the data: KKLW MZ. Wrote the paper: KKLW MZ YW . 

 

Acknowledgement 

Not applicable. 

 

Availability of data and materials 

The datasets generated during and/or analyzed during the current study are available 

from the corresponding author at reasonable request. 



 

 

 

 

 

 

 

 

 

 

 

 

 

References  

[1] Pedro F Ferreira, Peter D Gatehouse, et al. Cardiovascular magnetic resonance 

artefacts[J]. Journal of Cardiovascular Magnetic Resonance, 2013, 15(1):41-41. 

[2] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse 

models for image restoration,” in IEEE International Conference on Computer Vision, 
2009, pp. 2272–2279. 

[3] Qi N, Shi Y, Sun X , et al. Single image super-resolution via 2D nonlocal sparse 

representation[C]. 2015 Visual Communications and Image Processing (VCIP). IEEE, 

2015, pp. 1-4. 

[4] X. Lan, S. Roth, D. Huttenlocher, and M. J. Black, “Efficient belief propagation 
with learned higher-order Markov random fields,” in European Conference on 
Computer Vision, 2006, pp. 269–282. 

[5] Chen Y, Pock T. Trainable Nonlinear Reaction Diffusion: A Flexible Framework 

for Fast and Effective Image Restoration[J]. IEEE Transactions on Pattern Analysis & 

Machine Intelligence, 2017, 39(6): 1256-1272. 

[6] Burger, Harold C, Christian J. Schuler, and Stefan Harmeling. "Image denoising: 

Can plain Neural Networks compete with BM3D?." Computer Vision and Pattern 

Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp.2392-2399. 

[7] Yang Q, Yan P, Zhang Y, et al. Low-Dose CT Image Denoising Using a 

Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.[J]. 

IEEE Transactions on Medical Imaging, 2018, 37(6):1-1. 

[8] Zhang K, Zuo W, Chen Y, et al. Beyond a Gaussian Denoiser: Residual Learning 

of Deep CNN for Image Denoising[J]. IEEE Transactions on Image Processing, 2016, 

26(7): 3142-3155. 



[9] J. L. Harris. Diffraction and Resolving Power [J]. Journal of the Optical Society of 

America, 1964,54(7): 931-936. 

[10] Goodman J W . Introduction to Fourier Optics: McGraw-Hill[J]. Optical 

Engineering, 1996, 35(5): 1513-1513. 

[11] C. Dong, C. C. Loy. Image Super-Resolution Using Deep Convolutional 

Networks [J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2015, 

38(2): 295-306. 

[12] Leibe B, Matas J, Sebe N, et al. Accelerating the Super-Resolution 

Convolutional Neural Network[J]. IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2016, 10.1007/978-3-319-46475-6(Chapter 25): 391-407. 

[13] Ledig C, Theis L, Huszar F, et al. Photo-Realistic Single Image Super-Resolution 

Using a Generative Adversarial Network[J]. IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), 2017, pp. 105-114. 

[14] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. arXiv preprint arXiv: 

1701.07875, 2017. 

[15] Gulrajani I, Ahmed F , Arjovsky M , et al. Improved Training of Wasserstein 

GANs[J]. Conference and Workshop on Neural Information Processing Systems 

(NIPS), 2017, pp. 5769-5779. 

[16] Goodfellow I J, Pouget-Abadie J , Mirza M , et al. Generative Adversarial 

Nets[J]. International Conference on Neural Information Processing Systems. MIT 

Press, 2014: 2672-2680. 

[17] Bengio Y. Practical Recommendations for Gradient-Based Training of Deep 

Architectures[J]. Lecture Notes in Computer ence, 2015, 7700(1-3): 437-478. 

[18] Solomon J, Goes F D , Gabriel Peyré, et al. Convolutional wasserstein 

distances[J]. ACM Transactions on Graphics, 2015, 34(4CD):66.1-66.11. 

[19] Ni K , Bresson X, Chan T, et al. Local Histogram Based Segmentation Using the 

Wasserstein Distance[J]. International Journal of Computer Vision, 2009, 

84(1):97-111. 

[20] Buttery B, Davison G. The ghost artifact[J]. Journal of ultrasound in medicine: 

official journal of the American Institute of Ultrasound in Medicine, 1984, 3(2):49-52. 

[21] He K, Zhang X, Ren S, et al. Deep Residual Learning for Image 

Recognition[C]// IEEE Conference on Computer Vision & Pattern Recognition. IEEE 

Computer Society, 2016, pp. 770-778. 

[22] Chen C, Qi F. Single Image Super-Resolution Using Deep CNN with Dense Skip 

Connections and Inception-ResNet[C]. 2018 9th International Conference on 



Information Technology in Medicine and Education (ITME). IEEE Computer Society, 

2018, pp. 999-1003. 

[23] J. Yamanaka, S. Kuwashima, and T. Kurita. Fast and accurate image super 

resolution by deep cnn with skip connection and network in network. In International 

Conference on Neural Information Processing, 2017, pp. 217–225. 

[24] Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training 

by Reducing Internal Covariate Shift[J]. Computer Science, 2015. arXiv:1502.03167. 

[25] Wang S H, Phillips P, Sui Y, et al. Classification of Alzheimer's Disease Based 

on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and 

Max Pooling[J]. Journal of Medical Systems, 2018, 42(5): 85. 

[26] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep 

convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. 

[27] Yang J, Wang Z, Lin Z, et al. Coupled Dictionary Training for Image 

Super-Resolution[J]. IEEE Transactions on Image Processing, 2012, 21(8): 

3467-3478. 

[28] Kim J, Lee J K, Lee K M. Accurate Image Super-Resolution Using Very Deep 

Convolutional Networks[J]. IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2016, pp. 1646-1654. 

[29] Yang G, Yang J, Li S, et al. Modified CNN algorithm based on Dropout and 

ADAM optimizer[J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of 

Huazhong University of Science and Technology (Natural Science Edition), 2018.  

[30] Gao S, Gruev V. Bilinear and bicubic interpolation methods for division of focal 

plane polarimeters[J]. Optics Express, 2011, 19(27): 26161-73. 

[31] Wang X, Yu K, Wu S, et al. ESRGAN: Enhanced Super-Resolution Generative 

Adversarial Networks[J]. Computer Vision – ECCV 2018 Workshops, pp. 63-7920. 

[32] Lucas A, Lopez-Tapiad S, Molinae R, et al. Generative Adversarial Networks 

and Perceptual Losses for Video Super-Resolution[J]. IEEE Transactions on Image 

Processing, 2019, pp. 3312-3327. 

[33] Gupta P, Srivastava P, Bhardwaj S, et al. A modified PSNR metric based on 

HVS for quality assessment of color images[C]// 2011 International Conference on 

Communication and Industrial Application. IEEE, 2012, pp. 1-4. 

[34] Buades A, Coll B, Morel J M. A non-local algorithm for image 

denoising[C]//Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE 

Computer Society Conference on. IEEE, 2005, 2: 60-65. 

[35] Kim S, Choi Y, Lee M. Deep learning with support vector data description[J]. 

Neurocomputing, 2015, 165(OCT.1):111-117. 



[36] Razzak M I, Naz S, Zaib A. Deep Learning for Medical Image Processing: 

Overview, Challenges and Future[J]. 2017, pp. 323-350. 

[37] Rezaei M, Yang H, Meinel C. Deep Neural Network with l2-Norm Unit for 

Brain Lesions Detection[C]// International Conference on Neural Information 

Processing. 2017, pp. 798-807. 

[38] Gupta H, Jin K H, Nguyen H Q, et al. CNN-Based Projected Gradient Descent 

for Consistent Image Reconstruction[J]. IEEE Transactions on Medical Imaging, 

2017, PP(99):1-1. 

[39] Wong K K L, Fortino G, Abbott D. Deep learning-based cardiovascular image 

diagnosis: A promising challenge[J]. Future Generation Computer Systems, 2019, p. 

801-811. 

[40] Wong K K L, Sun Z, Tu J, et al. Medical image diagnostics based on 

computer-aided flow analysis using magnetic resonance images[J]. Computerized 

Medical Imaging and Graphics, 2012, 36( 7):527-541. 

  

 

 

List of Figure Legends 

 

Fig. 1  PSNR comparison diagram of the loss function. 

 

Fig. 2  Super-resolution visual comparison of test images. 

 

Fig. 3  The super-resolution results of the Avg-SSIM. 

 

Fig. 4  The super-resolution results of the Avg-PSNR. 

 

Fig. 5  Architecture of proposed DnSRGAN. 

Fig. 6  Denoiser of DnSRGAN. 

Fig. 7  Generator and Discriminator of DnSRGAN. 

 

 

List of Table Legends 

Table. 1  PSNR/SSIM evaluation with other super-resolution methods. 

 



 

 

 

 



Figures

Figure 1

PSNR comparison diagram of the loss function.

Figure 2



Super-resolution visual comparison of test images.

Figure 3

The super-resolution results of the Avg-SSIM.

Figure 4

The super-resolution results of the Avg-PSNR.



Figure 5

Architecture of proposed DnSRGAN.

Figure 6

Denoiser of DnSRGAN.



Figure 7

Generator and Discriminator of DnSRGAN.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

TABLE1.xlsx

https://assets.researchsquare.com/files/rs-196187/v1/985ab803315531a840631673.xlsx

