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Abstract This paper introduces a multi-level classification

framework for the semantic annotation of urban maps as

provided by a mobile robot. Environmental cues are con-

sidered for classification at different scales. The first stage

considers local scene properties using a probabilistic bag-of-

words classifier. The second stage incorporates contextual

information across a given scene (spatial context) and across

several consecutive scenes (temporal context) via a Markov

Random Field (MRF). Our approach is driven by data from

an onboard camera and 3D laser scanner and uses a combi-

nation of visual and geometric features. By framing the clas-

sification exercise probabilistically we take advantage of an

information-theoretic bail-out policy when evaluating class-

conditional likelihoods. This efficiency, combined with low

order MRFs resulting from our two-stage approach, allows

us to generate scene labels at speeds suitable for online de-

ployment. We demonstrate the virtue of considering such

spatial and temporal context during the classification task

and analyze the performance of our technique on data gath-

ered over almost 17 km of track through a city.
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1 Introduction

Contemporary online mapping and simultaneous localiza-

tion techniques using lidar now produce compelling 3D geo-

metric representations of a mobile robot’s workspace. These

maps tend to be geometrically rich but semantically impov-

erished and, while maps in the form of large unstructured

point clouds are meaningful to human observers, they are of

limited operational use to a robot. Our work seeks to redress

this shortcoming. There is much to be gained by having the

robot itself label the map with richer semantic information

and to do so online. In particular, the semantics induced by

online segmentation and labeling has an important impact

on the action selection problem. For example, the identifi-

cation of terrain types with estimates of their spatial extent

has a clear impact on control. Similarly the identification of

buildings and their entrances has a central role to play in

mission execution and planning in urban settings.

The motivation for the work presented here is the neces-

sity for a system capable of producing such semantic labels

efficiently enough to be useful in an online robotics setting

while taking into account a wide variety of environmental

cues. Of particular interest here is the inclusion of contextual

information—both within a given scene as well as across

consecutive scenes—into the classification procedure.

In this paper we outline a probabilistic method which

achieves fast labeling of regions in a scene by performing

inference at multiple scales: locally, using scene wide con-

text and, finally, using context provided by evidence across

consecutive scenes. Although the application here leverages

a combination of 3D range and image data the proposed

framework is by no means limited to these modalities. At

a local scale, classification is based on the co-occurrence

of appearance descriptors, which capture both visual and
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surface orientation information. We frame this classifica-

tion problem in probabilistic terms, which allows the im-

plementation of a principled “bail-out” policy when evalu-

ating class conditional likelihoods, resulting in large com-

putational savings. Secondly, at the scene-wide scale, we

use a Markov Random Field (MRF) to model the expected

relationships between patch labels both spatially and tem-

porally, thus capturing some of the strong structural rela-

tionships between parts of a typical urban scene. Finally,

at the temporal scale, the scene-wide MRFs across consec-

utive image frames are combined into a single graph over

which inference is performed. The operation on entire scene

patches yields MRFs of relatively low node-count, just one

node for each scene patch, allowing for rapid inference.

While the core classification framework described in this

paper was first outlined in Posner et al. (2008a), the temporal

component of the classification framework presented here

provides an important extension of this work. Along with

a more in-depth discussion and motivation of our original

approach we provide an extended evaluation of results and

provide evidence of the virtue of considering both spatial

and temporal context in the classification task.

The following section provides an overview of related

works. Sections 3 and 4 introduce the workspace classes

considered and the 3D geometric and appearance-based fea-

tures used. The generative model providing the local base-

line classifications is described in detail in Sect. 5. In Sect. 6

we introduce MRFs and describe an intuitive method of ex-

tracting the relevant graph structures—over both space and

time—directly from the underlying data. Section 7 provides

an in-depth discussion of results. Finally, we conclude in

Sect. 8.

2 Related work

In recent years there has been growing interest within robot-

ics in the problems of environment understanding and scene

labeling, particularly as solutions to the SLAM problem be-

come more mature and the limitations of unannotated maps

become more apparent. The change has also been driven by

the increasing availability of rich sensory data that makes

the classification problem more tractable.

A range of machine learning techniques have been

brought to bear on the problem. Martínez-Mozos et al.

(2005), for example, classify 2D range scans into classes

such as corridor, room, and door, applying AdaBoost and

Hidden Markov Models. Anguelov et al. (2004) describe an

expectation-maximization (EM) based approach to learn the

position of doors in a hallway from 2D line segment maps.

Although 2D laser data are sufficient for very constrained

classification tasks, the information content is generally too

limited for more general scene understanding. A natural ex-

tension is to utilize 3D data. For example, the system de-

scribed in Anguelov et al. (2005) uses 3D laser data for ter-

rain classification and car detection using a Markov Random

Field model where inference is performed with Graph Cut.

The approach was extended by Triebel et al. (2006).

Over the past decades, a large body of work in com-

puter vision has also focused on the semantic interpreta-

tion of image content, in particular object detection and

recognition as well as scene description. The resulting algo-

rithms, whether they apply probabilistic feature-based ap-

proaches (Ponce et al. 2007) or use 3D geometric mod-

els (Pope 1994) have matured to a level where impressive

performance is achieved. Of particular relevance to the re-

sults presented here is the use of image context described

in Gould et al. (2008). Though robotics applications have

a large overlap with this body of work, they also present

unique circumstances, particularly with respect to the avail-

ability of multiple sensor modalities and stronger constraints

regarding timing performance. However, images are a par-

ticularly rich and well researched modality, and the use of

visual appearance within robotics is increasing. Hadsell et

al. (2007), for example, use visual appearance to classify

outdoor terrain regarding its traversability by a mobile ro-

bot. In Posner et al. (2006) image similarity is utilized to

perform an unsupervised partitioning of outdoor workspaces

and thereby defining descriptive classes such as park and

building. Visual appearance has also been successfully ap-

plied in topological mapping and place recognition (Cum-

mins and Newman 2008b), although with no notion of se-

mantic content.

Much recent robotics work has taken advantage of the

multiple sensor modalities available on typical robotic plat-

forms. In Monteiro et al. (2006) a combination of image

and 2D laser data are utilized to classify cars and pedes-

trians. The classification is carried out separately in each

feature space and the results are combined by a Bayesian

sum decision rule. Several approaches to the classification

of traversability utilize a monocular camera and a fixed

2D laser range finder that faces downwards in front of the

vehicle (Wellington et al. 2005; Thrun et al. 2006). The as-

sumption is that the 3D pose is known or can be determined

with sufficient precision. As a consequence, the laser mea-

surements from different poses can be accumulated to form

a 3D point cloud, from which features like planarity or good-

ness of plane-fit can be computed. Together with visual ap-

pearance, these features are used to classify whether or not

the terrain in front of the vehicle is traversable. These ap-

proaches are related to our work in that they draw their fea-

tures from image as well as 3D laser range data. However,

multi-class classification is not considered. Similar work by

Happold et al. (2006) utilise 3D data from stereo vision

along with appearance features using a neural network for
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Fig. 1 (Colour online) Classification results for a typical urban scene

using spatial and temporal smoothing with a window size of three

frames and history depth of one frame (see Sect. 7 for details):

the original image (left); segments classified as ‘pavement/tarmac’

(mid-left); segments classified as ‘textured wall’ (mid-right); segments

classified as ‘vehicle’ (right). The colour-coding is wrt. to ground-

truth: green indicates a correct label; red indicates a false nega-

tive

terrain classification. 3D laser data are combined with vi-

sual information in Posner et al. (2008b), which used sup-

port vector machines for classification but does not make use

of contextual information. Douillard et al. (2007) present a

probabilistic framework for object recognition using Con-

ditional Random Fields that supports the integration of ar-

bitrarily many sensors, work that was recently extended in

Douillard et al. (2008).

The development of a sound theoretical foundation to

inference on graphical models has also spawned a wealth

of work where contextual information is taken into account

during the labeling process. Contextual information is used

explicitly in Cornelis et al. (2006), Hoiem et al. (2006) and

Douillard et al. (2008) to classify/detect objects. In partic-

ular, the latter relies on Ada-boost and a decision tree of

classifiers to model the interplay between objects and scene

geometry—for example like that existing between a pedes-

trian and the ground-plane. Context information, modelled

by relational Markov networks, was also used in Limketkai

et al. (2005) for classification of segment-based representa-

tions of indoor environments. More recently Ranganathan

and Dellaert (2007) introduced an approach which takes

into account spatial relationships between objects and ob-

ject parts in 3D.

The work presented here also leverages a combination of

laser data with vision. Our main contribution lies in the defi-

nition of an efficient contextual inference framework, based

on a graph over plane patches—or superpixels—rather than

over measurements (e.g. laser range data) directly. This

yields substantial speed increases. We further define a gen-

erative bag-of-words classifier and describe an efficient in-

ference procedure for it.

3 Workspace classes in urban environments

When navigating in an urban context a higher-order knowl-

edge of the environment is indispensable. For example, the

detection of cars (moving or stationary) is important for

safe operation. Recognition of ubiquitous urban elements

Table 1 Classes

Class Description

Ground Type

Pavement/Tarmac Road, footpath.

Dirt Path Mud, sand, gravel.

Grass Grass.

Building Type

Smooth Wall Concrete, plaster, glass.

Textured Wall Brickwork, stone.

Object

Foliage Bushes, tree canopy.

Vehicle Car, van.

such as the colour and texture of surrounding houses (or,

more appropriately, of surrounding walls) and the presence

or absence of other features such as grass, bushes or trees

can provide a useful navigational cue. These considera-

tions give rise to the seven classes defined in Table 1, com-

prising ground types, building types, and two object cate-

gories.

4 Features

The system described in this paper utilizes data from a cali-

brated combination of 3D laser scanner and monocular cam-

era, both mounted on a mobile robot. A cross-calibration be-

tween the two sensors allows for the projection of the laser

data into the image. The fundamental entities considered for

classification are visually homogeneous image segments—

or superpixels—obtained using an off-the-shelf image seg-

mentation algorithm (Felzenszwalb and Huttenlocher 2004).

For each classified superpixel, we have associated 3D geo-

metric information from the laser as well as colour and tex-

ture information from the image.

The features used for classification are similar to those

described in Posner et al. (2008b). For geometry description,
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Table 2 Features used for classification

Feature Descriptions Dimensions

3D Geometry

Orientation of surface normal

of the local plane 1

2D Geometry

Location in image: mean of

normalized x and y 2

Colour

HSV: hue & sat. histograms in

a local neighbourhood 30

Texture

HSV: hue & sat. variance in

a local neighbourhood 2

the 3D point cloud is first segmented into planar patches

using the technique of Weingarten et al. (2003). The point

cloud is divided into cubic cells, and planes are fitted in each

cell using MLESAC (Torr and Zisserman 2000). Planes in

neighbouring cells which have similar surface normal orien-

tation are then merged. Finally, each planar patch is subdi-

vided on the basis of the image segmentation. This yields a

set of visually and geometrically homogenous regions in the

scene, which are the entities we consider for classification.

Each patch is described based on a set of features computed

for each laser point contained within the patch boundaries.

Colour and texture features are computed from a 15 × 15

pixel neighbourhood and comprise of a hue- and a saturation

histogram of 15 bins each as well as the variance of each of

these histograms. The descriptor also includes 3D spatial in-

formation in form of the associated plane normal orientation

encoded as cosine-distance to the vertical axis. This makes

the implicit assumption that the robot pose is always upright.

Finally, 2D spatial information is included in the form of the

normalized x and y coordinates of the projected laser point

within the image. The intuition behind this last set of fea-

tures is that, for a permanently upright robot, ground classes

predominantly occur near the bottom of the image while

spanning the entire width. This distribution is different for

non-ground classes. The feature set is summarized in Ta-

ble 2.

The feature set employed here provides relatively weak

cues for classification—our purpose in this paper is not to

describe the best possible feature set for outdoor robotics,

but rather to show what can be achieved with an appropriate

inference framework even in the absence of strong features.

5 Generative probabilistic classification

The inference framework proposed in this paper is a multi-

level approach based on successive combinations of lower-

level features. The lowest level input to our system is the

collection of laser points in the scene. Each laser point is de-

scribed by a feature vector, using the features described in

Sect. 4. Rather than deal with raw data directly, we adopt

a bag-of-words representation, where the feature vectors

are quantized with respect to a “vocabulary” of prototypi-

cal features (see Fig. 2). This approach is widely used in

the computer vision community (Leung and Malik 2001;

Schmid 2001; Sivic and Zisserman 2003). The vocabulary is

constructed by clustering all the standardized feature vectors

from a set of training data. Our system uses an incremental

leader-follower clustering algorithm (Duda et al. 2000). This

yields a vocabulary of size |v|, defined by the cluster centres.

The vocabulary size is determined by a user-specified dis-

tance threshold, which implicitly sets the number of clusters.

For this work we use a vocabulary of approximately 6,500

words. When the system has been trained, each incoming

laser point yields a feature vector which is quantized to the

approximate nearest cluster centre using a kd-tree. The laser

point’s feature vector can then be replaced by a single inte-

ger specifying which cluster centre it quantized to. The laser

points in a patch define a bag-of-words. The bag-of-words

for each patch in the scene is the input to the next level of

the system, which aims to provide a soft classification of any

given patch. The remainder of this section provides a de-

tailed description of the generative probabilistic model we

employ for this classification task.

5.1 Generative model

The core of our classification framework involves learning a

generative model of the bag-of-words input. This generative

model can be learned from plentiful unlabeled data, across

all classes. The learning procedure locates structure in the

feature space—for example, two features might commonly

occur together because they are generated by different parts

of the same object. This structure can be discovered without

supervision. Scarce labelled data is employed only after the

generative model has been learned. In effect classes are de-

fined with respect to the higher level structure discovered by

the generative model learning phase.

Our generative model for patch-level classification is il-

lustrated in Fig. 3(c). To build intuition about the structure of

our model, we first consider the simpler models in Fig. 3(a)

and 3(b).

Figure 3(a) shows a Tree Augmented Naive Bayes or

TAN model (Friedman et al. 1997). Here the class C di-

rectly generates observations z. Word observations are not

independent, and this is captured by the edges between the
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Fig. 2 (Colour online) Feature generation from raw data. Extracted planes are sub-segmented based on the image data. Features are then extracted

around each laser point in a patch. Extracted features are quantized to visual words

Fig. 3 The generative model

used in this paper, (c), and

several alternative models

considered, (a), (b). The

relevant conditional

probabilities to be estimated

along with the size of the

associated probability tables are

shown in (c)

z nodes. These edges form a tree, the structure of which

is learned from data using the Chow Liu algorithm (see

Sect. 5.4). Related models are discussed in detail in Meilă

and Jordan (2001). The main limitation of these models is

their limited ability to capture high intra-class variability,

due to the restriction that the dependencies between z vari-

ables be tree structured. We thus seek a different model to

overcome this issue.

The model in Fig. 3(b) extends the TAN model by in-

troducing exemplars and a sensor model. Rather than define

a density over observations directly, classes now generate

exemplars. Exemplars define a density over the e variables,

which in turn produce observations z. Exemplars improve

the model’s ability to capture high intra-class variability, by

essentially decomposing the class density into a set of local

densities around exemplars. The effective “distance func-

tion” around an exemplar is determined by the sensor model

and the correlations in the Chow Liu tree, and so is derived

from the data itself. Exemplars also allow for easy online

updates to the classifier—a class can be updated simply by

adding a new exemplar.

The e variables are introduced to allow for the incorpora-

tion of a sensor model. Intuitively, e represents “existence”

and z “observation”. The two quantities are linked via a sen-

sor model described in Sect. 5.3 which allows for false pos-

itive and false negative detections.

Explicitly separating feature observation z from feature

existence e provides a natural framework for dealing with

multiple sensors and time-varying sensor accuracy. For ex-

ample, our expectation of observing a particular visual word

in a class might be high, however, if we also know that cur-

rent lighting conditions are poor, then a failure to observe

the word is less surprising. Equally we can allow for the fact

that different observations may originate from cameras with

different resolution, for example. These effects cannot be in-

corporated into a model where exemplars C directly define

a density over observations z.

Finally, the model in Fig. 3(c) is the one we actually

use for classification. This is essentially an approximation

to model (b). For reasons of tractability, we now impose the

tree-structured dependencies between the observed z vari-

ables, while the unobserved e variables are now indepen-

dent. Learning the structure of this model from data is con-

siderably easier, because the dependencies to be determined

are between observed variables only.

5.2 Patch-level classifier

Our patch-level classifier is inspired by the probabilistic

appearance model described in Cummins and Newman

(2008b) and the theory presented below is an extension

of that work into a more general classification framework.
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Building on the output of the lower-level vector quantization

step, an observation of a patch z = {z1, . . . , z|v|} is a collec-

tion of binary variables where each zi indicates the presence

(or absence) of the ith word of the vocabulary within the

patch. We would like to compute p(C|z), the distribution

over the class labels given the observation, which can be

computed according to Bayes’ rule:

p(C
k|z) =

p(z|Ck)p(Ck)

p(z)
(1)

where p(z|Ck) is the class-conditional observation likeli-

hood, p(Ck) is the class prior and p(z) normalizes the dis-

tribution.

5.3 Representing classes

Given a vocabulary, individual classes are represented

within the classification framework by a set of class-

specific examples, which we call exemplars. Concretely,

for each class k the model consists of nk exemplars Ck =

{Ck
1 , . . . ,Ck

nk
} where Ck

i is the ith exemplar of class k. Ex-

emplars themselves are defined in terms of a hidden “exis-

tence” variable e, each exemplar Ck
i being described by the

set {p(e1|C
k
i ), . . . , p(e|v||C

k
i )}. The term ej is the event that

a patch contains a property or artifact which, given a perfect

sensor, would cause an observation of word zj . However, we

do not assume a perfect sensor—observations z are related

to existence e via a sensor model which is specified by

D :

{

p(zj = 1|ej = 0), false positive probability

p(zj = 0|ej = 1), false negative probability
(2)

with these values being a user-specified input. The reasons

for introducing this extra layer of hidden variables, rather

than modeling the exemplars as a density over observations

directly, are twofold. Firstly, as described in the previous

section, it provides a natural framework for incorporating

data from multiple sensors, where each sensor has different

(and possibly time-varying) error characteristics. Secondly,

as we will discuss later, it allows the calculation of p(z|Ck)

to blend local patch-level evidence with a global model of

word co-occurrence.

5.4 Estimating the observation likelihood

The key step in computing the pdf over class labels as per (1)

is the evaluation of the conditional likelihood p(z|Ck). This

can be expanded as an integration across all the exemplars

that are members of class k:

p(z|C
k) =

nk
∑

i=1

p(z|Ck
i , C

k)p(Ck
i |C

k) (3)

where Ck is the class k, and Ck
i is an exemplar of the class.

Given p(Ck|Ck
i ) = 1 (an assumption that none of the train-

ing data are mislabeled) and p(Ck
i |Ck) = 1

nk
(all exemplars

within a class are equally likely), this becomes

p(z|C
k) =

1

nk

nk
∑

i=1

p(z|Ck
i ) (4)

The likelihood with respect to the exemplar can now be ex-

panded as:

p(z|Ck
i ) = p(z1|z2, . . . , zn,C

k
i )

× p(z2|z3, . . . , zn,C
k
i ) . . . p(zn|C

k
i ) (5)

This expression cannot be tractably computed—it is infea-

sible to learn the high-order conditional dependencies be-

tween appearance words. We thus seek to approximate this

expression by a simplified form which can be tractably com-

puted and learned for available data. A popular choice in this

situation is to make a Naive Bayes assumption—treating all

variables z as independent. However, visual words tend to

be far from independent, and it has been shown in similar

contexts that learning a better approximation to their true

distribution substantially improves performance (Cummins

and Newman 2008b). The learning scheme we employ is the

Chow Liu tree, which locates a tree-structured Bayesian net-

work that approximates the true distribution (Chow and Liu

1968). Chow Liu trees are optimal within the class of tree-

structured approximations, in the sense that they minimize

the KL divergence between the approximate and true dis-

tributions. Because the approximation is tree-structured, its

evaluation involves only first-order conditionals, which can

be reliably estimated from practical quantities of training

data. Additionally, Chow Liu trees have a simple learning

algorithm that consists of computing a maximum spanning

tree over the graph of pairwise mutual information between

variables—this readily scales to very large numbers of vari-

ables.

The Chow Liu tree can be learnt from unlabeled train-

ing data across all classes, and approximates the distribution

p(z). To compute p(z|Ck), the class-specific density, we find

an expression that combines this global occurrence informa-

tion with the class model outlined in Sect. 5.3. Returning to

(5) and employing the Chow Liu approximation, we have

p(z|Ck
i ) = p(z1|z2, . . . , zn,C

k
i )p(z2|z3, . . . , zn,C

k
i ) . . .

×p(zn|C
k
i )

≈ p(zr |C
k
i )

|v|
∏

q=1

p(zq |zpq ,C
k
i ) (6)

where zr is the root of the Chow Liu tree and zpq is the par-

ent of zq in the tree. Each term in (6) can be further expanded
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as an integration over the state of the hidden variables in the

exemplar appearance model, yielding

p(zq |zpq ,C
k
i )

=
∑

seq ∈{0,1}

p(zq |eq = seq , zpq ,C
k
i )p(eq = seq |zpq ,C

k
i ) (7)

which, assuming that sensor errors are independent of class

and making the approximation p(ej |zj ) = p(ej ) ∀i �= j be-

comes

p(zq |zpq ,C
k
i )

=
∑

seq ∈{0,1}

p(zq |eq = seq , zpq )p(eq = seq |C
k
i ) (8)

further manipulation yields an expansion of the first term in

the summation as

p(zq = szq |eq = seq , zp = szp ) =
a

a + b
(9)

where szq , seq , szp ∈ {0,1} and

a = p(zq = szq )p(zq = szq |eq = seq )p(zq = szq |zp = szp )

b = p(zq = szq )p(zq = szq |eq = seq )p(zq = szq |zp = szp )

which is now expressed entirely in terms of the known de-

tector model and marginal and conditional observation prob-

abilities. These can be estimated from training data. Thus we

have a procedure for computing p(z|Ck).

Returning to (1), the prior p(Ck) can be learned sim-

ply from labeled training data, p(z|Ck) we have discussed

above, and to normalize the distribution we make the naive

assumption that our set of classes fully partitions the world.1

The posterior distribution across classes, p(Ck|z), can now

be computed for each patch. It should be noted that this op-

eration is linear in the number of class exemplars in the sys-

tem.

5.5 Learning a class model

The final issue to address in relation to the patch-level clas-

sifier is the procedure for learning the class models de-

scribed in Sect. 5.3. Class models consist of a list of ex-

emplars obtained from ground-truth (i.e. labeled) data. The

term p(eq = 1|Ck
i ) represents the probability that exemplar

i of class k contained word q (this is a probability because

our detector has false positives and false negatives). Given

1Clearly this normalization would benefit from a background class, a

change we plan to make in future versions of the system.

an observation labeled as this class, the properties of the ex-

emplar can be estimated via

p(eq = 1|Ck
i , z) =

p(z|eq = 1,Ck
i )p(eq = 1|Ck

i )

p(z|Ck
i )

(10)

where p(z|Ck
i ) can be evaluated as described in the previous

section and the prior term p(eq = 1|Ck
i ) we initialize to the

global marginal p(eq = 1).

5.6 Approximation using bounds

Computing the posterior over classes, p(Ck|z), requires an

evaluation of the likelihood p(z|C
k
j ) for each of the exem-

plars in the training set. As the number of exemplars grows,

this rapidly becomes the limiting computational cost of the

inference procedure. This section outlines a principled ap-

proximation that accelerates this computation by more than

an order of magnitude. The key observation is that while

the posterior over classes depends on the summation over

all exemplars (as per (4)), typically the value of the sum-

mation is dominated by a small number of exemplars, with

the rest providing negligible contribution. By evaluating the

exemplar likelihoods in parallel, those with negligible con-

tribution can be identified and excluded before the compu-

tation is fully complete. This is a kind of preemption test,

similar to procedures which have been outlined in other do-

mains (Maron and Moore 1994; Matas and Chum 2005;

Nistér 2005). We introduced this technique in Cummins and

Newman (2008a), and briefly summarize it below.

Recalling (6), the log-likelihood of the current observa-

tion having been generated by exemplar i under the model

is given by

ln(p(z|Ck
i )) =

|v|
∑

q=1

ln(p(zq |zpq ,C
k
i )) (11)

Now, define

d i
q = ln(p(zq |zpq ,C

k
i )) (12)

and

Di
j =

j
∑

q=1

d i
q =

j
∑

q=1

ln(p(zq |zpq ,C
k
i )) (13)

where d i
q is the log-likelihood of the ith exemplar given

word q, and Di
j is the log-likelihood of the ith exemplar

after considering the first j words. At each step of the accel-

erated computation Di
j is computed for all i, and incremen-

tally increased j—that is, we are computing the log like-

lihoods of all exemplars in parallel, considering a greater

proportion of the words at each step. After each step, a bail-

out test is applied. This identifies and excludes from further



160 Auton Robot (2009) 26: 153–170

Fig. 4 Conceptual illustration of the bail-out test. After considering

the first j words, the difference in log-likelihoods between two exem-

plars is �. Given some statistics about the remaining words, it is pos-

sible to compute a bound on the probability that the evaluation of the

remaining words will cause one exemplar to overtake the other. If this

probability is sufficiently small, the trailing exemplar can be discarded.

Reproduced from Cummins and Newman (2008a)

computation those exemplars whose likelihood is too far be-

hind the current best hypothesis. Too far can be quantified

using concentration inequalities (Boucheron et al. 2004),

which yield a bound on the probability that the discarded

exemplar will have a higher final log-likelihood than the

current best exemplar, given their current difference in log-

likelihoods and some statistics about the properties of the

words which remain to be evaluated.

Concretely, consider two exemplars a and b, whose log

likelihood has been computed under the first j words, and

whose current difference in log-likelihoods is �, as shown in

Fig. 4. Now, let Xj be the relative change in log likelihoods

due to the evaluation of the j th word, and define

Sj =

|v|
∑

q=j+1

Xq (14)

so that Sj is that total relative change in log likelihoods

due to all the words that remain to be evaluated. We are

interested in p(Sj > �)—the probability that the evalua-

tion of the remaining words will cause the trailing exem-

plar to catch up. If the probability is sufficiently small,

the trailing exemplar can be discarded. The key to our

bail-out test is that a bound on the probability p(Sj > �)

can be computed quickly, using concentration inequalities

such as the Hoeffding or Bennett inequality (Bennett 1962;

Hoeffding 1963). These concentration inequalities are es-

sentially specialized central limit theorems, bounding the

form of the distribution Sj , given the statistics of the com-

ponents Xj (which we can think of as distributions before

their exact value has been computed). For the Hoeffding in-

equality, it is sufficient to know max(Xj ) for each j , that is,

the maximum relative change in log likelihood between any

two exemplars due to the j th word. We can compute this sta-

tistic quickly—it is simply the difference in log likelihoods

between the exemplars with highest and lowest probability

of having generated word j , which we can keep track of

with some simple book-keeping. Bennett’s inequality addi-

tionally requires a bound on the variance of Xj , which can

also be cheaply computed. This is because Xj has a multino-

mial distribution corresponding to the values of p(ej |C
k
i )

for each exemplar in each class. This is a small set of possi-

ble values, which allows for rapid computation of the vari-

ance.

Applying the Bennett inequality, the form of the bound is

p(S > �) < exp

(

σ 2

M2
cosh(f (�)) − 1 −

�M

σ 2
f (�)

)

(15)

where

f (�) = sinh−1

(

�M

σ 2

)

(16)

and M and σ 2 are the maximum and variance values of the

remaining features, such that

p(|Xq | < M) = 1, ∀q ∈ [j + 1, |v|] (17)

|v|
∑

q=j+1

E[X2
q ] < σ 2 (18)

Typically we set our bail-out threshold p(S > �) < 10−6.

The speed increase due to this bail-out test is data dependent

—in our experiments it is typically a factor of 60 times faster

than performing the full classification without bail-out test,

with only very slight impact on accuracy.

6 Markov random fields for spatio-temporal context

The estimation of the set of most likely values of a set of in-

terdependent random variables from available data is a stan-

dard machine learning problem. Such context-dependent in-

ference can be achieved using a family of graphical models

known as Markov Random Fields (MRFs). An MRF models

the joint probability distribution, p(x, Z), over the (hidden)

states of the random variables, x and the available data, Z .

For pairwise MRFs, it is well known that this joint probabil-

ity can be maximized by equivalently minimizing an energy

function incorporating a unary term modeling the data like-

lihood for each node and a binary term specifying the inter-

action potentials between neighbouring nodes over the set

of possible values (Geman and Geman 1984). Under the as-

sumption of every datum being equally likely (i.e. p(Z) be-

ing uniform) a minimization of this energy function is equiv-

alent to finding the most likely configuration of labels given
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the observed data—i.e. a maximum a posteriori (MAP) esti-

mate of p(x|Z). In the following we describe how an MRF

can be applied in the context of our scene labeling endeav-

our. In particular, we outline how the model structure of an

MRF is derived for each scene from the available data, how

the model parameters are obtained and, finally, how a MAP

estimate over p(x|Z) is achieved.

6.1 Model structure

Spatial context MRFs are a family of graphical models

where the set of interdependent variables is modeled as a

graph G(V , E ), where V denotes the set of vertices and

E denotes the set of edges, respectively. In the context of

our scene labeling problem, each vertex represents an im-

age patch as introduced in Sect. 4. Neighbourhood relations

within each scene are defined between patches sharing a

common border, information provided directly by the seg-

mentation algorithm (Felzenszwalb and Huttenlocher 2004).

Of course, adjacency in an image implies, but does not guar-

antee, adjacency in the 3D scene. Therefore, in estimat-

ing adjacency from 2D information a trade-off is made be-

tween the ability of determining neighbourhood relations ef-

ficiently and the introduction of incorrect adjacencies due

to the loss of depth information. In practice, we found the

number of false adjacencies introduced by this approach to

be negligible. Typical examples of graph structure extracted

from scenes recorded by our mobile platform are shown in

Fig. 5.

It should be noted that the one-to-one correspondence

between vertices and image patches implies that the num-

ber of nodes in the MRF for a particular frame is indepen-

dent of the number of measurements taken of the scene.

Thus, the abstraction away from individual measurements

(e.g. laser range data) to the patch level decouples the

complexity of the inference stage from the density of the

underlying data. This provides a substantial advantage in

terms of speed over related works (Douillard et al. 2007;

Anguelov et al. 2005) where the complexity of the graphical

models is directly proportional to the density of the under-

lying data.

Temporal context In addition to spatial context within an

image, we also exploit temporal context between images.

The same object should be assigned the same class label in

all frames in which it is observed. We enforce this relation-

ship by defining a joint MRF over several consecutive cam-

era frames, as illustrated in Fig. 6. We thus have a single

inference procedure to handle both spatial and temporal in-

formation. Temporal links between patches are determined

by projecting laser data from frame i into frame i −d , where

d denotes the history depth. Patches in frame i and i −d that

contain more than 20% of common laser points are linked

by a temporal edge. Since the image segmentation can vary

considerably between images, this is often a one-to-many

relationship. The transformation between frames is deter-

mined by vehicle odometry information, which is reliable

enough over short distances to ensure that patches linked by

this procedure usually correspond to the same physical ob-

ject.

6.2 Model parameters

The specification of an energy function to be optimized pro-

vides a convenient and intuitive way of incorporating scene

properties. Consider the set of labels, x ∈ Z
Nn , for a particu-

lar configuration of a graph with Nn nodes. Each node s has

an observation vector, zs , associated with it (cf. Sect. 5) and

can be assigned one of Nc labels such that xs ∈ {1, . . . ,Nc}.

We specify the energy of any such configuration to be given

by

E(x|θ) =
∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst (xs, xt ) (19)

where we adopt the notation of Kolmogorov (2006) in that

θ defines the parameters of the energy: θs(·) is a unary data

penalty function; and θst (·) is a pairwise interaction poten-

tial. θs specifies the cost of assigning a given vertex any of

the available labels. Intuitively, for a given node s, θs can

be specified as a function of the posterior distribution over

all classes for that node given the associated data, p(C|zs),

as provided by the patch classifier introduced in Sect. 4. In

particular, the penalty of assigning label k to node s can be

expressed as

θs(xsk) = 1 − p(C
k|zs) (20)

The complement of p(Ck|zs) is used since θs refers to a

penalty function which is to be minimized.

The pairwise potential θst encodes prior domain informa-

tion in the form of penalties incurred by assigning specific

labels to adjacent (i.e. connected) nodes. This is an intuitive

formulation of the preference that nodes of certain labels

are more likely to be connected to nodes of certain other la-

bels. It follows that θst can be specified in terms of a square-

symmetric matrix � of size Nc × Nc such that

θst (xi, xj ) = 1 − φi,j (21)

where again the complement is used since a penalty function

is specified. We specify two such matrices �t and �s , for the

temporal and spatial edges respectively. For spatial edges we

specify �s such that, for two classes i and j ,

φi,j =
Li,j

Li + Lj − Li,j

(22)
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Fig. 5 Typical graphs extracted from urban scenes as recorded by

our mobile robot. Top: the original scenes. Bottom: the corresponding

segmented images with the extracted graph overlaid. Circles indicate

nodes, lines indicate edges. For images patches which are not marked

as nodes no reliable geometry estimates could be extracted from the

laser data

Fig. 6 (Colour online)

Conceptual illustration of the

temporal MRF for three

successive images. Spatial links

are shown in black, depth one

temporal links in red. Some

depth two temporal links are

also shown as blue dashed lines.

Inference is carried out jointly

over this spatio-temporal graph

Here Li,j denotes the total number of links connecting

nodes of labels i and j , and Li denotes the total number

of links originating from nodes of label i. It follows that

φi,j ≤ 1 ∀(i, j). Appropriate values for both Li,j and Li

are obtained from a hand-labelled training set. The temporal

edges �t are specified such that

φi,j = 1, ∀i �= j, (23)

φi,i = 0, (24)
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Fig. 7 Aerial map of the Jericho data set—13.2 km, 16000 images (Left), and the Oxford Science Park data set—3.3 km, 8536 images (Right).

Vehicle trajectories are marked in white. Middle: Marge—our ATRV research platform. Reproduced from Posner et al. (2008b)

thus enforcing a uniform penalty on all inconsistent tempo-

ral labels.

6.3 Inference

The determination of the MAP configuration of states given

a set of observations using an MRF is a common task and

there exists an abundance of techniques to perform the ap-

propriate energy minimization. A popular choice is max-

product belief propagation (Pearl 1988). This method is

based on a message passing scheme and provides exact re-

sults when applied to tree-structured graphs. Belief propa-

gation is also a popular choice when the underlying graph

structure contains loops. Although in this case convergence

of the algorithm is not guaranteed, “loopy belief propaga-

tion” has nevertheless been applied with success to a variety

of problems (Murphy et al. 1999; Yedidia et al. 2001).

An alternative to loopy belief propagation is sequential

tree-reweighted message passing (TRW-S) (Kolmogorov

2006). Like belief propagation, TRW-S is based on a mes-

sage passing scheme. However, it is designed to efficiently

maximize a lower bound on the energy and guarantees that

this bound will not decrease in consequent iterations. Be-

cause of this performance guarantee we employ TRW-S to

perform inference throughout the remainder of this work. It

should be noted that based on our potentials, TRW-S scales

linearly with the number of edges in the graph and quadrat-

ically with the number of classes.

7 Results

The algorithm presented above was tested using two ex-

tensive outdoor data sets2 spanning nearly 17 km of track

gathered with an ATRV mobile platform. The system was

equipped with a colour camera mounted on a pan-tilt unit

and a custom-made 3D laser scanner consisting of a stan-

dard 2D SICK laser range finder (75 Hz, 180 range measure-

ments per scan) mounted in a reciprocating cradle driven by

a constant velocity motor. The camera records images to the

left, the right and the front of the robot in a pre-defined pan-

cycle triggered by vehicle odometry at 1.5 m intervals. The

Jericho data set was recorded in a built-up area in Oxford

over 13.2 km of track (16,000 images in total). The Oxford

Science Park data set was recorded in the science park area

in Oxford over 3.3 km of track (8,536 images in total). The

two datasets were collected in different areas of the city, with

only a very small overlap between the two regions.

The Jericho data set was used for training. The features

from this set were used to learn the visual vocabulary and

the Chow Liu tree. The class models were built from 1,055

patches which were segmented and labeled by hand. Auto-

matically segmented versions of the same labeled data were

used to learn the MRF binary potentials. The sensor model

used by our patch-level classifier was specified as a true pos-

itive rate p(zi = 1|ei = 1) = 0.35 and a false positive rate

p(zi = 0|ei = 1) = 0. These values were selected based on

prior experience with similar systems (Cummins and New-

man 2008c).

2These datasets were previously introduced in Posner et al. (2008b).
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We evaluated the performance of the individual stages of

the classifier using 4,932 patches from 217 non-consecutive

frames of the Oxford Science Park data set whose ground

truth had been labeled by hand. A typical result is shown in

Fig. 1. A quantitative analysis of classification performance

is presented in Table 3. It should be noted that our test data

is unbalanced, in the sense that there are many more in-

stances of some classes than others, reflecting their relative

frequency in the world. A consequence of this is that perfor-

mance figures such as overall accuracy are not very informa-

tive, because they mostly represent classifier performance

on the largest class. We chose not to balance the data be-

cause such an evaluation would be unrepresentative of clas-

sifier performance in the real world. We quote instead the

per-class precision and recall. F0.5 measures are also stated

in order to provide a convenient single figure measure of

overall classification performance per class.

Table 3 indicates that the patch classifier (pre-MRF) pro-

vides a baseline classification of mixed quality. Good re-

sults are achieved mainly for common classes (e.g. pave-

ment/tarmac, textured wall and smooth wall, as well as for

some less common ones (e.g. grass). The effect of both

spatial and temporal context is pronounced. For common

classes we note a boost to both precision and recall. For rarer

classes such as vehicle and particularly grass the MRF has

the effect of boosting precision at the cost of some drop in

recall. This tends to happen as weaker partial detections of

objects are reassigned based on surrounding labels, typically

eliminating many false positives but suppressing weaker true

positives.

The quantitative analysis is augmented in Fig. 8 in the

form of confusion matrices for both the output of our patch-

level classifier as well as the output after spatio-temporal

smoothing using the MRF. These matrices are normalized,

on one hand, such that the values along the diagonals rep-

resent per-class precision and, on the other hand, such that

the values along the diagonals represent per-class recall (cf.

Table 3). Thus, the former provides information (along the

rows) on how reliable the given labels are compared to

ground truth—i.e. how much trust can we put in the obtained

labels—whereas the latter provides information (along the

columns) of how well ground-truth data are retrieved.

Prior to incorporating the MRF, there is notable con-

fusion in precision between the vehicle, foliage and wall

classes. Results incorporating the MRF show a considerable

improvement. While precision increases substantially across

all classes, the confusion between the vehicle, foliage and

wall classes has been reduced. Confusion is also reduced be-

tween tarmac/pavement and dirt path. The remaining con-

fusion is primarily between closely related classes such as

the two wall types.

The benefits of MRF smoothing in terms of recall are

more varied and particularly striking for the dominant

classes pavement/tarmac, textured wall and smooth wall,

where confusion with other classes decreases dramatically.

For less common classes, a significant amount of over-

smoothing occurs. This is particularly striking in the case

of grass, which is now commonly misclassified as pave-

ment/tarmac. Similar over-smoothing—although signifi-

cantly less pronounced—occurs for bush/foliage (now com-

monly misclassified as textured wall) and vehicle (now in-

creasingly misclassified as smooth wall). Smoothing effects

on recall for dirt path are marginal.

The final results demonstrate generally good precision

and reasonable recall performance, particularly for the com-

mon classes. A comparison of classification performance in

terms of F0.5 measure with that expected from a classifier

making random decisions based on class priors only is pro-

vided in Fig. 9.

7.1 Spatial and temporal smoothing

The MRF provides context-sensitive smoothing of classifi-

cation results in space (i.e. within any given frame) as well

Table 3 Detailed classification results for the Oxford Science Park data set. Results for the spatio-temporal column were obtained over a three-

frame window with a history depth of one frame

Class Details Pre MRF Spatial Context Spatio-Temporal Context

Name # Patches Precision [%] Recall [%] F0.5 Precision [%] Recall [%] F0.5 Precision [%] Recall [%] F0.5

Gr 82 80.3 69.5 77.9 89.2 40.2 71.7 95.5 25.6 61.8

Ta 1286 79.5 86.1 80.8 89.2 94.9 90.3 89.9 95.7 91.0

Di 127 21.4 47.2 24.0 60.2 46.5 56.8 75.6 46.5 67.2

Te 2199 73.3 75.5 73.8 74.0 93.8 77.3 74.3 97.5 78.0

Sm 898 54.1 36.2 49.2 76.4 39.0 64.1 86.3 40.7 70.5

Bu 175 41.7 38.9 41.1 59.6 35.4 52.5 61.5 32.0 52.0

Ve 165 35.9 34.6 35.6 69.1 33.9 57.3 79.7 30.9 60.6

Legend for class shortcuts: Grass, Tarmac/Paved, Dirt Path, Textured Wall, Smooth Wall, Bush/Foliage, Vehicle
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Fig. 8 The confusion matrices resulting from an application of our

classification framework to the (unbalanced) Oxford Science Park

data set. The top row presents the output of the patch classifica-

tion stage before MRF smoothing is applied in the form of preci-

sion (a) and recall (b). The output after MRF smoothing obtained us-

ing a window size of three frames with a history depth of one frame

is provided in the bottom row, again in the form of precision (c)

and recall (d). Note that entries on the diagonals of these matrices

represent the respective precision and recall values indicated in Ta-

ble 3

as time (i.e. across several frames in a time window). Fig-

ure 10 aims to discern the benefits on the actual classification

of smoothing in either dimension. Shown are F0.5 variations

with window size and history depth (cf. Fig. 6) for both in-

dividual and combined applications of temporal and spatial

smoothing. The left column of the figure demonstrates the

effect of temporal smoothing alone. With the exclusion of

one class, the classification performance increases signifi-

cantly with time window size. A further gain is made as his-

tory depth increases and more information is included. On

the whole, temporal smoothing alone thus provides substan-

tial benefits in classification performance. The adverse ef-

fect the smoothing has on grass may be explained by a mis-

classification of the majority of grass patches in any given

unlabeled frame within a time window due to, for exam-

ple, adverse lighting conditions or dynamic objects moving

through the scene. By virtue of the MRF this significant dis-

information is then propagated throughout the window.

The right column of Fig. 10 shows the effect of spa-

tial smoothing only and also the benefits of combining both

types of context. Note that a window size of one frame corre-

sponds to only considering a single frame overall, indicating
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Fig. 9 A graphical representation of the F0.5 values provided in Table 3. The post-MRF output was obtained with a window size of three frames

with a history depth of one frame. Overlaid are the expected equivalent numbers for a classifier based on class priors only

that only spatial smoothing is applied. In general, significant

improvements of overall classification performance beyond

those obtained using temporal smoothing alone can be ob-

served. This is particularly true for dirt path and vehicle.

Based on the evidence presented in Fig. 10 a window size

of three frames and a history depth of a single frame were

chosen for the results in Table 3.

7.2 Timing

The timing properties of our algorithm are outlined in Ta-

ble 4. Run times are from a 2 GHz Pentium laptop. The mean

total processing time was 4.0 seconds.

7.3 Comparative evaluation

It is instructive to gain an intuition as to how the pre-

sented approach compares to the application of state-of-the-

art classifiers such as support vector machines (SVMs). To

this end this section presents our own results compared to

those obtained in Posner et al. (2008b), where the same

datasets as well as nominally the same features were used for

superpixel labelling using voted SVM classification. Results

are presented side-by-side in Table 5. The voted SVM ap-

proach is most directly comparable to the output of the first

stage of our system, since both approaches classify entire

superpixels without considering context beyond the super-

pixel boundaries. It is immediately apparent that the SVM

classification provides much improved precision and recall

values across the classes. In particular, the performance for

grass, dirt track, bush and vehicle suffers in our probabilistic

classifier. Inspection of the confusion matrices in Figs. 8(a)

and 8(b) reveals that performance is compromised due to

confusion between ground and non-ground classes and, to

a lesser extent, between classes with distinct colour char-

acteristics. A typical example is grass, which suffers from

confusion with both tarmac/pavement and dirt path as well

as with bush. Similarly, vehicle is confused with both wall

classes as well as the tarmac/pavement class. These confu-

sions are significantly less severe in the corresponding SVM

results as depicted in Fig. 11. The SVM therefore manages

to distinguish more successfully between classes based on

the same features. This suggests that our first stage classifier

model does not currently assign the appropriate importance

to individual features in the feature set. We believe this effect

is caused by combining different feature spaces (e.g. colour,

geometry) into a single visual vocabulary. Preliminary ex-

periments suggest that maintaining the separation between

feature spaces in the vocabulary noticably alleviates this is-

sue.

Thus, while the generative probabilistic classifier intro-

duced in Sect. 5 has several attractive properties from a mo-

bile robotics perspective in terms of flexibility, some impor-

tant issues remain yet unexplored. It is interesting to note

also, that in providing this proof of concept we have ne-

glected more advanced tuning of this part of the system.

In particular, the values of the sensor model employed here

have been adopted from previous applications such as Cum-

mins and Newman (2008a). Selection of more appropriate

values based on training data may open avenues for im-

provement.

The performance gap between the voted SVM results

and the system presented here narrows significantly after

MRF smoothing is applied. While this is, of course, a some-
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Fig. 10 An indication of the benefits of temporal and spatial smooth-

ing with increasing window size and history depth. (a) and (c) present

results obtained using temporal smoothing only. Spatial links (i.e.

edges linking nodes within the same frame) are ignored. (b) and (d)

present results with both temporal and spatial edge information in-

cluded

what unfair comparison since no context is applied in the

SVM classifications, this point serves to reinforce the posi-

tive impact context-based smoothing can have. Furthermore,

it should be noted that the use of the probabilistic classifier

used in the first stage of our work is by no means mandatory.

If no requirement exists to, for example, adapt class models

online, any classification framework providing soft class as-

signments can be substituted.

8 Conclusions

This paper has described and provided a detailed analysis of

a two-stage approach to fast region labeling in maps of urban

environments. Although the approach described here made

specific use of both 3D laser and image data, the algorithms

described are not limited to these modalities. The princi-

pal contribution of this work is the introduction of a layered

classification framework which considers local scene prop-

erties in the first stage and then applies spatial as well as

temporal context to refine these initial classifications. The

results demonstrate the improvements in classification per-

formance obtained by accounting for spatial and temporal

context. This is despite the fact that the neighbourhood rela-

tions encoded in the MRF are a relatively weak cue; stronger

information such as relative location and containment re-

lations would be expected to improve the results. Further-

more, the inclusion and learning of a relative weighting be-

tween unary and binary potentials is expected to improve
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Table 4 Timing information (in

milliseconds) Process Mean (ms) Max (ms)

Plane Segmentation 2000 2800

Feature Extraction 89 125

Feature Quantization 4 90

Image Segmentation 960 1130

Patch Classification 850 3480

MRF Construction 63.5 453.9

MRF Inference 6.0 22.0

Overall 4.0 seconds 8.1 seconds

Table 5 Performance comparison between the stage 1 classifications of our system (Pre MRF) as well as the smoothed results (Spatio-Temporal

Context) with voted SVM results on the same dataset with nominally the same features (reproduced from Posner et al. 2008b, Table 7)

Class Details Voted SVM Pre MRF Spatio-Temporal Context

Name Precision [%] Recall [%] F0.5 Precision [%] Recall [%] F0.5 Precision [%] Recall [%] F0.5

Gr 96.6 98.1 96.9 80.3 69.5 77.9 95.5 25.6 61.8

Ta 97.7 89.0 95.8 79.5 86.1 80.8 89.9 95.7 91.0

Di 46.4 84.8 51.0 21.4 47.2 24.0 75.6 46.5 67.2

Te 82.7 73.5 80.7 73.3 75.5 73.8 74.3 97.5 78.0

Sm 56.9 64.4 58.3 54.1 36.2 49.2 86.3 40.7 70.5

Bu 60.6 62.8 61.0 41.7 38.9 41.1 61.5 32.0 52.0

Ve 43.7 80.1 48.1 35.9 34.6 35.6 79.7 30.9 60.6

Legend for class shortcuts: Grass, Tarmac/Paved, Dirt Path, Textured Wall, Smooth Wall, Bush/Foliage, Vehicle

Fig. 11 The confusion matrices resulting from the voted SVM ap-

proach described in Posner et al. (2008b) in the form of pre-

cision (a) and recall (b). Note that entries on the diagonals of

these matrices represent the respective precision and recall val-

ues indicated in Table 5. Reproduced from Posner et al. (2008b),

Fig. 14

results since it provides a mechanism to minimize the over-

smoothing effected by the MRF in the current system. Con-

ceivably the most direct route to better performance is the

addition of more informative features.

Further contributions are the development of efficient and

principled methods to accomplish each classification stage.

While any classifier capable of providing soft class assign-

ments can conceivably be employed in the first stage of our
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framework, we opt to describe a probabilistic bag-of-words

approach, which employs a principled bail out policy that

greatly decreases the computational cost of evaluating likeli-

hood terms. Beyond classification speed, this generative ap-

proach has the added advantage of providing a sensor model

as a mechanism to incorporate the notion that some of the

robot’s observations are more trustworthy than others. In ad-

dition, the class models can readily be updated online.

Furthermore, the formulation of the MRF model allows

the efficient integration of contextual information. In con-

trast to related approaches, the size of graph we use is

small—indeed with just one node per region rather than one

per laser range measurement. As a result, the overall per-

scene compute time of this method is compelling: at 4.0 sec-

onds it is suitable for online deployment.
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Meilă, M., & Jordan, M. I. (2001). Learning with mixtures of trees.

The Journal of Machine Learning Research, 1, 1–48.

Monteiro, G., Premebida, C., Peixoto, P., & Nunes, U. (2006). Tracking

and classification of dynamic obstacles using laser range finder

and vision. In Workshop on “safe navigation in open and dy-

namic environments—autonomous systems versus driving assis-

tance systems” at the IEEE/RSJ int. conference on intelligent ro-

bots and systems (IROS).

Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propa-

gation for approximate inference: An empirical study. In Proc. of

uncertainty in AI (pp. 467–475).

Nistér, D. (2005). Preemptive RANSAC for live structure and motion

estimation. Machine Vision and Applications, 16(5), 321–329.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: net-

works of plausible inference. Los Altos: Morgan Kaufmann.

Ponce, J., Hebert, M., Schmid, C., & Zisserman, A. (Eds.) (2007). In

Lecture notes in computer science, Vol. 4170: Toward category-

level object recognition.



170 Auton Robot (2009) 26: 153–170

Pope, A. R. (1994). Model-based object recognition—a survey of re-

cent research (Technical Report TR-94-04). The University of

British Columbia.

Posner, I., Schröter, D., & Newman, P. (2006). Using scene similarity

for place labelling. In Proc. of the int. symposium on experimental

robotics (ISER).

Posner, I., Cummins, M., & Newman, P. (2008a). Fast probabilistic la-

beling of city maps. In Proc. robotics: Science and systems (RSS).

Posner, I., Schroeter, D., & Newman, P. (2008b). Online generation of

scene descriptions in urban environments. Robotics Autonomous

Systems, 56(11), 901–914.

Ranganathan, A., & Dellaert, F. (2007). Semantic modeling of places

using objects. In Proc. of robotics: science and systems, Atlanta,

GA, USA.

Schmid, C. (2001). Constructing models for content-based image re-

trieval. In IEEE conference on computer vision and pattern recog-

nition (Vol. 2).

Sivic, J., & Zisserman, A. (2003). Video Google: A text retrieval ap-

proach to object matching in videos. In Proceedings of the inter-

national conference on computer vision, Nice, France.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A.,

Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau,

K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S.,

Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rum-

mel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G.,

Davies, B., Ettinger, S., Kaehler, A., Nefian, A., & Mahoney, P.

(2006). Stanley: The robot that won the DARPA grand challenge.

Journal of Field Robotics, 9(23).

Torr, P., & Zisserman, A. (2000). MLESAC: A new robust estimator

with application to estimating image geometry. Computer Vision

and Image Understanding, 78, 138–156.

Triebel, R., Kersting, K., & Burgard, W. (2006). Robust 3D scan point

classification using associative Markov networks. In Proc. of the

int. conference on robotics and automation (ICRA).

Weingarten, J., Gruener, G., & Siegwart, R. (2003). A fast and robust

3D feature extraction algorithm for structured environment recon-

struction. In Proc. of the 11th int. conference on advanced robot-

ics (ICAR).

Wellington, C., Courville, A., & Stentz, A. (2005). Interacting Markov

random fields for simultaneous terrain modeling and obstacle de-

tection. In Proc. of robotics: science and systems.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2001). Generalized belief

propagation. In NIPS 13 (pp. 689–695). Cambridge: MIT Press.

Ingmar Posner is currently a re-

search assistant (postdoc) with the

Mobile Robotics Group in the De-

partment of Engineering Science at

the University of Oxford and a Ju-

nior Research Fellow at New Col-

lege. He obtained an MEng degree

in Electronic Systems Engineering

from Aston University and a DPhil

from Oxford University on the mod-

eling and processing of underwa-

ter sonar signals in bioacoustics. His

current research focuses on the use

of machine learning techniques in

mobile robotics and in particular on

the extraction of ‘higher-order’ semantic information from sensor data

for autonomous navigation and mapping tasks outdoors.

Mark Cummins is a final year

DPhil student with the Mobile Ro-

botics Group in the Department of

Engineering Science at the Univer-

sity of Oxford. His research fo-

cuses on appearance-based navi-

gation methods that infer position

from visual appearance alone, with-

out keeping track of metric position.

Paul Newman Paul Newman is

a Reader in Engineering Science

at the University of Oxford where

he heads up the Mobile Robotics

Group (MRG). He is also a tutorial

fellow in Engineering at New Col-

lege. Before moving to Oxford in

2003 he was a research scientist at

MIT. He was the organiser and edi-

tor of the ‘Robotics and Cognition’

Foresight Cognitive Systems Project

Research Review. He is an editor of

the International Journal of Robotics

Research and the Journal of Field

Robotics. He is currently a IEEE Robotics and Automation Society

Distinguished Lecturer for Europe.


	A generative framework for fast urban labeling using spatial and temporal context
	Abstract
	Introduction
	Related work
	Workspace classes in urban environments
	Features
	Generative probabilistic classification
	Generative model
	Patch-level classifier
	Representing classes
	Estimating the observation likelihood
	Learning a class model
	Approximation using bounds

	Markov random fields for spatio-temporal context
	Model structure
	Spatial context
	Temporal context

	Model parameters
	Inference

	Results
	Spatial and temporal smoothing
	Timing
	Comparative evaluation

	Conclusions
	Acknowledgements
	References


