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Abstrat. Natural senes ontain rih stohasti motion patterns whih

are haraterized by the movement of a large number of small elements,

suh as falling snow, raining, ÿying birds, þrework and waterfall. In this

paper, we all these motion patterns textured motion and present a gen-

erative method that ombines statistial models and algorithms from

both texture and motion analysis. The generative method inludes the

following three aspets. 1). Photometrially, an image is represented as

a superposition of linear bases in atomi deomposition using an over-

omplete ditionary, suh as Gabor or Laplaian. Suh base representa-

tion is known to be generi for natural images, and it is low dimensional

as the number of bases is often 100 times smaller than the number of

pixels. 2). Geometrially, eah moving element (alled moveton), suh

as the individual snowÿake and bird, is represented by a deformable

template whih is a group of several spatially adjaent bases. Suh tem-

plates are learned through lustering. 3). Dynamially, the movetons are

traked through the image sequene by a stohasti algorithm maximiz-

ing a posterior probability. A lassi seond order Markov hain model is

adopted for the motion dynamis. The soures and sinks of the movetons

are modeled by birth and death maps. We adopt an EM-like stohasti

gradient algorithm for inferene of the hidden variables: bases, move-

tons, birth/death maps, parameters of the dynamis. The learned models

are also veriþed through synthesizing random textured motion sequenes

whih bear similar visual appearane with the observed sequenes.

Natural senes ontain rih stohasti motion patterns whih are haraterized

by the movement of a large number of small deformable elements (or partiles).

For example, raining, snowing, bird ÿok, moving rowd, þrework, waterfalls,

and so on. The analysis and synthesis of suh motion patterns, alled textured

motion in this paper, are important for a variety of appliations in both vision

and graphis, and stimulate growing interest of the two ommunities.

Graphis methods. In graphis, the objetive is to render textured

motion in video or artoon animation, and the quality of the rendered motion is

usually measured by three basi riteria.
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1  Introduction: Objectives and Previous Work



1. It should be realisti. This motivates work for modeling and learning the

photometri and dynami properties from real video due to the omplexity

of textured motion. Usually, data driven statistial modeling is often more

appropriate than physially-based modeling.

2. It should be stylish. This is required for appliations in non-photo realisti

rendering (NPR), for example, rendering a waterfall in a artoon movie. It is

desirable to separate the dynamis of motion from its photometri appear-

anes, so that the video appears symboli but with realisti motion.

3. It should be ontrollable. For a better blending of the motion with other 3D

objets in a sene, one should inrease the degree of freedoms in maneuvering

the motion. For example, it is desirable to ontrol the soures and sinks where

the motion elements appear and disappear, to ontrol the individual moving

elements, to hange its motion diretion et.

In the graphis literature, both physially-based and data driven models are

reported. The former inludes the work whih reate animations of ÿre and

gaseous phenomena with partiles [12, 5℄. The latter inludes the 1). video tex-

ture[14℄ whih ÿnds smooth transition points in a video sequene from whih the

video ould be replayed with minimum artifats; 2). 3D volume texture[18℄ whih

generates motion through non-parametri sampling from an observed video mo-

tivated by reent work on texture synthesis. Though the statistial models of

the video texture or 3D volume texture an render some realisti animations,

suh models do not model the dynami and geometri properties of the moving

elements.

Vision methods. In omputer vision, the analysis of textured motion

has appliations for video analysis, suh as motion segmentation, annotation,

reognition and retrieval, deteting abnormal motion in a rowd, and so on.

Needless to say that a good vision model of textured motion is useful for ani-

mation in graphis as mentioned above. For suh appliations, a vision model

should satisfy the following properties.

1. It should be suÆient and general. It is not enough to just render a syn-

thesized sequene that looks like the original as the video texture do, the

model should also be able to apture the variability and therefore an be

generalized to new data.

2. It should be parsimonious and low dimensional for omputation. This re-

quests the model apture the semantis of the motion. This also requests

the modeling of photometri, geometri, and dynami aspets of the motion

| onsistent with the graphis riteria.

In the vision literature, as these motion patterns lie in the domains of both

motion analysis and texture modeling, statistial models are proposed from both

diretions with a trend of merging the two. In the following, we brieþy review

these work to set the bakground of our method.

Early vision work on textured motion was done by (Szummer and Piard,

1996)[17℄ who adopt a spatial-temporal auto-regression (STAR) model from
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(Cliÿ and Ord, 1976)[4℄. Let I(x; y; t) be the intensity of a pixel (x; y) at time t,
a STAR model assumes that I(x; y; t) is a regression of its neighboring pixels

I(x; y; t) =

pX

i=1

aiI(x+ Æxi; y + Æyi; t+ Æti) +N(0; ÿ2); (1)

where (Æxi; Æyi; Æti) is the displaement of a neighboring pixel in spae and time,
and ai; i = 1; :::; p are parameters to be þt. A linear (or partial) order is imposed
so that I(x; y; t) only depends on pixels at previous frames Æti < 0;8i for fast
synthesis. Suh model an be onsidered as an extension from a ausal Gaussian
Markov random þeld model (GMRF) used in texture modeling by adding the
time dimension. Along the line of texture modeling, Bar-Joseph et.al.[1℄ extended
the work by Heeger and Bergen (1995) and others[19℄ to multi-resolution analysis
in a tree strutured representation, in a similar spirit to (Wei and Lovoy, 2000).

Although these algorithms an show synthesis of good motion, we argue that
the onept of treating a motion pattern as a solid texture is perhaps not ap-
propriate. Beause textures are physially the status of systems with massive
elements at thermodynami equilibrium haraterized by maximum entropy dis-
tributions[19℄. However, this assumption is not observed in textured motions, for
example, þre or gaseous turbulene, whih are learly not at equilibrium.

The reent work (Soatto, Doretto, and Wu, 2001)[15℄ engages the motion
dynamis expliitly. By a SVD analysis, Soatto et al. represent an image I(t)
by a small number of prinipal omponents. The projetions of I(t) on these
omponents, denoted by x(t), is modeled by a Markov model,

x(t+ 1) = Ax(t) +Bv(t); I(t) = Cx(t) + n(t); (2)

where v(t) is the noise driving the motion and n(t) is the image noise for the
reonstrution residues. The parameters A;B;C are learned by maximum like-
lihood estimation (MLE). This model an generate impressive synthesis for a
variety of motion patterns and an also be used for reognition[13℄.

Being onsidered as an extension the work [15℄, Fitzgibbon onsidered not
only the stohasti part for textured motion, but also the parametri omponent
introdued by the amera motion [16℄. In [16℄, the images are also represented
by the prinipal omponents with peroid oeÆients, and the Auto-Regression
(AR) model is used to handel stohasti textured motion. The parametri ompo-
nent for amera motion is governed by projetive geometry model. The objetive
of the method is to both eÆiently þt the AR model and orretly register the
image sequene.

Our method. In this paper, we present a generative method for the
analysis and synthesis of textured motion, motivated by the vision and graphis
riteria disussed above. Our model inludes the following three aspets.

1. Photometrially, an image is represented as a superposition of linear bases
in atomi deomposition using an over-omplete ditionary, suh as Gabor
or Laplaian. Suh base representation is known to be generi for natural
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images, and it is low dimensional as the number of bases is often 100 times

smaller than the number of pixels.

2. Geometrially, eah moving element (alled moveton), suh as the individual

snowÿake, bird, is represented by a template whih is a group of several

spatially adjaent bases. Suh templates are deformable to aount for the

variabilities of the elements and are learned through lustering.

3. Dynamially, the movetons are traked through the image sequene by a

stohasti algorithm maximizing a posterior probability. A lassi Markov

hain model is adopted for the motion dynamis, as in[15℄. The soures and

sinks of the movetons are modeled by birth and death maps.

We adopt an EM-like stohasti gradient algorithm for inferene of the hidden

variables: bases, movetons, birth/death maps, parameters of the dynamis.

To þx notation, let I[0; ÿ ℄ denote an image sequene on a 2D lattie þ = f(x; y) :
0 ÿ x; y ÿ Lg in a disretized time interval [0; ÿ ℄ = f0; 1; 2; :::; ÿg. For (x; y) 2 þ

and t 2 [0; ÿ ℄, I(x; y; t) denotes the pixel intensity, and I(t) 2 I[0; ÿ ℄ is a single

image frame.

Fig. 1. A \able model" for movetons.

In this setion, we study the representation of a single image frame I 2 I[0; ÿ ℄.

For larity, we remove the time index. We represent an image as a superposition
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2.1   Image Representation: From Pixels to Bases



of a small number of image bases, in a sheme whih is often alled atomi

deomposition in wavelets and image oding[9, 10, 3℄.

I =

NX

j=1

ÿjbj + n; b 2 þ: (3)

In equation (3), bj is an image base from a ditionary þ, ÿj is its oeÆient, and

n is a noise proess for the residues. The ditionary inludes all bases whih are

transformed versions of three base funtions (mother wavelets) ý`; ` = 1; 2; 3,

þ = fTx;y;ÿ;þ Æ ý` : (x; y) 2 ü; û 2 [0; 2ú); ù 2 [ùmin; ùmax℄; ` = 1; 2; 3g

Tx;y;ÿ;þ denotes a transform with (x; y; û; ù) for translation, rotation, and

saling respetively.

We denote the set of base funtions by ø = fý`; ` = 1; 2; 3g. We hoose

the Laplaian of Gaussian (LoG), Gabor osine (Gos), and Gabor sine (Gsin)

shown in Figure 1.a. These base funtions represent blobs, bars and step edges

respetively (see the symboli skethes in Figure 1.a). We hoose 8 sales, and

12 orientations.

Thus we transform an image I into a base representation, alled a base map.

B = (bj = (ÿj ; `j ; xj ; yj ; ûj ; ùj) : j = 1; 2; :::; N):

As þ is over-omplete, we should disuss how B is inferred from I later. We

hoose the base representation for two reasons.

1. Low dimensionality. The number of bases is usually 100-fold smaller than

the number of pixels. Figure 2 shows a snowing sequene, eah frame an

be approximated by N ÿ 100 bases (see Figure 2.b). When N inreases to

800 bases, the reonstruted images in Figure 2.) are of very high preision.

This also introdues a oarse-to-ÿne strategy for omputation.

2. Generality. It is well known that the LoG and Gabor bases are generi repre-

sentations for the ensemble of natural images[11℄, and are also fundamental

to human visual pereption.

In natural image sequenes, the image bases often form spatially oherent groups.

This is most evident in sequenes where the moving elements (or \movetons")

are identiÿable, suh as the individual snow þakes, and þying birds. Figure 1.b

shows two examples. A snow þake is a sum of three bases: 2 ý1's and 1 ý2 at

various sales and spae displaements. A bird onsists of 7 bases: 3 ý1's, 2 ý2's

2 ý3's. The number of bases, and their relative positions and oeÆients may

vary between the movetons. By deÿning a distane between the movetons, one

an luster the movetons into a small number of deformable templates.

÷ = fö`(õ) : ` = 1; 2; :::; ng
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Fig. 2. Example of a snowing sequene. (see snow obs.avi and snow syn.avi for movies)

with ` indexing the moveton types and ÿ being the parameters for relative defor-

mations of the bases within a moveton. Thus we obtain a ditionary of movetons

with some transformations,

þ = f Tx;y;ÿ;þ Æ ý` : (x; y) 2 ü; û 2 [0; 2ú); ù 2 [ùmin; ùmax℄; ` g: (4)

In pratie, not all bases are neessarily grouped into movetons. We all the

ungrouped ones free bases, whih are treated as degenerated movetons, i.e. eah

moveton has one base, for larity of notation. For the N bases in the base map

B, suppose we group them into J movetons, then we arrive at a more meaningful

representation of the image, with dimensions further redued than B.

M = (új = (`j ; xj ; yj ; ûj ; ùj ; ÿj); j = 1; 2; :::; J); J ÿ N:

Eah moveton új is represented by 1 þ `j þ n for the type of the deformable tem-

plate, xj ; yj ; ûj ; ùj for the position, orientation, and sale of the overall moveton,

and ÿ for the deformable within the moveton.

During the omputation, we should learn the deformable templates ø` and

ompute the movetons and free bases M from images. For example, Figure 3.a

displays the symboli skethes for a set of typial deformable templates of the
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Fig. 3. The omputed motion elements: snow ÿakes and random examples.

snowing sequene shown in Figure 2. Figure 3.b shows 120 random movetons

sampled from the moveton ditionary ÿ . Eah moveton is a snow ÿake. This

sample shows the variety and generality of the deformable models learned with

bases.

To summarize, we have a following generative model for an image I, with

dimensions redued sequentially,

M
ÿ
ÿ! B

þ
ÿ! I

Now we turn to the image sequene I[0; þ ℄. As shown in Figure 1., a moveton ý

an be traed over a ertain time interval [tb; te℄ and thus its trajetory is what

we all a \able". Typially in a moveton template, one base has relatively large

oeÆient and sale, suh as the main body of the bird or snow ÿake, and its

trajetory forms the ore of the able. The ore base is surrounded by a number

of minor bases whih aount for the deformations. Due to self-rotation, the

trajetories of these minor bases form the oil surrounding the able ore. In a

oarse-to-þne omputation, we an ompute the trajetories of the ores þrst,

and then add the oils sequentially. Thus we denote a able by

C[tb; te℄ = (ý(tb); ý(tb + 1); :::; ý(te)): (5)
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2.3    Motion Representation: Dynamics, Sources, Sinks, and  State 

         Transition 



In pratie, the ore of a moveton is relatively onsistent through its life span,

and the number of oil bases may hange over time, due to self-olusion et.

Sine these bases are often minor, we assume the number of oil bases are ÿxed

in a able for simpliity.

We adopt a lassi 2nd order Markov model whih is suÆient for the dy-

namis of a moveton C[tb; te℄. In other words we ÿt the trajetory (the able)

C[tb; te℄ by regression. Suh models are extensively used in traking[8℄.

ÿ(t) = Aÿ(tÿ 1) +B þ ÿ(tÿ 2) + C +DN(0; þ2
0
) t 2 [tb + 2; te℄

ÿ(tb + 1) = A0ÿ(tb) + C 0 +D!

(ÿ(tb); tb) ý PB(ÿ; ý); (ÿ(te); te ÿ tb) ý PD(ÿ; ý):

One an simplify the equation in a anonial form expressed in equation (2).

ÿ(t) is a vetor representing a number of bases inluding both the photometri

(by base oeÆients) and geometri information. The matries A;B;C;D;A0; C 0

apture the hange of image appearanes and the motion of the movetons, and

these matries are usually diagonal. Sine the motion patterns we are studying

is textured motion, we assume that those movetons have similar dynamis. That

means those trajetories share the same A;B;C;D;A0; C 0.

The ÿrst moveton ÿ(tb) and its timing tb follows a probability PB(ÿ; ý) whih

we all the birth map for movetons. PB speiÿes the \soures" of the movetons

where the movetons are often originated. Similarly, the end of the trajetory ÿ(te)

and its life span te ÿ tb are governed by a death map PD(ÿ; ý). PD reveals the

\sinks" in a lattie. ÿ is a long vetor, PB and PD are high dimensional. Although

other attributes in ÿ an be modeled if neessary, we are most interested in the

loation (x; y).

Fig. 4. The omputed trajetories of snow ÿakes and the soure and sink maps.

For example, Figure 4 displays the omputed trajetories ( 4.b), birth (soure)

map (4.), and death (sink) map (4.d) of the snowing sequene shown in Figure 2.

The dark loations at the death/birth maps indiate high probabilities. Thus
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the algorithm \understands" that the snow ÿakes enter mostly from the upper-

right orner and disappear around the lower-left orner. We sum over the other

variables at eah (x; y).

During the learning proess, suppose we have omputed K ables from a

sequene I[0; ÿ ℄, Ci[t
b

i
; t
e

i
℄; i = 1; 2; :::;K, we represent PB and PD in a non-

parametri form,

PB(þ; ý) =
1

K

KX

i=1

Æ(þÿþi(t
b

i
); ýÿtb

i
); PD(þ; ý) =

1

K

KX

i=1

Æ(þÿþi(t
b

i
); ýÿ(te

i
ÿt

b

i
))

where Æ() is a Parzen window entered at 0. Then we an projet PB and PD to

the (x; y) dimensions as marginal probabilities.

In pratie, the death and birth of movetons may be synhronized. For ex-

ample, in the þrework sene shown in Figure 10, a large number of movetons

an ome and go together. This requests the PB and PD be joint probabilities

for a large number of movetons.

Fig. 5. Three transition states while birds ÿying.

Fig. 6. 3D graphi model of ÿying birds and their ÿying states transition.

Furthermore, sometimes when the movetons are non-rigid objets or artiu-

lated objets, we may observe ertain repeating states in their movements, for

example, the birds ÿapping their wings while ÿying. Thus we also need to model

the state transition of those movetons. As the result, we extend the motion dy-

namis model with more states. Figure 5 shows the lustered three states (þ1,

þ2, þ3) of the poses when birds ÿying. And Figure 6 displays the 3D graphi
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model for the birds and their ÿying states transition. During the synthesis of

birds ÿy, one we determine the birds' ÿying pathes, we an make those birds

ÿapping their wings by sampling the transition states from the model.

To summarize, we denote all parameters in the motion equation above by,

ÿ = (A;B;C;D;B;A0; C 0; PB ; PD; T (þj))

Given an observed image sequene I
obs

[0; ý ℄ as training data, we want to ahieve

two objetives.

1. Make inferene about all the hidden (latent) variable whih are represented

by an unknown of K ables,

W [0; ý ℄ = (K; f(tbi ; t
e
i ; Ci) : [tbi ; t

e
i ℄ ÿ [0; ý ℄; i = 1; 2; :::;Kg ):

2. Compute the optimal þt for all parameters in the generative model ü =

(û; ÿ ), with û being the set of deformable templates for the movements, and

ÿ governing the birth, death, and motion of the movetons.

The formulation is standard in statistis for learning a model with latent vari-

ables (missing data), that is, the maximum likelihood estimate (MLE),

üÿ

= (ûÿ; ÿ ÿ

) = argmax log p(Iobs[0; ý ℄;ü): (6)

The likelihood is omputed from the generative model with latent variables in-

tegrated (summed) out, For larity of notation, we assume W are ontinuous

variables.

p(Iobs[0; ý ℄;ü) =

Z
p(Iobs[0; ý ℄jW [0; ý ℄; û)p(W [0; ý ℄; ÿ )dW:

Let B(t) = fbt;j ; j = 1; 2; :::; N(t)g be the olletion of all bases in the K

movetons (ables) at time t, then we an re-express W [0; ý ℄ as (B(0); :::;B(ý)),

by equation (3), p(I[0; ý ℄jW [0; ý ℄; û) is the produt Gaussians,

p(Iobs[0; ý ℄jW [0; ý ℄; û) =

ÿY
t=0

G(Iobs(t)þ

N(t)X
j=1

út;jbt;j ; ù2o);

as we assume iid Gaussian noise G(0; ù2o) for n.

Following the motion representation, p(W [0; ý ℄; ÿ ) is also a produt of Gaus-

sians,

p(W [0; ý ℄; ÿ ) =

KY
i=1

PB(þ(t
b
i ); t

b
)PD(þ(t

e
i ); t

e
i )p(þ(t

b
i + 1)jþ(tbi ); A

0; C 0; D)

ý

te
iY

t=tb
i
+2

p(þ(t)jþ(t þ 1); þ(tþ 2); A;B;C;D):
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To solve the MLE in eqn. (6), we set
� log p(Iobs;ÿ)

�ÿ
= 0. This leads to

Z
[
� log p(IobsjW ;ÿ)

�ÿ
+

� log p(W ;þ )

�þ
℄p(W jI; ý)dW = 0: (7)

Instead of using the lassi EM algorithm, we adopt the stohasti gradient

algorithm[6℄ whih is apable of being global optimal ý. It iterates three steps

with s indexing steps.

Step 1. Sampling W syn[0; ü ℄ ÿ p(W jIobs;ÿ). This inludes omputing the bases,

grouping bases into movetons, and traking the movetons. The omputation is

realized by a data driven Markov hain Monte Carlo tehniques, inluding the

following reversible dynamis.

1). The death or birth of a motion trajetory þ of length one.

2). Extending or shrinking a trajetory.

3). Mutating two nearby trajetories at a ertain base.

4). Diÿusing the oeÆient, loation, orientation, sale of a base in a traje-

tory (Inferring B).

Step 2. Updating the motion dynamis parameters þ by regression,

þ (s+ 1) = (1þ û)þ (s) + û
� log p(W syn[0; ü ℄;þ )

�þ
:

Step 3. Updating the moveton parameters þ by lustering and grouping,

ÿ(s+ 1) = (1þ û)ÿ(s) + û
� log p(IobsjW syn;ÿ)

�ÿ
:

Finally, the birth, death maps, PB and PD , are updated by ounting the the

head and tail of eah able at their loations in the frames.

The algorithm is initialized by a stohasti version of math pursuit[9℄ for the

base maps whih is often very eÿetive. We adopt a oarse-to-þne sheme and

trak the ore bases whose oeÆients and sales are higher than a threshold,

and learn the motion dynamis þ . Then we lower the threshold to add the oil

bases quikly following the learned trajetory.

Our method for traking movetons is similar to the ondensation algorithm[8℄,

while is distinguished from it in two main aspets. Firstly, we have a full gener-

ative model of image rather than the traking model whose likelihood an only

be evaluated relatively. Seondly, we are optimizing the whole trajetories and

thus will trae bak in time during the omputation, whih means we don't have

to remember a huge samples for eah movetons. This, in ombination with the

generative model, saves large amount of time and memory.

For a typial sequene of 30 frames, the learning takes about 10-20 minutes in

a Pentium IV PC, and the synthesis of sequene an be done in nearly real-time.
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Fig. 7. Example of the bird sequene (see bird obs.avi, bird syn.avi).

Fig. 8. The omputed trajetories of ÿying birds and the soure and sink maps.

5 Experiments

We report the results on four textured motion sequenes.

1. The snowing sequene. Fig. 2 shows the reonstrution of the snowing

images by bases, and a synthesized sequene. For movie, see the observed and

synthesized sequene at the attahed avi ÿles snow obs.avi and snow syn.avi

respetively. The algorithm also omputes the movetons (snow þake) templates,

and random samples are shown in Fig. 3 The trajetories and soure/sink maps

are shown in Fig 4.

2. The ÿying bird sequene. Fig. 7.a and b show the observed and synthesize

sequenes. The animation an be seen at the attahed avi ÿles bird obs.avi and

bird syn.avi. The trajetories and soure/sink maps are shown in Fig.8. The

594 Y. Wang and S.-C. Zhu



Fig. 9. The omputed motion elements: ÿying birds and random examples

birds enter and exit the piture from the image boundary. The maps are rather

sparse beause we redued the number of ables (birds) for photo editing eÿet.

Fig.9 shows the deformable templates (a) where a ore base is surrounded by a

number of small oil bases. The dashed onnetion means the oil base may or

may not appear all the time. A variety of templates and image instanes of birds

(movetons) are shown in (b) and ().

3. The ÿrework sequene. Fig. 10.a and b show the observed and synthesized

sequenes. See attahed þrework obs.avi and þrework syn.avi for the movies. The

trajetories and soure/sink maps are shown in Fig.11. In the synthesis, we edit

the birth map PB(ÿ; þ) by hanging its birth rate, assume a uniform distribution

for the soures over then lattie. Thus the synthesis has more þreworks.

4. The waterfall sequene. Fig.12 shows the observed and synthesized se-

quenes. See attahed waterfall obs.avi and waterfall syn.avi for the movies. The

trajetories and soure sinks are shown in Fig.13. Fig.14 shows 10 typial water

drops in the waterfall whih are a luster of bases.

The generative model in this paper is motivated by the graphis and vision

riteria disussed in Setion (1). It learns realisti motion patterns from real

data, separates the motion dynamis with photometri and geometri styles, and

thus ahieves good ontrollability. For example, we an hange the soure/sink,
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Fig. 10. Example of the ÿrework sequene (see ÿrework obs.avi, ÿrework syn.avi)

Fig. 11. The omputed trajetories of ÿreworks and the soure and sink maps.

Fig. 12. Example of the waterfall sequene (see waterfall obs.avi, waterfall syn.avi)

alter the dynamis or geometry of movetons by group or by individuals. The

representation is semantially meaningful for vision appliations as well beause
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Fig. 13. The omputed trajetories of waterfalls and the soure and sink maps.

Fig. 14. The random examples of water drops.

the reovered trajetories et. Needless to say that the generative desription

W [0; ÿ ℄ ahieves tremendous ompression (usually 102-fold) ompared to image

I[0; ÿ ℄.

In future work we should extend the model in the following aspets.

1. We shall study the spatial interations of the moving elements, bifuration

and merging of trajetories, and thus integrate good properties of the STAR

model to aount for lighting variation in motions suh as water.

2. We shall study the 3D positions of the moving elements (struture from

motion).
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