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Abstra
t. Natural s
enes 
ontain ri
h sto
hasti
 motion patterns whi
h

are 
hara
terized by the movement of a large number of small elements,

su
h as falling snow, raining, ÿying birds, þrework and waterfall. In this

paper, we 
all these motion patterns textured motion and present a gen-

erative method that 
ombines statisti
al models and algorithms from

both texture and motion analysis. The generative method in
ludes the

following three aspe
ts. 1). Photometri
ally, an image is represented as

a superposition of linear bases in atomi
 de
omposition using an over-


omplete di
tionary, su
h as Gabor or Lapla
ian. Su
h base representa-

tion is known to be generi
 for natural images, and it is low dimensional

as the number of bases is often 100 times smaller than the number of

pixels. 2). Geometri
ally, ea
h moving element (
alled moveton), su
h

as the individual snowÿake and bird, is represented by a deformable

template whi
h is a group of several spatially adja
ent bases. Su
h tem-

plates are learned through 
lustering. 3). Dynami
ally, the movetons are

tra
ked through the image sequen
e by a sto
hasti
 algorithm maximiz-

ing a posterior probability. A 
lassi
 se
ond order Markov 
hain model is

adopted for the motion dynami
s. The sour
es and sinks of the movetons

are modeled by birth and death maps. We adopt an EM-like sto
hasti


gradient algorithm for inferen
e of the hidden variables: bases, move-

tons, birth/death maps, parameters of the dynami
s. The learned models

are also veriþed through synthesizing random textured motion sequen
es

whi
h bear similar visual appearan
e with the observed sequen
es.

Natural s
enes 
ontain ri
h sto
hasti
 motion patterns whi
h are 
hara
terized

by the movement of a large number of small deformable elements (or parti
les).

For example, raining, snowing, bird ÿo
k, moving 
rowd, þrework, waterfalls,

and so on. The analysis and synthesis of su
h motion patterns, 
alled textured

motion in this paper, are important for a variety of appli
ations in both vision

and graphi
s, and stimulate growing interest of the two 
ommunities.

Graphi
s methods. In graphi
s, the obje
tive is to render textured

motion in video or 
artoon animation, and the quality of the rendered motion is

usually measured by three basi
 
riteria.
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1  Introduction: Objectives and Previous Work



1. It should be realisti
. This motivates work for modeling and learning the

photometri
 and dynami
 properties from real video due to the 
omplexity

of textured motion. Usually, data driven statisti
al modeling is often more

appropriate than physi
ally-based modeling.

2. It should be stylish. This is required for appli
ations in non-photo realisti


rendering (NPR), for example, rendering a waterfall in a 
artoon movie. It is

desirable to separate the dynami
s of motion from its photometri
 appear-

an
es, so that the video appears symboli
 but with realisti
 motion.

3. It should be 
ontrollable. For a better blending of the motion with other 3D

obje
ts in a s
ene, one should in
rease the degree of freedoms in maneuvering

the motion. For example, it is desirable to 
ontrol the sour
es and sinks where

the motion elements appear and disappear, to 
ontrol the individual moving

elements, to 
hange its motion dire
tion et
.

In the graphi
s literature, both physi
ally-based and data driven models are

reported. The former in
ludes the work whi
h 
reate animations of ÿre and

gaseous phenomena with parti
les [12, 5℄. The latter in
ludes the 1). video tex-

ture[14℄ whi
h ÿnds smooth transition points in a video sequen
e from whi
h the

video 
ould be replayed with minimum artifa
ts; 2). 3D volume texture[18℄ whi
h

generates motion through non-parametri
 sampling from an observed video mo-

tivated by re
ent work on texture synthesis. Though the statisti
al models of

the video texture or 3D volume texture 
an render some realisti
 animations,

su
h models do not model the dynami
 and geometri
 properties of the moving

elements.

Vision methods. In 
omputer vision, the analysis of textured motion

has appli
ations for video analysis, su
h as motion segmentation, annotation,

re
ognition and retrieval, dete
ting abnormal motion in a 
rowd, and so on.

Needless to say that a good vision model of textured motion is useful for ani-

mation in graphi
s as mentioned above. For su
h appli
ations, a vision model

should satisfy the following properties.

1. It should be suÆ
ient and general. It is not enough to just render a syn-

thesized sequen
e that looks like the original as the video texture do, the

model should also be able to 
apture the variability and therefore 
an be

generalized to new data.

2. It should be parsimonious and low dimensional for 
omputation. This re-

quests the model 
apture the semanti
s of the motion. This also requests

the modeling of photometri
, geometri
, and dynami
 aspe
ts of the motion

| 
onsistent with the graphi
s 
riteria.

In the vision literature, as these motion patterns lie in the domains of both

motion analysis and texture modeling, statisti
al models are proposed from both

dire
tions with a trend of merging the two. In the following, we brieþy review

these work to set the ba
kground of our method.

Early vision work on textured motion was done by (Szummer and Pi
ard,

1996)[17℄ who adopt a spatial-temporal auto-regression (STAR) model from
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(Cliÿ and Ord, 1976)[4℄. Let I(x; y; t) be the intensity of a pixel (x; y) at time t,
a STAR model assumes that I(x; y; t) is a regression of its neighboring pixels

I(x; y; t) =

pX

i=1

aiI(x+ Æxi; y + Æyi; t+ Æti) +N(0; ÿ2); (1)

where (Æxi; Æyi; Æti) is the displa
ement of a neighboring pixel in spa
e and time,
and ai; i = 1; :::; p are parameters to be þt. A linear (or partial) order is imposed
so that I(x; y; t) only depends on pixels at previous frames Æti < 0;8i for fast
synthesis. Su
h model 
an be 
onsidered as an extension from a 
ausal Gaussian
Markov random þeld model (GMRF) used in texture modeling by adding the
time dimension. Along the line of texture modeling, Bar-Joseph et.al.[1℄ extended
the work by Heeger and Bergen (1995) and others[19℄ to multi-resolution analysis
in a tree stru
tured representation, in a similar spirit to (Wei and Lovoy, 2000).

Although these algorithms 
an show synthesis of good motion, we argue that
the 
on
ept of treating a motion pattern as a solid texture is perhaps not ap-
propriate. Be
ause textures are physi
ally the status of systems with massive
elements at thermodynami
 equilibrium 
hara
terized by maximum entropy dis-
tributions[19℄. However, this assumption is not observed in textured motions, for
example, þre or gaseous turbulen
e, whi
h are 
learly not at equilibrium.

The re
ent work (Soatto, Doretto, and Wu, 2001)[15℄ engages the motion
dynami
s expli
itly. By a SVD analysis, Soatto et al. represent an image I(t)
by a small number of prin
ipal 
omponents. The proje
tions of I(t) on these

omponents, denoted by x(t), is modeled by a Markov model,

x(t+ 1) = Ax(t) +Bv(t); I(t) = Cx(t) + n(t); (2)

where v(t) is the noise driving the motion and n(t) is the image noise for the
re
onstru
tion residues. The parameters A;B;C are learned by maximum like-
lihood estimation (MLE). This model 
an generate impressive synthesis for a
variety of motion patterns and 
an also be used for re
ognition[13℄.

Being 
onsidered as an extension the work [15℄, Fitzgibbon 
onsidered not
only the sto
hasti
 part for textured motion, but also the parametri
 
omponent
introdu
ed by the 
amera motion [16℄. In [16℄, the images are also represented
by the prin
ipal 
omponents with peroid
 
oeÆ
ients, and the Auto-Regression
(AR) model is used to handel sto
hasti
 textured motion. The parametri
 
ompo-
nent for 
amera motion is governed by proje
tive geometry model. The obje
tive
of the method is to both eÆ
iently þt the AR model and 
orre
tly register the
image sequen
e.

Our method. In this paper, we present a generative method for the
analysis and synthesis of textured motion, motivated by the vision and graphi
s

riteria dis
ussed above. Our model in
ludes the following three aspe
ts.

1. Photometri
ally, an image is represented as a superposition of linear bases
in atomi
 de
omposition using an over-
omplete di
tionary, su
h as Gabor
or Lapla
ian. Su
h base representation is known to be generi
 for natural
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images, and it is low dimensional as the number of bases is often 100 times

smaller than the number of pixels.

2. Geometri
ally, ea
h moving element (
alled moveton), su
h as the individual

snowÿake, bird, is represented by a template whi
h is a group of several

spatially adja
ent bases. Su
h templates are deformable to a

ount for the

variabilities of the elements and are learned through 
lustering.

3. Dynami
ally, the movetons are tra
ked through the image sequen
e by a

sto
hasti
 algorithm maximizing a posterior probability. A 
lassi
 Markov


hain model is adopted for the motion dynami
s, as in[15℄. The sour
es and

sinks of the movetons are modeled by birth and death maps.

We adopt an EM-like sto
hasti
 gradient algorithm for inferen
e of the hidden

variables: bases, movetons, birth/death maps, parameters of the dynami
s.

To þx notation, let I[0; ÿ ℄ denote an image sequen
e on a 2D latti
e þ = f(x; y) :
0 ÿ x; y ÿ Lg in a dis
retized time interval [0; ÿ ℄ = f0; 1; 2; :::; ÿg. For (x; y) 2 þ

and t 2 [0; ÿ ℄, I(x; y; t) denotes the pixel intensity, and I(t) 2 I[0; ÿ ℄ is a single

image frame.

Fig. 1. A \
able model" for movetons.

In this se
tion, we study the representation of a single image frame I 2 I[0; ÿ ℄.

For 
larity, we remove the time index. We represent an image as a superposition
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2.1   Image Representation: From Pixels to Bases



of a small number of image bases, in a s
heme whi
h is often 
alled atomi


de
omposition in wavelets and image 
oding[9, 10, 3℄.

I =

NX

j=1

ÿjbj + n; b 2 þ: (3)

In equation (3), bj is an image base from a di
tionary þ, ÿj is its 
oeÆ
ient, and

n is a noise pro
ess for the residues. The di
tionary in
ludes all bases whi
h are

transformed versions of three base fun
tions (mother wavelets) ý`; ` = 1; 2; 3,

þ = fTx;y;ÿ;þ Æ ý` : (x; y) 2 ü; û 2 [0; 2ú); ù 2 [ùmin; ùmax℄; ` = 1; 2; 3g

Tx;y;ÿ;þ denotes a transform with (x; y; û; ù) for translation, rotation, and

s
aling respe
tively.

We denote the set of base fun
tions by ø = fý`; ` = 1; 2; 3g. We 
hoose

the Lapla
ian of Gaussian (LoG), Gabor 
osine (G
os), and Gabor sine (Gsin)

shown in Figure 1.a. These base fun
tions represent blobs, bars and step edges

respe
tively (see the symboli
 sket
hes in Figure 1.a). We 
hoose 8 s
ales, and

12 orientations.

Thus we transform an image I into a base representation, 
alled a base map.

B = (bj = (ÿj ; `j ; xj ; yj ; ûj ; ùj) : j = 1; 2; :::; N):

As þ is over-
omplete, we should dis
uss how B is inferred from I later. We


hoose the base representation for two reasons.

1. Low dimensionality. The number of bases is usually 100-fold smaller than

the number of pixels. Figure 2 shows a snowing sequen
e, ea
h frame 
an

be approximated by N ÿ 100 bases (see Figure 2.b). When N in
reases to

800 bases, the re
onstru
ted images in Figure 2.
) are of very high pre
ision.

This also introdu
es a 
oarse-to-ÿne strategy for 
omputation.

2. Generality. It is well known that the LoG and Gabor bases are generi
 repre-

sentations for the ensemble of natural images[11℄, and are also fundamental

to human visual per
eption.

In natural image sequen
es, the image bases often form spatially 
oherent groups.

This is most evident in sequen
es where the moving elements (or \movetons")

are identiÿable, su
h as the individual snow þakes, and þying birds. Figure 1.b

shows two examples. A snow þake is a sum of three bases: 2 ý1's and 1 ý2 at

various s
ales and spa
e displa
ements. A bird 
onsists of 7 bases: 3 ý1's, 2 ý2's

2 ý3's. The number of bases, and their relative positions and 
oeÆ
ients may

vary between the movetons. By deÿning a distan
e between the movetons, one


an 
luster the movetons into a small number of deformable templates.

÷ = fö`(õ) : ` = 1; 2; :::; ng
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Fig. 2. Example of a snowing sequen
e. (see snow obs.avi and snow syn.avi for movies)

with ` indexing the moveton types and ÿ being the parameters for relative defor-

mations of the bases within a moveton. Thus we obtain a di
tionary of movetons

with some transformations,

þ = f Tx;y;ÿ;þ Æ ý` : (x; y) 2 ü; û 2 [0; 2ú); ù 2 [ùmin; ùmax℄; ` g: (4)

In pra
ti
e, not all bases are ne
essarily grouped into movetons. We 
all the

ungrouped ones free bases, whi
h are treated as degenerated movetons, i.e. ea
h

moveton has one base, for 
larity of notation. For the N bases in the base map

B, suppose we group them into J movetons, then we arrive at a more meaningful

representation of the image, with dimensions further redu
ed than B.

M = (új = (`j ; xj ; yj ; ûj ; ùj ; ÿj); j = 1; 2; :::; J); J ÿ N:

Ea
h moveton új is represented by 1 þ `j þ n for the type of the deformable tem-

plate, xj ; yj ; ûj ; ùj for the position, orientation, and s
ale of the overall moveton,

and ÿ for the deformable within the moveton.

During the 
omputation, we should learn the deformable templates ø` and


ompute the movetons and free bases M from images. For example, Figure 3.a

displays the symboli
 sket
hes for a set of typi
al deformable templates of the
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Fig. 3. The 
omputed motion elements: snow ÿakes and random examples.

snowing sequen
e shown in Figure 2. Figure 3.b shows 120 random movetons

sampled from the moveton di
tionary ÿ . Ea
h moveton is a snow ÿake. This

sample shows the variety and generality of the deformable models learned with

bases.

To summarize, we have a following generative model for an image I, with

dimensions redu
ed sequentially,

M
ÿ
ÿ! B

þ
ÿ! I

Now we turn to the image sequen
e I[0; þ ℄. As shown in Figure 1.
, a moveton ý


an be tra
ed over a 
ertain time interval [tb; te℄ and thus its traje
tory is what

we 
all a \
able". Typi
ally in a moveton template, one base has relatively large


oeÆ
ient and s
ale, su
h as the main body of the bird or snow ÿake, and its

traje
tory forms the 
ore of the 
able. The 
ore base is surrounded by a number

of minor bases whi
h a

ount for the deformations. Due to self-rotation, the

traje
tories of these minor bases form the 
oil surrounding the 
able 
ore. In a


oarse-to-þne 
omputation, we 
an 
ompute the traje
tories of the 
ores þrst,

and then add the 
oils sequentially. Thus we denote a 
able by

C[tb; te℄ = (ý(tb); ý(tb + 1); :::; ý(te)): (5)
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2.3    Motion Representation: Dynamics, Sources, Sinks, and  State 

         Transition 



In pra
ti
e, the 
ore of a moveton is relatively 
onsistent through its life span,

and the number of 
oil bases may 
hange over time, due to self-o

lusion et
.

Sin
e these bases are often minor, we assume the number of 
oil bases are ÿxed

in a 
able for simpli
ity.

We adopt a 
lassi
 2nd order Markov model whi
h is suÆ
ient for the dy-

nami
s of a moveton C[tb; te℄. In other words we ÿt the traje
tory (the 
able)

C[tb; te℄ by regression. Su
h models are extensively used in tra
king[8℄.

ÿ(t) = Aÿ(tÿ 1) +B þ ÿ(tÿ 2) + C +DN(0; þ2
0
) t 2 [tb + 2; te℄

ÿ(tb + 1) = A0ÿ(tb) + C 0 +D!

(ÿ(tb); tb) ý PB(ÿ; ý); (ÿ(te); te ÿ tb) ý PD(ÿ; ý):

One 
an simplify the equation in a 
anoni
al form expressed in equation (2).

ÿ(t) is a ve
tor representing a number of bases in
luding both the photometri


(by base 
oeÆ
ients) and geometri
 information. The matri
es A;B;C;D;A0; C 0


apture the 
hange of image appearan
es and the motion of the movetons, and

these matri
es are usually diagonal. Sin
e the motion patterns we are studying

is textured motion, we assume that those movetons have similar dynami
s. That

means those traje
tories share the same A;B;C;D;A0; C 0.

The ÿrst moveton ÿ(tb) and its timing tb follows a probability PB(ÿ; ý) whi
h

we 
all the birth map for movetons. PB spe
iÿes the \sour
es" of the movetons

where the movetons are often originated. Similarly, the end of the traje
tory ÿ(te)

and its life span te ÿ tb are governed by a death map PD(ÿ; ý). PD reveals the

\sinks" in a latti
e. ÿ is a long ve
tor, PB and PD are high dimensional. Although

other attributes in ÿ 
an be modeled if ne
essary, we are most interested in the

lo
ation (x; y).

Fig. 4. The 
omputed traje
tories of snow ÿakes and the sour
e and sink maps.

For example, Figure 4 displays the 
omputed traje
tories ( 4.b), birth (sour
e)

map (4.
), and death (sink) map (4.d) of the snowing sequen
e shown in Figure 2.

The dark lo
ations at the death/birth maps indi
ate high probabilities. Thus
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the algorithm \understands" that the snow ÿakes enter mostly from the upper-

right 
orner and disappear around the lower-left 
orner. We sum over the other

variables at ea
h (x; y).

During the learning pro
ess, suppose we have 
omputed K 
ables from a

sequen
e I[0; ÿ ℄, Ci[t
b

i
; t
e

i
℄; i = 1; 2; :::;K, we represent PB and PD in a non-

parametri
 form,

PB(þ; ý) =
1

K

KX

i=1

Æ(þÿþi(t
b

i
); ýÿtb

i
); PD(þ; ý) =

1

K

KX

i=1

Æ(þÿþi(t
b

i
); ýÿ(te

i
ÿt

b

i
))

where Æ() is a Parzen window 
entered at 0. Then we 
an proje
t PB and PD to

the (x; y) dimensions as marginal probabilities.

In pra
ti
e, the death and birth of movetons may be syn
hronized. For ex-

ample, in the þrework s
ene shown in Figure 10, a large number of movetons


an 
ome and go together. This requests the PB and PD be joint probabilities

for a large number of movetons.

Fig. 5. Three transition states while birds ÿying.

Fig. 6. 3D graphi
 model of ÿying birds and their ÿying states transition.

Furthermore, sometimes when the movetons are non-rigid obje
ts or arti
u-

lated obje
ts, we may observe 
ertain repeating states in their movements, for

example, the birds ÿapping their wings while ÿying. Thus we also need to model

the state transition of those movetons. As the result, we extend the motion dy-

nami
s model with more states. Figure 5 shows the 
lustered three states (þ1,

þ2, þ3) of the poses when birds ÿying. And Figure 6 displays the 3D graphi
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model for the birds and their ÿying states transition. During the synthesis of

birds ÿy, on
e we determine the birds' ÿying pathes, we 
an make those birds

ÿapping their wings by sampling the transition states from the model.

To summarize, we denote all parameters in the motion equation above by,

ÿ = (A;B;C;D;B;A0; C 0; PB ; PD; T (þj))

Given an observed image sequen
e I
obs

[0; ý ℄ as training data, we want to a
hieve

two obje
tives.

1. Make inferen
e about all the hidden (latent) variable whi
h are represented

by an unknown of K 
ables,

W [0; ý ℄ = (K; f(tbi ; t
e
i ; Ci) : [tbi ; t

e
i ℄ ÿ [0; ý ℄; i = 1; 2; :::;Kg ):

2. Compute the optimal þt for all parameters in the generative model ü =

(û; ÿ ), with û being the set of deformable templates for the movements, and

ÿ governing the birth, death, and motion of the movetons.

The formulation is standard in statisti
s for learning a model with latent vari-

ables (missing data), that is, the maximum likelihood estimate (MLE),

üÿ

= (ûÿ; ÿ ÿ

) = argmax log p(Iobs[0; ý ℄;ü): (6)

The likelihood is 
omputed from the generative model with latent variables in-

tegrated (summed) out, For 
larity of notation, we assume W are 
ontinuous

variables.

p(Iobs[0; ý ℄;ü) =

Z
p(Iobs[0; ý ℄jW [0; ý ℄; û)p(W [0; ý ℄; ÿ )dW:

Let B(t) = fbt;j ; j = 1; 2; :::; N(t)g be the 
olle
tion of all bases in the K

movetons (
ables) at time t, then we 
an re-express W [0; ý ℄ as (B(0); :::;B(ý)),

by equation (3), p(I[0; ý ℄jW [0; ý ℄; û) is the produ
t Gaussians,

p(Iobs[0; ý ℄jW [0; ý ℄; û) =

ÿY
t=0

G(Iobs(t)þ

N(t)X
j=1

út;jbt;j ; ù2o);

as we assume iid Gaussian noise G(0; ù2o) for n.

Following the motion representation, p(W [0; ý ℄; ÿ ) is also a produ
t of Gaus-

sians,

p(W [0; ý ℄; ÿ ) =

KY
i=1

PB(þ(t
b
i ); t

b
)PD(þ(t

e
i ); t

e
i )p(þ(t

b
i + 1)jþ(tbi ); A

0; C 0; D)

ý

te
iY

t=tb
i
+2

p(þ(t)jþ(t þ 1); þ(tþ 2); A;B;C;D):
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To solve the MLE in eqn. (6), we set
� log p(Iobs;ÿ)

�ÿ
= 0. This leads to

Z
[
� log p(IobsjW ;ÿ)

�ÿ
+

� log p(W ;þ )

�þ
℄p(W jI; ý)dW = 0: (7)

Instead of using the 
lassi
 EM algorithm, we adopt the sto
hasti
 gradient

algorithm[6℄ whi
h is 
apable of being global optimal ý. It iterates three steps

with s indexing steps.

Step 1. Sampling W syn[0; ü ℄ ÿ p(W jIobs;ÿ). This in
ludes 
omputing the bases,

grouping bases into movetons, and tra
king the movetons. The 
omputation is

realized by a data driven Markov 
hain Monte Carlo te
hniques, in
luding the

following reversible dynami
s.

1). The death or birth of a motion traje
tory þ of length one.

2). Extending or shrinking a traje
tory.

3). Mutating two nearby traje
tories at a 
ertain base.

4). Diÿusing the 
oeÆ
ient, lo
ation, orientation, s
ale of a base in a traje
-

tory (Inferring B).

Step 2. Updating the motion dynami
s parameters þ by regression,

þ (s+ 1) = (1þ û)þ (s) + û
� log p(W syn[0; ü ℄;þ )

�þ
:

Step 3. Updating the moveton parameters þ by 
lustering and grouping,

ÿ(s+ 1) = (1þ û)ÿ(s) + û
� log p(IobsjW syn;ÿ)

�ÿ
:

Finally, the birth, death maps, PB and PD , are updated by 
ounting the the

head and tail of ea
h 
able at their lo
ations in the frames.

The algorithm is initialized by a sto
hasti
 version of mat
h pursuit[9℄ for the

base maps whi
h is often very eÿe
tive. We adopt a 
oarse-to-þne s
heme and

tra
k the 
ore bases whose 
oeÆ
ients and s
ales are higher than a threshold,

and learn the motion dynami
s þ . Then we lower the threshold to add the 
oil

bases qui
kly following the learned traje
tory.

Our method for tra
king movetons is similar to the 
ondensation algorithm[8℄,

while is distinguished from it in two main aspe
ts. Firstly, we have a full gener-

ative model of image rather than the tra
king model whose likelihood 
an only

be evaluated relatively. Se
ondly, we are optimizing the whole traje
tories and

thus will tra
e ba
k in time during the 
omputation, whi
h means we don't have

to remember a huge samples for ea
h movetons. This, in 
ombination with the

generative model, saves large amount of time and memory.

For a typi
al sequen
e of 30 frames, the learning takes about 10-20 minutes in

a Pentium IV PC, and the synthesis of sequen
e 
an be done in nearly real-time.
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Fig. 7. Example of the bird sequen
e (see bird obs.avi, bird syn.avi).

Fig. 8. The 
omputed traje
tories of ÿying birds and the sour
e and sink maps.

5 Experiments

We report the results on four textured motion sequen
es.

1. The snowing sequen
e. Fig. 2 shows the re
onstru
tion of the snowing

images by bases, and a synthesized sequen
e. For movie, see the observed and

synthesized sequen
e at the atta
hed avi ÿles snow obs.avi and snow syn.avi

respe
tively. The algorithm also 
omputes the movetons (snow þake) templates,

and random samples are shown in Fig. 3 The traje
tories and sour
e/sink maps

are shown in Fig 4.

2. The ÿying bird sequen
e. Fig. 7.a and b show the observed and synthesize

sequen
es. The animation 
an be seen at the atta
hed avi ÿles bird obs.avi and

bird syn.avi. The traje
tories and sour
e/sink maps are shown in Fig.8. The
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Fig. 9. The 
omputed motion elements: ÿying birds and random examples

birds enter and exit the pi
ture from the image boundary. The maps are rather

sparse be
ause we redu
ed the number of 
ables (birds) for photo editing eÿe
t.

Fig.9 shows the deformable templates (a) where a 
ore base is surrounded by a

number of small 
oil bases. The dashed 
onne
tion means the 
oil base may or

may not appear all the time. A variety of templates and image instan
es of birds

(movetons) are shown in (b) and (
).

3. The ÿrework sequen
e. Fig. 10.a and b show the observed and synthesized

sequen
es. See atta
hed þrework obs.avi and þrework syn.avi for the movies. The

traje
tories and sour
e/sink maps are shown in Fig.11. In the synthesis, we edit

the birth map PB(ÿ; þ) by 
hanging its birth rate, assume a uniform distribution

for the sour
es over then latti
e. Thus the synthesis has more þreworks.

4. The waterfall sequen
e. Fig.12 shows the observed and synthesized se-

quen
es. See atta
hed waterfall obs.avi and waterfall syn.avi for the movies. The

traje
tories and sour
e sinks are shown in Fig.13. Fig.14 shows 10 typi
al water

drops in the waterfall whi
h are a 
luster of bases.

The generative model in this paper is motivated by the graphi
s and vision


riteria dis
ussed in Se
tion (1). It learns realisti
 motion patterns from real

data, separates the motion dynami
s with photometri
 and geometri
 styles, and

thus a
hieves good 
ontrollability. For example, we 
an 
hange the sour
e/sink,
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Fig. 10. Example of the ÿrework sequen
e (see ÿrework obs.avi, ÿrework syn.avi)

Fig. 11. The 
omputed traje
tories of ÿreworks and the sour
e and sink maps.

Fig. 12. Example of the waterfall sequen
e (see waterfall obs.avi, waterfall syn.avi)

alter the dynami
s or geometry of movetons by group or by individuals. The

representation is semanti
ally meaningful for vision appli
ations as well be
ause
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Fig. 13. The 
omputed traje
tories of waterfalls and the sour
e and sink maps.

Fig. 14. The random examples of water drops.

the re
overed traje
tories et
. Needless to say that the generative des
ription

W [0; ÿ ℄ a
hieves tremendous 
ompression (usually 102-fold) 
ompared to image

I[0; ÿ ℄.

In future work we should extend the model in the following aspe
ts.

1. We shall study the spatial intera
tions of the moving elements, bifur
ation

and merging of traje
tories, and thus integrate good properties of the STAR

model to a

ount for lighting variation in motions su
h as water.

2. We shall study the 3D positions of the moving elements (stru
ture from

motion).
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