
A Generator of SQL Schema Specifications

Slavica Aleksić1, Ivan Luković1, Pavle Mogin2, Miro Govedarica1

1 University of Novi Sad, Faculty of Technical Sciences,
21000 Novi Sad, Trg Dositeja Obradovića 6, Serbia
{slavica, ivan, miro}@uns.ns.ac.yu

2 Victoria University of Wellington,
Wellington, P.O. Box 600, New Zealand

pmogin@mcs.vuw.ac.nz

Abstract. IIS*Case is an integrated CASE tool that supports the automation and
intelligent support of complex and highly formalized design and programming
tasks in the development of an information system. IIS*Case generates relational
database schemas in 3rd normal form with all relevant data constraints. SQL Gen-
erator is an IIS*Case tool that generates the implementation specification of a da-
tabase schema according to ANSI SQL:2003 standard. The generator may also
produce a database schema specification for Microsoft SQL Server or Oracle
DBMSs. The paper describes SQL Generator's traits, considers aspects of its ap-
plication, and shows its use in the implementation of a complex database con-
straint using procedural mechanisms of a particular relational DBMS. SQL Gen-
erator is implemented in Java and Oracle JDeveloper environment.

1 Introduction

Integrated Information Systems*Case (IIS*Case) V.6.2 is a tool that provides the
automation and an intelligent support for performing complex and highly formalized
design and programming tasks in the development of an information system. It is
designed to provide complete support for: (i) developing database (db) schemas that
are complex with regard to the number of concepts used, and (ii) software applica-
tions of an information system.

The form type is one of the main IIS*Case concepts. It is semantically rich enough
to enable expressing the elements of the static and dynamic structures in an applica-
tion domain. By means of form types, a designer creates simultaneously a model of
the structure and behavior of various business documents, and a conceptual db
schema. Starting from the created conceptual schema, IIS*Case automatically gener-
ates a relational db schema in 3rd normal form (3NF) with all relevant data constraints.
Detailed information about IIS*Case and its main concepts may be found in several
authors' references, as well as in [5, 8, 13, 14].

IIS*Case is designed to provide a fast generation of db schemas and application pro-
totypes. Although the concept of the form type is highly formalized, it is very close to
the perception power of an average user. Therefore, IIS*Case may support an intensive
and efficient communication among designers and users of an application domain
throughout the software development process. Consequently, we believe that it is a tool

suitable for the application in the agile software development. A case study illustrating
main features of IIS*Case and the methodological approach to its usage is given in [5].

SQL Generator is a tool of IIS*Case that generates SQL specifications of relational
db schemas. One of the main reasons for the development of such a tool was to make
db designer's and developer's job easier, and particularly to free them from manual
coding and testing of SQL scripts. The goal was to provide an efficient transforma-
tion of design specifications into error free SQL specifications.

There are a number of CASE tools that provide generation of SQL scripts. Some of
them are described in [2, 12, 15]. One of the advantages of our SQL Generator is that it
provides the implementation of some special cases of db constraints. For example, in
contrast to Oracle Server Generator [12], and Sybase Power Designer PDM [15],
IIS*Case SQL Generator provides the implementation of not only the default, but also
the partial and the full referential integrity constraints, according to [4]. For all those
types of referential integrity constraints, SQL Generator also allows selecting the fol-
lowing actions: No Action, Cascade, Set Default and Set Null, both for deleting and
updating in the referenced table. Besides, SQL Generator provides the implementation
of the inverse referential integrity constraints [8, 9], which are not rare in the real world
and to the best of our knowledge, neither of the other CASE tools provides the same
functionality. SQL Generator also produces a trigger that prohibits updates of a relation
scheme primary key, if such a rule is specified in the design.

SQL Generator provides creating SQL scripts according to the syntax of: (i) ANSI
SQL:2003 standard [4], (ii) DBMS Microsoft (MS) SQL Server 2000/2005 with
Microsoft T-SQL [6, 7], and (iii) DBMS Oracle 9i/10g with Oracle PL/SQL [10, 11].

In this paper we present basic features of SQL Generator that are already imple-
mented, and aspects of its application. We also present methods for implementation
of a selected db constraint, using mechanisms provided by a relational DBMS. A
complete description of SQL Generator may be found in [1].

2 Generating the SQL Specifications of a DB Schema

IIS*Case generates 3NF relational db schemas with all the relation scheme keys, null
value constrains, unique constrains, referential and inverse referential integrity con-
straints. These schemas are stored in the IIS*Case repository. The specification of the
IIS*Case repository is given in [13]. The input into SQL Generator is a schema stored
in the repository.

Using SQL Generator, a user may produce SQL scripts for the creation of tables,
views, indexes, sequences, procedures, functions and triggers, even without knowing
SQL syntax and mechanisms for the implementation of constrains of a selected DBMS.
SQL Generator may produce scripts for implementing a new db schema, or modify an
already existing one in the following three ways: (i) by creating SQL scripts in files only
for a later execution, (ii) by creating and immediately executing SQL scripts under a
selected db server with an established connection, and (iii) by creating and immediately
executing SQL scripts on a selected data source with an established connection via an
ODBC driver. In all three cases, generated SQL scripts are stored in one or more files.

Figures 1-5 present screenshots of a form that is used to define values of SQL Gen-

erator input parameters. The field DBMS (Fig. 1) enables the selection of the type and
version of a target db server. The radio button DDL Files only (Fig. 1) provides the
creation of SQL scripts in files only. The scripts may be created in one, or more files
(see the check box One File Only in Fig. 1). If a user selects the former option, separate
files are created for tables, constraints, triggers and indexes. The main command file is
also generated. It contains calls to all the other script files. The radio button Database
Source (Fig. 1) enables the selection of either Oracle or MS SQL db server, establishing
a connection, and immediate execution of SQL scripts. In this case, SQL Generator
creates a script file, invokes the appropriate SQL tool, and passes necessary parameter
values for the script execution. The radio button ODBC Source (Fig. 1) enables the
creation and the immediate execution of SQL scripts in a selected ODBC data source.
An appropriate ODBC driver for the target db server must be installed and configured.
SQL Generator supports the user authentication when it works via an established con-
nection. The field DB Schema Name (Fig. 1) enables defining a db name that is then
included in an appropriate CREATE DATABASE command.

Figure 1. SQL Generator - Target panel

Figure 2. SQL Generator – Selection panel

By means of the Selection panel (Fig. 2), a user picks relation schemes. SQL Gen-
erator will produce the appropriate SQL commands for the selected relation schemes
only, and place them in script files. The list of selected relation schemes should not be
empty. Otherwise, a user will get a warning and the focus will be returned to the
Selection panel automatically.

By means of the Options panel (Fig. 3), a user defines which types of db objects
are to be generated. By checking the appropriate check-box items (Fig. 3), he or she
may decide to generate: (i) indexes for primary, alternate and foreign keys, (ii) SQL
CONSTRAINT clauses, (iii) triggers, and (iv) comments.

If the Generate SQL CONSTRAINT Clauses check-box is checked, SQL Generator
produces the following CONSTRAINT clauses: PRIMARY KEY, UNIQUE,
CHECK and FOREIGN KEY, for each key, unique, tuple, or foreign key constraint
in db schema that may be implemented in a declarative way. If Generate Triggers
check-box is checked, SQL Generator will produce all the db triggers, procedures and

functions, necessary to implement db constraints that cannot be expressed in a de-
clarative way. For inverse referential integrity constrains [8, 9], SQL Generator offers
two ways of implementation: (i) by means of SQL views and the appropriate stored
procedures, or (ii) by means of stored procedures only. If Include Comments check-
box is checked, SQL Generator will create comments in SQL code, comprising crea-
tion date and time, and the selected type and version of the DBMS.

Figure 3. SQL Generator - Option panel

Figure 4. SQL Generator - Modify panel

A user can select one of the following script generating methods. If the radio but-
ton Generate a New Database is selected (Fig. 1-5), SQL Generator will produce
scripts with CREATE statements, for the implementation of a new db schema under a
DBMS. Otherwise, if Regenerate a Database is selected, it will regenerate, i.e. mod-
ify an already implemented db schema under a DBMS. In the later case, the Modify
panel (Fig. 4) is used. SQL Generator uses the values for Host, Username, Password
and DB Schema Name (Fig. 4) to establish a connection to the target database, com-
pares the information from IIS*Case repository with the information obtained from
the data dictionary of the target database, and generates scripts containing the appro-
priate CREATE, ALTER and DROP statements. If a user selects the radio button
Always use create statements, each modification is accomplished by dropping old and
then creating objects. Otherwise, if Use alter statements when possible is selected,
SQL Generator will produce ALTER statements, whenever it is possible.

SQL Generator also supports the creation of sequence generators. A sequence gen-
erator specification is defined by the Sequence panel (Fig. 5). The selection of se-
quence generator properties, and the way of its implementation depends on the char-
acteristics of the DBMS selected.

Not all possible combinations of the selected generator options are always valid.
By pressing the Check button (Fig. 1-5), a user initiates a check of the selected op-
tions. If some inconsistencies arise, a user gets the appropriate warnings. Pressing the
button Generate initiates the generation of SQL scripts and their saving in one or
more files. The content of each generated file can be viewed, or modified through the
form presented in Fig. 6. By pressing the button Execute, a user can also start the

execution of a script file on a selected DBMS manually.
Generating SQL scripts may produce various kinds of warnings as a result of po-

tentially incorrect designer's decisions. For example, the following will produce a
warning: choosing a Set Null action for a constraint comprising a not null attribute, or
giving names that will cause the name of a trigger longer than 30 characters in an
Oracle DBMS. A separate panel Messages is used to view the warnings.

Figure 5. SQL Generator - Sequence panel

Figure 6. The form for reviewing script

3 Constraint Types Supported

SQL Generator implements constraints of the following types: domain constraints,
key constraints, unique constraints, tuple constraints, native and extended referential
integrity constraints (default, partial, full), referential integrity constraints inferred
from nontrivial inclusion dependencies (default, partial, full), native inverse referen-
tial integrity constraints, and inverse referential integrity constraints inferred from
nontrivial inclusion dependencies. [1, 3, 4, 8, 9]

According to [4], a designer qualifies each referential integrity constraint in
IIS*Case as a default, partial or full and this affects the way of its validation. He or
she also selects an action for preserving consistency in the case of an attempt to vio-
late the constraint during inserts, updates, or deletes. The possible actions are: No
Action, Cascade, Set Default and Set Null. Before implementing a constraint, SQL
Generator analyzes designer's selections. If a selected combination is not applicable,
SQL Generator produces a warning.

Constraints are implemented by the declarative DBMS mechanisms, whenever it is
possible. However, the expressivity of declarative mechanisms of commercial
DBMSs is usually limited in comparison to [4]. Therefore, SQL Generator imple-
ments a number of constraints through the procedural mechanisms.

4 An Example of the Procedural Implementation of a Constraint

Common algorithms for controlling a constraint validation are given in [1, 3, 8]. The
process of the procedural implementation of a constraint can be unified. It consists of
the following steps: (i) specifying a parameterized pattern of the algorithm for a spe-
cific DBMS, (ii) replacing the pattern parameters with real values, and (iii) generating
an SQL script comprising necessary triggers, procedures and functions. [1]

In this Section, we present an example of a trigger for the control the deletion of a
set of tuples from a relation r(Nj), where Nj is a relation scheme participating in a
native, partial referential integrity constraint Ni[X] ⊆ Nj[Y]. If a user selects ANSI
SQL as a target DBMS, the trigger is not needed, since the partial referential integrity
constraint is implemented declaratively, by means of the constraint clause FOREIGN
KEY and its subclause MATCH PARTIAL [4]. Suppose a user selects MS SQL
Server as a target DBMS. Since MS SQL Server currently does not support the
MATCH clause, a trigger is needed. A parameterized generic pattern of such a trigger
is shown in Fig. 7. A corresponding pattern for the Oracle Server is presented in [1].

CREATE TRIGGER TRG_<Nj>_<ConstraintName>_DEL ON <Nj> FOR DELETE
AS
 DECLARE <DeclarationFor_Y>, <DeclarationFor_X>, <DeclarationFor_PK_u>
 DECLARE Cursor_<Nj> CURSOR FOR SELECT <AttributeSetFrom_Y> FROM Deleted
 OPEN Cursor_<Nj>
 FETCH NEXT FROM Cursor_<Nj> INTO <VariablesFor_Y>
 WHILE @@FETCH_STATUS=0
 BEGIN

DECLARE Cursor_<Ni> CURSOR FOR
SELECT<AttributeSetFrom_X>, <AttributeSetFrom_PK_u> FROM <Ni>
WHERE <SelectionCriteria_ Cursor_Ni>
OPEN Cursor_<Ni>
FETCH NEXT FROM Cursor_<Ni> INTO <VariablesFor_X>, <Variables_PK_u>
WHILE @@FETCH_STATUS=0
BEGIN
 IF ExistPRI_<Ni> (<VariablesFor_X>)=0
 <Perform_Activity>
 FETCH NEXT FROM Cursor_<Ni> INTO <VariablesFor_X>, <Variables_PK_u>
END
CLOSE Cursor_<Ni>
DEALLOCATE Cursor_<Ni>
FETCH NEXT FROM Cursor_<Nj> INTO <VariablesFor_Y>

 END
 CLOSE Cursor_<Nj>
 DEALLOCATE Cursor_<Nj>

Figure 7. A parameterized generic pattern of the trigger for the control of tuple deletions

The purpose of the trigger is to check if there is a tuple u in r(Ni) that references only
a tuple v in r(Nj), which is marked for the deletion. If it is so, a specified action is initi-
ated. Otherwise, v is deleted from r(Nj), regardless of the specified constraint action.

Since the trigger syntax of MS SQL Server does not include the FOR EACH ROW
clause, cascaded cursors are used in the parameterized pattern in Fig. 7. In the process
of generating a trigger from the pattern, parameter <Nj> is replaced by the relation
scheme name Nj and <Ni> is replaced by the name of Ni. Each constraint has its own
name that is embedded into the trigger name by replacing the parameter <Constraint-
Name>. <DeclarationFor_Y> and <DeclarationFor_X> represent lists of variable
declarations of the form @<Attribute_From_Y> data type, and @<Attribu-
te_From_X> data type, for each attribute in Y and X, respectively. <Declaration-
For_PK_u> is a list of variable declarations of the form @<Attribute_From_PKey>
data type, each one for a primary key attribute of Ni. Deleted in the statement
DECLARE Cursor_<Nj>... is a table with all tuples deleted from r(Nj).

Parameter <VariablesFor_Y> in Fig. 7 is replaced by the list of variables defined
by <DeclarationFor_Y>, where each variable is of the form @<Attribute_From_Y>.
The variables take values from v[Y], where v is a tuple for deletion. <AttributeSet-
From_Y> and <AttributeSetFrom_X> represent the lists of all attributes from Y and
X, respectively. <AttributeSet_PK_u> represent the list of primary key attributes of
Ni. <SelectionCriteria_Cursor_Ni> is specified as a sequence of comparison ex-
pressions connected by the logical operator AND:

(<Attribute_From _X> IS NULL OR
<Attribute_From _X>=@<Attribute_From _Y>),

where each <Attribute_From _X> or <Attribute_From _Y> belongs to <Attribute-
SetFrom_X> or <AttributeSetFrom_Y>, respectively.

Parameter <VariablesFor_X> is replaced by the list of variables defined by <De-
clarationFor_X>, where each variable is of the form @<Attribute_From_X>. In the
same way, <Variables_PK_u> is replaced by the list of variables defined by <De-
clarationFor_PK_u>. These variables take their values from a tuple u. Depending on
the constraint action selected by the user, parameter <Perform_Activity> is replaced
by one of the following procedures: NoAction_<Nj>, SetNullPRI_<Nj>, SetDefault-
PRI_<Nj> and CascadeDelPRI_<Nj>. Current primary key values of <Vari-
bales_PK_u> are passed to all of the procedures, except to the first one.

A parameterized pattern of the function ExistPRI_<Ni> is shown in Fig. 8. For
each primary key value of a tuple u, <SelectionCriteria> is specified as a sequence of
comparison expressions connected by the logical operator AND:

(@<Attribute_From _X> IS NULL OR
v.<Attribute_From _Y> = @<Attribute_From _X>).

CREATE FUNCTION ExistPRI_<Ni> (<DeclarationFor_X>)
RETURNS int
AS
BEGIN
 DECLARE @Count int, @Ret int
 SELECT @Count = COUNT(*) FROM <Nj> v WHERE <SelectionCriteria>
 IF @Count != 0 SELECT @ret=1
 ELSE SELECT @ret=0
 RETURN @ret
END

Figure 8. A parameterized pattern of function ExistPRI_<Ni>

Procedure NoAction_<Nj> is presented in Fig. 9. It is used to implement the con-
straint action No Action. Procedure SetNullPRI_<Nj> is presented in Fig. 10. It is
used to implement the constraint action Set Null. <Attribute_value> is a sequence of
comma separated expressions, one for each attribute from X, specified as follows:

u.<Attribute_From _X> = NULL.
<SelectionCriteria> is a sequence of expressions connected by AND, as follows:

u.<Attribute_From _PK> = @<Attribute_From _PK>.

CREATE PROCEDURE NoAction_<Nj>
AS
 RAISERROR('Tuple cannot be deleted from the specified relation ', 16, 1)
 ROLLBACK TRAN

Figure 9. A parameterized pattern of the No Action

CREATE PROCEDURE SetNullPRI_<Nj> (<DeclarationFor_PK_u>)
AS
 UPDATE u SET <Attribute_value> FROM <Ni> u WHERE <SelectionCriteria>

Figure 10. A parameterized pattern of the Set Null action

Procedure SetDefaultPRI_<Nj> used to implement Set Default action is presented
in Fig. 11. <ValueAssignmentFrom_X> is replaced as follows:

@<Attribute_From _X>= u.<Attribute_From _X>.

CREATE PROCEDURE SetDefaultPRI_<Nj> (<DeclarationFor_PK_u>)
AS
 DECLARE <DeclarationFor_X>, @AttributesForUpd VARCHAR(255)
 SET @ AttributesForUpd = ' '
 SELECT <ValueAssignmentFrom_X> FROM <Ni> u WHERE <SelectionCriteria>
 IF (<UpdateCondition>)
 BEGIN

IF (@<Attribute_From _X> IS NOT NULL)
BEGIN
 IF @AttributesForUpd != ''
 SET @AttributesForUpd=@AttributesForUpd+',
 u.<attribute_from_X> = default'
 ELSE
 SET @AttributesForUpd = 'u.<attribute_from_X> = default'
END
EXEC ('UPDATE u SET ' + @AttributesForUpd + 'FROM <Ni> u WHERE
 u.<Attribute_From_PK>=' +@<Attribute_From_PK>)
SELECT <ValueAssignmentFrom_X> FROM <Ni> u WHERE
 <SelectionCriteria>
IF dbo.ExistPRI_<Ni>(<VariablesFor_X>)=0
BEGIN
 RAISERROR('Tuple cannot be deleted from the specified relation ', 16, 1)
 ROLLBACK TRAN
END

 END

Figure 11. A parameterized pattern of the Set Default action

<SelectionCriteria> is a sequence of expressions connected by AND, one for each
attribute from <Attribute_From_PK>, specified as follows:

(u.<Attribute_From _PK> = @<Attribute_From _PK>).
Since only the attributes having non null values are set to the default values, the

first IF statement in Fig. 11 checks if there is at least one having a non null value.
<UpdateCondition> is a sequence of the expressions connected by OR, one for each
attribute in X, specified as follows:

@<Attribute_From _X> IS NOT NULL.
The bolded code in Fig. 11 is repeatedly generated, once for each attribute in X.

Therefore, for each attribute in X having a non null value, a string
'u.<Attribute_From_X> = default'

is concatenated to the current value of the variable @AttributesForUpd.
The WHERE clause of the UPDATE command in the string used in EXEC com-

mand is correctly defined in Fig. 11, if the primary key of Ni consists of the only one
attribute. Otherwise, the clause is transformed to include an expression of the form

u.<Attribute_From_PK> = @<Attribute_From_PK>,
for each primary key attribute, and all such expressions are connected by the AND operator.

Procedure CascadeDelPRI_<Nj> used to implement Cascade action is presented in
Fig. 12. <SelectionCriteria> is an expression of the form <SelectionCriteria1> AND
<SelectionCriteria2>. <SelectionCriteria1> is a sequence of expressions connected by
AND, one for each attribute in <Attribute_From_PK> specified as:

(u.<Attribute_From_PK> = @<Attribute_From_PK>).
<SelectionCriteria2> is a sequence of expressions connected by AND, one for

each attribute in X, specified as:
(u.<Attribute_From_X> IS NOT NULL).

CREATE PROCEDURE CascadeDelPRI_<Nj> (<DeclarationFor_PK_u>)
AS
 DELETE FROM <Ni> u WHERE <SelectionCriteria>

Figure 12. Parameterized pattern of procedure for cascade delete

In this example, we have presented one of the cases met in the real life. We have
deliberately selected here the partial referential integrity constraint, since its imple-
mentation is the most complex. Also, we have deliberately selected MS SQL Server,
because it makes the implementation even more complex, since its trigger syntax does
not support FOR EACH ROW clause.

5 Conclusion

The paper describes SQL Generator that is a component of IIS*Case. IIS*Case is a
complex software tool that supports automatic generation of 3NF db schemas and
software applications. In the framework of IIS*Case, SQL Generator provides users
with such an intelligent support that they can generate implementation specifications
of db schemas even without knowing the SQL syntax and procedural DBMS mecha-
nisms for the implementation of constraints.

An advantage of SQL Generator over other similar products is that users have a wider
selection of possible actions to preserve db consistency. Besides the generation of com-
mon db constraints, like key, unique, not null, and native referential integrity, SQL Gen-
erator also enables the implementation of the default, partial and full referential integrity
constraints, and the selection of an appropriate action from the set {No Action, Cascade,
Set Default, Set Null}. Also, SQL Generator provides the implementation of the inverse
referential integrity constraints. SQL Generator validates selections of input parameter
values, analyzes designer's solutions, and issues warnings if it detects any inconsistency.

Further research and development are focused on extending the functionality of
SQL Generator. We plan to:
• implement the generation of the extended referential integrity [9],
• provide the compatibility checking of data types,
• add modules for the design and implementation of physical data structures for

particular DBMSs,
• implement in IIS*Case visual editors for specifying user defined functions and

tuple (check) constraints [8], and
• enable generating SQL scripts for a wider selection of DBMSs.

References

1. Aleksić S., An SQL Generator of Database Schema Implementation Specification in a
CASE Toll IIS*Case, M.Sc. (Mr.) Dissertation, University of Novi Sad, Faculty of Techni-
cal Sciences, Novi Sad, Serbia, 2006;

2. ARTech. DeKlaritTM (The Model-Driven Tool for Microsoft Visual Studio 2005), Chicago,
U.S.A. Available at: http://www.deklarit.com [June, 2007].

3. Govedarica M., Design the Set of Implementational Database Schema Constraints, M.Sc.
(Mr.) Dissertation, University of Novi Sad, Faculty of Technical Sciences, Novi Sad, 1998;

4. ISO/IEC 9075-{1, 2, 11}:2003 (ANSI SQL:2003), American National Standards Institute;
5. Luković I, Mogin P, Pavićević J, Ristic S, An Approach to Developing Complex Database

Schemas Using Form Types, Software: Practice and Experience, John Wiley & Sons Inc, Ho-
boken, USA, ISSN: 0038-0644, Published Online, May 29, 2007, DOI: 10.1002/spe.820;

6. Microsoft SQL Server 2000, User Manuals;
7. Microsoft SQL Server 2005, User Manuals;
8. Mogin P, Luković I, Govedarica M, Database Design Principles, 2nd Edition, University of

Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia, 2004, ISBN: 86-80249-81-5;
9. Mogin P, Luković I, Govedarica M, Extended Referential Integrity, Novi Sad Journal of

Mathematics, Novi Sad, Serbia, ISSN: 1450-5444, Vol. 30, No. 3, 2000, pp. 111-122.
10. Oracle DBMS 9i, User Manuals;
11. Oracle DBMS 10g, User Manuals;
12. Oracle Designer 9i, On-line Documentation;
13. Pavićević J, Development of A CASE Tool for Automated Design and Integration of Data-

base Schemas, M.Sc. (Mr.) Dissertation, University of Montenegro, Faculty of Science,
Podgorica, Montenegro, 2005;

14. Pavićević J, Luković I, Mogin P, Govedarica M, Information System Design and Prototyp-
ing Using Form Types, INSTICC I International Conference on Software and Data Tech-
nologies, Setubal, Portugal, September 11-14, 2006, Proceedings, Vol. 2, pp. 157-160;

15. Sybase PowerDesigner 10, On-line Documentation.

