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ABSTRACT

This paper presents a generic abstract machine for simu-
lating a broad range of process calculi with an arbitrary
reaction-based simulation algorithm. The abstract machine
is instantiated to a particular calculus by defining two func-
tions: one for transforming a process of the calculus to a
set of species, and another for computing the set of pos-
sible reactions between species. Unlike existing simulation
algorithms for chemical reactions, the abstract machine can
simulate process calculi that generate potentially unboun-
ded numbers of species and reactions. This is achieved by
means of a just-in-time compiler, which dynamically updates
the set of possible reactions and chooses the next reaction
in an iterative cycle. As a proof of concept, the generic abs-
tract machine is instantiated for the stochastic pi-calculus,
and the instantiation is implemented as part of the SPiM
stochastic simulator. The structure of the abstract machine
facilitates a significant optimisation by allowing channel res-
trictions to be stored as species complexes. We also present a
novel algorithm for simulating chemical reactions with gene-
ral distributions, based on the Next Reaction Method of Gib-
son and Bruck. We use our generic framework to simulate
a stochastic pi-calculus model of plasmid co-transfection,
where plasmids can form aggregates of arbitrary size and
where rates of mRNA degradation are non-exponential. The
example illustrates the flexibility of our framework, which
allows an appropriate high-level language to be paired with
the required simulation algorithm, based on the biological
system under consideration.

Categories and Subject Descriptors

I.6.1 [Simulation and Modeling]: Simulation Theory;
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G.3 [Mathematics of Computing]: Probability and Sta-
tistics—Stochastic processes; F.4.3 [Theory of Computa-
tion]: Mathematical logic and formal languages—Formal
Languages

General Terms

Algorithms

Keywords

generic abstract machine, non-Markovian simulation, stocha-
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1. INTRODUCTION
Biological systems typically involve large numbers of com-

ponents with complex, highly parallel interactions and in-
trinsic stochasticity. Numerous programming languages have
been developed for modelling such systems, many of which
are based on process calculi. Examples include variants
of the stochastic pi-calculus [18, 20, 9, 13], Bio-PEPA [2],
BlenX [4], the Kappa-calculus [3], LBS [11], variants of the
Bioambient calculus [19, 12] and DSD [14], to name but a
few. Most of these calculi are expressive enough to generate
potentially unbounded numbers of species and reactions. As
a result, they cannot rely on standard reaction-based simu-
lation algorithms or tools [8, 6], and generally require a cus-
tom simulation algorithm. To help address this issue, we
propose a generic abstract machine that can be instantiated
to a range of process calculi and a range of reaction-based
simulation algorithms. The abstract machine can handle
process calculi with potentially unbounded numbers of spe-
cies and reactions.

Although the idea of integrating different modelling and
simulation methods within a common framework is not a
new one [5], our approach is the first attempt to formally
define a generic framework for simulating a broad range of
process calculi with an arbitrary reaction-based simulation
algorithm. Having a clear separation between the simula-
tion algorithm and the language specification allows us not
only to rapidly instantiate the machine to different process
calculi, but also to add new features, such as non-Markovian
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simulation, which can then be used by all instantiated pro-
cess calculi. Markovian reactions predominate in stochastic
models of biological systems, largely due to the so-called
memoryless property of the Markovian distribution, which
assumes that the duration of the next reaction occurring in
the system does not depend on the history of the system.
Thanks to this property, very efficient simulation algorithms
have been created, such as the Gillespie algorithm [7] along
with its many optimisations [6, 8, 22]. However, Markovian
reactions are quite restrictive in terms of modelling flexibi-
lity. For example, the variance and mean of the exponential
law are tied: the mean of a random variable following an
exponential distribution of rate r is 1/r, while its variance
is 1/r2. Providing tools for simulating non-Markovian reac-
tions would enable greater accuracy in analysing the effects
of stochasticity within models.

We apply our generic abstract machine to the simula-
tion of a variant of stochastic pi-calculus [13] with general
rate distributions. Based on the Next Reaction Method [6],
we present a novel algorithm for simulating non-Markovian
reactions, and we show how the generic abstract machine
can be used to achieve correct simulation. We also extend
the stochastic pi-calculus with a basic complexation primi-
tive using bound output, and extend the abstract machine so
that it stores complexes as a single species, allowing efficient
simulation of complexes. As a biological application of our
approach, we propose a stochastic pi-calculus model of plas-
mid co-transfection to simulate gene transfer. In this model,
plasmids can form complexes of arbitrary size and the de-
gradation of mRNA produced by the translocated plasmids
is efficiently simulated using an Erlang distribution.

The paper is structured as follows. The generic abstract
machine is defined in Sec. 2, and the simulation of non-
Markovian species is tackled in Sec. 3.2. The machine is
instantiated to the stochastic pi-calculus with general dis-
tributions in Sec. 4, and the instantiated machine is applied
to the non-Markovian simulation of a stochastic pi-calculus
model of plasmid co-transfection in Sec. 5. Appendix B
shows an instantiation of the machine to the Bioambient
calculus.

2. GENERIC ABSTRACT MACHINE
This section presents a generic abstract machine for si-

mulating a broad range of process calculi with an arbitrary
reaction-based simulation algorithm (Definition 1). A ma-
chine term T is a triple (t, S,R), where t is the current time,
S contains the set of possible species and R contains the set
of possible reactions. S maps each species I to its popula-
tion, while R maps each reaction O to its activity A, which is
used to compute the next reaction. The syntax of species I
is specific to the choice of process calculus. Each reaction is
represented by a tuple (J, F, f, J ′), where J = {I1, . . . , IN}
denotes the reactant species, J ′ = {I ′1, . . . , I

′
M} denotes the

product species, F denotes the probability distribution of
the reaction and f is a function which allows the calculus
to modify the machine term (as in Appendix B). Thus,

reactions are assumed to be of the form I1 + · · · + IN
F
−→

I ′1 + · · · + I ′M . Once the next reaction has been selected, it
is executed by removing the reactants J from the machine
term, adding the products J ′ and updating the current time
of the machine (7).

To instantiate the abstract machine with a given process

T ::= (t, S,R) Term

R ::= {O1 7→ A1, . . . , ON 7→ AN} Reactions

S ::= {I1 7→ i1, . . . , IN 7→ iN} Populations

J ::= {I1, . . . , IN} Species set

O ::= (J, F, f, J ′) Reaction

P ⊕ (t, S,R) , species(P )⊕ (t, S,R) (1)

{I1, . . . , IN} ⊕ (t, S,R) , I1 ⊕ . . .⊕ IN ⊕ (t, S,R) (2)

(t, S,R)⊖ {I1, . . . , IN} , (t, S,R)⊖ I1 ⊖ . . .⊖ IN (3)

I ⊕ (t, S,R) , (t, S′, R ∪R′) if S(I) = i (4)

and S′ = S{I 7→ i+ 1}

andR′ = updates(I, (t, S′, R))

I ⊕ (t, S,R) , (t, S′, R ∪R′) if I /∈ dom(S) (5)

and L = reactions(I, dom(S))

and S′ = S{I 7→ 1}

andR′ = init(L, (t, S′, R))

(t, S,R)⊖ I , (t, S′, R ∪R′) if S(I) = i (6)

and S′ = S{I 7→ i− 1}

andR′ = updates(I, (t, S′, R))

(J, F, f, J ′), t′ = next(t, S,R)

t, S,R
F,(J,F,f,J′)
−→ f(J ′ ⊕ ((t′, S,R)⊖ J))

(7)

Definition 1. Generic abstract machine. The notation
S(I) returns the corresponding value associated with I in S,
while the notation S{I 7→ v} associates the value v with I in
S. The function species(P ) computes the set of species cor-
responding to a process P , while the function reactions(I, J)
computes the set of reactions between a new species I and
an existing set of species J . These two functions are speci-
fic to the choice of process calculus. The function next(T )
computes the next reaction of a term T , while the function
init(L, T ) initialises a term T with a set of reactions, and
the function updates(I, T ) updates the reactions in a term
T affected by a given species I. These three functions are
specific to the choice of simulation algorithm.

calculus, it is sufficient to define a function species(P ) for
transforming a process P to a multiset of species, together
with a function reactions(I, {I1, . . . IN )} for computing the
multiset of reactions between a new species I and an existing
set of species {I1, . . . , IN}. The species function is used to
initialise the abstract machine at the beginning of a simula-
tion, while the reactions function is used by a just-in-time
compiler to generate the set of possible reactions dynami-
cally. This allows systems with potentially unbounded num-
bers of species and reactions to be simulated. To instantiate
the abstract machine with a given simulation algorithm, it
is sufficient to define a function next(T ) for choosing the
next reaction, together with a function init(L, T ) for ini-
tialising a term T with a set of reactions L, and a function
updates(I, T ) for updating the reactions in a term T affected
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next(t, S,R) , O, t′ if R(O) = (a, t′) (8)

and t′ = min{t | R(O) = (a, t)}

init(L, (t, SR)) , {O 7→ (t′, a) | O ∈ L (9)

∧ a = propensity(O,S)

∧ O = (J, F, f, J ′)

∧ t′ = t+ delay(F, a)}

updates(I, (t, S,R)) , {O 7→ (t′, a′) | R(O)=(t′′, a) (10)

∧ O = (J, F, f, J ′) ∧ I ∈ J

∧ a′ = propensity(O,S)

∧ t′ = t+ (a/a′)(t′′ − t)}

propensity(({I}, F, J), S) , rate(F ) · i if S(I) = i

propensity(({I, I}, F, J), S) , rate(F ) · i · (i− 1)/2

if S(I) = i

propensity(({I1, I2}, F, J), S) , rate(F ) · i1 · i2 if I1 6= I2

and S(I1) = i1

and S(I2) = i2

Definition 2. Generic abstract machine instantiated for
the Next Reaction Method. Each reaction O is associated
with a pair A = (a, t), where a denotes the reaction propen-
sity and t denotes the time at which the reaction is sche-
duled to occur. The function delay(F, a) computes a time
interval from a random variable with probability distribu-
tion F and propensity a. We use standard multiset nota-
tion {Elements | Conditions} where Elements represents
the elements of the multiset and Conditions represents the
conditions the elements must satisfy.

by a given species I.
A process P is added to the machine term (t, S,R) by

computing the multiset of species {I1, . . . , IN} which cor-
respond to P (1) and adding each of these species to the
term (2). If the new species I is already present in the
machine (I ∈ dom(S)) its population is incremented in S
and the affected reactions are updated (4). If the species is
not already present in the machine, its population is set to
1 in S and new reactions are computed using the function
reactions(I, dom(S)), which is specific to the choice of cal-
culus (5). Finally, the operation T ⊖ J removes the species
J from the machine term T . This removing is done by de-
crementing the corresponding populations and by updating
the affected reactions (3,6).

3. SIMULATION METHOD
This section explains the instantiation of the abstract ma-

chine for a chosen simulation method. We first tackle the
Next Reaction Method [6]. We then present a new formali-
sation of the Next Reaction Method extended to the simu-
lation of non-Markovian species, and show its instantiation
within the generic abstract machine.

3.1 Next Reaction Method
The instantiation of the generic abstract machine for the

Next Reaction Method (NRM) is detailed in Definition 2.
Each reaction O in R is mapped to a pair (a, t), where a is
the propensity of the reaction and t is the putative time at
which the reaction is scheduled to occur. The next reaction
is chosen to be the one with the smallest putative time, as
defined by the function next(T ), which returns the chosen
reaction (J, F, f, J ′) together with its putative time t′ (8).

When a new reaction is created, NRM computes the pu-
tative time of the reaction according to its propensity (9).
NRM also provides a way to update putative times of Mar-
kovian reactions when their propensity changes, without ge-
nerating a new random variable (10). When a new reaction
is added to the machine, its propensity is computed and
used to generate a random variable following the probabi-
lity distribution of the reaction (9). The definition of the
propensity for unary and binary reactions is given in Defi-
nition 2. Propensities for n-ary reactions can be defined if
necessary. Markovian reactions are updated by computing
the new propensity and rescaling the putative time (10). It
may be that the old propensity is 0, preventing direct use of
the rescaling function. This case can be handled by keeping
additional variables to register the last non-null propensity
and to rescale according to this old value (as discussed in
note 11 of [6]). Similarly, if the new propensity is 0, the
putative time is set to infinity.

The abstract machine can be readily instantiated to other
reaction-based methods such as [7] by defining the appro-
priate next , init and updates functions, though we omit the
details here.

3.2 Non-Markovian Next Reaction Method
Using non-Markovian distributions in NRM is equivalent

to introducing a new species for every individual molecule
with non-Markovian behaviour [6]. Since our abstract ma-
chine allows new species to be dynamically created, it can be
used directly as the basis for simulating non-Markovian be-
haviour. The advantages of this approach include simplicity
of the algorithm and its implementation. The disadvantage
is that the simulation will be computationally expensive if
there are large numbers of non-Markovian molecules. Algo-
rithm 1 summarises the necessary steps for the simulation
of mixed Markovian and non-Markovian species following
the NRM. This algorithm formalises and extends the non-
Markovian simulation algorithm discussed in [6].

The generic abstract machine is instantiated for the non-
Markovian NRM by associating a unique identifier with each
species that can participate in a non-Markovian reaction
(Definition 3). The rate of a non-Markovian reaction is al-
ways 1 and its propensity is either 1 or 0, since there is at
most one molecule of each species participating in the reac-
tion. Generalised kinetic rate functions can be used, provi-
ded they are defined in terms of the interacting species. The
putative times of non-Markovian reactions are updated by
generating a new random variable, as in (9).

4. STOCHASTIC PI-CALCULUS

SIMULATION
This section illustrates how the generic abstract machine

can be used to simulate a variant of stochastic pi-calculus.
In general, there will be many different ways of instantia-
ting the generic abstract machine to a given process cal-
culus, with broad scope for calculus-specific optimisations.
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Algorithm 1 Generalised Next Reaction Method

1. Initialise:

(a) Set initial number of molecules, set time ← 0,
generate a dependency graph.

(b) If Oi ∈ {Markovian reactions}, calculate a pro-
pensity function, ai, generate a putative time, ti,
according to an exponential distribution with pro-
pensity ai. Store ti values.

(c) If Oi /∈ {Markovian reactions}. Set the propen-
sity ai to 1, store a putative time ti, according to
the general distribution.

2. Let Oµ be the reaction whose putative time, tµ is least.

3. Change the number of molecules to reflect execution of
reaction Oµ. Set time← tµ.

4. Initialise new reactions (step 1.(b) and 1.(c)).

5. For each affected reaction Oα,

(a) Update propensity aα.

(b) If α 6=µ and Oα ∈ {Markovian reactions}, set
tα ← (aα,old/aα,new)(tα − time) + time.

(c) If α 6=µ and Oα /∈ {Markovian reactions}, if
aα,new = 0 then remove the reaction Oα and its
putative time tα.

(d) If α=µ and Oα ∈ {Markovian reactions}, gene-
rate a random number, ρ, according to an expo-
nential distribution with propensity aα, and set
tα ← ρ+ time.

(e) If α=µ and Oα /∈ {Markovian reactions}, remove
the reaction Oα and its putative time tα.

6. Go to Step 2

species ′(P ) , renames(species(P ))

next ′(t, S,R) , (J, F, f, rename(J ′)), t′

if (J, F, f, J ′), t′ = next(t, S,R)

rename(J) , {rename(I) | I ∈ J}

rename(I) , if NM (I) then I(fresh(ctr)) else I0

rename(Iid) , rename(I)

Definition 3. Generic abstract machine instantiated for
the Non-Markovian Next Reaction Method. The functions
species and next from Definition 1 are replaced with the
functions species ′ and next ′, respectively, to allow for the
renaming of species. The function rename renames a spe-
cies by labelling it with a unique identifier. The function
fresh(ctr) increments a global counter referenced by ctr and
returns the incremented value. The function NM (I) re-
turns true if species I can participate in at least one non-
Markovian reaction and returns false otherwise.

We illustrate this point by discussing optimisations that are
specific to stochastic pi-calculus.

4.1 Syntax of Processes and Complexes
The syntax of the variant of stochastic pi-calculus used

in this paper is given in Definition 4 and is based on [13].
Processes can evolve by performing delay actions or by in-
teracting with each other over shared channels. A process
can evolve on its own by executing a delay τr. Two pro-
cesses can evolve simultaneously by communicating or bin-
ding with each other. A communication between two pro-
cesses is achieved when one process sends data ñ on a chan-
nel x, denoted by !x(ñ), and a parallel process receives this
data on the same channel x, denoted by ?x(m̃). A binding
between two processes can occur if one process sends private
data νñ on a channel x, denoted by !x(νñ ), which is then
shared only between the sender and receiver, representing
the formation of a complex between the two.

The calculus is stochastic because the duration of delays
and interactions is determined by a random variable. In the
case of Markovian reactions, the random variable follows
an exponential distribution parameterised by the so-called
reaction rate. In the general case, the random variables can
follow an arbitrary probability distribution associated with
the reaction. Thus we associate a probability distribution
Fx with each channel x, where Fx(t) is the probability of
firing the reaction after t time units. Similarly, we associate
a probability distribution Fr with each delay τr.
The structural congruence axioms in the stochastic pi-

calculus are defined in Definition 5, and the reduction rules
are described in Definition 6. The rules assume that each
unguarded action π in the system is associated with a unique
identifier i. This allows each reduction to be associated with
a unique index w, composed of either a single identifier i
denoting a delay, or a pair of identifiers (i1, i2) denoting a
communication. Since each identifier or pair of identifiers is
unique, this allows the total number of distinct reactions in
the system to be counted.

4.2 From Processes to Reactions
This section instantiates the generic abstract machine to

simulate the stochastic pi-calculus with general distribu-
tions. The first step is to define what constitutes a species.
Here we assume that a species is either an instance X(ñ)
or a complex of instances νñ ((X1(ñ1) | . . . | XM (ñM )),
where each instance corresponds to a choice of actions. Our
approach is motivated by the observation that a choice of
actions is the basic unit of computation, where two paral-
lel choices interact by communicating over shared channels.
An alternative approach could be to assume that a species
corresponds directly to a choice of actions, instead of using a
named instance X(ñ). Our decision to use a named instance
has the advantage that a species can be explicitly identified
in a biological model by a meaningful name, and that the
results of a simulation can be directly linked to the original
model via this name. In order to formalise the notion of
a species in stochastic pi-calculus, we define a normal form
for processes (Definition 7) and show that all processes are
structurally congruent to a normal form (Proposition 1).

Proposition 1. All processes of the stochastic pi-calculus
are structurally congruent to a normal form according to De-
finition 7.
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P ::= 0 Null

| X(ñ) Instance

| P1 | P2 Parallel

| νxP Restriction

| π1.P1 + . . .+ πN .PN Choice

E ::= X1(m̃1) 7→ P1, . . . , XN (m̃N ) 7→ PN Environment

π ::= τr Delay

| !x(ñ) Send

| !x(νm̃ ) Bind

| ?x(m̃) Receive

Definition 4. Syntax of stochastic pi-calculus. For each
definition X(m̃) = P in the environment, we assume that
m̃ ⊆ fn(P ), where fn(P ) denotes the free names of P . The
restriction νxP binds the name x in P and both !x(νm̃ ).P
and ?x(m̃).P bind names m̃ in P . We also assume that
recursive calls to a definition are guarded inside an action
prefix π, to prevent infinite expansion of process definitions.

P | 0 ≡ P (11)

P1 | P2 ≡ P2 | P1 (12)

P1 | (P2 | P3) ≡ (P1 | P2) | P3 (13)

π1.P1 + π2.P2 ≡ π2.P2 + π1.P1 (14)

νx0 ≡ 0 (15)

νx νy P ≡ νy νxP (16)

νx (P1 | P2) ≡ P1 | νxP2 if x /∈ fn(P1) (17)

X(ñ) ≡ P {m̃:=ñ} if E(X(m̃))=P (18)

Definition 5. Structural congruence axioms in the sto-
chastic pi-calculus, assuming a global environment E. Struc-
tural congruence is reflexive, symmetric and transitive, and
holds in any context inside a process or a choice.

τr.P + C
Fr,i−→ P

!x(ñ).P1 + C1 | ?x(m̃).P2 + C2
Fx,(i1,i2)
−→ P1 | P2{m̃:=ñ}

!x(νñ).P1 + C1 | ?x(m̃).P2 + C2
Fx,(i1,i2)
−→ νñ(P1 | P2{m̃:=ñ})

P
F,w
−→ P ′ ⇒ νxP

F,w
−→ νxP ′

P
F,w
−→ P ′ ⇒ P | Q

F,w
−→ P ′ | Q

Q ≡ P
F,w
−→ P ′ ≡ Q′ ⇒ Q

F,w
−→ Q′

Definition 6. Reduction in the stochastic pi-calculus.
We assume that each reduction is associated with a unique
index w, composed of either a single identifier i denoting a
delay, or a pair of identifiers (i1, i2) denoting a communica-
tion.

P ::= I1 | . . . | IN Species

I ::= X(ñ) Instance

| νz̃ ((X1(ñ1) | . . . | XM (ñM )) Complex

C ::= π1.P1 + . . .+ πN .PN Choice

E ::= X1(m̃1) 7→ C1, . . . , XN (m̃N ) 7→ CN Environment

Definition 7. Normal forms of stochastic pi-calculus
processes, where N ≥ 0 and M ≥ 1. A process P is consi-
dered to be in normal form if it consists of a parallel com-
position of species I, where a species can be an instance
X(ñ) or a complex of instances νz̃ ((X1(ñ1) | . . . | XM (ñM ))
and where every instance X(ñ) corresponds to a choice
of actions. We assume that z̃ ∩ ñ1 ∩ . . . ∩ ñM 6= ∅ and
z̃ ⊆ ñ1 ∪ . . . ∪ ñM , so as to minimise the scope of restricted
names.

normal(0) , 0

normal(X(ñ)) , X(ñ) if E(X(ñ)) = C

normal(X(ñ)) , normal(P ) if E(X(ñ)) = P 6= C

normal(P1 | P2) , normal(P1) | normal(P2)

normal(C) , X(ñ) if E(X(ñ)) = C

normal(νxP ) , insert(x,normal(P ))

insert(x,
∏

iIi) , (νz̃
∏

kKk) |
∏

jIj

if Ik = νz̃k Kk

and x ∈ fn(Ik), x /∈ fn(Ij)

and
⋂

z̃k = ∅, z̃ = {x} ∪
⋃

z̃k

and i ∈ I, j ∈ J , k ∈ K

and J ∩ K = ∅, I = J ∪ K

Definition 8. Computing the normal form of a stochas-
tic pi-calculus process. We write

∏

i Pi as short for P1 | . . . |
PN , assuming i ∈ {1, . . . , N}.

Choice Parallel
X(m̃) 7→ π1.P1 + . . .+ πN .PN I1 | . . . | IN

X(m)

P1 PN

p1 pN

...

~

I1 IN...

Complex Instance
νñ ((X1(ñ1) | . . . | XM (ñM )) X(ñ)

X1 XN...

(n)~

m1:=n1
~     ~ mN:=nN

~      ~

X

m:=n
~    ~

Definition 9. Graphical representation for the stochas-
tic pi-calculus, based on the normal form of Definition 7. For
each instance Xi(ñi) there is assumed to be a corresponding
definition Xi(m̃i) 7→ Ci in the process environment.
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If E(X1(ñ1)) = κ1.P1 + . . .+ κn.Pn

and E(X2(ñ2)) = λ1.Q1 + . . .+ λm.Qm then

expand(X1(ñ1) | X2(ñ2)) ,
∑

iκi.(Pi | X2(ñ2))

+
∑

jλj .(X1(ñ1) | Qj)

+
∑

κicompλj
τrij .Rij

where κicompλj (κi complements λj) iff:

1. κi is !x(ñ) and λj is ?x(m̃) when Rij is Pi | Qj {m̃:=ñ}

and rij is Fx, and

2. κi is !x(νñ ) and λj is ?x(m̃) when Rij is νñ (Pi |
Qj {m̃:=ñ}) and rij is Fx.

Definition 10. Expansion of a choice, based on standard
principles presented in [21]. We write E(X(ñ)) = C as an
abbreviation for E(X(m̃)) = C′ where C = C′

{m̃:=ñ}.

Proof. By induction on Definition 8. Using the struc-
tural congruence rules of Definition 5, we augment the en-
vironment such that all choices are defined separately (18),
and we replace all instances that are not a choice with their
corresponding process definition (18). Using the structural
congruence rule for scoping (17), we modify the scope of a
restriction such that a process is a parallel composition of
species, where each species is either an instance or a com-
plex.

The normal form can also be used as the basis for a gra-
phical representation (Definition 9), following the approach
of [15], such that there is a one-to-one correspondence bet-
ween the graphics and programs in normal form. In Sec. 5
the graphical representation is used to construct a stochastic
pi-calculus model of plasmid co-transfection.

Using our normal form for processes (Definition 7), we
now define the various functions that are needed to instan-
tiate the generic abstract machine for stochastic pi-calculus
(Definition 11). The function reactions(I, J) computes the
set of reactions that the species I can perform with the
set of species J . The set of reactions is given by the set
of unary reactions (delays) combined with the set of bi-
nary reactions (communications and bindings). The func-
tion actions(I) converts a species to a choice. An instance
X(ñ) is converted to a choice corresponding to the species
definition, while a complex νñ ((X1(ñ1) | . . . | XM (ñM )) is
converted to a choice by first expanding the parallel compo-
sition (X1(ñ1) | . . . | XM (ñM )) to a single choice C (Defi-
nition 10), and then reducing the scope of the restrictions
νñ C inside the choice (Definition 11).

4.3 Example
We illustrate the application of the generic abstract ma-

chine to the stochastic pi-calculus with a simple example of
complex formation:

A = !x(νu).AB(u)

B = ?x(u).BA(u)

AB(u) = !u.A

BA(u) = ?u.B

Initially, 100 copies of processes A and B are added to the
empty machine term, written (100 · A | 100 · B) ⊕ (0, ∅, ∅),

species(P ) , {I1, . . . , IN}

if normal(P ) = (I1 | . . . | IN )

reactions(I, J) , unary(I) ∪ binary(I, J)

unary(I) , {({I}, F, id , J)

| (F, J) ∈ delays(actions(I))}

delays(C) , {(Fr, species(P )) | τr.P ∈ C}

binary(I1, J) , {({I1, I2}, F, id , J
′)

| C1 = actions(I1) ∧ C2 = actions(I2)

∧ I2 ∈ {I} ∪ J

∧ (F, J ′) ∈ interact(C1, C2)}

interact(C1, C2) , comm(C1, C2) ⊎ bind(C1, C2)

comm(C1, C2) , {(Fx, species(P1 | P2{m̃:=ñ}))

| !x(ñ).P1 ∈ C1 ∧ ?x(m̃).P2 ∈ C2

∨ !x(ñ).P1 ∈ C2 ∧ ?x(m̃).P2 ∈ C1}

bind(C1, C2) , {(Fx, species(νñ (P1 | P2{m̃:=ñ})))

| !x(νñ ).P1 ∈ C1 ∧ ?x(m̃).P2 ∈ C2

∨ !x(νñ ).P1 ∈ C2 ∧ ?x(m̃).P2 ∈ C1}

actions(X(ñ)) , C{m̃:=ñ} if C = E(X(m̃))

actions(νñ
∏

iXi(ñi)) , actions(νñ expand(
∏

iXi(ñi))

actions(νñ
∑

iπi.Pi) ,
∑

iaction(νñ πi.Pi)

action(νñ τr.P ) , τr.νñ P

action(νñ !x(m̃).P ) , !x(m̃).νñ P if ñ ∩ (m̃ ∪ x̃) = ∅

action(νñ !x(m̃).P ) , !x(νm̃ ).ν(ñ \ m̃)P if x /∈ ñ

and m̃ ⊆ ñ

action(νñ !x(νm̃ ).P ) , !x(νm̃ ).ν(ñ \ m̃)P if x /∈ ñ

action(νñ ?x(m̃).P ) , ?x(m̃).ν(ñ \ m̃)P if x /∈ ñ

Definition 11. Generic abstract machine instantiated
for the stochastic pi-calculus. We assume a fixed global en-
vironment E containing all instance definitions. actions(I)
converts a species to a choice, actions(νñ C) reduces the
scope of restrictions inside a choice, action(νñ π.P ) re-
duces the scope of restrictions inside a single action, and
ñ \ m̃ removes the names m̃ from ñ. If x ∈ ñ and
π ∈ {!x(m̃), !x(νm̃ ), ?x(m̃)} then action(νñ π.P ) gives rise
to the empty process 0. expand(X1(ñ1) | . . . | XM (ñM ))
converts a parallel composition of instances to a single choice
(Definition 10), and normal(P ) converts a process P to nor-
mal form (Definition 7). We write

∑

i πi.Pi as short for
π1.P1 + . . . + πN .PN and

∏

i Pi as short for P1 | . . . | PN ,
assuming i ∈ {1, . . . , N}. In this example, the function f is
always the identity function (written as id).

where the notation 100 ·X represents 100 parallel copies of
the process X. This gives rise to the following machine term
(0, S,R):

S ={A 7→ 100, B 7→ 100}

R ={({A,B}, Fx, {νu (AB(u) | BA(u))}) 7→ (104 · rate(Fx), t1)}
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The reaction involving species A and B is executed at time
t1, after which one copy of the species A and B are remo-
ved and one copy of the complex is added to the resulting
machine term:

νu (AB(u) | BA(u))⊕ ((t1, S,R)⊖ {A,B})

This gives rise to the machine term (t1, S1, R1), where
actions(νu(AB(u) | BA(u))) is given by τu.(A | B):

S1 = {A 7→ 99, B 7→ 99, νu (AB(u) | BA(u)) 7→ 1}

R1 =

{({A,B}, Fx, {νu (AB(u) | BA(u))}) 7→ (9801 · rate(Fx), t3),

({νu (AB(u) | BA(u))}, Fu, {A,B}) 7→ (rate(Fu), t2)}

Note that existing simulation algorithms such as [13] handle
N copies of the complex νu(AB(u) | BA(u)) by creating a
globally fresh name for each restricted channel u as follows:

νu1 . . . νuN (AB(u1) | BA(u1) | . . . | AB(uN ) | BA(uN ))

In contrast, our approach treats these as N copies of the
same complex νu(AB(u) | BA(u)), resulting in fewer spe-
cies, fewer reactions and therefore a significantly more effi-
cient simulation.

4.4 Correctness of the Simulation
We briefly outline a proof of correctness of the instantia-

ted abstract machine (SPiM) with respect to the stochastic
pi-calculus with general distributions (SPi) presented in De-
finition 4. The function (|E ⊢ P |) encodes a system E ⊢ P
in SPi, consisting of a top-level environment E and a process
P , to a corresponding system in SPiM (Definition 12). The
encoding assumes that all processes are in normal form. A
corresponding decoding from SPiM to SPi is also given (De-
finition 13), where the unique integers which tag individual
non-Markovian molecules are discarded. Proposition 2 and
Proposition 3 ensure that the calculus and the machine are
reduction equivalent, where w and w′ stand for reduction
identifiers in SPi and SPiM, respectively. In order to pre-
serve the correspondence, we assume a notion of structural
congruence for machine terms, where terms are structurally
congruent up to renaming of definitions, garbage-collection
of unused definitions and structural congruence of processes.

Proposition 2. ∀E, T ∈ SPiM. E ⊢ T
Fθ,w

′

−→ E ⊢ T ′ ⇒

[|E ⊢ T |]
Fθ,w−→ [|E ⊢ T ′|]

Proof. By induction on the derivation of reduction in
SPiM.

Proposition 3. ∀E,P ∈ SPi. E ⊢ P
Fθ,w−→ E ⊢ P ′ ⇒

(|E ⊢ P |)
Fθ,w

′

−→≡ (|E ⊢ P ′|)

Proof. By induction on the derivation of reduction in
SPi.

It is worth noticing that the probability of a transition

P
Fθ,w−→ P ′ does not necessarily follow the distribution Fθ in

the general case. Let us assume that the following transi-
tions are correct in SPi and follow non-Markovian distribu-

tions: P
F1,w1−→ P1, P

F2,w2−→ P2, P1
F2,w2−→ P2 . The probability

of the last transition in the sequence P
F1,w1−→ P1

F2,w2−→ P2

does not follow F2 but a modified distribution which takes
into account the probability distribution F1. The relabelling

(|E ⊢ P |) , E ⊢ P ⊕ (0, ∅, ∅)

Definition 12. Encoding a system from SPi to SPiM.

[|E ⊢ T |] , E ⊢ [|T |]

[|t, S,R|] , [|S|]

[|∅|] , 0

[|S, (I 7→ i)|] , I | . . . | I
︸ ︷︷ ︸

i

| [|S|]

[|S, (Iid 7→ i)|] , I | . . . | I
︸ ︷︷ ︸

i

| [|S|]

Definition 13. Decoding a system from SPiM to SPi.
The environment E is unchanged, and for each mapping
I 7→ i in S, i copies of the species are executed in parallel.

of a sequence of transitions P0
F0,w0−→ P1

F1,w1−→ . . .
Fn,wn−→ Pn+1

into P0
F ′

0
,w0

−→ P1
F ′

1
,w1

−→ . . .
F ′

n,wn
−→ Pn+1 where F ′

i are the cor-
rect distribution functions of each transition is tackled in
[17]. It is clear from Proposition 2 and Proposition 3 that
to each sequence of transitions in SPi corresponds to a se-
quence of transitions in SPiM having the same Fi in labels,
and vice-versa. It follows that the probabilities of transitions
are equivalent in SPi and in SPiM.

5. APPLICATION: A MODEL OF

PLASMID CO-TRANSFECTION
In this section we present a model of gene transfer by plas-

mid co-transfection1 involving non-Markovian reactions, de-
rived from [23]. We model complex formation for green and
red plasmids, together with the main stages of co-transfection
(Fig. 1). The process C(g, r) represents a complex of g green
plasmids and r red plasmids, where g, r are numbers. A
complex can grow in size by receiving the numbers g′, r′ on
channel bind and adding these to g, r respectively. Alternati-
vely, it can bind to another complex by sending the numbers
g, r on channel bind. At any stage a complex C(g, r) can en-
ter the cell, represented by an enter reaction to DC(g, r).
In this model, the rate of entry is proportional to the square
of the size of the complex, where the size is given by the
total number of red and green plasmids (g + r). The rate
of entry relates to the charge of the molecule, where lar-
ger complexes have increased charge and are better able to
penetrate the cell wall. Once translocation has occurred,
the resulting complex of plasmids ENC can dissociate into
individual green (ENG) or red (ENR) plasmids, one at a
time. We model this using an unbind reaction, which re-
moves a red or green plasmid from the complex. The unbin-
ding rate is proportional to the number of red or green plas-
mids, respectively. The gene expression of plasmids involves
the transcription of plasmids into mRNA and the transla-

1Model and prototype simulator available from
http://research.microsoft.com/spim
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Figure 1: A stochastic pi-calculus model of plasmid
co-transfection.

tion of mRNA into proteins. The degradation of mRNA is a
170-step process which we model as a single reaction with an
Erlang distribution. The green plasmids produce green fluo-
rescent proteins (GFP ), while the red plasmids produce red
fluorescent proteins (RFP ). The SPiM code for the model
is given in Appendix A.

Fig. 2 shows the results of simulating the model of Fig. 1,
using the generic abstract machine instantiated with the
non-Markovian stochastic pi-calculus. The model parame-
ters are given in Appendix A. The individual plasmids sto-
chastically bind together to form complexes of different sizes,
which then enter the cell and move towards the nucleus. En-
tire complexes can be degraded while in transit. Once they
reach the nucleus the complexes unbind, releasing their plas-
mid cargo, which is then transcribed to produce red or green

Figure 2: Simulation results of the plasmid co-
transfection model of Fig. 1, where the horizontal
axis represents time in hours and the vertical axis
represents numbers of molecules.

Figure 3: Simulation of the initial entry of com-
plexes into the cell. We simulated the initial stages
of the model of Fig. 1, starting with 1000 indivi-
dual red and green plasmids and allowing these plas-
mids to form complexes before entering the cell.
We let DC(g,r) = () to prevent further movement
of the complexes and plot the composition of plas-
mids DC(g,r) immediately after entry. We used a
3D plot where the x axis represents the number of
green plasmids in the complex, the y-axis represents
the number of red plasmids in the complex and the
height represents the number of complexes with the
given composition of red and green plasmids. The
largest complex contained 11 red and 9 green plas-
mids, but the majority of complexes contained less
than 10 plasmids.
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fluorescent proteins. In order to visualise the proportion of
complexes of different sizes, we can plot the complexes im-
mediately after entry into the cell (Fig. 3). In general the
complexes can be of arbitrary size, depending on the ini-
tial populations of plasmids. Control over the ratio between
transfected plasmids is a key requirement for the develop-
ment of novel therapeutic strategies that act in the tissue on
the gene level. Here stochasticity plays an important role.
Future analysis of the model can be used as a basis for de-
termining optimal co-transfection strategies that result in
specific ratios of red and green fluorescent proteins inside
individual cells.

6. DISCUSSION
We have introduced a generic abstract machine for the si-

mulation of process calculi with potentially unbounded num-
bers of species and reactions. Instantiating the machine for a
particular calculus requires the definition of functions to ex-
tract the species and reactions from the processes of the cal-
culus. We have detailed the simulation of the non-Markovian
stochastic pi-calculus using this abstract machine, and have
presented a model of plasmid co-transfection that illustrates
the flexibility of the proposed framework.

To cope with a large number of reactions when simulating
non-Markovian processes with a large number of species, the
implementation of the generic abstract machine should use
optimised data structures to quickly access reactions affec-
ted by propensity changes. This requires either computing
an explicit dependency graph between reactions, as sugges-
ted in [6], or having efficient hashing structures to access
reactions in the machine term. For the Markovian case, we
have characterised the improvement in simulation efficiency
by the ability to count complexes that share private chan-
nels as a single species. More practical comparisons such as
benchmark comparisons with existing stochastic pi-calculus
simulators are left for future work.

Little work has so far been done to provide efficient non-
Markovian simulations. In [1], the Gillespie algorithm is
extended to delayed reactions, allowing non-Markovian si-
mulation of these types of reactions. In the scope of process
calculi, Priami has formalised the semantics of the stochastic
pi-calculus models with general distributions [17]. The si-
mulation proposed in [17] is based on automatic rescaling of
the general distribution functions of transitions during the
execution, in order to reflect the history of the execution,
as needed for non-Markovian reactions. This strategy has
been adopted and implemented to allow non-Markovian si-
mulation of BlenX models [10, 16]. While rescaling distribu-
tion functions is manageable for distributions like Gamma or
Hyper-exponential, more general distributions may be har-
der to compute. The non-Markovian simulation algorithm
we propose does not rely on such a rescaling of distribution
functions and therefore provides an efficient and straightfor-
ward simulation of reactions with arbitrary probability dis-
tributions. The algorithm relies on the fact that our generic
abstract machine allows a potentially unbounded number of
new species to be dynamically generated.

Our generic abstract machine aims at simulating a broad
range of process calculi. This range includes process cal-
culi capable of n-ary reactions, and reactions having arbi-
trary stoichiometric coefficients. To highlight the flexibility
of our approach, we have used our machine to simulate a

variant of the DSD calculus [14]2. As a proof-of-principle,
we have also instantiated the generic abstract machine to
a variant of the stochastic bioambient calculus [12]. Since
this calculus relates processes that may move between dif-
ferent ambients, it was necessary to extend the encoding
of species to correctly translate interactions as “flat” reac-
tions. This instantiation required the addition of a species
renaming operator in the generic abstract machine, and is
detailed in Appendix B. Although the instantiation can be
significantly improved through further optimisations, this
nevertheless produces the first simulation algorithm for a
non-Markovian stochastic bioambient calculus. Further re-
finements to the algorithm are left for future work.

Our approach can potentially be used to simulate a range
of existing process calculi within the same framework. In
future, this could allow models to be constructed from com-
ponents written in different domain-specific languages, allo-
wing exact stochastic simulation of heterogeneous systems.
Our approach could also aid the development of future pro-
gramming languages and calculi, by reducing the overhead
for implementing custom stochastic simulation algorithms.

Acknowledgements. Thanks to Filippo Polo for develop-
ment of the SPiM user interface and visualisations.
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APPENDIX

A. SPIM CODE FOR PLASMID

CO-TRANSFECTION

directive sample 4.0 1000
val enter = 0.1
val degrade = 0.01

val detach = 1.0
val transport = 1.0
val translocate = 1.0
val unbind = 1.0

val transcribe = 4.0
val translate = 1.5
val d_RNA = 0.466
val d_protein = 0.019

new bind@0.01:chan(float,float)
new attach@1.0:chan
new c@1.0:chan

let C(g:float,r:float) =
do delay@enter*(g+r)*(g+r); DC(g,r)
or !bind(g,r)
or ?bind(g’,r’); C(g+g’,r+r’)
or delay@degrade

and DC(g:float,r:float) =
do !attach; MDP(g,r)
or delay@degrade

and ENC(g:float,r:float) =
do delay@degrade
or delay@unbind*g; (ENG() | ENC(g-1.0,r))
or delay@unbind*r; (ENR() | ENC(g,r-1.0))

and MDP(g:float,r:float) =
do delay@detach; DC(g,r)
or delay@transport; PC(g,r)
or delay@degrade; ()

and PC(g:float,r:float) =
do delay@translocate; ENC(g,r)
or delay@degrade; ()

and Microtubule() = ?attach; Microtubule()

and ENG() = delay@transcribe; (ENG() | mRNAG())
and ENR() = delay@transcribe; (ENR() | mRNAR())
and mRNAG() =

do delay@translate; (mRNAG() | GFP())
or delay@Erlang(170,d_RNA)

and GFP() = delay@d_protein
and mRNAR() =

do delay@translate; (mRNAR() | RFP())
or delay@Erlang(170,d_RNA)

and RFP() = delay@d_protein

run 100 of C(1.0,0.0)
run 100 of C(0.0,1.0)
run 100 of Microtubule()

B. SIMULATION OF THE STOCHASTIC

BIOAMBIENT CALCULUS

The bioambient calculus was first presented in [19] for mo-
delling mobile compartments in biological processes. This
appendix describes how the bioambient calculus can be si-
mulated using the generic abstract machine presented in the
main text. Non-Markovian simulation can be achieved by
means of Definition 3, producing the first non-Markovian
simulation algorithm for the stochastic bioambient calculus.

B.1 Syntax and Reduction
The syntax and reduction rules of the stochastic bioam-

bient calculus used in this section are presented in Defini-
tion 14 and are reproduced from [12]. A process P can be a
choice of actions M , an instance X(ñ) of a definition X with
parameters ñ, a parallel composition of processes P | Q, a

process νxP with a private channel x, or an ambient P
consisting of a process P inside a compartment. A choice M
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P,Q ::= M | X(ñ) | P |Q | νxP | P Process

M ::= π1.P1 + . . .+ πN .PN Choice

E ::= X1(m̃1) 7→ P1, . . . , XN (m̃N ) 7→ PN Environnment

π ::= τr Delay

| γ!x(ñ) Send

| γ?x(m̃) Receive

| µ!x Move

| µ?x Accept

γ ::= local Local

| s2s Sibling

| c2p Parent

| p2c Child

µ ::= in Enter

| out Leave

| merge Merge

τr.P +M
r
−→ P

local!x(ñ).P +M | local?x(m̃).P ′ +M ′ Fx−→ P | P ′
{m̃:=ñ}

Q | c2p!x(ñ).P +M | Q′ | c2p?x(m̃).P ′ +M ′ Fx−→ Q | P | Q′ | P ′
{m̃:=ñ}

Q | p2c!x(ñ).P +M | Q′ | p2c?x(m̃).P ′ +M ′ Fx−→ Q | P | Q′ | P ′
{m̃:=ñ}

Q | s2s!x(ñ).P +M | Q′ | s2s?x(m̃).P ′ +M ′ Fx−→ Q | P | Q′ | P ′
{m̃:=ñ}

Q | in!x.P +M | Q′ | in?x.P ′ +M ′ Fx−→ Q | P | Q′ | P ′

Q | out!x.P +M | Q′ | out?x.P ′ +M ′ Fx−→ Q | P | Q′ | P ′

Q | merge!x.P +M | Q′ | merge?x.P ′ +M ′ Fx−→ Q | P | Q′ | P ′

P
r
−→ P ′ ⇒ P

r
−→ P ′

Definition 14. Syntax and core reduction rules of the stochastic bioambient calculus, based on [12].

Γ ::= a, b Location

I ::= X(ñ)Γ Species

MV ::= ∅ | {Γ := Γ′} Renaming

is local(Γ1,Γ2) , Γ1 = Γ2

is sibling((a1, b1), (a2, b2)) , a1 6= a2 ∧ b1 = b2

is child((a1, b1), (a2, b2)) , b1 = a2

species(0) , ∅

species(P ) , species(P, (root1, root2))

species( P , (a, b)) , species(P, (a′, a)) if fresh(a′)

species(X(ñ),Γ) , X(ñ)Γ if E(X(ñ)) = C

species(X(ñ),Γ) , species(P,Γ) if E(X(ñ)) = P 6= C

species(νxP,Γ) , species(P {x:=y},Γ) if fresh(y)

species(P1 | P2,Γ) , species(P1,Γ) ⊎ species(P2,Γ)

Definition 15. Assigning locations to species, where a, b represent globally unique ambient identifiers.

(S,R)#∅ , (S,R)

(S,R)#MV , (S,R#MV )#̃MV

R#MV , {(J#MV,F,MV ′#MV, J ′#MV ) | (J, F,MV ′, J ′) ∈ R ∧ releq(J, J#MV )}

({S, (I 7→ (i, C))}, R)#̃MV , (S′, (I ′, S′)⊕R′) if I ′ = I#MV and S′ = S′′{I ′ 7→ (i+ i′, C)}

and ( if I ′ ∈ dom(S) then S(I ′) = (i′, C) else i′ = 0)

and (S′′, R′) = (S,R)#̃MV

releq({PΓ1

1 , PΓ2

2 }, {P
Γ′

1

1 , P
Γ′

2

2 }) ,

is local(Γ1,Γ2) ∧ is local(Γ′
1,Γ

′
2) ∨

is sibling(Γ1,Γ2) ∧ is sibling(Γ′
1,Γ

′
2) ∨

is child(Γ1,Γ2) ∧ is child(Γ′
1,Γ

′
2) ∨

is child(Γ2,Γ1) ∧ is child(Γ′
2,Γ

′
1)

{Γ1 := Γ2}#MV , {Γ1#MV := Γ2#MV }

X(ñ)Γ#MV , X(ñ)Γ#MV

Γ#{Γold := Γnew} , Γnew if Γ = Γold

(c, d)#{a, b := a′, b′} , c, a′ if d = a and b′ = b

Γ#{Γold := Γnew} , Γ otherwise.

Definition 16. Instantiation of the generic abstract machine to the stochastic biolambient calculus.
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consists of a competition between zero or more actions π.P ,
where π is the action that can be performed, after which
process P is executed. An action π can be a delay τr, a
send γ!x(ñ) of values ñ on channel x, or a receive γ?x(m̃)
of values m̃ on channel x, where γ denotes the type of com-
munication. This can be inside the same ambient (local),
from one sibling ambient to another (s2s), from a child am-
bient to its parent (c2p) or from a parent ambient to a child
(p2c). In addition, an action π can be a move µ!x on chan-
nel x or an accept µ?x on channel x, where µ denotes the
type of movement. This can be an ambient entering one of
its siblings (in), a child ambient leaving its parent (out) or
a merge of two sibling ambients (merge).

B.2 Extracting Reactions from Ambients
The main challenge when instantiating the generic abs-

tract machine with the bioambient calculus is to extract a
“flat” set of reactions from a bioambient process. To achieve
this, processes are labelled with the location in which they
evolve. The location is a pair consisting of the identifier of
the ambient in which the process is located, together with
the identifier of the parent ambient. For instance, in the

process P1| P2 , P2 has location (a, b), where a is the

identifier the ambient containing P2 and b is the identifier of
the parent ambient. Both a and b denote ambient identifiers
that are assumed to be globally unique. The assigning of lo-
cations to species is presented in Definition 15. The identi-
fiers root1 and root2 denote the top-level enclosing ambient
and the top-level parent ambient, respectively.

When computing reactions, the process locations are used
to check if processes are able to interact. The computation of
reactions from a bioambient process is given in Definition 17
and relies on the predicates is local , is sibling and is child .
For example, executing an s2s interaction between two spe-
cies P a1,b1

1 and P a2,b2
2 requires that their parent ambients

are equal but that their enclosing ambients are different, i.e.
b1 = b2 and a1 6= a2. When an ambient moves (by using
in, out, merge actions), we relabel the species to reflect the
change in location. As an example, consider the following
reduction:

Q1 | in!x.P1 | Q2 | in?x.P2 −→ Q1 | P1 | Q2 | P2

Rewriting this using process locations gives the reduction
below:

Qa,c
1 | in!x.P a,c

1 | Qb,c
2 | in?x.P

b,c
2

Fx−→ Qa,b
1 | P a,b

1 | Qb,c
2 | P

b,c
2

and we obtain the corresponding reaction:

in!x.P a,c
1 + in?x.P b,c

2 −→ P a,b
1 + P b,c

2

As the ambient containing P1 and Q1 moves, the locations
of P1 and Q1 have to be updated. This is specified by atta-
ching to each reaction O the required location renaming (in
the above example, the renaming is {(a, c) := (a, b)}). The
renaming operation and the reduction relation obtained are
presented in Definition 16. During the renaming of current
reactions (R#MV ), we must check whether the change in
location invalidates any existing reactions. This is achie-
ved using the releq predicate presented in Definition 16. If
the change in location means that species are too far apart
to interact, the corresponding reaction is removed. As dis-

actions(X(ñ)Γ) , C{m̃:=ñ} if C = E(X(m̃))

reactions(I, J) , unary(I) ⊎ binary(I, J)

unary(I) , {({I}, F, f, J) | (F,MV, J) ∈ delays(I)

∧ f(T ) = T#MV }

delays(I) , {(Fr,∅, species(P,Γ))

| τr.P ∈ actions(I)} if I = X(ñ)Γ

binary(I1, J) , {({I1, I2}, F, f, J)

| C2 = actions(I2) ∧ C1 = actions(I1)

∧ I1 = X1(ñ)
Γ1 ∧ I2 = X2(m̃)Γ2

∧ I2 ∈ {I1} ∪ J ∧ f(T ) = T#MV

∧ (F,MV, J) ∈ interact(CΓ1

1 , CΓ2

2 )}

interact(CΓ1

1 , CΓ2

2 ) , comm(CΓ1

1 , CΓ2

2 ) ⊎ comm(CΓ2

2 , CΓ1

1 )

⊎ moves(CΓ1

1 , CΓ2

2 ) ⊎moves(CΓ2

2 , CΓ1

1 )

comm(CΓ1

1 , CΓ2

2 ) , {(Fx,∅, J)

| J = species(P1,Γ1)

⊎species(P2{m̃:=ñ},Γ2))

∧ γ!x(ñ).P1 ∈ C1 ∧ γ?x(m̃).P2 ∈ C2

∧ γ ∈ comm actions(Γ1,Γ2)}

moves(CΓ1

1 , CΓ2

2 ) , {(Fx, {Γ1 := Γnew
1 }, J)

| J = species(P1,Γ1) ⊎ species(P2,Γ2))

∧ µ!x(ñ).P1 ∈ C1 ∧ µ?x(m̃).P2 ∈ C2

∧ Γnew
1 = move path(µ,Γ1,Γ2)

∧ µ ∈ move actions(Γ1,Γ2)}

local ∈ comm actions(Γ1,Γ2) ⇔ is local(Γ1,Γ2)

s2s ∈ comm actions(Γ1,Γ2) ⇔ is sibling(Γ1,Γ2)

c2p ∈ comm actions(Γ1,Γ2) ⇔ is child(Γ1,Γ2)

p2c ∈ comm actions(Γ1,Γ2) ⇔ is child(Γ2,Γ1)

in ∈ move actions(Γ1,Γ2) ⇔ is sibling(Γ1,Γ2)

out ∈ move actions(Γ1,Γ2) ⇔ is child(Γ1,Γ2)

merge ∈ move actions(Γ1,Γ2) ⇔ is sibling(Γ1,Γ2)

move path(in, (a, c), (b, c)) , a, b

move path(out, (a, b), (b, c)) , a, c

move path(merge,Γ1,Γ2) , Γ2

Definition 17. Instantiation of the generic machine to
the Bioambient calculus. We assume a fixed global environ-
ment E that contains the species definitions. Note that we
set f to be the species renaming function f(T ) = T#MV .

cussed in the main text, there is broad scope for calculus-
specific optimisations. For example, unused reactions can
be garbage-collected, ambients with the same contents can
be grouped together as a single species, and complexes in
the bioambient calculus can be treated in a similar fashion
to complexes in the stochastic pi-calculus. The renaming
function can also be optimised by using a hash table to di-
rectly access reactions concerned by the renaming. Finally,
the proof of correctness of the abstract machine is left for
future work.
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