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1. Introduction

Suppose that interest is in the estimation of the q-vector of parameters β =
(β1, . . . , βq) of a parametric model. If l(β) is the log-likelihood for β, the maxi-

mum likelihood estimator β̂ solves the score equations

S(β) = ∇βl(β) = 0 ,

provided that the observed information matrix I(β) = −∇β∇T
β l(β) is positive

definite when evaluated at β̂. Under fairly standard regularity conditions (for
example, the conditions described in McCullagh [21, §§7.1,7.2], or equivalently
the conditions in Cox and Hinkley [8, §9.1]), the maximum likelihood estimator

β̂ has bias of asymptotic order O(n−1) where n is the sample size or some other
measure of how information accumulates for the parameters of the model. This
means that the bias of the maximum likelihood estimator vanishes as n → ∞.
Nevertheless, in practice the bias of β̂ may be considerable for small or moderate
values of n.

An approach to the correction of the bias of the maximum likelihood esti-
mator is to define a bias-corrected estimator β̃ = β̂ − b(β̂), where b(β̂) is the
O(n−1) term in the asymptotic expansion of the bias of the maximum likelihood
estimator. It may be shown that β̃ has bias of asymptotic order O(n−2) [see, for
example, 11]. An extensive literature has been devoted to obtaining analytical
expressions for b(β) and studying the properties of the bias-corrected estimator,

especially for classes of models where the bias of β̂ is large enough to affect in-
ferences appreciably. Characteristic examples of such studies are Cox and Snell
[9], Schaefer [29], Gart et al. [15], Cook et al. [4], Cordeiro and McCullagh [6],
Breslow and Lin [2], Lin and Breslow [20], Cordeiro and Vasconcellos [7] and
Cordeiro and Toyama Udo [5].

An alternative family of estimators β∗ with O(n−2) bias was developed in
Firth [14]. These estimators differ from the bias-corrected estimator β̃ in that
they are not computed directly from the maximum likelihood estimator. The
latter fact has motivated the study and use of the bias-reduced estimator β∗ in-
stead of β̃ [for example, 3, 16, 17, 19, 22, 25, 28, 32], especially in models where
there is a positive probability that the maximum likelihood estimate is on the
boundary of the parameter space. Leading examples are log-linear, logit-linear
and similar models for counts, where the bias-corrected estimator is undefined
whenever the maximum likelihood estimate has one or more infinite compo-
nents [see, for example 1, for multinomial response models]. The estimator β∗

results from the solution of a set of adjusted score equations, and hence in all
but the simplest cases an iterative scheme needs to be employed to obtain the
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bias-reduced estimate. For some specific families of models efficient estimation
schemes have been developed by exploiting the specific structure of the ad-
justments. For example, for generalized linear models Kosmidis and Firth [19]
suggest an iterative scheme that operates through appropriate adjustment of
the maximum likelihood “working observations” [see also, 13], and for the par-
ticular case of binomial regression models Kosmidis [18] develops an appealing
iterative scheme based on iterative adjustment of the binomial counts. More gen-
erally, however, the special structure needed for the existence of such iterative
adjustment schemes is absent.

In the current paper a generic procedure for obtaining the bias-reduced esti-
mate is developed. The procedure directly depends on b(β) and hence it can be
easily implemented for all the models for which b(β) has already been obtained
in the literature. Furthermore, as will be shown, for certain prominent mem-
bers of the family of bias-reduced estimators the algorithm provides a unified
computational framework for bias correction and bias reduction.

The new algorithm is then tested through an application to nonlinear re-
gression with beta-distributed responses, a situation in which bias correction of
the maximum likelihood estimator has received considerable recent attention in
the literature. In addition to demonstrating the effectiveness of the algorithm
developed here, a thorough numerical study reveals some errors in the recent
literature on such models. The design and analysis of the simulation experiment
conducted to detect such errors have special features associated with the large-
sample behaviour of bias and variance, and form a template for the numerical
study of asymptotic properties more generally.

2. Bias reduction via adjusted score functions

Firth [14] showed that an estimator with O(n−2) bias may be obtained through
the solution of an adjusted score equation in the general form

S∗(β) = S(β) +A(β) = 0 , (2.1)

where A(β), suitably chosen, is Op(1) in magnitude as n → ∞. Firth [14] de-
scribed two specific instances of the general bias-reducing adjustment A, denoted
by A(E) and A(O), based respectively on the expected and observed information
matrix. The components of these two alternatives are given by

A
(E)
t (β) =

1

2
tr
[

{F (β)}−1 {Pt(β) +Qt(β)}
]

(t = 1, . . . , q) , (2.2)

and
A(O)(β) = I(β){F (β)}−1A(E)(β) ,

where F (β) = Eβ{I(β)} is the expected information matrix and Pt(β) =
Eβ{S(β)S(β)TSt(β)} and Qt(β) = Eβ{−I(β)St(β)} are higher order joint null
moments of log-likelihood derivatives.
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Kosmidis and Firth [19] gave a more general family of bias-reducing adjust-
ments to the score vector. The general adjustment is of the form

A(β) = −{G(β) +R(β)} b(β) , (2.3)

where G(β) is either F (β) or I(β) or some other matrix with expectation F (β),
and R(β) is a q × q matrix with expectation of order O(n1/2). The vector

b(β) = −{F (β)}−1
A(E)(β) (2.4)

is the O(n−1) asymptotic bias. It is immediately apparent that if G(β) = F (β)
with R(β) = 0 then the A(E) adjustment results, and if G(β) = I(β) with
R(β) = 0 the A(O) adjustment results.

3. Bias reduction as iterated bias correction

A full Newton-Raphson iteration for obtaining the bias-reduced estimate would
require the evaluation of the matrix I(β) +∇T

βA(β). Even for relatively simple

models a closed form expression for ∇T
βA(β) requires cumbersome algebra and,

depending on the complexity of the resultant expression, may also be difficult
to implement. For this reason, the following quasi Newton-Raphson iteration is
proposed:

β(j+1) = β(j) +
{

I
(

β(j)
)}−1

S∗
(

β(j)
)

, (3.1)

where β(j) is the candidate value for β∗ at the jth iteration. An alternative to
the above iteration is the modified Fisher scoring iteration proposed in Kosmidis
and Firth [19] in the specific context of generalized nonlinear models. The key
difference between (3.1) and the iteration proposed in Kosmidis and Firth [19] is
the use of F (β) instead of I(β) for calculation of the direction. Either iteration
may be used but (3.1) seems closer in spirit to a Newton-Raphson iteration;
because of the omission of the term ∇T

βA(β), though, the convergence rate is
generally linear instead of quadratic.

By substituting (2.1) and (2.3) into (3.1), the iteration may be re-expressed
in the form

β(j+1) = β(j) +
{

I
(

β(j)
)}−1

S
(

β(j)
)

(3.2)

−
{

I
(

β(j)
)}−1 {

G
(

β(j)
)

+R
(

β(j)
)}

b
(

β(j)
)

.

Note that the first two terms on the right hand side of the above expression
correspond to a Newton-Raphson iteration for maximizing the log-likelihood
and hence (3.2) may be re-expressed as

β(j+1) = β̂(j+1) −
{

I
(

β(j)
)}−1 {

G
(

β(j)
)

+R
(

β(j)
)}

b
(

β(j)
)

, (3.3)

where β̂(j+1) is the candidate value for the maximum likelihood estimate that
would be obtained by taking a single Newton-Raphson step from β(j).
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Convergence or otherwise of the above iteration depends on the properties
of the specific model under consideration. Nevertheless, assuming that it does
converge, it is apparent from (3.1) that at convergence iteration (3.3) gives the
solution to the equations S∗(β) = 0.

In regular statistical models the maximum likelihood estimator differs from
the bias-reduced estimator by a quantity of order O(n−1). Typically, then, the
maximum likelihood estimate is a good starting value for the iterative scheme,
provided that none of its components is on the boundary of the parameter space.

In the special case of bias reduction based on the A(O) adjustment, iteration
(3.3) can be usefully re-expressed as simply

β(j+1) = β̂(j+1) − b
(

β(j)
)

. (3.4)

This has a rather appealing interpretation: at each step, the next candidate value
of the maximum likelihood estimate is corrected by subtracting the O(n−1) bias

evaluated at the current value of the bias-reduced estimate. Hence, if β(0) = β̂,
the first step of the proposed scheme delivers the bias-corrected maximum likeli-
hood estimate; and iterating until convergence yields the bias-reduced estimate
based on adjustment A(O).

For bias reduction based on the A(E) adjustment, iterated bias correction as in
(3.4) can still be used, but with the symbols in (3.4) having a different meaning.

In that case β̂(j+1) represents the candidate value for the maximum likelihood
estimate obtained by taking a single Fisher-scoring step from β(j), instead of a
Newton-Raphson step. This provides a useful new interpretation of the modified
Fisher scoring iteration that was suggested in Kosmidis and Firth [19].

4. Example: Beta regression

4.1. Beta generalized linear model

As an illustrative application of the bias-reduction algorithm, consider the case
of a generalized linear model with Beta-distributed responses [for example, 10,
12]. Suppose that Y1, . . . , Yn are independent Beta-distributed random variables,
the density of Yi being

fi(y) =
Γ(δi + ǫi)

Γ(δi)Γ(ǫi)
yδi−1(1− y)ǫi−1 (0 < yi < 1; δi > 0, ǫi > 0; i = 1, . . . , n).

Then

E(Yi) =
δi

δi + ǫi
= µi and var(Yi) =

µi(1− µi)

1 + δi + ǫi
.

For the purposes of the current paper it will be assumed that the precision
quantities δi + ǫi (i = 1, . . . , n) are all equal, and we will write 1/(1 + δi + ǫi) =
σ2 < 1. The response dispersion, relative to the common variance function
V (µi) = µi(1− µi), is thus assumed constant:

var(Yi)

V (µi)
= σ2 .
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In some applications this constant-dispersion assumption might need to be re-
laxed, for example, as in Smithson and Verkuilen [31] or Simas et al. [30].

The dependence of the response mean µi upon a p-vector xi of covariate values
is commonly modeled through a link function g(.) to a linear predictor ηi (i =
1, . . . , n). Since µi ∈ (0, 1), the obvious candidate link functions in this context
are inverse cumulative distribution functions (logit, probit and suchlike). The
assumed relationship between the expected response and the covariate values is
then

g(µi) = ηi =

p
∑

t=1

γtxit , (i = 1, . . . , n) ,

and so the parameters of this model are the vector of regression coefficients
γ = (γ1, . . . , γp) and the dispersion parameter σ2. Ferrari and Cribari-Neto [12]
parameterized the model in terms of the precision parameter φ = 1/σ2 − 1 and
that representation will also be used here, with β = (γ1, . . . , γp, φ) being the full
vector of model parameters.

4.2. Bias reduction

For Beta regression models, Ospina et al. [23] express the vector b(β) of the

first-order biases of β̂ as the estimator of the regression coefficients of an appro-
priately weighted linear regression. A similar result is obtained in Simas et al.
[30] for nonlinear Beta regression models with dispersion covariates. Despite the
analytical elegance of such expressions for b(β), patterned after similar results
for generalized linear models in Cordeiro and McCullagh [6], they seem to offer
no benefit in terms of efficient implementation. In what follows a more direct
approach is taken. For general families of models, equations (2.2), (2.4) and
(3.3) suggest that bias correction and any bias-reduction method can be di-
rectly implemented if F (β), I(β), Pt(β) +Qt(β) (t = 1, . . . , q) and the required
form of G(β) +R(β) are all available in closed form; the matrix inversions and
multiplications necessary for implementation can then be done numerically.

For the Beta regression model the log-likelihood can be written in the form

l(β) =
n
∑

i=1

[φµi(Ui − Zi) + φZi − log Γ(φµi)− log Γ{φ(1− µi)}+ log Γ(φ)] ,

where µi = g−1(ηi), and Ui = log Yi and Zi = log(1 − Yi) are the sufficient
statistics for the Beta distribution with natural parameters δi and ǫi, respec-
tively (i = 1, . . . , n). Direct differentiation of l(β) with respect to φ and γ gives
that

S(β) =

[

∇γ l(β)
∂l(β)/∂φ

]

=

[

φXTD(Ū − Z̄)
1TnM(Ū − Z̄) + 1Tn Z̄

]

, (4.1)

where the dependence on β of the quantities appearing in the right hand side has
been suppressed for notational convenience. Here, 1n is an n-vector of ones, X is
the n×p matrix with xi as its ith row, D = diag{d1, . . . , dn} with di = dµi/dηi
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(i = 1, . . . , n), and M = diag{µ1, . . . , µn}. Furthermore, Ū and Z̄ are the n-
vectors with ith components the centered sufficient statistics Ūi = Ui − λi
and Z̄i = Zi − ξi, respectively, where λi = E(Ui) = ψ(0)(φµi) − ψ(0)(φ) and
ξi = E(Zi) = ψ(0){φ(1 − µi)} − ψ(0)(φ) (i = 1, . . . , n). The function ψ(r)(k) =
dr+1 log Γ(k)/dkr+1 is the polygamma function of order r (r = 0, 1, . . .).

Expressing all likelihood derivatives in terms of the sufficient statistics Ui and
Zi facilitates the calculation of Pt + Qt because the derivation of higher-order
joint cumulants of Zi and Ui is merely a simple algebraic exercise; any joint
cumulant of Zi and Ui results from appropriate-order partial differentiation of
the cumulant transform of the Beta distribution with respect to the natural
parameters δi and ǫi.

Further differentiation of l(β) gives the observed information on β,

I(β) = F (β) −
[

φXTD′ diag{Ū − Z̄}X XTD(Ū − Z̄)
(Ū − Z̄)TDX 0

]

, (4.2)

where

F (β) =

[

φ2XTDK2DX φXTD (MK2 −Ψ1)

φ (MK2 −Ψ1)DX 1Tn {MK2M + (1− 2M)Ψ1} 1n − nψ(1)(φ)

]

(4.3)
is immediately recognised to be the expected information on β, since the expec-
tation of the second summand in the right hand side of (4.2) is zero. Here, D′ =
diag{d′1, . . . , d′n} with d′i = d2µi/dη

2
i ,K2 = diag{var(Ū1−Z̄1), . . . , var

(

Ūn − Z̄n

)

},
where var

(

Ūi − Z̄i

)

= ψ(1)(φµi) + ψ(1){φ(1 − µi)} and

Ψr = diag
{

ψ(r){φ(1− µ1)
}

, . . . , ψ(r){φ(1−µn)}} (r = 0, 1, . . . ; i = 1, . . . , n) .

A careful examination of expressions (4.1) and (4.2) reveals that

Pt(β) +Qt(β) = Eβ{S(β)S(β)TSt(β)} + Eβ{−I(β)St(β)} (t = 1, . . . , p+ 1) ,

depends on var
(

Ūi − Z̄i

)

, on the cumulants E
(

Z̄3
i

)

, E
{

(Ūi − Z̄i)
3
}

and on

the covariances E
{

(Ūi − Z̄i)Z̄i

}

, E
{

(Ūi − Z̄i)
2Z̄i

}

and E
{

(Ūi − Z̄i)Z̄
2
i

}

(i =
1, . . . , n). Re-expressing the above expectations as sums of joint cumulants of Ui

and Zi, direct differentiation of the cumulant transform of the Beta distribution
with respect to δi and ǫi gives

E
(

Z̄3
i

)

= ψ(2){φ(1− µi)} − ψ(2)(φ) ,

E
{

(Ūi − Z̄i)
3
}

= ψ(2)(φµi)− ψ(2){φ(1− µi)} ,
E
{

(Ūi − Z̄i)Z̄i

}

= −ψ(1){φ(1 − µi)} ,
E
{

(Ūi − Z̄i)
2Z̄i

}

= ψ(2){φ(1− µi)} ,
E
{

(Ūi − Z̄i)Z̄
2
i

}

= −ψ(2){φ(1 − µi)} (i = 1, . . . , n) .

Some algebra then gives

Pt +Qt = φ

[

Vγγ Vγφ
V T
γφ Vφφ

]

(t = 1, . . . , p) (4.4)
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and

Pp+1 +Qp+1 = φ

[

Wγγ Wγφ

WT
γφ Wφφ

]

, (4.5)

where

Vγγ = φ2XTD (φDK3D +D′K2)TtX ,

Vγφ = φXTD (φMK3 + φΨ2 +K2)DTt1n ,

Vφφ = φ1TnD {MK3M + (2M − 1)Ψ2}Tt1n ,

and

Wγγ = φXT {φD (MK3 +Ψ2)D +D′ (MK2 −Ψ1)}X ,

Wγφ = XTD {φMK3M + φ (2M − 1)Ψ2 +MK2 −Ψ1} 1n ,
Wφφ = 1Tn {MMK3M + (3MM − 3M + 1)Ψ2} 1n − nψ(2)(φ) ,

withK3= diag
{

E{(Ū1 − Z̄1)
3}, . . . , E{(Ūn− Z̄n)

3}
}

and Tt= diag{x1t, . . . , xnt}.
Iteration (3.3) can now be implemented by using expressions (4.1), (4.2),

(4.3), (4.4) and (4.5) and the chosen matrices G(β) and R(β).

4.3. Numerical study

As a partial check on the correctness of the bias-reduction algorithm a model
with

log
µi

1− µi
= α+

9
∑

t=1

γtsit + δti (i = 1, . . . , n) (4.6)

is fitted to the n = 32 observations of the gasoline yield data of Prater [26].
The response variable is the proportion of crude oil converted to gasoline after
distillation and fractionation, and si1, . . . , si9 are the values of 9 binary covari-
ates which represent the 10 distinct experimental settings in the data set for
the triplet i) temperature in degrees Fahrenheit at which 10% of crude oil has
vaporized, ii) crude oil gravity, and iii) vapor pressure of crude oil (i = 1, . . . , n).
Lastly, ti is the temperature in degrees Fahrenheit at which all gasoline has va-
porized for the ith observation (i = 1, . . . , n). The same model was also used for
illustration in Ospina et al. [23].

The parameters β = (α, γ1, . . . , γ9, δ, φ) are estimated using maximum likeli-
hood, bias correction and bias reduction with A(O) and A(E) adjustments using
the expressions (4.4) and (4.5) to implement iteration (3.3). The results for
the actual data are shown in Table 1, while Table 2 presents the results of a
simulation study based on this example. Some remarks on these results follow.

Remark 1: Checking correctness of the implementation

The bias-corrected estimates and the bias-reduced estimates with A(E) adjust-
ments in Table 1 differ appreciably from the corresponding values reported in
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Table 1

Estimates of the parameters of model (4.6) using maximum likelihood, bias correction and
bias reduction with A(E) and A(O) adjustments. The parenthesized quantities are the
corresponding estimated standard errors based on the expected information matrix

Maximum
likelihood

Bias
correction

Bias reduction
using A(E)

Bias reduction
using A(O)

α −6.15957 (0.18232) −6.14837 (0.23595) −6.14171 (0.23588) −6.14005 (0.23591)
γ1 1.72773 (0.10123) 1.72484 (0.13107) 1.72325 (0.13106) 1.72273 (0.13108)
γ2 1.32260 (0.11790) 1.32009 (0.15260) 1.31860 (0.15257) 1.31823 (0.15260)
γ3 1.57231 (0.11610) 1.56928 (0.15030) 1.56734 (0.15028) 1.56699 (0.15031)
γ4 1.05971 (0.10236) 1.05788 (0.13251) 1.05677 (0.13249) 1.05651 (0.13251)
γ5 1.13375 (0.10352) 1.13165 (0.13404) 1.13024 (0.13403) 1.13003 (0.13405)
γ6 1.04016 (0.10604) 1.03829 (0.13729) 1.03714 (0.13727) 1.03689 (0.13729)
γ7 0.54369 (0.10913) 0.54309 (0.14119) 0.54242 (0.14116) 0.54253 (0.14118)
γ8 0.49590 (0.10893) 0.49518 (0.14099) 0.49446 (0.14096) 0.49454 (0.14099)
γ9 0.38579 (0.11859) 0.38502 (0.15353) 0.38459 (0.15351) 0.38446 (0.15354)
δ 0.01097 (0.00041) 0.01094 (0.00053) 0.01093 (0.00053) 0.01093 (0.00053)
φ 440.27839 (110.02562) 261.20610 (65.25866) 261.03777 (65.21640) 260.90168 (65.18234)

Table 2

Estimated biases ×102 (T1) and mean squared errors ×102 (T2) for the parameters of
model (4.6) based on a simulation of size 2× 106 from the maximum likelihood fit. The
parenthesised quantities are estimates of the corresponding simulation standard errors

Maximum
likelihood

Bias
correction

Bias reduction
using A(E)

Bias reduction
using A(O)

T1

α −1.129 (0.013) −0.389 (0.013) 0.114 (0.013) 0.182 (0.013)
γ1 0.293 (0.007) 0.101 (0.007) −0.028 (0.007) −0.046 (0.007)
γ2 0.253 (0.008) 0.087 (0.008) −0.025 (0.008) −0.040 (0.008)
γ3 0.313 (0.008) 0.112 (0.008) −0.023 (0.008) −0.042 (0.008)
γ4 0.194 (0.007) 0.073 (0.007) −0.010 (0.007) −0.021 (0.007)
γ5 0.216 (0.007) 0.076 (0.007) −0.018 (0.007) −0.031 (0.007)
γ6 0.198 (0.008) 0.074 (0.007) −0.009 (0.007) −0.021 (0.007)
γ7 0.059 (0.008) 0.019 (0.008) −0.008 (0.008) −0.012 (0.008)
γ8 0.074 (0.008) 0.026 (0.008) −0.006 (0.008) −0.010 (0.008)
γ9 0.071 (0.008) 0.020 (0.008) −0.014 (0.008) −0.019 (0.008)
δ 0.002 (< 0.001) 0.001 (< 0.001) < 0.001 (< 0.001) < 0.001 (< 0.001)
φ 30162.5 (18.0) 1.8 (10.7) −18.2 (10.7) −30.1 (10.7)

T2

α 3.355 (0.003) 3.335 (0.003) 3.329 (0.003) 3.328 (0.003)
γ1 1.030 (0.001) 1.027 (0.001) 1.025 (0.001) 1.025 (0.001)
γ2 1.397 (0.001) 1.392 (0.001) 1.390 (0.001) 1.389 (0.001)
γ3 1.353 (0.001) 1.348 (0.001) 1.346 (0.001) 1.345 (0.001)
γ4 1.053 (0.001) 1.049 (0.001) 1.047 (0.001) 1.047 (0.001)
γ5 1.076 (0.001) 1.073 (0.001) 1.071 (0.001) 1.071 (0.001)
γ6 1.128 (0.001) 1.125 (0.001) 1.123 (0.001) 1.123 (0.001)
γ7 1.201 (0.001) 1.197 (0.001) 1.194 (0.001) 1.194 (0.001)
γ8 1.191 (0.001) 1.187 (0.001) 1.185 (0.001) 1.184 (0.001)
γ9 1.413 (0.001) 1.409 (0.001) 1.406 (0.001) 1.406 (0.001)
δ < 0.001 (< 0.001) < 0.001 (< 0.001) < 0.001 (< 0.001) < 0.001 (< 0.001)
φ 15570353.7 (20413.3) 2281835.6 (4257.5) 2281844.7 (4255.0) 2281881.7 (4253.5)
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Ospina et al. [23, Table 6] (labeled “CBCE” and “PBCE”, respectively, therein)
while the maximum likelihood estimates are the same, at least to five significant
digits. After some investigation it was found that the differences arise from two
distinct sources.

The reason for the fairly substantial difference in the reported bias-reduced
estimates is an elementary but serious error: in equation (3.5) of Ospina et al. [23]
the sign of the adjustment term is the opposite of that suggested in Firth [14].
As a result of this, and as is also apparent in the simulation studies reported in
Ospina et al. [23], the estimator labeled “PBCE” therein approximately doubles
the bias of the maximum likelihood estimator instead of eliminating it. The
same mistake was made also in equation (12) of Simas et al. [30], with the same
unfortunate consequence.

That mistake does not, however, account for the differences seen also between
the reported bias-corrected estimates here and in Table 6 of Ospina et al. [23].
Those differences, while relatively small, are still too large to be attributed to
presentational rounding error: at least one of the two implementations of the
O(n−1) bias term b(β) must therefore be incorrect. A brief account follows of an
extensive simulation exercise designed to determine which of the two reported
sets of bias-corrected estimates is incorrect.

The bias of the maximum likelihood estimator can be written in the form
B(β)/n+O(n−2), where b(β) = B(β)/n is as in (2.4). The following simulation

experiment relies on the fact that as n increases the bias of β̂ is almost completely
determined by the value of B(β).

Let X be the n × p model matrix for (4.6) and denote by Z(j) a nj × p
model matrix with nj = nj, whose rows result from repeating j times each row
of X (j = 1, 2, . . . ;n = 32; p = 11). Then the bias of the maximum likelihood

estimator β̂[j] for model matrix Z(j) is B(β)/nj + O(n−2
j ) (j = 1, 2, . . .). The

alternative values of the vector B(β̂) are calculated as

B(cur)(β̂) = n
(

β̂ − β̃(cur)
)

,

B(Osp)(β̂) = n
(

β̂ − β̃(Osp)
)

,

using the bias-corrected estimates β̃(cur) in Table 1 for the current implemen-
tation, and the bias-corrected estimates β̃(Osp) reported in Ospina et al. [23,
Table 6], respectively.

For any j ∈ {1, 2, . . .}, consider now simulating some number Nj of samples
from the model, using the maximum likelihood estimates in Table 1 as the true
value for β. The bias of β̂[j] can then be estimated using maximum likelihood fits
to those samples and, after multiplication by nj , can be compared to B(cur)(β̂)

and B(Osp)(β̂). The standard error of the estimator of nj times the bias of β̂[j]

is O
(

√

nj/Nj

)

. Hence, the order of that standard error can be stabilized to

O(1/
√
N) by choosing Nj = Nnj , for some sufficiently large N .

The plots in Figure 1 give the estimated values of the components of nj times

the bias of β̂[j] that correspond to α, γ1, . . . , γ9, and δ, for N = 5000 and j =
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Fig 1. Simulation-based estimates of the components of nj times the bias of β̂[j] for

j = 1, . . . , 15. The solid and dashed horizontal lines are the components of B(cur)(β̂) and

B(Osp)(β̂), respectively. The vertical lines are approximate 99% confidence intervals.

1, . . . , 15. To provide an indication of the uncertainty due to simulation error,
the estimates are accompanied by 99% confidence intervals based on asymptotic
normality. For every parameter the estimate is very close to B(cur)(β̂). This
experiment provides clear evidence of either an algebraic or implementation
error in Ospina et al. [23] as far as b(β) is concerned, at least for the parameters
α, γ1, . . . , γ6 and δ; the differences found here are too large to be accounted for by
the presentational rounding to 5 decimal places in Table 6 of Ospina et al. [23].

Remark 2: Impact of bias in this example

The results in Table 2 are as expected: the bias found in the maximum likelihood
estimator β̂ is reduced by all three of the alternative methods which aim to
improve the bias. By far the most important effect of bias reduction here is to
reduce substantially the estimated value of φ; in regard to estimation of the
regression parameters (α, γ, δ), on the other hand, the bias in this example is
rather slight and is therefore of no real consequence. The smaller value of φ does,
however, result in an appreciable increase in the estimated standard errors for all
the regression parameter estimates. A further simulation exercise, not reported
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in detail here, was conducted to check the accuracy of the asymptotic standard
errors reported in Table 1: it was found that those standard errors all agree
with simulation-based standard errors to at least 3 decimal places. Because
of the large bias in the estimated precision parameter φ̂, the usual standard
errors based on the maximum likelihood analysis are systematically too small.
The principal effect of bias reduction in this example, then, is to produce more
realistic standard errors for the estimates of all the parameters.

It should be noted that the estimated value of φ in this example, even after
reduction of the bias, is quite large: that is, the residual dispersion in the model
is quite small. This accounts for the rather small bias found in the maximum
likelihood estimator for the regression parameters. In a different situation with
more substantial residual dispersion present, biases in the regression estimates
themselves (i.e., not only in their standard errors) would likely become more
important.

Remark 3: Parameterization

In general, bias reduction will typically make most sense when applied to esti-
mators whose distribution is approximately symmetric, since it will then most
often improve the accuracy of inferences made when using first-order asymp-
totic normal approximations. In the present application, the distributions for
all parameters except φ are close to symmetric; φ̂ exhibits substantial positive
skewness, as is often found in the estimation of positive-valued parameters.

In this model it seems preferable, then, to consider bias reduction instead
for a transformed version of φ, the most obvious candidate being logφ. The
distribution of log φ̂ is much closer to being symmetric than that of φ̂, a fact
confirmed by graphical summaries (not presented here) of the simulation exper-
iment underlying Table 2.

Consider a general re-parameterization from β to ω = (α, γ1, . . . , γ9, δ, ζ),
with ζ = h(φ) for some appropriate function h : ℜ+ → H ⊂ ℜ. Because
the maximum likelihood estimator is equivariant under re-parameterization, the
components of the bias vector — and hence of the vector of first-order biases
— corresponding to α, γ1, . . . , γ9 and δ will be the same in both the ω and β
parameterizations. Assuming that h(.) is at least three times differentiable, and

using the consistency of the maximum likelihood estimator φ̂ of φ, ζ̂ − ζ admits
the expansion

ζ̂−ζ = h(φ̂)−h(φ) = (φ̂−φ)dh(φ)
dφ

+
1

2
(φ̂−φ)2 d

2h(φ)

dφ2
+
1

6
(φ̂−φ)3 d

3h(φ)

dφ3
+Op(n

−2) .

(4.7)

Noting that E[(φ̂ − φ)r ] is O(n−(r+1)/2) if r is odd and O(n−r/2) if r is even
[see, for example 24, Section 9.4 for the asymptotic expansion of the maximum
likelihood estimator], taking expectations in both sides of (4.7) gives that the

bias of ζ̂ can be written as

E(ζ̂ − ζ) = bφ(β)
dh(φ)

dφ
+

1

2
F−1
φφ (β)

d2h(φ)

dφ2
+O(n−2) . (4.8)
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Here bφ(β) and F−1
φφ (β) denote the components of b(β) and {F (β)}−1 which

correspond to φ. Furthermore, the expected information matrix on ω is F ∗(ω) =
J(ω)F (β(ω))J(ω), where β(ω) = (α, γ1, . . . , γ9, δ, h

−1(ζ)) and

J(ω) =















1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 dh−1(ζ)/dζ















,

with h−1(.) the inverse of the function h(.).

Expression (4.8) can be used to obtain the first-order bias of h(φ̂) for every

h(.), by merely using the first-order bias of φ̂, the inverse of F (β) and the first
two derivatives of h(.). Also, the bias-reduced estimate of ω based on A(E)

adjustments can be obtained by using iteration (3.4) with

ω̂(j+1) = ω(j) +
{

F ∗
(

ω(j)
)}−1

S∗
(

ω(j)
)

,

where S∗(ω) = J(ω)S(β(ω)) is the score vector in the ω parameterization. While
the maximum likelihood and bias-corrected estimates for α, γ1, . . . , γ9 and δ will
be exactly the same in both the β and ω parameterizations, the corresponding
bias-reduced estimates will generally differ slightly between parameterizations.

Table 3 gives the maximum likelihood, bias-corrected and bias-reduced es-
timates of ω when h(φ) = logφ, along with estimated standard errors based
on F ∗(ω) evaluated at the corresponding estimates. The principal differences
between Table 3 and Table 1 are in the implied estimates of φ, and con-
sequently in the standard errors for estimates of the regression parameters
α, γ1, . . . , γ9 and δ. For example, the bias-reduced estimate of φ from Table 3

Table 3

Estimates of the parameters of model (4.6) using maximum likelihood, bias correction and
bias reduction based on A(E), for the re-parameterization with ζ = log(φ). In parentheses are
the corresponding estimated standard errors based on the expected information matrix F ∗(ω)

Maximum
likelihood

Bias
correction

Bias reduction
using A(E)

α −6.15957 (0.18232) −6.14837 (0.21944) −6.14259 (0.22998)
γ1 1.72773 (0.10123) 1.72484 (0.12189) 1.72347 (0.12777)
γ2 1.32260 (0.11790) 1.32009 (0.14193) 1.31880 (0.14875)
γ3 1.57231 (0.11610) 1.56928 (0.13978) 1.56758 (0.14651)
γ4 1.05971 (0.10236) 1.05788 (0.12323) 1.05691 (0.12917)
γ5 1.13375 (0.10352) 1.13165 (0.12465) 1.13041 (0.13067)
γ6 1.04016 (0.10604) 1.03829 (0.12767) 1.03729 (0.13383)
γ7 0.54369 (0.10913) 0.54309 (0.13133) 0.54248 (0.13763)
γ8 0.49590 (0.10893) 0.49518 (0.13112) 0.49453 (0.13743)
γ9 0.38579 (0.11859) 0.38502 (0.14278) 0.38465 (0.14966)
δ 0.01097 (0.00041) 0.01094 (0.00050) 0.01093 (0.00052)
ζ 6.08741 (0.24990) 5.71191 (0.24986) 5.61608 (0.24984)
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is exp(5.61608) = 274.8; this is slightly larger than the corresponding value
261.0 from Table 1, resulting in slightly smaller estimated standard errors for
the regression parameters in Table 3.

5. Concluding remarks

The new algorithm developed here unifies various iterative methods that have
been made available previously for specific models, and extends them to cover
any new situation for which the O(1/n) bias of the maximum likelihood estima-
tor can be derived. The method was tested and demonstrated here in the context
of beta-response nonlinear regression, and was found to perform robustly in all
of the very large number of samples that were used in simulation studies.

The particular illustrative example presented here is just one of several beta-
regression applications that the authors have worked through carefully, and
the results were qualitatively the same in all of them. Bias in estimation of
the regression parameters in such models is typically so small as to be of no
consequence, at least when the precision parameter φ is not unreasonably small;
but the standard errors in a maximum-likelihood analysis are systematically
under-estimated, with the likely consequence that spuriously strong conclusions
would often be drawn. Reducing the bias in the estimated precision parameter
increases the estimated standard errors in such a way that they reflect better
the true variability of the estimated regression parameters.

The calculations described here were all programmed in R [27], and the code
is available on request from the first author.
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